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ABSTRACT This paper proposes an optimization strategy for searching moving targets’ locations using
cooperative unmanned aerial vehicles (UAVs) in an unknown environment. Such a strategy aims at reducing
the overall search time and impact of uncertainties caused by the motion of targets, as well as improving the
detection efficiency of UAVs. Specifically, we report, based on the UAV’s scan of a location and taking into
account (i) the detection and communication coverage limitations, and (ii) either a false alarm or inaccurate
detection of the target, either the existence or the absence of the target. Moreover, leveraging a cooperative
and competitive particle swarm optimization (PSO) algorithm, a decentralized target search model, relying
on a real-time dynamic construction of cooperative UAV local sub-swarms (LoPSO), is proposed. Each
sub-swarm strives to validate quickly the target location, updated based on the Bayesian theory. In such
a strategy, each UAV operates in two flight modes, namely, either in swarm mode or in Greedy mode, and
takes into consideration the received data from other UAVs to improve the overall environmental information.
The simulation results revealed that the LoPSO outperforms other well-known searching methods of target
methods for target search in unknown environments in terms of both performance and computational
complexity.

INDEX TERMS Cooperative search, decision making, moved target, particle swarm optimization,
unmanned aerial vehicle (UAV).

I. INTRODUCTION
The cooperative control of significant small unmanned aerial
vehicles (UAVs) groups is less expensive and of great inter-
est in military and civilian domains, such as space explo-
ration, forest fire watch, patrols, and search and rescue. These
tasks can be critical, making them ideal for autonomous
vehicles [1], [2]. In these types of applications, the UAV
group must have numerous capabilities including aircraft
communication, navigation, and collision avoidance [3]. Part
of the growing interest in UAVs stems from the grow-
ing feasibility of these goals due to the improvement in
small processors, sensors, cameras, and reliable wireless net-
works. The cooperative control of multiple UAVs is one of
the interesting and key topics in the area of UAV appli-
cations. In this regard, different models were proposed,
especially the cooperative search target, such as Markov
decision-making process, which considers the uncertainty
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relying on the environmental conditions [4], mathemati-
cal planning [5], heuristic algorithms [6], [7], market-based
approaches [8], [9], reinforcement learning [10], [11], min-
imum duration search algorithms (MTS) [12], based on
search trajectories minimizing target detection time, ran-
dom search (RS), in which each drone operates indepen-
dently of other UAVs, and Greedy methods [13]. These
algorithms can mainly be classified into three categories,
namely, (i) centralized, (ii) decentralized [14], and (iii) hybrid
approach. While the first approach lies in centralizing all
swarm search data on a centralized node, the second one
relies on sharing the neighborhoods information between
swarm UAVs, making the overall system scalable and more
robust to a single node data loss. Nevertheless, the central-
ized approach can achieve the global optimal solution with
the cost of central node burdening. In contrast, the hybrid
approach [15] uses both decentralized and centralized archi-
tectures that typically assume the formation of sub-swarms,
leading to the communication flow reduction. Indeed, due to
reduced coverage, the internal sub-swarm communication is
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limited and feasible only between UAVs of the same sub-
swarm and is assumed to be available only if the information
sharing is judged mandatory.

The research works proposed in the field of multi-UAVs
cooperation are of greatest interest in the target search field as
the use of UAVs offer several advantages over manned mis-
sions, such as reducing the resources use and subsequently
the overall operation cost, as well as, obtaining solutions
with significantly low computational complexity and high
performance. On the other hand, the particle swarm opti-
mization (PSO) algorithm, referred to as a population-based
stochastic technique, is mainly inspired by the social behavior
of bird flocking to solve practical optimization problems [16].
The strengths of this algorithm are numerous. Foremost,
contrary to other concurrent algorithms, PSO has very few
parameters to be adjusted, while the computational complex-
ity is significantly reduced. Also, the global optimum solution
is most likely achieved [17].

Relying on the PSO algorithm, we propose an effi-
cient hybrid approach based on a local sub-swarm structure
(LoPSO) [18] to exchange and update efficiently the search
information to reduce the overall search time for finding all
missed targets. Pointedly, such information is updated with
the aid of target existence probabilities provided by the UAVs,
as well as a mapping of the uncertainty. However, the higher
the probability value, the higher the probability of the target’s
existence.

A. RELATED WORK
At present, a large number of works have been realized for
efficient and practical UAVs for searching and tracking tar-
gets. However, with the significant computational complexity
of search problems, in particular, the number of missed tar-
gets, their movement behavior, absence of sufficient informa-
tion on the environment, and especially, the time criticality,
it is extremely difficult, if not impossible, that a UAV per-
forms individually the search missions. These latter require
the coordination of several UAVs, referred to as multiple
UAVs cooperative search [19]. Various approaches dealing
with the search optimization problem have been proposed.
In [11], Markov Decision Process (MDP) with the use of deep
end learning is used, while in [20], a distributed model pre-
dictive control is presented, therein a centralized online opti-
mization problem is divided into a decentralized optimization
problem by a task-assignment to each drone. Likewise, the
K-shortest path routing algorithm was introduced to guide
drones to explore static targets in unknown areas [21]. Also,
a distributed tasks integrating dynamic programming-based
approach, aiming to obtain all necessary information from the
swarm of UAVs is proposed in [22]. Furthermore, each UAV
is able to determine its optimal flight route. Although these
methods are efficient for cooperative UAVs’ search problems,
they are limited to static targets. In recent years, extensive
researches have been devoted to the exploration of mov-
ing targets. For instance, emerging cooperative decision and
control algorithms based on the aforementioned approaches

have been proposed, such as custom combinatorial optimiza-
tion methods and nature-inspired techniques. These last has
becomemore prevalent due to its effectiveness in dealingwith
UAV dynamic constraints and the capacity to search for the
global optimum in complex scenarios. A variety of nature-
inspired algorithms have been developed for UAV search
targets such the genetic algorithm (GA) [7], ant colony algo-
rithm (ACO) [23], and particle swarm optimization (PSO)
[16], [24]. Among them, the PSO method is one of the most
prominent optimization algorithms, and it has been utilized
in many applications [25].

In [26], [27], the authors proposed a distributed particle
swarm optimization (DPSO) method based on creating a
decentralized multi-target tracking system with limited sen-
sor capability to track numerous targets. The whole swarm
is split into numerous subgroups, with each subgroup focus-
ing on a single target. In [28], a proposed motion-encoded
PSO algorithm is applied to the UAV’s search for moving
targets by encoding the search trajectory as a series of UAV
motion paths evolving over the generation of particles in a
PSO algorithm. In [29], an Extended PSO (EPSO) method
is proposed that incorporates adaptive inertia weights and
obstacle avoidance variables while taking into account the
limitations of restricted communication. It proposes utilizing
a non-holonomic model to update the forward speed and
rotational velocity of the robot swarm in order to accomplish
motion control.

Although the aforesaid algorithms have enabled multi-
UAV cooperative search, they would face various challenges
such as the absence of an efficient cooperation structure, and
mainly a lack of an efficient process for the environmental
information exchange. To remedy the situation, algorithms
based on swarm intelligence have been rolled out. In fact,
a number of autonomous UAV can be automatically and
adaptively coordinated to achieve a search mission in an
unknown area, by setting up an information-sharing mecha-
nism of a local map of the search area (search card) [13], [30]
which serves as the UAV’s knowledge base on the state of
the search area. In contrast, during the exploration, each
UAV observes a part of the search area, detects infor-
mation using onboard surveillance sensors (e.g., cameras),
updates its search maps, and shares it with its neighbor-
ing UAVs. Afterward, the UAVs must therefore decide the
next motion direction, the appropriate timing for such a
movement, along with the useful information to exchange
periodically.

The cooperative drone search process can be then outlined
as follows [31]:
• Sensing the search region and updating the set of prob-
abilities with the aid of UAVs,

• Making decisions about the next search area based on the
available information and the upcoming flight mode,

• Forming the sub-swarms for simultaneous exploration
of the area of search,

• Sharing the collected information between the
sub-swarms.
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B. CONTRIBUTION
Motivated by the foregoing, we present an efficient approach
based on a dynamic cluster structure that combines the char-
acteristics of a distributed and centralized approach, with the
goal of moving the cooperative and controlled autonomously
UAVs to undeveloped areas, as well as finding and tracking
moving targets in restricted areas. To create a controlled sce-
nario quite close to practical situations, certain assumptions
were made on the dynamic behavior of the targets, for the
sake of simplicity. Besides, we assume that the targets’ speeds
vary progressively and follow regular movement directions.
This means that they will not face huge fluctuations sud-
denly. Subsequently, the target motion direction is changed
progressively as well. Moreover, the quadrotor UAVs with
rotary wings, suitable for operations requiring maneuverabil-
ity, tight turns, and back-and-forth movements are consid-
ered. Of note, themotion control, image processing, low-level
control of the actuators, and the types of sensors are beyond
the scope of this article. To this end, it is assumed that the
UAVs’ sensors recognize the visible targets.

In this paper, a local PSO (LoPSO) strengthened algo-
rithm cooperative search for distributed unmanned aerial
vehicles (UAVs) is proposed. The whole swarm is divided
into sub-swarms in accordancewith the communication range
depending on the search state. Each sub-swarm ensures the
exchange only between its UAVs, while specific UAVs are
dedicated to playing the relay role between such a sub-swarm
and the base station (BS). Further, the sub-swarms validate
periodically the target found by one of their UAVs.

Specifically, a hybrid approach, assuming the formation
of sub-swarms using local communication networks to share
various useful information is presented. To this end, our main
contribution can be summarized as follows:
• We present a new strategy relying on LoPSO with the
divided and conquer method,

• Unlike the simple assumption made in [18], all the tar-
gets are supposed in motion,

• To gain more insights into the performance and the com-
putational complexity, we demonstrate that our proposed
algorithm outperforms the robust well-known similar
algorithms.

C. ORGANIZATION OF THE PAPER
The rest of this paper can be structured as follows:
Section II describes both system parameters and constraints,
while Section III outlines the dynamic model of the UAVs.
Section IV presents the proposed LoPSO algorithm, whereas
the simulation results alongside useful discussions are pro-
vided in Section V. Finally, a conclusion summarizing the
outcomes of this work and pointing out some future directions
is given in Section VI.

II. SYSTEM MODEL
As shown in Fig.1, we consider a set of NT moving targets
{Ti}16i6NT , e.g., a lost person, source of fire in the forest,
etc, in a predefined search region �, supposed rectangular

TABLE 1. Potential values of the message I .

and split into Lx × Ly equal-area square cells of length h
i.e., its surface equals h2, where Lx and Ly denote the number
of rows and columns, respectively. Furthermore, a set of
Nu UAVs {Ui}16i6Nu flying over the considered region are
cooperatively tracking the aforesaid targets.

For the ease of exposition, let us introduce the following
notations:
• Nu: Number of UAVs,
• NT : Number of missed targets,
• T : Set of found targets,
• R: Communication range of a UAV,
• Nc: Number of cells covered by an UAV, i.e. Nc = R/h,
• tk : Instance time of validating the kth target,
• Dmax: Maximum search duration,
• DPSO: Maximum PSO duration,
• τ : Sensing period,
• Nt : Number of targets,
• θ : Probability threshold of a target confirmation,
• Et : Minimum Energy threshold to stop searching,
• Ei: Current Energy of Ui,
• Fi: Flight mode of Ui,
• Nt (Ui): Set of indices referring to the neighbors of Ui
withinR at a given time t ,

• |Nt (Ui)|: Number of elements of Nt (Ui),
• χ

(t)
i : Position of ith particle,

• Mi(n, I ): Spreading the message I by either Ui when
i ≥1 or the BS if i = 0, where n defines the sent
information type, whereas I potential values are given in
Table 1. Especially, when n = 0, the types of messages
can be summarized to 4, namely (i) True: indicate that
the search is still in progress, (ii) False: indicate to stop
the search, (iii) Neighbors: request to join a sub-swarm,
and (iv) Free: report to members of a sub-swarm to leave
the corresponding sub-swarm.

• Ri(n, I ): Receiving the message I from either Ui when
i ≥ 1 or the BS if i = 0, where n is an integer defines the
received information type. Note that Ri(n, I ) is triggered
if a transmission is detected,

• Si(x, y): Sensing the cell cx,y by Ui. It returns the obser-
vation in this cell at a given time, i.e., equals 0 or 1 in the
absence or presence of a target observation, respectively.

Let cx,y denotes the coordinate of a cell center, where
x ∈ {1, ..,Lx} and y ∈

{
1, ..,Ly

}
. Each cell can store some

useful information, such as the uncertainty degree of the
environment and target existence probability. In what follows,
the cell centered by cx,y is referred by its center for the sake of
brevity. Also, we assume that all targets remain in the search
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FIGURE 1. Illustrative example of cooperative UAVs tracking moving
targets.

area� and that their location information sensed by Ui at the
time step t are modeled with a Bernoulli-distribution [30] as

P(i,t)x,y = Pr
(
X (i,t)
x,y = 1

)
, (1)

with X (i,t)
x,y denoting the random variable describing the detec-

tion of a target in the cell cx,y by Ui, with X
(i,t)
x,y = 1 if the

target exists and X (i,t)
x,y = 0 if not. Initially, as no information

is provided on the target existence, we set P(i,0)x,y = 0.5 for all
cells and UAVs.

By contrast, Ui is modeled as a nonholonomic point mass
moving synchronously in the discrete-time with a minimum
turning radius, at a slightly different altitude above the search
region so as to avoid potential collisions with each other.
In addition, Ui makes periodically, at each multiple of the
period τ , i.e., t = mτ where m is a positive number, the
decisions by adjusting its current position, and either moves
to the next cell, according to its own flying experience and
those of the neighbors or stay unmoved. For the sake of
simplicity, it is assumed that Ui flies with speed Vi in a
specific direction and operates in two main modes:

• Greedymode: In this mode, the UAVmoves towards the
cells with a minimum number of visits and whose exis-
tence probability value of the target is higher. Further,
each UAV explores individually as much as possible the
entire search area, which imposes the optimization of
energy consumption. Towards this end, only three future
directions are allowed to the UAV, namely, left, straight,
or right with a turning angle of 45◦, as depicted in
Fig. 2a, corresponding to three different future positions,
i.e.,

{
cxj,yj

}
j=0..2.

• PSO mode: Under this mode, the UAV flies in a swarm
which serves to cooperatively validate the position of
a target in a short search time compared to the Greedy
mode. Therefore, further flight future directions, specif-
ically, eight possible directions, as shown in Fig. 2b,

FIGURE 2. Future directions of the UAV per mode for Nc = 3.

i.e., north, northeast, east, southeast, south, southwest,
west, and northwest formulated by the centers{
cxj,yj

}
j=0..7 are authorized in this mode. This allows

to balance the UAV’s energy consumption, considered
significantly smaller than its Greedy counterpart.

Regardless of the aforesaid modes, each UAV Ui has suffi-
cient energy autonomy to remain inside � and carry out the
necessary operations, namely sensing the targets, updating its
search map, and sharing the information with neighbors.

Furthermore, each UAV is equipped with a wireless com-
munication device that allows it to communicate with its
neighbors, either broadcasting or receiving a message I
through the two primitives Mi(n, I ) and Ri(n, I ) to spread
and to receive the message I , respectively. Typically, such
neighbors are assumed to be inside a circle of radius R,
centered in Ui, i.e., Nt (Ui) =

{
Uj, ‖ Ui,Uj ‖6 R

}
where

‖ ., . ‖ denotes the Euclidean distance, as can be noticed in
Fig. 2. That is, the communication becomes reliable as long
as the neighbors are inside such a circle.

At a given time t = mτ , Ui senses cx,y, through a fixed
rectangular footprint sensor downward-pointing character-
ized by an imperfect detection accuracy and communication
capabilities, leveraging the primitive Si(x, y). As a result, the
obtained observation is binary: (i) O(i,t)x,y = 1 indicating that
the cell cx,y is visited at the time t by Ui and something has
been observed, or (ii)O(i,t)x,y = 0 stating thatUi did not observe
anything while flying at such a time on this cell, i.e., no target
detection.

Due to the imperfectness of the sensor, an observation of
the detected target still does not guarantee the presence of the
target. The performance of the sensor can be described with
two probabilities, namely the sensor detection rate pi and the
false alarm rate qi, whose are time-independent, and chosen
to be close to 1 and 0, respectively [13] as Pr

(
O(i,t)x,y = 1|X (i,t)

x,y = 1
)
= pi

Pr
(
O(i,t)x,y = 0|X (i,t)

x,y = 1
)
= 1− pi,

(2)

 Pr
(
O(i,t)x,y = 1|X (i,t)

x,y = 0
)
= qi

Pr
(
O(i,t)x,y = 0|X (i,t)

x,y = 0
)
= 1− qi,

(3)

where 1− pi and 1− qi denote the missed detection and true
miss probabilities, respectively.
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III. UAV DYNAMIC MODEL
During the exploration process, eachUi stores two individual
maps:
• The map of target existence probabilities,

P(i)(t) =
{
P(i,t)x,y , x = 1..Lx , y = 1..Ly

}
, (4)

• The cells counter map storing the number of visits per
cells and UAVs up to a given time t ,

C (i)(t) =
{
C (i,t)
x,y , x = 1..Lx , y = 1..Ly

}
, (5)

where C (i,t)
x,y accounts for the cumulated visits number of a

cell by all UAVs until t , which must be incremented by one
after each visit by a UAV. Typically, this variable is updated
taking into account the maximum number of visits performed
by the neighbors alongside the one of the current UAV until
the previous time as

C (i,t)
x,y = 1+ max

k∈Nt (Ui)

{
C (i,t−τ )
x,y ,C (k,t−τ )

x,y

}
. (6)

Every time step, each UAV has different probabilities
of target existence into a given cell. Such probabilities are
updated after each exploration of the cells with the help of
Bayesian rule [32] as

P(i,t)x,y

=



piP
(i,t−τ )
x,y

piP
(i,t−τ )
x,y + qi

(
1− P(i,t−τ )x,y

) , O(i,t)
x,y = 1

(1− pi)P
(i,t−τ )
x,y

(1−pi)P
(i,t−τ )
x,y +(1−qi)

(
1− P(i,t−τ )x,y

) , O(i,t)
x,y = 0.

(7)

Furthermore, we have the following

P(i,t)x,y − P
(i,t−τ )
x,y

=



(pi − qi)
(
1− P(i,t−τ )x,y

)
P(i,t−τ )x,y

piP
(i,t−τ )
x,y + qi

(
1− P(i,t−τ )x,y

) , O(i,t)
x,y = 1

−(pi − qi)
(
1− P(i,t−τ )x,y

)
P(i,t−τ )x,y

(1−pi)P
(i,t−τ )
x,y +(1−qi)

(
1− P(i,t−τ )x,y

) , O(i,t)
x,y = 0.

(8)

Subsequently, since pi > qi and P
(i,t)
x,y ∈ [0, 1], it can be

noticed that P(i,t)x,y > P(i,t−τ )x,y if O(i,t)
x,y = 1 and P(i,t)x,y 6 P(i,t−τ )x,y

if not.
The above probabilities update process is reiterated until

the kth target’s existence confirmation (k ≤ NT ) in a specific
cx,y cell characterized by the condition P(j,tk )x,y > θ , where
j ∈ {i,Nt (Ui))} and θ is a predefined threshold chosen close
to 1, i.e.,

tk = argmin
t

{
P(j,t)x,y > θ, j ∈ {i,Nt (Ui)}

}
. (9)

Under such a constraint, a target is most likely found by
Ui at the aforementioned place. Indeed, it can be easily ascer-
tained that the two sub-equations in (7) lead after certain steps
to a unique solution which is P(i,∗)x,y = 1. In fact, by replacing
P(i,t)x,y at any given time by the value at the convergence P(i,∗)x,y ,
one can obtain

P(i,∗)x,y =
piP

(i,∗)
x,y

piP
(i,∗)
x,y + qi

(
1− P(i,∗)x,y

)
P(i,∗)x,y =

(1− pi)P
(i,∗)
x,y

(1− pi)P
(i,∗)
x,y + (1− qi)

(
1− P(i,∗)x,y

) . (10)

As a result,{
qi(1− P(i,∗)x,y ) = pi(1− P(i,∗)x,y )
(1− qi)(1− P(i,∗)x,y ) = (1− pi)(1− P(i,∗)x,y ).

(11)

As pi 6= qi, it follows that P
(i,∗)
x,y = 1.

For the sake of notation, the variables tk are sorted in the
increasing order of time, as can be ascertained in Fig. 3,
namely

ti1 ≤ ti2 ≤ .. ≤ tiNT , (12)

where ik ∈ {1..NT }.
Furthermore, once all the NT targets have been found, the

maximum exploration instance time of our algorithm can be
retrieved as follows

Imax = max
k≤NT

tk , (13)

while the average time of validating all targets can be evalu-
ated as

tNT =

∑Nt
k=1 tk
NT

. (14)

Importantly, either in PSO or Greedy mode, once the ith
UAV flies into the area covered by some of its neighbors,
i.e., {Uk}k∈Nt (Ui), its target detection probability, evaluated
in (7), is updated exclusively once O(i,t)

x,y = 1 by averaging all
the probabilities of such neighbors along with its own one as

P(i,t)x,y =


P(i,t−τ)x,y , O(i,t)

x,y = 0

P(i,t−τ)x,y +
∑

k∈Nt (Ui) P
(k,t−τ)
x,y

|Nt (Ui)| + 1
, O(i,t)

x,y = 1.
(15)

The average probability of validating the target Tk is given
by

P
(k)
=

∑
j∈
{
i,Ntk (Ui))

} P(j,tk )x,y∣∣Ntk (Ui))
∣∣+ 1

, (16)

while the average probability of validating all targets can be
obtained as follows

P =

∑NT
k=1 P

(k)

NT
. (17)
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IV. PROBLEM-SOLVING ALGORITHM BASED ON
LOCAL-PSO
In this section, the updated position of the UAV is provided
in both considered modes in this paper. In our context, the
particle is represented by a UAV e.g., Ui, where its position
and velocity can be, respectively, modeled as

χ
(t)
i =

(
χ
(t)
i,x , χ

(t)
i,y

)
, (18)

and

V (t)
i =

(
V (t)
i,x ,V

(t)
i,y

)
. (19)

A. UPDATED POSITION UNDER THE GREEDY MODE
In the Greedy mode, each Ui moves with the same velocity
V (t)
i from one cell to another by using the cells counter map

to head towards less visited cells, i.e., the next cell to visit is
characterized by

χ
(t)
i = arg min

j=0..2
C (i,t)
xj,yj . (20)

B. UPDATED POSITION UNDER LOCAL-PSO
It is noted that in the classical PSO algorithm, a population of
individuals is initially generated with random positions and
velocities in the search space. Each individual is considered
as a particle, which is a potential solution. Every individual
moves and evolves cognitively with other particles to seek
the global optimum solution. Precisely, those motions are
driven by their best position as well as the one of the swarm,
determined by their fitness values. The particles in the PSO
approach obey rules that are comparable to those that control
the movements of UAVs in our suggested model. In fact, the
algorithm’s particle may be translated to a swarm member
UAV, and the heuristic collaborative search can then be per-
formed by duplicating the algorithm’s principles while taking
physical constraints into consideration [32].

In our proposed Local-PSO algorithm, all the UAVs start
initially moving in the Greedy mode, until a target Tk =
(Tk,x ,Tk,y) is detected in the cell cx,y by Ui. This latter
broadcasts the target detection information, and based on its
neighbors Nt (Ui), build a local sub-swarm if |Nt (Ui)| > 3,
and launch the LoPSO algorithm. The sub-swarm will dis-
solve and all of its UAVs will proceed into Greedy mode
search if the discovered target is successfully validated or the
validation period has expired.

Each Uj, among the neighbors of Ui, receiving such an
information decides its next flying mode according to the
following scenarios:
• if the flight mode of Uj is Greedy, its next mode is set to
PSO. Afterwards, its velocity and position are evaluated
using PSO algorithm.

• if Uj already belongs to another sub-swarm, such
information is ignored and didn’t move to the Ui’s
sub-swarm.

• if Uj is cooperatively building another sub-swarm,
it exits this latter if the number of its neighbors is less
than 3. Next, it integrates the Ui’s sub-swarm.

Let f (x) be the fitness function defined as

f
(
χ
(t)
i

)
= P(i,t)x,y . (21)

It is worthwhile the greater the target existence probability
is, the greater the fitness is. In two-dimensional space (2D),
the best position of Ui at a given time t , i.e., δ(t)i is corre-
sponding to the maximum value of its respective fitness until
the time t as

f
(
δ
(t)
i

)
= max

{
f
(
χ
(t)
i

)
, f
(
δ
(t−τ )
i

)}
. (22)

Furthermore, δ(0)i is initialized at the position of Ui once
the sub-swarm is built, while the global best position of the
sub-swarm Nt (Ui) at a given time t can be obtained relying
on the local best positions defined in (22) as

1
(t)
i =

δ(t)k , f (δ(t)k ) > max
j 6= k, j ∈ {i,Nt (Ui)}

f
(
δ
(t)
j

) .
(23)

The LoPSO, launched by Ui on a certain sub-swarm, will
be ended once the objective function f

(
1

(t)
i

)
exceeds θ .

Afterwards, all the UAVs of this sub-swarm will be released
from the LoPSO mode and start to search, using Greedy
mode, another missed target.

In each iteration cycle, the velocity and position of Ui are
updated, respectively, as follows [16]

V (t)
i,µ = r0ω(t−τ )V (t−τ )

i,µ + r1c1V
(t−τ,l)
i,µ + r2c2V

(t−τ,g)
i,µ , (24)

where

V (t−τ,l)
i,µ =

δ
(t−τ )
i,µ − χ

(t−τ )
i,µ

τ
, (25)

V (t−τ,g)
i,µ =

1
(t−τ )
i,µ − χ

(t−τ )
i,µ

τ
, (26)

and

χ
(t)
i,µ = χ

(t−τ )
i,µ + V (t−τ )

i,µ τ ; (27)

where ω(0) is chosen in the range [1, 2], µ equals either x or
y, r0, r1 and r2 denote three random values referring to the
acceleration coefficients chosen in the range ]0, 1[. Further,
c1 and c2 are two positive numbers chosen appropriately,
as will be discussed in the sequel.

Obviously, (25) and (26) represent the velocity of Ui at the
time t−τ if the UAVmoves to the local or the global position
provided by its sub-swarm, respectively. Importantly, (24)
updates the velocity of the current UAV by averaging three
main terms, namely:

i. its own velocity at the previous time, scaled by
an appropriate factor ω(t−τ ). Such a parameter is
of paramount importance for convergence purposes,
allowing to create a trade-off between the global
and local exploration by the sub-swarm. Importantly,
as ω(t)

= r0ω(t−τ ) is a geometric series, it can be ascer-
tained that for greater values of t

τ
, such a coefficient is
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tending to zero as r0 < 1. Subsequently, with the time,
such a velocity is computed almost by averaging exclu-
sively the two last terms in (24). On the other hand, the
three velocities appearing in (24) are initialized at the
same value corresponding to the velocity of Ui when
the sub-swarm is constructed.
Initially, for a given sub-swarm, the parameters ω(0) is
chosen above as the local and global positions are not
yet determined.

ii. the expected velocity of Ui if it moved to its best local
position at the time t − τ . Again, this term is scaled by
an appropriate cognitive component c1r1;

iii. its expected velocity if it was moving at the time t − τ
to the best global position provided by its sub-swarm.
In a similar manner, such a term is scaled by a social
factor c2r2;

By carrying extensive representative simulations, our
obtained results show that the optimum values of c1 and c2
shall be chosen in the range of [1.1, 1.4], whereas ω(0) shall
be set to max {c1, c2}.
At each time step,Ui shares exclusively the target detection

information with its neighbors forming the same sub-swarms.
The cooperative and competitive method adopted in this

paper avoids exploring the same target by two different sub-
swarms at the same time. That is, only one target is sought by
a fixed sub-swarm at a given time.

The process of our proposed method is carried out in two
main algorithms launched separately in both base station and
UAVs. Specifically, BsMain, and the other on the UAVs
described by FoundShare function,Neighbors function, and
LoPSO function.

C. BASE STATION PROCESS
BSMain presents the main algorithm running at the BS
allowing to lunch the cooperative search. After establishing
the probability and certainty maps, and providing the input
parameters, such as the total number of targets and their
random positions and velocities, as well as the initial position
and speed and the flight mode of each UAV, i.e., Greedy
or PSO, all the UAVs launch and start searching as long as
the search time is not yet finished and there are still missing
targets. The search continues until all targets are found or the
search time is up, i.e., close toDmax. In this case, all the UAVs
will be alerted to stop the search. The BS listens to each UAV
i continuously using Ri(n, I ) in order to gather information
about the targets detected. If the received information I is
about the detection of a target, i.e, n = 3, it will be examined
to determine whether it is a new target in order to update
the list of targets detected T and share this information with
all UAVs through M0(4, T ), otherwise, the message will be
ignored. When all targets have been located, the BS instructs
all UAVs to cease searching.

D. UAVs PROCESS
• At each Ui, the coordination update and informa-
tion merging are illustrated in FoundShare function.

The specific process is that theUi starts searching targets
in Greedymode, as long as the end of the search has not
yet been signaled by the BS and the energy is sufficient.
To verify the existence of one target, the Ui gets sensing
data from its sensors on the current cell χi(t) by Si(χi(t))
and updates its P(i)(t) and C (i)(t), then combines and
shares its information with other neighboring UAVs.
When a request to integrate a sub-swarm is made when
the flying mode is Greedy, the Ui will accept the
request and switch to PSO by sending an acceptance
message to the issuing UAV. In case that one target is
found in the hovered cell while in Greedy mode, the Ui
switches to PSOmode and builds a sub-swarm using the
Neighbors function, then runs the LoPSO function for
target validation.
Next, the BS will be alerted of the target’s position once
the detected target is verified, that is, if the LoPSO func-
tion return result is not equal to (−1,−1), consequently
the built sub-swarmwill be released, and all its members
switch to Greedy mode. In contrast, if the flying mode
is PSO, the Ui stays integrated into the sub-swarm and
flight in the PSO mode according to (24) and (27) and
updating the search information as long as there is no
release request.

• The construction of the set of neighbors is ensured by
Neighbors function executed by the UAV which detects
a target. The process consists to send an exploration
message to nearby UAVs depending on the communica-
tion range and integrates whose response is True in the
sub-swarm.

• Finally, the LoPSO function is the one that carries out
the Local PSO approach, which orchestrates the move-
ments of the different UAVs in the same sub-swarm
according to PSO and validates the found target’s posi-
tion. Each UAV in the built sub-swarm must update its
movement settings as well as the search information,
thenmove to the new position, as long as the search time
is less than the maximum DPSO. When the goal function
achieves the probability threshold, the PSO mode will
terminate, and the swarm will dissolve, confirming the
target’s position.

V. SIMULATION RESULTS
In order to properly evaluate the proposed method and ana-
lyze its operation in the most realistic way possible, a set of
simulation tests was realized to verify the behavior of the
proposed approach, by modeling the UAVs and targets in a
platform by setting the values of their parameters as indicated
in Table 2. In our simulation, all experiments are based on
Dmax = 1000 simulation runs.

To validate the effectiveness of our method, we compared
our results with those obtained through related works: PSO,
ACO, Greedy, MTS, and RS.

In the simulation experiments, and in order to use the rele-
vant algorithm tomake the swarmUAVs perform a search tar-
get in a given area, we must make the following assumptions:
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TABLE 2. Parameters settings.

FIGURE 3. Duration of a found target’ location confirmation.

(i) All targets can be detected. The main problem solved in
this part is searching for targets in a certain area. Therefore,
we assume that the target can be detected by the UAV as long
as it appears within its detection range.

(ii) Location information can be shared between local
swarm UAVs depending on the communication range.

(iii) The impact of bad weather and airflow on the stability
of drones is not taken into account.

Tables 3 and 4 show the total search time of discovering all
the targets, average time of validating target (14), and average
probability (17) in the suggested approach when the number
of targets and the size of the UAV swarm are increased,
respectively. It can be clearly seen that almost all targets
can be successfully located using the LoPSO method, with
the exception of a few instances where the target cannot be
found in extreme situations. In general, this method produces
the best multi-target search results. Furthermore, in terms of
search time, it is roughly proportional to the number of targets
to be searched as noticed in Table 3. The success rate for all
discovered targets has remained above 96 %.

Function Main Program
Function BSMain(Nu, NT , Dmax, τ):

//Executed on the BS
Initialization:
T ← φ; //The set of found targets
Nd ← 0; //The number of discovered targets
t ← 0; //The current time
n← 0; //Indicates the type of received message
seek ← True; //Indicates that the search is in progress
M0(0,True); //Alert all the UAVs to continue searching

for i← 1 to Nu do
//launch all UAVs
FoundShare(i, t,Nu,Dmax, θ);

while t < Dmax and seek=True do
for i← 1 to Nu do

Ri(n, I ); //sensing exist transmitted message I
from all UAVs
if n=3 then

//the received message is a target position
if I /∈ T then

T ← T ∪ I ;
Nd ← Nd + 1 ;
M0(4,T );//share the set of discovered
target with all UAVs

if Nd = NT then
seek ← False ;
M0(0,False);//Alert all the UAVs to stop the
search

t ← t + τ ;
return T ;

FIGURE 4. Existence Probability value of one found target’ location vs
search time.

Similarly, as indicated in Table 4, the suggested technique
has a considerably better chance of detecting all of the targets.
It can be observed that the suggested technique can locate
all targets in any population with a swarm size larger than
10 with a probability that falls above 97 %. Indeed, with
increasing UAV swarm size, the number of iterations until
convergence reduces. Consequentely, the method has a better
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Function Found and Share
Function FoundShare(i,t ,Nu,Dmax,θ):

//Runs in Ui
Initializing:

T ← φ;//the U ′i s local set of discovered targets
DPSO,V (t)

i , χ (t)i , Et , Ei, pi, qi, P(i)(t), C(i)(t);
t ← 0;
n← 0;//Indicates the type of received message
Fi ← ‘‘Greedy’’;
Swarm← False; //UAV′ response to either integrate

or not a sub− swarm
L ← True; //indicates the search status progress

while L! = False and Ei > Et and t < Dmax do
O(i,t)
x,y ← Si(χ

(t)
i );//Sense a target

Update P(i)(t);//According to (7)
Mi(1,P(i)(t));//Broadcast the probability map
Mi(2,C(i)(t));//Broadcast the cells visited map
Nt (Ui)← Neighbors(i, t,Nu);
if Fi = ‘‘Greedy’’ then

if O(i,t)
x,y = 1 and χ (t)i /∈ T then
T ← LoPSO(i, θ, t,DPSO,Nt (Ui));
if T 6= (−1,−1) then

//One target is confirmed
Mi(3,T ) ; //Share with ground station

else
for j← 1 to |Nt (Ui)| do

Rj(n, I );
if n = 0 and I=‘‘Neighbors’’ then

//Request to join the sub− swarm
Swarm← True;//Accept the request
break;

else if n = 1 then
Update P(i)(t);//According to (15)

else if n = 2 then
Update C(i)(t);//According to (6)

if Swarm = True then
Mi(0,True);//Response by agreeing to
join the sub− swarm
Fi ← ‘‘PSO’’;

else
Update
χ
(t)
i ;//According to Greedy mode (20)

Move to χ (t)i ;

else
for j← 1 to |Nt (Ui)| do

Rj(n, I );//Sensing exist transmitted message
I from neighbors
if n = 0 and I=‘‘Free’’ then

Fi ← ‘‘Greedy’’;
break;

t ← t + τ ;
Ei ← Ei − 1;
R0(n, I );//Sensing exist transmitted message from BS
if n = 4 then

//The message received is the set of discovered
targets
T ← I ;

else if n = 0 then
//The received message is about search status
L ← I ;

return True; //UAV completes its mission

Function Neighbors
Function Neighbors(k,t,Nu):

//Constructing the neighbors set of the kth UAV
Initialization

Nt (Uk )← φ; //Initialise the set indices of neighbors
Mk (0, ‘‘Neighbors?’’);

//Invite all neighbors to join the sub− swarm
for j← 1 to Nu do

Rj(n, I ); //Sensing a potential transmitted message I
from neighbors
if n = 0 and I = True then

Nt (Uk )← Nt (Uk ) ∪ Uj;
//Approval received from Uj to integrate the
sub− swarm

return Nt (Uk );

TABLE 3. Average search times, average validation time, and average
validation probability (%) for different targets number.

FIGURE 5. Number of detected targets vs search time.

likelihood of locating all the targets as the size of the UAV
swarm grows.

As can be seen, the approach described in this study not
only finds practically all targets but also has a shorter aver-
age iteration time. This method’s efficacy is then proved,
except for the situations with the smallest number of UAVs,
e.g., Nu = 10 and the most extreme target dispersion,
e.g., spread on the map corners, all targets may be identified
in the other cases.
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Function Local PSO
Function LoPSO(i, θ , t , DPSO,Nt (Ui)):

Initializing:
ti ← t ;
Fi ← ‘‘PSO’’;
PSO←True ;
while PSO=True and t − ti 6 DPSO do

if |Nt (Ui)| > 3 then
foreach Uj ∈ Nt (Ui) do

Compute χ (t)
j ; //According to (27)

Compute δ(t)j ;//According to (22)

Compute V (t)
j ; //According to (24)

Update P(j)(t); //According to (7) and (15)
Update C (j)(t); //According to (6);
Compute 1(t)

i ;//According to (23)

Move to χ (t)
j ;

if f (1(t)
i ) > θ then

Fi ← ‘‘Greedy’’;
foreach Uj ∈ Nt (Ui) do

Mi(0, ‘‘Free’’);
Nt (Ui)← φ;
return 1(t)

i ;
else

Compute 1(t)
i ;//According to (23)

t ← t + τ ;

else
Fi ← ‘‘Greedy’’;
Nt (Ui)← φ;//Initialize the neighbors set
PSO←False ;

if t − ti > DPSO then
Fi ← ‘‘Greedy’’;
foreach Uj ∈ Nt (Ui) do

Mi(0, ‘‘Free’’);//Prevent each neighbor UAV to
//breaking free from the sub− swarm

Nt (Ui)← φ;
PSO←False ;
return (−1,−1); // No target detected

TABLE 4. Average search times, average validation time, and average
validation probability (%) under different UAVs number.

The total computational complexity of the proposed
approach is given in Table 5. It is worthy to mention that the
method’s overall calculation complexity, i.e., that of the main
function BSMain, is calculated based on the complexity of
other functions: Neighbors, LocalPSO, and FoundShare.

FIGURE 6. Communication energy consumption vs search time.

FIGURE 7. Mobility energy consumption vs search time.

FIGURE 8. Energy consumption vs search time.

Fig. 3 shows the time needed to validate the detection of
the kth (1 ≤ k ≤ 10) target using the six search methods
with the help of (9). As mentioned in (12), such durations
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FIGURE 9. Convergence of a Probability map for a fixed UAV for R = 4 cells. (a) t = 0 s. (b) t = 200 s. (c) t = 400 s. (d) t = 600 s. (e) t = 800 s.
(f) t = 1000 s.

TABLE 5. Computational complexity of LoPSO algorithm.

are sorted in an increasing order with respect to the number
of found targets. It has been demonstrated that LoPSO and
PSO provide for faster validation of target detection than the
other techniques. We can see that the validation takes less
than 5 runs steps, compared to other methods that take at least
15 runs steps. This is because the constructed local swarm
for each target identified by one UAV allows the target to be
swiftly validated by increasing the number of visits carried
out by the local swarm’s UAVs.

Fig. 4 illustrates the variation of the detection probabil-
ity value according to the time for the six search meth-
ods. As depicted, for a Dmax = 1000 s, the target
existence probability value rapidly reaches 0.925 for t =
150 s in the LoPSO process, which means in 12.25 %
of the search time. Indeed, the proposed mechanism takes
into account both the cooperation and the competition
between the UAVs of the same sub-swarm when they are
in the same cell, which makes it possible to increase the
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FIGURE 10. Convergence of a Probability map for a fixed UAV for R = 8 cells. (a) t = 0 s. (b) t = 200 s. (c) t = 400 s. (d) t = 600 s. (e) t = 800 s.
(f) t = 1000 s.

number of target detection by these UAVs in a reduced time
search.

Fig. 5 illustrates, for several exploration algorithms, the
number of found targets as a function of search time. It is
obvious that the LoPSO method enhances the targets’ search
performance, as it can be noticed that roughly 50 % of the
targets were detected in about 30 % of the search time,
whereas all targets were detected in about 50 % of the full
run time.

Fig. 8 depicts the average energy consumption usage as a
function of search time. We take into account here, both con-
sumption due to communication and mobility. These findings
show that energy usage rises over time and it can be observed
that the proposed LoPSO approach has a lower consumption
than the other methods. Indeed, on the mobility side, because
the UAVs move at the same speed towards the next cell in the
three modes RS, Greedy, and MTS, the mobility energy con-
sumption will increase linearly. However, with PSO, LoPSO,
and ACO, the speed of the UAVs was determined by the

swarm, which implies that it is not constant, and therefore the
mobility energy consumption was not linear as can be noticed
in Fig. 7. PSO and ACO, on the other hand, have a linear
increase in communication energy consumption owing to the
policy set for the construction of a single swarm, which needs
the same number of UAVs inside it and, as a consequence,
the same number of messages exchanged between the drones
each time step. However, the UAVs only exchange informa-
tion when it is required in the three aforementioned modes,
implying that communication energy usage is not linear as
can be seen in Fig. 6.

In Figs. 9-10, the improvement of target detection proba-
bilities versus the search time is depicted for various values
of total search duration for two values of the communication
range of a single UAV. We can notice that the convergence
speed of the probability map for rapid target detection is
higher with a wider communication range (Fig.9, R = 4
cells and Fig. 10, R = 8 cells) because it allows summon-
ing a large number of UAVs to build a large sub-swarm,
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which increases the search coverage. It can be seen that
for t = 1000 s most of the targets are detected and located
Fig. 10(f). However, in Fig. 9(f), there is still a lot of uncer-
tainty about the targets’ positions.

VI. CONCLUSION
In this paper, a new approach based on Local PSO for the opti-
mal search of a set of moving targets with the help of multiple
UAVs is presented. Such an algorithm allows dynamic man-
agement of the construction of local sub-swarms depending
on the target detection status. The limitations of UAVs and
the constraints of the search algorithm were considered, such
as the imperfect sensing. The LoPSO has three advantages,
which result in a higher level of performance compared to
other concurrent approaches. Firstly, depending on the detec-
tion state of a target, the local sub-swarm built makes it pos-
sible to increase the number of hovers above the target, which
helps to reduce the needed search time to validate its position.
Secondly, the fact of releasing the drones after the validation
of a target makes it possible not to monopolize all UAVs for
a single target as in PSO, and consequently to go looking
for others. Finally, the mechanism for creating local sub-
swarms made it possible to reduce the communication flow
since communication is limited, and only possible between
UAVs of the same sub-swarm. To verify the performance
of the proposed algorithm, several experiments were carried
out in a simulation. The experimental results show that the
performance of LoPSO is better than that of other approaches
especially in terms of the number of targets validated in
the minimum search time. As perspectives for future work,
we aim at studying the LoPSO’s benchmarking functions
and exploring its ability to solve other complex optimization
problems, e.g., the UAVs’ cooperative search path planning
with heterogeneous sensors.
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