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ABSTRACT Information Retrieval (IR) is a discipline deeply rooted in evaluation since its inception. Indeed,
experimentally measuring and statistically validating the performance of IR systems are the only possible
ways to compare systems and understand which are better than others and, ultimately, more effective and
useful for end-users. Since the seminal paper by Stevens (1946), it is known that the properties of the
measurement scales determine the operations you should or should not perform with values from those
scales. For example, Stevens suggested that you can compute means and variances only when you are
working with, at least, interval scales. It was recently shown that the most popular evaluation measures
in IR are not interval-scaled. However, so far, there has been little or no investigation in IR on the impact
and consequences of departing from scale assumptions. Taken to the extremes, it might even mean that
decades of experimental IR research used potentially improper methods, which may have produced results
needing further validation. However, it was unclear if and to what extent these findings apply to actual
evaluations; this opened a debate in the community with researchers standing on opposite positions about
whether this should be considered an issue (or not) and to what extent. In this paper, we first give an
introduction to the representational measurement theory explaining why certain operations and significance
tests are permissible only with scales of a certain level. For that, we introduce the notion of meaningfulness
specifying the conditions under which the truth (or falsity) of a statement is invariant under permissible
transformations of a scale. Furthermore, we show how the recall base and the length of the run may make
comparison and aggregation across topics problematic. Then we propose a straightforward and powerful
approach for turning an evaluation measure into an interval scale, and describe an experimental evaluation
of the differences between the original measures and the interval-scaled ones. For all the regarded measures
— namely Precision, Recall, Average Precision, (Normalized) Discounted Cumulative Gain, Rank-Biased
Precision and Reciprocal Rank - we observe substantial effects, both on the order of average values and on
the outcome of significance tests. For the latter, previously significant differences turn out to be insignificant,
while insignificant ones become significant. The effect varies remarkably between the tests considered but
on average, we observed a 25% change in the decision about which systems are significantly different and
which are not. These experimental findings further support the idea that measurement scales matter and that
departing from their assumptions has an impact. This not only suggests that, to the extent possible, it would
be better to comply with such assumptions but it also urges us to clearly indicate when we depart from such
assumptions and, carefully, point out the limitations of the conclusions we draw and under which conditions
they are drawn.

INDEX TERMS Information retrieval, measurement, software metrics, statistical analysis, experimental
evaluation, retrieval effectiveness, interval scale.

I. INTRODUCTION

By virtue or by necessity, Information Retrieval (IR) has
always been deeply rooted in experimentation and evaluation
has been a formidable driver of innovation and advancement
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in the field, as also witnessed by the success of the major
evaluation initiatives — Text REtrieval Conference (TREC)!
in the United States [56], Conference and Labs of the
Evaluation Forum (CLEF)? in Europe [44], NII Testbeds and
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Community for Information access Research (NTCIR)? in
Japan and Asia [93], and Forum for Information Retrieval
Evaluation (FIRE)* in India — not only from the scientific
and technological point of view but also from the economic
impact one [85].

Central to experimentation and evaluation is the notion
to measure the performance of an IR system and to reli-
ably understand which systems perform better than others.
To this end, there is a rich set of IR literature discussing
existing evaluation measures or introducing new ones as well
as proposing frameworks to model them [25], [79]. The major
goal is to quantify users’ experience of retrieval quality for
certain types of search behavior, like e.g. users stopping at
the first relevant document, or after the first ten results. Most
of the measures proposed are based on plausible arguments
and often accompanied by experimental studies, also inves-
tigating how close they are to end-user experience and satis-
faction [61], [127], [128]. However, less attention has been
given to the theoretic bases of evaluation measures, leading
to possible violations of important assumptions and affecting
the validity of the scientific results based on them, especially
the internal validity, meant as ‘“‘the ability to draw conclu-
sions about causal relationships from the results of a study”
[32, p. 157]. A few years ago, Robertson [84] raised the
question of which scales are used by IR evaluation measures,
since they determine which operations make sense on the
values of a measure, as originally proposed by Stevens [103].
Scales have increasing properties: a nominal scale allows
for determination of equality and for the computation of
the mode; an ordinal scale allows only for determination
of greater or less and for the computation of medians and
percentiles; an interval scale allows also for determination
of equality of intervals or differences and for the computa-
tion of mean, standard deviation, and rank-order correlation;
finally, a ratio scale allows also for the determination of
equality of ratios and for the computation of coefficient of
variation. Recently, Ferrante et al. [40], [41] have theoret-
ically shown that some of the most known and used IR
measures, like Average Precision (AP) or Discounted Cumu-
lative Gain (DCG), are not interval-scales. As a consequence,
according to Stevens’s prescriptions, we should neither
compute means, standard deviations and confidence inter-
vals, nor perform significance tests that require an interval
scale.

Let us illustrate the problem with the example of reciprocal
rank, which focuses on the first rank containing a relevant
document. Regarding ranks as ordinary scale poses no prob-
lem. However, if we want to map the ranks onto an interval
scale, there is the question if there are any constraints that we
should take into account (besides being strictly monotonic).
Obviously, the choice of the mapping function will also affect
the outcome of system comparisons (e.g. when regarding
means). A naive approach might regard any strictly mono-

3 http://research.nii.ac.jp/ntcir/
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tonic function as permissible, the choice of the transformation
just defining different standpoints. However, this assump-
tion contradicts the essential property of interval scales of
being based on intervals of equal length. A popular example
are temperature scales, where Anders Celsius and Daniel
Gabriel Fahrenheit came up with different definitions for the
interval size (and the zero point), but both defined proper
interval scales. In reciprocal rank, in contrast, all intervals
have different lengths, and so it cannot be regarded as interval
scale.

Over the decades there has been much debate about
Stevens’s prescriptions [54], [68], [75], [113]. This debate
has also spawn to the IR field where Fuhr [49] suggested
strict adherence to Stevens’s prescriptions, motivated by the
theoretical guarantees on the validity of the drawn conclu-
sions. On the opposite, Sakai [92] argued for a more lenient
approach, motivated by the usefulness of some measures and
the fact that in other research fields they do average and
compute parametric significance tests even on ordinal scales.
The debate further sparked off on whether it was legitimate
to make ‘‘prohibitions” and whether all researchers should
adhere to the same guidelines or not.

Our vision is that it is neither a matter of ‘““prohibitions”
nor whether you wish (or not) to stick with them. Also, it is
not a matter of opposing strict and formal constraints to the
fact that measures may capture well the user experience and
thus they should be used anyway. Rather, it is now time for
the IR field to accurately investigate and understand the scale
properties of its evaluation measures and their implications
on the validity of our experimental findings. For example,
we should explore whether and to what extent violations of
the assumptions behind the scales used to measure system
performance impact on the conclusions about which systems
are better than others or which systems should actually go in
production, because deemed more performing or because of
more stable and generalizable performance.

As a matter of fact, we are not aware of any experimental
IR paper that regarded evaluation measures as ordinal scales,
thus refraining from computing (and comparing) means; also,
most papers using evaluation measures apply parametric tests
which, in a strict sense, should be used only from interval
scales onwards. This means that potentially improper meth-
ods have been applied, without any preliminary verification
of the possible consequences or any limitations and caveats
on the drawn conclusions. Independently from your stance
in the above long-standing debate, the key question about
IR experimental findings is: are we on the safe side or are
we at risk? Are we in a situation like using a rubber band
for measuring and comparing lengths? Are we facing a state
of the affairs where decades of IR research might have left
unnoticed potential shortcomings?

We neither have the answer to these questions nor we
pretend to say the final word on them. Rather, our intention
with this paper is to lay the foundations and set all the pieces
needed to have the instruments to answer these questions and
to stimulate the IR community to rigoursly and systematically
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discuss these issues on a common ground in order to reach
shared conclusions.

Therefore, the contributions of the paper are as follows:

1) introduction to the representational measurement the-
ory [65], [71], [105], clearly explaining why (or why
not) certain operations and significance tests should be
permissible on a given scale and presenting the different
stances on this long-standing debate;

2) introduction to the notion of meaningfulness [37], [81],
[83], i.e. the conditions under which the truth (or falsity)
of a statement is invariant under permissible transfor-
mations of a scale. To the best of our knowledge, this
concept has never been investigated or applied in IR but
it is fundamental to the validity of the inferences we
draw;

3) discussion and demonstration of further measurement
issues, specific to IR and beyond the debate on permis-
sible operations. In particular, we show how the recall
base and the length of the run may make averaging
across topics (or other forms of aggregate statistics)
problematic, at best;

4) proposal of a straightforward and powerful approach
for turning an evaluation measure into an interval scale,
by transforming its values into their rank position. In this
way, we provide a means for improving the meaning-
fulness and validity of our inferences, still preserv-
ing the different user models embedded by the various
evaluation measures;

5) experimental evaluation of the differences between
using the original measures and the interval-scaled
ones, by relying on several TREC collections. For
all the regarded measures — namely Precision, Recall,
AP, DCG, Normalized Discounted Cumulative Gain
(nDCG), Rank-Biased Precision (RBP), and Recipro-
cal Rank (RR) — we observe substantial effects, both
on the order of average values and on the outcome
of significance tests. For the latter, previously signif-
icant differences turn out to be insignificant, while
insignificant ones become significant. The effect varies
remarkably between the tests considered but on average,
we observed a 25% change in decisions about what is
significant and what is not.

The latter experimental findings further support the idea
that measurement scales matter and that departing from their
assumptions has an impact. This not only suggests that we
should strive to comply with such assumptions, at least to the
extent it is possible; but it also urges us to clearly indicate
when, in experimentation, we depart from such assumptions
and, as a consequence, carefully point out the limitations of
the conclusions we draw and under which conditions they are
drawn. Moreover, we underline how the concept of meaning-
fulness could represent the keystone to start a rigorous dis-
cussion on IR evaluation measures, to set criteria to explore
the impact of departures from Stevens’s prescriptions, and to
understand how to validate and limit our experimental finding
when we wish to depart from such assumptions.
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The paper is organized as follows: Section II introduces
the basic concepts about experimental evaluation in IR;
Section III provides an overview of the representational the-
ory of measurement, of the different types of scale, and the
notion of meaningfulness. Section IV deeply discusses mea-
surement and meaningfulness issues specific to IR. Section V
briefly summarizes some related works. Section VI explains
our methodology for transforming evaluation measures into
interval scales. Section VII introduces the experimental setup
while Section VIII discusses the results of the experiments.
Finally, Section IX draws some conclusions and gives an
outlook on future work.

IIl. EXPERIMENTAL EVALUATION IN IR

Information Retrieval (IR) is concerned with complex sys-
tems delivering a variety of key applications to industry and
society: web search engines [21], (bio)medical search [80],
expertise retrieval systems [11], intellectual property and
patent search [72], enterprise search [18], and many others.

IR systems operate using a best match approach: in
response to an often vague user query, they return a ranked
list of documents ordered by the estimation of their relevance
to that query. In this context effectiveness, meant as the ability
of systems to retrieve and better rank relevant documents
while at the same time suppressing the retrieval of not relevant
ones, is the primary concern. Since there are no a-priori exact
answers to a user query, experimental evaluation [55] based
on effectiveness is the main driver of research and innovation
in the field. Indeed, the measurement of system performances
from the effectiveness point of view is basically the only
means to determine the best approaches and to understand
how to improve IR systems.

Experimental evaluation addresses a very wide spectrum
of cases, ranging from system-oriented evaluation [95] to
user-oriented evaluation [63]. In this paper, we focus on
system-oriented evaluation which is performed according to
the Cranfield paradigm [30].

Figure 1 summarizes the Cranfield paradigm which is
based on experimental collections C = (D, T, RJ) where:
a corpus of documents D represents the domain of interest;
a set of topics T represents the user information needs;
and human-made relevance judgments RJ are the ‘“‘cor-
rect” answers, or ground-truth, determining, for each topic,
the relevant documents. Relevance judgments are typically
expressed as either binary relevance, i.e. relevant or not
relevant, or as graded relevance [62], e.g. not relevant, par-
tially relevant, highly relevant. The ranked result lists, i.e.
the IR system outputs, are then scored with respect to the
ground-truth using several evaluation measures [88].

The main goal of this experimental setup is to be able to
compare the performance of different IR systems in a robust
and repeatable way, as they are all scored with respect to the
same experimental collection. Experimental collections and
evaluation measures are controlled variables, since they are
kept fixed during experimentation; IR systems are indepen-
dent variables, since they are the object of experimentation,
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FIGURE 1. The Cranfield paradigm for experimental evaluation.

compared one against the other; and, performance scores are
the dependent variables, since their observed value changes
as IR systems change [48].

Carrying out experimental evaluations according to the
Cranfield paradigm is very demanding in terms of both the
time and the effort required to prepare the experimental col-
lection. Therefore, it is usually carried out in publicly open
and large-scale evaluation campaigns, often at international
level, to share the effort, compare state-of-the-art systems and
algorithms on a common and reproducible ground, and maxi-
mize the impact. Therefore, over the last 20 years, experimen-
tal evaluation has been carried out in large-scale evaluation
campaigns at international level, such as TREC [56] in the
US, CLEF [44] in Europe, NTCIR [93] in Japan and the other
Asian countries, and FIRE in India.

In fact, IR evaluation adopts a whole breadth of evalu-
ation measures [88] because different evaluation measures
embed different user models in scanning the result list and
thus represent different angles on the effectiveness of an
IR system. Average Precision (AP) [17], Precision at Ten
(P@10) [20], Rank-Biased Precision (RBP) [78], Normalized
Discounted Cumulative Gain (nDCG) [60], and Expected
Reciprocal Rank (ERR) [28] are among the most commonly
adopted measures. Evaluation measures are typically studied
in an empirical way, e.g. by using correlation analysis [119],
discriminative power [86], [87], or robustness to pool down-
sampling [16], [124]. On the other hand, few studies have
been undertaken to understand the formal properties of eval-
uation measures and they have just scratched the surface of
the problem: [7], [13], [19], [39]-[41], [110].

Statistical analyses and statistical significance testing play
afundamental role in experimental evaluation [26], [59], [89],
[97] since they provide us with the means to properly assess
differences among compared systems and to understand when
they actually matter.

Overall, despite IR being a discipline so strongly rooted in
experimentation and being evaluation measures and statistical
analyses so central to IR, to the best of our knowledge, there
has been very limited attention and studies about how scale
properties affect evaluation measures and statistical analyses
in IR experimentation.
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Ill. MEASUREMENT

A. OVERVIEW

The representational theory of measurement [65], [71], [105]
is one of the most developed approaches to measurement,
suitable for many areas of science ranging to physics and
engineering to psychology. The basic idea is that real world
objects have attributes which constitute their relevant features
and induce a set of relationship among them; the set of
objects E together with the relationships RE Rg ,...among
them comprise the so-called Empirical Relational System
(ERS) E = (E,R¥,RE,...). Then, we look for a mapping
between the real word objects E and numbers N in such
a way that the relationships Rf, Rg, ... among the objects
match with relationships RY, R12v , ... among numbers; the
set of numbers N together with the relationships RV, RIZV .
constitutes the so-called Numerical Relational System (NRS)
N=(N.RY.RY,...)

More precisely, the representational theory of measure-
ment seeks for a homomorphism ¢ which maps E onto
N in such a way that VR;E, Vei,er,...,ex € E |
(e1,€2,...,ex) € RE it holds that An; = ¢(er),ny =
pe2),...nk = ¢lex) € N | (n1,ma,...,ng) € RY. The
homomorphism ¢ is called a scale of measurement. Note
that, in general, we seek for an homomorphism and not an
isomorphism because two different real word objects might
be mapped onto the same number.

The most typical example is length. Suppose the ERS
E = <E e o) is a set of rods with an order relationship 7
among rods and a concatenation operation o among them.
If the attribute under examination is the length of a rod,
we can map the ERS to the NRS N = (R, >, +) such that
Vei,er,e3 € E itholds e; 77 e & ¢(e1) > ¢(er) and
e1oey ~ e3 & ¢Pler) + ¢p(ex) = ¢P(e3), that is if a rod is
longer than another one the number assigned to the first one
is bigger than the number assigned to the second one and the
concatenation of two rods corresponds to the sum of the two
numbers assigned to them.

The core of the representational theory of measurements
is to seek for a representation theorem and a uniqueness
theorem for the scale of measurement in order to fully
define it.
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The representation theorem ensures that if the ERS
satisfies given properties, it is possible to construct a
homomorphism to a certain NRS. In the previous example,
the representation theorem defines which properties the order
relation = and the concatenation o have to satisfy in order to
construct a real-valued function ¢ which is order preserving
and additive. It is important to underline that the representa-
tional theory of measurement seeks for “‘operations” among
real word objects — e.g. we can put two rods side by side to
order them or we can lay two rods end by end to concatenate
them — and if these ‘“‘operations” satisfy given properties
they can be reflected into corresponding operations among
numbers, where numbers are just a proxy of what happens
among real world objects but are much more convenient to
manipulate.

In general, given an ERS and an NRS, it is possible to
create more than one homomorphism between them. For
example, it is possible to express length by using meters or
yards and both of them are legitimate scales for length. The
uniqueness theorem is concerned with determining which are
the permissible transformations ¢ — ¢’ such that ¢ and ¢’
are both homomorphisms of the given ERS into the same
NRS. In our example, any transformation ¢’ = a¢, o > 0
is permissible for length. Therefore, the uniqueness theorem
guarantees that the ‘“‘structure” of a scale of measurement
is invariant to changes in the numerical assignment, which
preserve the relationships.

B. CLASSIFICATION OF THE SCALES OF MEASUREMENT
Stevens [103] introduced a classification of scales based on
their permissible transformations, described below.

1) NOMINAL SCALE

It is used when entities of the real world can be placed into
different classes or categories on the basis of their attribute
under examination. The ERS consists only of different classes
without any notion of ordering among them and any dis-
tinct numeric representation of the classes is an acceptable
measure but there is no notion of magnitude associated with
numbers. Therefore, any arithmetic operation on the numeric
representation has no meaning.

The class of permissible transformations is the set of all
one-to-one mappings, i.e. bijective functions: ¢’ = f(¢),
since they preserve the distinction among classes.

Example 1 (Nominal Scale): Consider a classification of
people by their country, e.g. France, Germany, Greece,
Italy, Spain, and so on. We could define the two following
measurements:

5 if France 41 if France
4 if Germany 13 if Germany
)3 if Greece ;)10 if Greece
=12 if Iraly |23 ifnaly
1 if Spain 17 if Spain
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both ¢ and ¢’ are valid measures, which can be related
with a one-to-one mapping. Note that even if ¢ looks like
being ordered, there is actually no meaning in the asso-
ciated magnitudes and so it should not be confused with
an ordinal scale. Moreover, even if it is alway possible to
operate with numbers, using ¢ and performing 4 — 3 = 1,
which would correspond to Germany — Greece 2 Spain,
has no specific meaning, as well as using ¢' and performing
13 — (—10) = 23, which would correspond to Germany —
?

Greece = lItaly, even in disagreement with the previous
case.

2) ORDINAL SCALE

It can be considered as a nominal scale where, in addition,
there is a notion of ordering among the different classes
or categories. The ERS consists of classes that are ordered
with respect to the attribute under examination and any dis-
tinct numeric representation which preserves the ordering
is acceptable. Therefore, the magnitude of the numbers is
used just to represent the ranking among classes. As a con-
sequence, addition, subtraction or other mathematical opera-
tions have no meaning.

The class of permissible transformations is the set of all
the monotonic increasing functions, since they preserve the
ordering: ¢' = f(¢).

Example 2 (Ordinal Scale): The European Commission
Regulation 607/2009 [35] and the follow-up regulation
2019/33 [36] set the following increasing scale to classify
sparkling wines on the basis of their sugar content:

e pas dosé (brut nature): sugar content is less than
3 grams per litre; let us call this range so = [0, 3];

o extra brut: sugar content is between 0 and 6 grams per
litre; let us call this range s1 = [0, 6],

o brut: sugar content is less than 12 grams per litre; let us
call this range s, = [0, 12];

o extradry: sugar content is between 12 and 17 grams per
litre; let us call this range s3 = (12, 17];

o sec (dry): sugar content is between 17 and 32 grams per
litre; let us call this range s4 = (17, 32];

o demi-sec (medium dry): sugar content is between 32 and
50 grams per litre; let us call this range s5 = (32, 50];

o doux (sweet): sugar content is greater than 50 grams
per litre; let us call this range s¢ = (50, 2000], where
2000 grams per litre is roughly the saturation of sugar
in water, which is much higher than that of sugar in
alcohol.

We can introduce two alternative ordinal scales ¢ and
¢’ of the above wine scale where ¢ is given by the
maximum of a range® while ¢' is given by a monotonic

5Note that the EU regulations define not disjoint intervals and we stayed
with the official definitions. This does not influence the definition of the
ordinal scales above, since they are based on the maximum of each interval,
which is unique and strictly increasing for each of them.
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transformation ¢’ = ¢>:

3 if pas dosé 9 if pas dosé
6 if extra brut 36 if extra brut
12 if brut 144 if brut

¢ =117 ifextradry ¢ = {289 if extra dry
32 if sec 1024 if sec
50 if demi-sec 2500 if demi-sec
2000 if doux 4000000 if doux

As in the case of the previous Example 1, mathematical
operations have no specific meaning, even if, especially in
the case of ¢, we may be tempted to perform operations like
#”btm = % = 2 to express statements like “brut may
be twice as sweet as extra brut”. However, such a statement
cannot be expressed on the ¢ or ¢’ scale and it actually comes
from implicitly changing scale to the mass concentration
scale of the solution, which is a ratio scale (see below) where
the division operation would make sense. Also addition and
subtraction have no meaning, so brut—extra brut = 12—6 =
6 is not a way to express statements like “brut may have 6 ¢/i
of sugar more than extra brut”, for the same reasons above.
We could perform operations such as sgn(¢(e1) — ¢(e2)) or
sgn(¢’(e1) — @' (e2)) but this would be just a more involute
way of expressing the order among categories, which is the
only property guaranteed by ordinal scales.

3) INTERVAL SCALE

Besides relying on ordered classes, it also captures informa-
tion about the size of the intervals that separate the classes.
The ERS consists of classes that are ordered with respect
to the attribute under examination and where the size of
the “gap” among two classes is somehow understood; more
precisely, fundamental to the definition of an interval scale
is that intervals must be equi-spaced. An interval scale pre-
serves order, as an ordinal one, and differences among classes
have meaning — but not their ratio. Therefore, addition and
subtraction are acceptable operations but not multiplication
and division.

The class of permissible transformations is the set of all
affine transformations: ¢’ = a¢ + B, o > 0.

Note that while ratios of classes % have no meaning on
an interval scale, the ratio of differences among classes, i.e.
the ratio of intervals, is allowed and invariant % =
[egp(@+Bl-lapB)+B] _ ¢(@)—¢®)
lag(o)+Bl-lad(d)+B] — ¢lc)—¢(d)"

Example 3 (Interval Scale): A typical example of interval
scale is temperature, which can be expressed on either the
Fahrenheit or the Celsius scale, where the affine transforma-
tion F = 2C + 32 allows us to pass from one to the other.
When talking about temperature it does not make sense to say
that 20 °Cis twice as hot as 10 °C, i.e. multiplication and divi-
sion are not allowed; you can also note that the division oper-
ation is not invariant to the transformation, since % =2

but % = 1.36. However, it makes sense to say that the

increase between 10 °C and 20 °C is the same as the increase
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between 20°C and 30°C, i.e. addition and subtractions are
allowed; you can also note that the subtraction operation is
invariant to the transformation since 30°C—20°C = 20°C—
10°C=10°Cand 86°F — 68 °F = 68°F — 50°F = 18 °F.

Moreover, the ratio of intervals % = 1 is invariant

: 68°F —50°F __
to the transformatwi? S6°F —28°F = 1.. .
Central to the notion of temperature is the fact that the size
of the “gap” has the same meaning all over the scale; indeed,
1 degree represents the same amount of thermal energy all

over the scale. i.e. the gaps are equi-spaced.

4) RATIO SCALE

It allows us to compute ratios among the different classes.
The ERS consists of classes that are ordered, where there is a
notion of “gap” among two classes and where the ‘“propor-
tion” among two classes is somehow understood. It preserves
order and differences as well as ratios. Therefore, all the
arithmetic operations are allowed.

The class of permissible transformations is the set of all
linear transformations: ¢’ = ap, a > 0.

Example 4 (Ratio Scale): A typical example of a ratio
scale is length which can be expressed on different scales, e.g.
meters or yards, which can all be mapped one into another via
a similarity transformation. For example, to pass from kilo-
meters (¢) to miles (¢'), we have the following transformation
¢ = 0.62¢.

Another example of ratio scale is the absolute temperature
on the Kelvin scale where there is a zero element, which
represents the absence of any thermal motion.

C. ADMISSIBLE STATISTICAL OPERATIONS

Stevens moved a step forward and linked the notion of scale
with that of admissible statistical operations which can be
carried out with that scale:

e Nominal Scale: The only allowable operation is count-
ing number of items in each class, that is, in statistical
terms, mode and frequency.

o Ordinal Scale: Besides the operations already allowed
for nominal scales, median, quantiles, and percentiles
are appropriate, since there is a notion of ordering.

o Interval Scale: Besides the operations allowed for ordi-
nal scales, mean and standard deviation are allowable
since they depend just on sum and subtraction.®

o Ratio Scale: Besides the operations allowed for interval
scales, geometric and harmonic mean, as well as coef-
ficient of variation, are allowable since they depend on
multiplication and division.

These prescriptions originated several debates over the

decades. Lord [68, p. 751] argued that ‘“‘since the num-
bers don’t remember where they come from, they always

SNote that when we talk about admissible operations, we mean operations
between items of the scale. So, for example, a mean involves summing items
of the scale, e.g. temperature, and this is possible on an interval scale. The
fact that a mean also requires a division by the number N of items added
together is not in contrast with saying that only addition and subtraction are
allowed, since N is not an item of the scale.
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behave the same way, regardless” and so any operation
should be allowed even on ‘“football numbers’, i.e. a nominal
scale; Gaito [51] reinforced this argument by distinguish-
ing between the realm of the measurement theory, where
Stevens’s restrictions should apply, and the realm of the sta-
tistical theory, where these restrictions should not be applied,
since other assumptions, such as normal distribution of the
data, are those actually needed. Townsend and Ashby [107]
replied back showing cases where performing operations
inadmissible for a given scale of measurement may mislead
the conclusions drawn by statistical tests. O’Brien [82] dis-
cussed the type of errors introduced when using ordinal data
for representing an underlying continuous variable, classi-
fying them into pure transformation errors, pure categoriza-
tion errors, pure grouping errors, and random measurement
errors. Velleman and Wilkinson [113] summarized the previ-
ous debate and argumented that once you are in the numer-
ical realm every operation is admissible among numbers.
Recently, Scholten and Borsboom [98] made a case of flaws
in the original Lord’s argument and, as a striking conse-
quence, Lord’s experiment would not be a counterargument
to Stevens’s restrictions but it would rather comply with
them. In a very recent textbook, Sauro and Lewis [96] firmly
supported Lord’s view, at least in the case of ordinal scales,
but with the caveat to not make claims on the outcomes of
a statistical test that violates the underlying scale. So, for
example, if you are on an ordinal scale and you detected a
significant effect using a test which would require a ratio
scale, you should not claim that that effect is twice as big as
another effect but just that it is significant.

D. MEANINGFULNESS

The above observation brings the debate back to the core
issue of what we should pay attention to. Indeed, both
Hand [54] and Michel [75], [76] argued that the problem
is not what operations you can perform with numbers but
what kind of inference you wish to make from those oper-
ations and how much such inference has to be indicative of
what actually happens among real world objects. Already
Adams et al. [2, pp. 99-100] explicitly stated that

Statistical operations on measurements of a given
scale are not appropriate or inappropriate per se
but only relative to the kinds of statements made
about them. The criterion of appropriateness for
a statement about a statistical operation is that the
statement be empirically meaningful in the sense
that its truth or falsity must be invariant under per-
missible transformations of the underlying scale.

These statements opened the way for the development of
the theory of meaningfulness [37], [81], [83], which is a
central concept to clearly shape and define the questions dis-
cussed above: according to the adopted measurement scales,
what processing, manipulation, and analyses can be con-
ducted and what can we tell about the conclusions drawn from
such processing?
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Note that the statement “A mouse weights more than an
elephant” is meaningful even if it is clearly false; indeed,
its truth value, i.e. false, does not change whatever weight
scale you use (kilograms, pounds, and so on). Therefore,
as anticipated above, meaningfulness is a distinct concept
from the one of truth of a statement and it is somehow close to
the notion of invariance in geometry, since the truth value of a
statement stays the same independently from the permissible
scales used to express it.

Finally, note that the theory of meaningfulness has been
developed in a fully formal way, using algebra and the
axiomatic set theory. Even if this is well beyond the purpose
of the present paper, which is just moving the first steps
in this direction, it opens up for a future and more formal
investigation of these concepts applied to the case of IR
evaluation measures.

Example 5 (Meaningfulness for a Nominal Scale -
Example 1 Continued): Suppose that we observe a set
of 10 people, where 5 people are Spanish, 3 German,
1 Greek, and 1 lItalian. According to ¢ we would have
P=1[11111444 3 2] while according to ¢’ we
would have PP = [17 17 17 17 17 13 13 13 —10 23].
In both cases, the statement “Most people come from Spain”
is meaningful since, if we compute the mode of the values,
it is 1 in the case of ¢ and 17 in the case of ¢’ which both
correspond to Spain. On the other hand, the statement “The
lowest quartile consist of Spanish people” is not meaningful,
since it is true with 1 corresponding to Spain in the case
of ¢ but is is false with 13 corresponding to Germany in
the case of ¢'. Indeed, the first statement about the mode
involves just counting, which is an allowable operation for
a nominal scale, while the second statement about the lowest
quartile requires a notion of ordering not present in a nominal
scale.

Example 6 (Meaningfulness for an Ordinal Scale — Exam-
ple 2 Continued): Suppose that we have two wineries X
and Y. The first winery Wy produced five bottles as follows:
extra brut, extra brut, brut, extra dry, and sec, the second
one Wy produced five bottles as follows: pas dosé, pas
dosé, pas dosé, brut, and demi-sec. Therefore, according to
the scale ¢, we have ¢(Wx) = [6 6 12 17 32] and
¢(Wy) = [3 3 3 12 50]; while according to the scale ¢',
we have ¢'(Wx) = [36 36 144 289 1024] and ¢'(Wy) =
[9 9 9 144 2500]. The statement “The median of the
first winery is greater than the one of the second winery”
is meaningful since 12 > 3 according to ¢ is true as well
as 144 > 9 according to ¢'; so we could safely say that
the first winery produces a little more brut-like wines than
the second one, focusing on a more standard product. On the
other hand, the statement “The average of the first winery is
greater than the one of the second winery” is not meaningful
since 14.6 > 14.2 according to ¢ is true but 305.8 >
534.2 according to ¢' is false, which would lead us to draw
basically opposite conclusions based on the scale we use.
Indeed, the first statement about the median involves just the
notion of ordering which is allowable on an ordinal scale,
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while the second statement about the average requires to sum
values, which is not an allowable operation.

Example 7 (Meaningfulness for an Interval Scale — Exam-
ple 3 Continued): The statement ‘Today the difference in
temperature between Rome and Oslo is twice as high as it
was one month ago” is meaningful. Indeed, if, on the Celsius
scale, the temperature today in Rome is 20 °C and in Oslo is
10 °C while one month ago it was 12 °C and 7 °C, leading
to 20 — 10 = 10 which is twice as 12 — 7 = 5, on the
Fahrenheit scale we would have 68 — 50 = 18 which is twice
as 53.6 —44.6 = 9.

Suppose now that we have recorded two sets of tem-
peratures from Paris and Rome: TPC = [2 2 4 8 36]
and TRC = [1 2 4 15 34] in Celsius degrees and,
the same, TF = [35.6 35.6 39.2 46.4 96.8] and TY =
[33.8 35.6 39.2 59.0 93.2] in Fahrenheit degrees.

The statement “The median temperature in Paris is the
same as in Rome” is meaningful, since 4 = 4 in Celsius
degrees and 39.2 = 39.2 in Fahrenheit degrees; this is due
to the fact that interval scales are also ordinal and quantiles
are an allowable operation on ordinal scales.

The statement “The mean temperature in Paris is less
than in Rome” is meaningful as well, since 10.4 < 11.2 in
Celsius degrees and 50.72 < 52.16 in Fahrenheit degrees;
this is due to the fact that addition and subtraction are allow-
able operations on an interval scale and, as a consequence,
mean is invariant to affine transformations. Indeed, let X =
{x1,x2, ..., x,}and Y = {y1,y2, ..., yn} be two set of values
on an interval scale; it holds that

% D d) > % LD
i=1 i=1

1 ¢ 1
& > [ep)+ 6] > - 3 [ed0i) + 5]
i=1

=1
1< 1<
& “(; §¢<x,~)> +8> “(; l;qs(yi)) +8

1 <& 1 &
s Zi;(pm) > ;;‘W")

Therefore, the statement “The mean of X is greater than
the mean of Y is always meaningful.

Finally, the statement “The geometric mean of temperature
in Paris is greater than in Rome” is not meaningful, since
5.40 > 5.27 in Celsius degrees and 46.74 < 48.17 in
Fahrenheit degrees; this is due to the fact that the geometric
mean involves the multiplication and division of values, which
is not a permitted operation on an interval scale.

Also note that we may be tempted to compare the results
of the arithmetic mean with those of the geometric mean
to gain “more insights”. For example, we might observe
that the arithmetic mean in Paris is less than in Rome —
10.4 < 11.2in Celsius degrees — but the opposite is true when
we consider the geometric mean — 5.40 > 5.27 in Celsius
degrees. We might thus highlight that this due to the fact that
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the first (and lowest) value 2 in Paris is double than 1 in
Rome and that the geometric mean rewards gains on lowest
values; on the other hand, the arithmetic mean rewards gains
on higher values and thus 8 in Paris is (almost) half than 15 in
Rome and it contributes less. However, while the explanation
why the geometric mean may differ from the arithmetic one
is surely credible, the issue here is that the geometric mean
could not be relied upon, as well as conclusions drawn from it,
since it is based on operations not allowed for interval scales;
indeed, if we consider exactly the same temperatures just on
the Fahrenheit scale, we would reach opposite conclusions.

Example 8 (Meaningfulness for a Ratio Scale — Example 4
Continued): If the air distance between Rome and Padua is
(about) 400 kilometers and the air distance between Rome
and Oslo is (about) 2,000 kilometers, the statement “Rome
and Oslo are five times as distant as Rome and Padua’ is
meaningful, even expressed in miles, since 248.54 «~ 5 -
1,242.74.

On the Kelvin scale for temperature, it does make sense to
say that a thing is half as hot as another thing if, for example,
the first one is 273 K (almost 0 °C, 32 °F) and the second one
is 546 K (almost 273 °C, 523.4 °F); you can note, however,
how this statement does not hold if we consider Celsius and
Fahrenheit degrees, since % = 0 while % = 0.06.

Finally, let us show that the statement “The geometric
mean of X is greater than the geometric mean of Y is
always meaningful. Indeed, let X = {x1,x2,...,xn} and
Y = {y1,y2,...,yn} be two sets of values on a ratio scale; it
holds that

e > [ T]e'on
i=1 i=1

& " Jeen > [ Jason
i=1

i=1

&’ [[oe) > | [To0n
i=1 i=1

& [ To@ > 1 Te0n
i=1 i=1

E. STATISTICAL SIGNIFICANCE TESTING
Siegel [101] and Senders [100] have discussed the implica-
tions of Stevens’ classification and permissible operations
in the case of statistical inference and parametric and non-
parametric statistical significance tests. Here we consider the
following tests:
o Sign Test [53]: Is a non parametric test which looks at
the signs of the differences among two paired samples
x; and y;; the null hypothesis is that the median of the
differences is zero.
The sign test requires samples to be on an ordinal scale,
since it needs to determine the sign of their difference
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or, equivalently, which one is greater. Note that the sign
test discards the tied samples, i.e. when x; = y;.

o Wilcoxon Rank Sum Test (or Mann-Whitney U Test) [53],
[123]: Is a non parametric test which looks at the ranks
of two paired samples x; and y;; the null hypothesis is
that the two samples have the same median.

The Wilcoxon rank sum test requires samples to be
on an ordinal scale, since it needs to order them for
determining their rank.

o Wilcoxon Signed Rank Test [53], [123]: Is a non para-
metric test which looks at the signs and ranks of the
differences among two paired samples x; and y;; the null
hypothesis is that the median of the differences is zero.
The Wilcoxon signed rank test requires samples to be
on an interval scale, since it regards the ranks of the
differences, for which intervals must be equi-spaced.
Note that the Wilcoxon signed rank test discards the tied
samples, i.e. when x; = y;.

o Student’s t Test [104]: Is a parametric test for the null
hypothesis that two paired samples x; and y; come from
a normal distribution with same mean and unknown
variance.

The Student’s t test requires samples to be on an interval
scale, since it needs to compute means and variances.

e« ANOVA [45], [67]: Is a parametric test for the null
hypothesis that g samples come from a normal distri-
bution with same mean and unknown variance.
ANalysis Of VAriance (ANOVA) requires samples to be
on an interval scale, since it needs to compute means and
variances.

o Kruskal-Wallis Test [53], [66]: Is a nonparametric ver-
sion of the one-way ANOVA for the null hypothesis
that ¢ samples come from a distribution with the same
median. It is based on the ranks of the different samples
and it can be considered as an extension of the Wilcoxon
rank sum test to the comparison of multiple systems at
the same time.

The Kruskal-Wallis test requires samples to be on an
ordinal scale, since it needs to order them for determin-
ing their rank.

o Friedman Test [46], [47], [53]: Is a nonparametric ver-
sion of the two-way ANOVA for the null hypothesis that
the effects of the g samples are the same. It is based on
the ranks of the different samples.

The Friedman test requires samples to be on an ordinal
scale, since it needs to order them for determining their
rank.

As in the case of Stevens’ permissible operations, defining
which statistical significance tests should be permitted on
the basis of the scale properties of the investigated variables
raised a lot of discussion and controversy. Anderson [10],
along the line of reasoning of Lord, argued that statistical
significance tests should be used regardless of scale limi-
tations. Gardner [52] summarizes much of the discussion
up to that point, leaning towards not worrying too much
about scale assumptions, and suggests that, if and when lack
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of compliance to measurement scale requirements biases
the outcomes of significance tests, transformations can be
applied to turn ordinal scales into more interval-like ones
such as, for example, averaging the ranks of each score,
as proposed by Gaito [50], or using a more complex set of
rules, as developed by Abelson and Tukey [1]. Ware and
Benson [121] replied to Gardner’s positions by further revis-
ing the pro and con arguments and concluding that para-
metric significance tests should be used only when dealing
with interval and ratio scales while, in the case of ordinal
scales, nonparametric significance tests should be adopted.
Townsend and Ashby [107] further investigated the issue,
highlighting some serious pitfalls you may fall in, when
ignoring the scale assumptions.

We can summarise the discussion with the conclusions of
Marcus-Roberts and Roberts [74, p. 391]:

The appropriateness of a statistical test of a hypoth-
esis is just a matter of whether the population and
sampling procedure satisfy the appropriate statisti-
cal model, and is not influenced by the properties of
the measurement scale used. However, if we want
to draw conclusions about a population which say
something basic about the population, rather than
something which is an accident of the particular
scale of measurement used, then we should only
test meaningful hypotheses, and meaningfulness is
determined by the properties of the measurement
scale in connection with the distribution of the
population.

and Hand [54, p. 471]

Restrictions on statistical operations arising from
scale type are more important in model fitting and
hypothesis testing contexts than in model genera-
tion or hypothesis generation contexts.

IV. MEASUREMENT ISSUES IN INFORMATION RETRIEVAL
A. WHY DOES STUDYING THE SCALE PROPERTIES OF IR
EVALUATION MEASURES MATTER?

Let us start our discussion by considering a not-exhaustive
list of core IR areas where scales may matter.

The most common and basic operation we perform to
understand whether a system A is better than a system B is
to average their performance over a set of topics and compare
these aggregate scores. According to the discussion so far this
leads to meaningful statements only if IR evaluation measures
are, at least, interval scales.

Topic difficulty [24] is another central theme in IR because
of its importance for adapting the behaviour of a system
to the topic at hand. Voorhees [116], [117], in the TREC
Robust tracks, explored how to evaluate and compare systems
designed to deal with difficult topics and proposed to use the
geometric mean, instead of the arithmetic one, for Average
Precision (AP) [17]. However, the use of a geometric mean
further raises the requirements for the evaluation measures,
even calling for a ratio scale.

VOLUME 9, 2021



M. Ferrante et al.: Towards Meaningful Statements in IR Evaluation: Mapping Evaluation Measures to Interval Scales

IEEE Access

Statistical significance testing has a long story of adoption
and investigation in IR, from the early uses of t-test reported
by Salton and Lesk [94], to the discussion on the compliance
with the distribution assumptions of significance tests by
van Rijsbergen [111], to advocating for a more wide-spread
adoption of different types of significance tests by Hull [59],
Savoy [97], Carterette [26], Sakai [89], to surveys on the
current state of adoption of significance tests by Sakai [91].
Again, drawing meaningful inference depends on the appro-
priate use of parametric or nonparametric tests in accor-
dance with the scale properties of the adopted IR evaluation
measures.

Several authors have proposed the use of score transfor-
mation and standardisation techniques, such as z-score by
Webber et al. [122] and other types of linear (and non-linear)
transformations by Sakai [90], Urbano et al. [109], in order
to compare performance across collections and to reduce the
impact of few topics skewing the performance distribution.
However, in order to ensure meaningful conclusions from
these transformation, at least an interval scale would be
required.

Despite the many aspects of IR evaluation which can
be affected by the scale properties of evaluation measures
and despite the deep scrutiny that the above techniques
have received over the years, there has been much less
attention to the implications of the scale assumptions on
them.

Robertson [84] was the first to discuss the admissibility of
the use of the geometric mean from the Stevens’s perspective
in the context of the TREC Robust track. In particular, Robert-
son focused on the fact that Mean Average Precision (MAP)
and Geometric Mean Average Precision (GMAP) may lead
to different conclusions — e.g. blind feedback is beneficial
according to MAP but detrimental according to GMAP —
and which of them may hold more (intrinsic) validity. In this
respect, Robertson [84, p. 80] observed that

If the interval assumption is not valid for the orig-
inal measure nor for any specific transformation
of it, then any monotonic transformation of the
measure is just as good a measure as the untrans-
formed version. If we believe that the interval
assumption is good for the original measure, that
would give the arithmetic mean some validity over
and above the means of transformed versions. If,
however, we believe that the interval assumption
might be good for one of the transformed versions,
we should perhaps favour the transformed version
over the original. But if there is no particular reason
to believe the interval assumption for any version,
then all versions are equally valid. If they differ, it is
because they measure different things.
Since both AP and the log-transformation of AP (implied
by the geometric mean) are not interval scales, Robertson
concluded that no preference could be granted to MAP or
GMAP in terms of (intrinsic) validity of their findings. In this
way Robertson takes a neutral stance with respect to the
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debate on whether certain operations should be permitted or
not on the basis of the scale properties.

Note that Robertson somehow implicitly indicates trans-
formations as a possible means to turn a not-interval scale
into an interval one, as also supported by Gaito [50], Abelson
and Tukey [1].

As a final remark, even if Robertson did not mention it
explicitly, his reasoning seems to be loosely related to the
concept of meaningfulness when he says [p. 80]

Good robustness would be indicated if the conclu-
sions looked the same whatever transformation we
used; if we found it easy to find transformations
which would substantially change the conclusions,
then we might infer that our conclusions are sen-
sitive to the interval assumption, and that the dif-
ferent transformations measure different things in
ways that may be important to us
still keeping a neutral stance about what should or should not
be done.

Fuhr [49] took a firm position and argued that Mean Recip-
rocal Rank (MRR) [102] should not be computed because:
1) in general, RR is just an ordinal scale and, according to
Stevens means cannot be computed for a ordinal scales; 2) in
particular, RR has some counter-intuitive behaviour. On the
other hand, Sakai [92] has recently disagreed with Fuhr: 1) in
general, on the fact that means should not be computed for an
ordinal scale, using arguments similar to those discussed in
Section III-C; 2) in particular, on the use of RR which Sakai
finds quite useful from a practical point of view.

Whatever stance you wish to take about whether (or not)
operations should be constrained by scale properties, from the
discussion so far, it clearly emerges that IR needs further and
systematic investigation about the implications and impact of
derogating from compliance with scale properties. Moreover,
most of the above discussion is just about averaging values
and does not tackle the implications for statistical signifi-
cance testing. Finally, and more importantly, we completely
lack a thorough discussion on and any adoption of the notion
of meaningfulness in IR. This is quite striking for a discipline
so strongly rooted in experimentation and so much based on
inference.

B. A FORMAL THEORY OF SCALE PROPERTIES FOR IR
EVALUATION MEASURES

Ferrante et al. [39]-[41] leveraged the representational theory
of measurement for developing a formal theory of IR evalu-
ation measures which allows us to determine the scale prop-
erties of an evaluation measure. In particular, they defined an
ERS for system runs and used two basic operations — swap,
i.e. swapping a relevant with a not-relevant document in a
ranking, and replacement, i.e. substituting a relevant docu-
ment with a not-relevant one — to study how runs are ordered.
In this way, they demonstrated that there exists a partial order
of runs where, when runs are comparable, all the measures
agree on the same way of ordering them; however, when runs
are not comparable, measures may disagree on how to order

136191



IEEE Access

M. Ferrante et al.: Towards Meaningful Statements in IR Evaluation: Mapping Evaluation Measures to Interval Scales

them. By using properties of the partial orders and theorems
from the representational theory of measurement, they were
able to define an interval scale measure ¢ and to check if there
is any linear transformation between such a measure ¢ and
IR evaluation measures, in order to determine if the latter are
interval scales too.

In short, Ferrante et al. found that, for a single topic:

« set-based evaluation measures:

— binary relevance: precision, recall, F-measure are
interval scales;

— multi-graded relevance: Generalized Precision (gP)
and Generalized Recall (gR) are interval scales only
if the relevance degrees are on a ratio scale;

« rank-based evaluation measures:

— binary relevance: Rank-Biased Precision (RBP) [78]
is an interval scale only for p = 1/2; Average Preci-
sion (AP) is not an interval scale;

— multi-graded relevance: Graded Rank-Biased Preci-
sion (gRBP) is an interval scale only for p = G/
(G 4+ 1), where G is the normalized smallest gap
between the gain of two consecutive relevance
degrees, and the relevance degrees themselves are on a
ratio scale; Discounted Cumulative Gain (DCG) [60]
and Expected Reciprocal Rank (ERR) [28] are not
interval scales.

Ferrante et al. [41] also studied what they called the
induced total order, i.e. pretending that runs in the ERS are
ordered by the actual values of a measure. Also in this case
which is the most “favourable” to each measure, Ferrante
et al. have shown that AP, RBP with p # 1/2 (and its
multi-graded version), DCG, and ERR are not interval scales,
because their values are not equi-spaced.

Figure 2 shows the Hasse diagram [34] which represents
the partial order among all the runs’ of length N = 4.
In the figure, vertices are runs while edges represent the
direct predecessor relation that is, if r < s, i.e. r and s
are comparable, then r is below s in the diagram. Note that
if r and s lie on the same horizontal level of the diagram,
then they are incomparable; furthermore, elements on dif-
ferent levels may be incomparable as well. In the example
1,1,0,H) =< (1,1,1,0), (1,1,0,0) =< (1,1,1,0), and
(1,0,1,1) =< (1,1, 1,0) are all comparable; therefore, all
IR measures agree on these runs and order them in the same
way. On the other hand, (1, 1,0,0) and (1,0, 1, 1) are not
comparable, as well as (1,1,0,0) and (0, 1, 1, 1), and IR

TNote that, in general, we assume to operate in the finite and discrete case,

i.e. finite number of documents, finite number of relevant documents, finite
length of the run, since this reflects what happens in running systems.
Note also that, when constructing a scale, you need to account for all the
possible cases so that we can use the same scale for all of them. For example,
when constructing the length scale, you would consider people of all possible
heights, even if in a specific regions you may observe only taller or shorter
people. Therefore, to create a scale which holds for different topics and
different collections of documents, we need to consider all the possible runs
and all the combinations of relevant and not relevant documents. In this way,
we can accommodate on the same scale topics without relevant documents,
with just one relevant document, with two relevant documents, and so on up
to many relevant documents.
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(1,1,1,1)

(1, 1,| 1,0)

(1, 1,| 0,1)
(1,0, 1,1)/ \(1,1, 0,0)
(0,1,1,1) (1,|0, 1,0)
(0,1, 1,| 0) (1,|O, 0,1)
(0,1, 0,| 1) (1,|0, 0,0)
(0,0, 1,| 1) (0,|1, 0,0)

) (0,0,1,0) -
(0, 0,| 0,1)
(0, 0,| 0,0)

FIGURE 2. Hasse diagram showing the partial order of all the possible
runs of length 4. The different colours of the runs correspond to different
total numbers of relevant retrieved documents.

measures disagree on how to order them; as a consequence,
measures will order these runs differently, producing different
Rankings of Systems (RoS).

The difference in the RoS produced by evaluation measures
is what is studied when performing a correlation analysis
among measures, e.g. by using Kendall’s t [64]; practical
wisdom says that measures should be neither too much corre-
lated — otherwise it practically makes no difference using one
or the other — nor too little correlated — otherwise it may be
an indicator of some ‘“pathological” behaviour of a measure.
Indeed, each evaluation measure embodies a different user
model [25], i.e. a different way in which the user interacts
with the ranked result list and derives gain from the retrieved
documents, and the differences between the RoS produced
by different evaluation measures, and as a consequence their
Kendall’s T may be considered as the tangible manifestation
of such different user models. Note that the work by Ferrante
et al. provides a formal explanation of the differences in
Kendall’s t: for all the runs which are comparable in the
Hasse diagram, Kendall’s 7 between different measures is 1,
since all of them order these runs in the same way; for runs
which are not comparable in the Hasse diagram, Kendall’s t
between different measures is less than 1, since all of them
order these runs differently; therefore, these not comparable
runs are where user models differentiate themselves and can
take a different stance.

However, these differences in the RoS are not causing IR
evaluation measures to not be interval scales; they would
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FIGURE 3. Ordering and spacing of the runs of Figure 2 by different evaluation measures. Each blue square corresponds to a score of a given
measure. On the right of the square, the run corresponding to that score is reported; in case of tied runs, i.e. runs for which the measures

produces the same score, they are all listed on the right of the square.

just mean that IR evaluation measures are different scales.
The real problem with IR evaluation measures is that their
scores are not equi-spaced and thus they cannot be interval
scales, as explained in Section III-B. This issue is depicted in
Figure 3 which shows how different measures — namely, Pre-
cision (and Recalls), AP, RR, RBP with p € {0.3,0.5, 0.8},
and DCG with log base 2 — order and space the runs shown
in the Hasse diagram of Figure 2.

We can observe that only Precision (Recall) and RBP with
p = 0.5 produce equi-spaced values, while all the other mea-
sures violate this assumption, required to obtain an interval
scale; in other terms, Figure 3 visually represents the issue
found by Ferrante et al. [41] even when using the induced total
order. We can also note that all the measures agree only on the
common comparable runs —i.e. (0,0,0,0) < (0,0,0, 1) <
0,0,1,0)and (1,1,0,1) < (1,1,1,0) < (1,1, 1, 1) — but,
as soon as incomparable runs come into play, they start to
disagree on how to order them. Finally, looking at Figure 3 we
can notice how IR measures behave differently in violating
the equi-spacing assumption. RBP with p € {0.3, 0.8} and
DCG follow a somehow regular pattern, where scores are not
equi-spaced but they are in some way evenly clustered and

8Note that in this specific case, since the length of the run N = 4 and
the recall base RB = 4 are the same, Precision and Recall yield to the same
scores.
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they are symmetric if you fold the figure along its middle
horizontal axis; on the other hand, AP and RR follow a much
more irregular and not symmetric pattern.

We can also note how these measures spread values in their
range differently. Precision (and Recall) and DCG spread
their values all over the possible range while this is not
always the case with RBP. Indeed, RBP assumes runs of
infinite length and normalizes by the ﬁ factor. However,

we deal with runs of limited length and the ﬁ factor is an
overestimation, the bigger the overestimation the bigger is the
value of p and the smaller is the length of the run — this is more
clearly visible in the case of RBP with p = 0.8 in Figure 3f.
Finally, AP, RBP with p = 0.3, and RR, i.e. those measures
farther from being interval scales, leave large portions of
their possible range completely unused. In particular, AP
leaves one quarter of its range unused, in the top part roughly
corresponding to the first quartile of the possible values; RR
leaves one half of its range unused, in the top part roughly
corresponding to the first and second quartiles of the possible
values; and, finally, RBP with p = 0.3 leaves half of its range
empty, in the middle part roughly corresponding to the second
and third quartile of the possible values.

Why does it matter how much equi-spaced the values are
and how they are spread over their range? Consider a random
variable X that takes values in the set {0, 1, 2, 4, 13}. Even if
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TABLE 1. Example for AP not being equi-spaced, considering the MAP of each systems across the queries Q; and Q,.

System ‘ Q1 ‘ Q2 MAP System ‘ Q1 ‘ Q2 ‘ MAP
A (1,1,1,0) (1,0,0,1) 0.5625 C (0,0,1,0) (0,1,0,1) 0.1667
B (1,1,0,1) (1,0,1,0) 0.5521 D (0,0,0,1) (0,1,1,0) 0.1771

all these five values can be obtained with equal probability,
i.e. the random variable is uniform, the mean and the median
of the variable differ, being the mean equal to 4 and the
median to 2. This shows how the lack of equi-spacing causes
some sort of “‘imbalance’ even in the case of a uniform vari-
able, which may be an undesirable situation from the mea-
surement point of view, at least if not explicitly considered
and accounted for. Furthermore, when we compute P[X €
(x — &, x + )], i.e. the probability that the value of X is equal
to x with an error of at most 2¢, this function is not constant
all over the range but it is assumer greater for values around
{0, 1,2} than for those around {4, 13}. As a consequence,
a similar accuracy in approximating the value of X produces
a different precision in the measurement depending on the
value x that we are considering. Note that in the present toy
model it happens for ¢ > 1, but a suitable modification of the
present model can produce the same behaviour for any ¢ > 0
set in advance.

As a further example, let us consider a measure with a
limited range of equi-spaced values. If we draw a set of
random values taken from this range and consider its arith-
metic mean, by the law of large numbers, we have that this
mean converges to the middle point of the range interval.
This property is independent from the distance among the
subsequent values, i.e. the unit of measurement chosen. So we
can use such a procedure — the convergence of the mean
towards the middle of the range — in order to ‘““calibrate’ the
measuring instrument, independently from the specific unit
of measurement chosen. This is no more possible if we have
values which are not equi-spaced.

Example 9 (Effect of RR Not Being Equi-Spaced): Let us
assume that we have two queries and two systems. System A
returns the first relevant document at ranks 1 and 4, respec-
tively, while system B finds the relevant answers in both cases
at rank 2. Computing the MRR of the two systems, i.e. the
average value of the RR, we get MRR(A) = %(1/1 +1/4) =
0.625, while MRR(B) = 0.5, telling us that system A is better
than B. However, if instead of reciprocal rank, we regard the
ranks themselves, we have equi-spaced values forming an
interval scale (actually, even a ratio scale). In our example,
system A finds the first relevant item on average at rank 2.5,
which is worse than the average rank 2 of system B — so we
would get the opposite finding when we use a scale still based
on the rank of relevant documents but properly equi-spaced.

Example 10 (Effect of AP Not Being Equi-Spaced):
Table 1 shows an example of two system pairs (A,B) and (C,D)
and two queries, for which we compute AP values. In the first
case, mean of AP over the two queries, i.e. MAP, will say
that A performs better than B, while in the second case, C is
worse than D. Why is this effect related to AP not being on
an interval scale? Because in both the examples, the runs
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retrieved by the two systems for a given topic have the same
relevance degrees in the first two positions and just a swap
of a relevant with a not-relevant document in the last two
positions. So, to the same loss of relevance for the swap in the
last two positions, still keeping the same relevance in the first
two positions, AP “reacts” in one case telling us that system
A is better than system B, and in the second case that D is
better than C and this is also due to the not-equispaced values
of AP, e. g. runs ranked 13 and 14 are much closer than runs
ranked 10 (on the left branch of Figure 2) and 9, as shown
in Figure 3b. Note that here we are neither questioning the
top-heaviness of a measure nor its capability of reflecting
user preferences but rather we point out how the lack of
equi-spaced values affects the assessment supported by a
measure.

The fact that IR evaluation measures, apart from Precision,
Recall, and RBP with p = 0.5, are not interval scales leads to
the general issues with computing means, statistical tests, and
meaningfulness discussed in Sections from III-B to VIII-C
and shown in Examples 3 and 7. In addition, Examples 9
and 10 above show how the lack of equi-spacing may also
lead to statements like ““system A is better than B’ (or vicev-
ersa) which are not always intuitive all over the scale.

C. AVERAGING ACROSS TOPICS AND CORRELATION
ANALYSIS REVISITED

The fact that Precision and Recall are interval scales makes
addition and subtraction permissible operations and, as a
consequence, computing arithmetic means permissible too.
Therefore, it is safe to average performance of IR systems
across topics when we use Precision and Recall. But is that
really true?

As said, Ferrante et al. [41] have found an interval scale ¢,
called Set-Based Total Order (SBTO), and have shown that
both Precision and Recall are an affine transformation of
this interval scale and thus also an affine transformation of
each other. Ferrante et al. [42] have raised this question: if
Precision and Recall are transformations of the same inter-
val scale, they are ordinal scales too and they should rank
systems in the same way. Therefore, if they produce the
same RoS, Kendall’s t correlation between them should be 1.
So, why their Kendall’s t correlation is 0.8588, using the
TREC 8 Ad-hoc data?

Let us consider how correlation analysis between eval-
uation measures works. Given two rankings X and Y,
their Kendall’s 7 correlation is given by r(X .Y ) =

\/ ( P ;? ) , Where P is the total number of concor-
P+0+T)(P+0+U

dant pairs (pairs that are ranked in the same order in both
vectors), Q the total number of discordant pairs (pairs that
are ranked in opposite order in the two vectors), T and U are
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the number of ties, respectively, in the first and in the second
ranking. T € [—1, 1] where T = 1 indicates two perfectly
concordant rankings, i.e. in the same order, T = —1 indicates
two fully discordant rankings, i.e. in opposite order, and
7 = 0 means that 50% of the pairs are concordant and 50%
discordant.

The typical way of performing correlation analysis is as
follows: let ¢p; and ¢, be two evaluation measures; in our
case, ¢ is Precision and ¢; is Recall. Let &1 and &, be two
T x S matrices where each cell contains the performance
on topic i of system j according to measures ¢; and ¢y,
respectively. Therefore, @1 and &, represent the performance
of § different systems (columns) over T topics (rows). Let
®; and @, be the column-wise averages of the two matrices,
i.e. the average of the performance of each system across the
topics. If you sort systems by their score in ®1 and @5, you
obtain two RoS corresponding to ¢; and ¢, respectively, and
you can compute Kendall’s T correlation between these two
RoS. This is the traditional way for computing the correlation
between two evaluation measures and Ferrante et al. call
it overall correlation, since it first computes the average
performance across the topics and then it computes the cor-
relation between evaluation measures. This approach leads to
a Kendall’s 7 correlation of 0.8588 between Precision and
Recall.

Ferrante et al. proposed a different way of computing the
correlation, called fopic-by-topic correlation, where, for each
topic i, they consider the RoS on that topic corresponding to
¢1 and the one corresponding to ¢», i.e. they consider the i-th
rows of 1 and ®,, respectively; they then compute Kendall’s
T correlation among the two RoS on that topic. Therefore,
they end-up with a set of T correlation values, one for each
topic. Using this way of computing correlation, Ferrante et al.
found that Kendall’s 7 correlation between Precision and
Recall is always 1 for all the topics and this was the result
expected for two interval scales which order systems in the
same way.

Therefore, if you consider each topic alone, Precision and
Recall are just a transformation of the same interval scale,
as Celsius and Fahrenheit are, and their Kendall’s t correla-
tion is 1. However, if you first average across topics, which
should be a permitted operation for interval scales, and then
you compute Kendall’s T correlation, it stops to be 1. This was
somehow surprising and unexpected. Indeed, as an example
from another domain, if you take a matrix of scores in Celsius
degrees and another one with the corresponding Fahrenheit
degrees, their Kendall’s T correlation is always 1, either if you
compute it row-by-row (i.e. our topic-by-topic correlation) or
if you first average across rows and then compute it (i.e. our
overall correlation).

Ferrante et al. [42, p. 305] explained this behaviour as due
to the recall base:

Recall heavily depends on the recall base which
changes for each topic and it is used to normalize
the score for each topic; therefore, in a sense, recall
on each topic changes the way it orders systems
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We further investigate this issue in Section IV-D below,
where we provide details and demonstrations, but here we
summarise our findings. The difference between overall and
topic-by-topic correlation is basically due to the fact that
we are using different interval scales for each topic. These
scales are indeed transformations of one in the other for each
topic and this is why topic-by-topic correlation is 1; however,
since we are changing scale from one topic to another, when
averaging across topics we are mixing different scales and
this is why the overall correlation is different from 1.

Example 11 (Recall Corresponds to Different Scales on
Different Topics): Let us consider Recall and let us assume
that we have three queries q1, q2, q3, with one, two and three
relevant documents, respectively. Then, the possible values
of Recall are as follows: for g1 we have 0 and 1; for g we
have 0, % and 1; and for g3 we have 0, %, %, and 1. Obvi-
ously, we have three different interval scales here — although
they are in the same range [0, 1], their possible values are
different. So we have to map the values onto a single scale,
before we can do any statistics. There are two possibilities for
doing this:

1) We take the union of the possible values. This would
vield the set {0, %, %, %, 1}. However, these values are
no longer equidistant, so it is not an interval scale.

2) We extend the union scale from above by additional
values such that we have equidistant values, based on
the least common denominator. Then we would have
the set {0, %, %, %, %, g, 1} in our example. However,
in this scale, the values % and % are not possible for
our three example topics, and impossible values are not
considered in the definition of the equidistance property
of interval scales. Only if we had a fourth query with
six relevant documents, this scale would be ok. In most
cases, however, no such scale exists, and so the aggre-
gated scale is not an interval one.

The fact that we may be changing scale from topic to
topic has very severe consequences. All the debate originated
by Stevens’s permissible operations and the possibility of
averaging only from interval scales onwards has always been
based on the obvious assumption that the averaged values
were all drawn from the same scale; no one has ever doubted
that it is not possible to average values coming from different
scales because this would be like mixing apples with oranges.
So, what is the meaningfulness of typical statements like
“System A is (on average) better than system B” when we
are not only violating the interval scale assumptions but, even
more seriously, we are mixing different scales? What about
the meaningfulness of typical statements like “System A
is significantly better than system B”? The debate between
using parametric or nonparametric tests concerns how much
you wish to comply with the interval scale assumptions
but, undoubtedly, all the significance tests, when aggregating
across values, expect them to be drawn from the same scale.

If we wish to make an analogy, it is like the difference
between using mass and weight, being Precision similar to
mass and Recall to weight. It would be somehow safe to
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average the mass of bodies coming from different planets but
it would not to average their weight, due to the different grav-
ity on the different planets. The recall base is what changes
the gravity from planet/topic to planet/topic in the case of
Recall.

However, even Precision is not completely “safe” because,
when the length of the run changes, its scale changes as well.
As a consequence we may end up using different scales from
one run to another and this can happen not only across topics,
as in the case of Recall, but also within topics, if we have two
or more runs retrieving a different number of documents for
that topic. This statements affects the evaluation of classical
Boolean retrieval, where Precision and Recall are computed
for the set of retrieved documents for each query, followed
by averaging over all queries. So we have to conclude that
this procedure is seriously flawed. Luckily, in most of today’s
evaluations, the length of the run has a much smaller effect
because, in typical TREC settings, almost all the runs retrieve
1,000 documents for each topic and just few of them retrieve
less documents; this effect would also (practically) disap-
pear when you consider Precision at lower cut-offs, like
P@10, when it is almost guaranteed that all the runs retrieve
10 documents.

Summing up, independently from an evaluation measures
being an interval scale or not, the recall base (greatly) and
the length of the run (less) cause the scale to change from
topic to topic and/or from run to run. This makes averaging
across topics, as well as other forms of aggregation used in
significance tests, problematic at best. We show how and why
this happens in the case of Precision (Section IV-D1) and
Recall (Section IV-D2), which are the simplest measures you
can think of, since they change either the length of the run
or the recall base alone. We also consider the more complex
case of the F-measure (Section IV-D3), which changes both
the run length and the recall base at the same time. Therefore,
we hypothesise that these issues may be even more severe in
the case of more complex evaluation measures, like AP and
others, which are not even interval scales and mix recall base
and run length with rank position and various forms of utility
accumulation and stopping behaviours.

Finally, also the way in which we interpret the results of
correlation analysis may be impacted. Indeed, we typically
attribute differences in correlation values to the different
user models embedded by evaluation measures. The rule-of-
thumb by Voorhees [114], [115] is that an overall correlation
above 0.9 means that two evaluation measures are practically
equivalent, an overall correlation between 0.8 and 0.9 means
that two measures are similar, while dropping below 0.8 indi-
cates that measures are departing more and more. Therefore a
correlation of 0.8588 would suggest that Precision and Recall
share some commonalities but they differ enough due to their
user models, still not being pathologically different. However,
we (now) know that they are just the transformation of the
same interval scale and that this correlation value is just an
artifact of mixing different scales across topics rather than an
intrinsic difference in the user models of Precision and Recall.

136196

D. WHY MAY SCALES CHANGE FROM TOPIC TO TOPIC OR
FROM RUN LENGTH TO RUN LENGTH?

As discussed above, Ferrante et al. [41] have demonstrated
that Precision, Recall, and F-measure are interval scales when
you fix the length of the run N and the recall base RB; this
is the case of a set of runs (assuming they retrieve the same
number of documents) on a single topic (or on more topics,
if they have the same recall base). In this case, Precision,
Recall, and F-measure are a homomorphism with respect to
the same ordering of runs in the ERS. However, if we mix
together runs with different bounded lengths and/or different
bounded recall bases, Precision, Recall and F-measure are no
more interval scales, they are no more an affine transforma-
tion of each other and they even order the runs in different
ways. Clearly, this is a severe issue when you need to average
(or compute any other aggregate) across different topics or
runs with different lengths.

Let us consider the universe set S[N, K] which contains all
the runs of any possible length #, less than or equal to N, and
with respect to all the possible recall bases RB, less than or
equal to K. To avoid trivial cases, we consider always N and
K to be greater than 0. A run in S[N, K] is represented by
a triple [r, n, RB], where r indicates the number of relevant
documents retrieved by the run, n is the length of the run,
and RB is the recall base, i.e. the total number of relevant
documents for a topic. Note that, for each run in S[N, K] it
holds n < N and RB < K by construction, but we also have
r < (nARB), where x Ay = min{x, y}, i.e. there is a (implicit)
dependence on the recall base when it comes to the number
of relevant retrieved documents.

We define S, rp as the set which contains all the runs with
the same length n and with respect to the same recall base RB.
Therefore, we can express the universe set S[N, K] as the
union of such sets, namely

SIN.K1= | Surs
1<n<N
1<RB<K
Su,re models the typical case of runs all with the same
length for a given topic (or for a set of topics which have
the same recall base). This is exactly the case for which Fer-
rante et al. [41] have demonstrated that Precision, Recall and
F-Measure are interval scales and an affine transformation
of each other. However, this holds for each S, rp separately
while the issue we discuss in this section is what happens
when you mix different S, gp, i.e. when you go towards
S[N, K]

1) PRECISION

Precision is equal to the fraction of the retrieved documents
that are relevant. Therefore, for a run represented by triple
[r, n, RB], Precision is given by

r
Prec[r,n, RB] = —
n

Let us start from S, grp: Prec maps this set into the set
{O, 1/n,2/n,....,(n A RB)/n} and it has been proven by
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Ferrante et al. that Prec is an interval scale in this case.
However, already in this simpler case, there is a (implicit)
dependency on the recall base, when it comes to the possible
values of Precision. Therefore, even when we consider runs
with the same length but for topics with different recall bases,
i.e. Sy RrB;> Sn.RBy» Sn.RB;» --.we are dealing with different
scales, all embedded in the single interval scale whose image
is {0, 1/n,2/n,...,(n A max{RBi})/n}.

To understand the problems arising from mixing different
lengths and recall bases, let us consider the general scenario
of Precision defined on S[N, K]. This is the case where we
consider the Precision measure defined on the set of the runs
of any possible bounded length and recall base and we find
that it is an interval scale only in the almost trivial cases of
N < 2. Indeed, Prec maps S[1, K], for any K > 1, into
the set {0, 1} and it is an interval scale since these values are
equispaced. When N = 2, Prec maps S[2, K], forany K > 1,
into the set {0, 1/2, 1}; since the values are equispaced, Prec is
still an interval scale. To compare the order induced on these
sets by Prec (and the other measures), let us consider in more
detail S[2, 2]. This set is

{[0, 1, 11,10, 1, 2], [0, 2, 11, [0, 2, 2],
[1,2,11,11,2,2],[1, 1, 1], [1, 1, 2], [2, 2, 2]}

and Prec[l,2,1] = Prec[l,2,2] = 1/2, while
Prec[1,1,2] = 1.

Continuing with a similar construction for N = 3,
we obtain that Prec assumes the four possible values
{0,1/3,1/2, 1}, when K = 1, and the five possible values
{0,1/3,1/2,2/3, 1} when K > 2. Indeed, for runs of length
at most 3, these are all the possible values of the fraction %
for1 <n <3and 0 < r < min{3, K}. Since these values
are not equispaced, it is sufficient to state that Prec is not an
interval scale on S[3, K].

To prove that Prec is not interval on S[N, K] for any finite
N > 3, let us prove again that the values on the image are not
equispaced. The three smallest values of Prec[S[N, K]] are 0,
1/N and 1/(N — 1). Indeed, the only other possible candidate
to be the third smallest value, when K > 2, would be 2/N,
but 1/(N — 1) < 2/N when N > 2. These three values are
not equispaced since I|/N —0 = 1/N # 1/N(N — 1) =
1/(N—1)—1/N,when N > 2, and therefore Prec on S[N, K|
cannot be an interval scale when N > 3.

2) RECALL
The Recall measure depends explicitly on the recall base RB,
i.e. the total number of relevant documents available for a
given topic
Recall[r,n, RB] = L
RB
Note that for any admissible run [r, n, RB], i.e. for which
r < nARB, its recall value (implicitly) depends on n, creating
a specular situation with respect to the one of Precision.
Recall is an interval scale on S, gp, since it is an affine
transformation of Prec, as demonstrated by Ferrante et al..

VOLUME 9, 2021

However, due to the (implicit) dependency on n, even when
we consider topics with the same recall base but runs with
different length, i.e. Sy, rRB, Sny,RB> Sns,RB, - .. We are dealing
with different scales, as discussed below.

Recall is an interval scale on the sets S[N, 1] for any
maximum length N > 1, since the image is the equispaced
set {0, 1}. Applied to the sets S[N, 2], for any N, Recall takes
the values {0, 1/2, 1} and, therefore, it is an interval scale as
well. However, Precision and Recall induce, for example on
S[2, 2], two different orderings of the runs and so they stop to
be an affine transformation of each other, i.e. they become two
different interval scales. Indeed, consider the runs [1, 2, 1]
and [1, 1, 2]: we have seen that Prec[1,2,1] = 1/2 < 1 =
Prec[1, 1, 2], while it holds that Recall[1,2,1] =1 > 1/2 =
Recall[1, 1, 2].

When we define Recall on S[N, K], for K > 2, this
measure is no more interval thanks to an argument similar
to that used for Precision. Indeed, the two smallest non zero
values of Recall on S[N, K], are as 1/K and 1/(K — 1),
here obtained for a run with a unique relevant document with
respect to a topic with RB = K and RB = K — 1, respectively.

Furthermore, it is immediate to see that Recall and Preci-
sion induce for any N > 2 and K > 2 two different orderings
on S[N, K], i.e. they become two different scales. Indeed,
for any two runs [r{, n1, RB1] and [r2, n2, RB>], we have that
Prec[ry, n1, RB1] < Prec[ry, na, RB>] if and only if ry /n; <
r2/na, while Recall[ry, n1, RB1] > Recall[ry, ny, RB>] if and
only if r{/RB1 > r2/RB;. Both these condition are satisfied
when

ny/ny < ra/ri < RBy/RB

For example, if we take rj = rp, ny = 2 np and RBy =
2 RB1, the previous condition is satisfied and the two runs are
ordered in a different way by the two measures.

3) F; MEASURE
The F; measure is the harmonic mean of precision and recall

2
(Prec[r,n, RB])~! + (Recall[r, n, RB])~!
Some small algebra gives us that F| is also equal to

2r
n+ RB

As before (see Ferrante et al.), we have that on S, gp, F is
an interval scale, being an affine transformation of Prec and
Recall.

On the contrary, if we consider F; defined on S[N, K],
it is no more an interval scale, except for the almost trivial
case S[1, 1], whose image is the equispaced set {0, 1}. Let
us first consider S[2, 1] and S[1, 2]: in both these cases the
values in the image of F| are no more equispaced, since F|
takes the values {0, 2/3, 1}. If we consider F; on S[2, 2],
it takes the vales {0, 1/2,2/3, 1} and is still not an inter-
val scale. Moreover, F| induces yet another ordering on
S[2,2], since Fi[1,2,1] = 2/3 = Fq[l,1,2], while it

Fi[r,n,RB] =

Fi[r,n,RB] =
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holds that Prec[1,2,1] = 1/2 < 1 = Prec[l,1,2] and
Recall[1,2,1] =1 > 1/2 = Recall[1, 1, 2].

When we define F; on S[N, K], for N > 3 or K > 3, this
measure is no more an interval scale, as can be easily seen
since the three smallest values of the image are 0, 2/(N + K)
and 2/(N + K — 1), which are not equispaced. At the same
time, using an example similar to the one used for Recall,
we obtain that the ordering induced on S[N, K] by F in these
latter cases differs from both the orderings induced by Prec
and Recall.

4) SUMMARY AND DISCUSSION

We have demonstrated that, when regarding runs with a fixed
length n and with respect to a fixed recall base RB, i.e. we
consider S, gp and runs of the same length for the same
topic (or, more generally, topics with the same recall base),
Precision, Recall, and F-measure are interval scales and they
are an affine transformation of each other. As a consequence,
they order runs in the same way and their Kendall’s 7 is 1.

However, when we start mixing runs with different length
and/or with respect to different recall bases, the situation
quickly gets more complicated. Only in the trivial (and not
very useful in practice) case N = 2 and K = 2, i.e. S[2, 2]
where we have runs of length 1 or 2 and topics with 1 or
2 relevant documents, Precision and Recall are still both
interval scales but they stop to be an affine transformation
of each other. As a consequence, they order runs in different
ways and their Kendall’s 7 is less than 1. F-measure already
stops to be an interval scale and orders runs in yet another
way than Precision and Recall, leading to a Kendall’s 7 less
than 1. For N > 2 and K > 2 all of them (Precision, Recall,
and F-measure) stop to be interval scales, departing from the
interval assumption more and more, and they order runs in
three completely different ways, again leading to a Kendall’s
T less than 1. In the special case where we fix the length,
Precision is still an interval scale, while if we fix a single
recall base, Recall is still an interval scale, but in both cases
the other measure is no more interval-scaled and also orders
the runs in a different way.

We may be tempted to consider as positive the fact that
sooner than later Precision, Recall, and F-measure start order-
ing runs in a different way and that their Kendall’s 7 is less
than 1. Indeed, this is what we expect from evaluation mea-
sures, to embed different user models and to reflect different
user preferences in ordering runs. This is also one of the main
motivations why there is a debate and we would accept to
derogate from requiring them to be interval scales: reflecting
user preferences could be more important than complying
with rigid assumptions.

However, we should carefully consider how this is hap-
pening. They initially are the “same” scale (except for an
affine transformation), when we use them to measure objects
with some shared characteristics, i.e. same run length n, and
with respect to a similar context, i.e. same recall base RB.
However, as soon as we measure objects with more mixed
characteristics and contexts, they cease to be the ‘““same”
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interval scale and only at that point they begin to order runs
differently. This is more or less like saying that kilograms and
pounds are the “same’ interval scale only when we weigh
people with the same height and from the same city but,
as soon as we weigh people with different heights and/or com-
ing from flatland or mountains, they become two different
scales and they also possibly stop to be interval scales. This
would sound odd and quite different from saying that weight
and temperature are different (interval) scales because they
measure different attributes/properties of an object or, in our
terms, they would reflect different user preferences.

Why does this happen? Because run length n and recall
base RB change. This is very clear and somehow more
extreme in the case of the F-measure, where both » and RB
explicitly appear in the equation of the measure.

We hypothesize that this could be even more severe and
extreme in the case of rank-based measures since not only
they combine, implicitly or explicitly, the two factors n
and RB but they also mix them with the rank of a docu-
ment and various discounting and accumulation mechanisms.
Figure 3 gives a taste of this much more complex situation:
it shows the simple (and somehow safe) case of S44 and
it already emerges how different are the behaviours and
patterns in violating or complying with the interval scale
assumption.

Why does this matter? As already said, because we need
to aggregate scores across topics and runs and to compute
significance tests. We do not only have the problem of how
much evaluation measures violate the interval scale assump-
tions, required to compute aggregates, but also the issue of not
mixing apples and oranges, i.e. scores from different scales,
required to make aggregates sensible. In this respect, run
length is a less severe issue which can be easily mitigated
in practice, either by forcing a given length or because we are
interested in lower cut-offs, e.g. 5, 10, 20, 30. The effect of
the recall base can be mitigated by adopting measures that do
not explicitly depend on it, even if the implicit dependency
due to the capping of the image values will remain.

V. RELATED WORK
van Rijsbergen [110] was the first to tackle the issue of
the foundations of measurement for IR by exploiting the
representational theory of measurement. He observed that
[110, pp. 365-366]
The problems of measurement in information
retrieval differ from those encountered in the phys-
ical sciences in one important respect. In the phys-
ical sciences there is usually an empirical ordering
of the quantities we wish to measure. For example,
we can establish empirically by means of a scale in
which masses are equal, and which are greater or
lesser than others. Such a situation docs not hold
in information retrieval. In the case of the measure-
ment of effectiveness by precision and recall, there
is no absolute sense in which one can say that one
particular pair of precision/recall values is better or
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worse than some other pair, or, for that matter that
they are comparable at all
Later on, van Rijsbergen [112, p. 33] further stressed this
issue: “There is no empirical ordering of retrieval effective-
ness and therefore any measure of retrieval effectiveness will
be by necessity artificial”.

van Rijsbergen addressed this issue by exploiting the
additive conjoint measurement [65], [70]. Additive conjoint
measurement was a new part of the measurement theory
developed as a reaction to the views of Campbell [22], [23]
and the conclusions of the Ferguson Committee of British
Association for the Advancement of Science [38], where
Campbell was an influential member, which considered the
additive property, i.e. the concatenation operation mentioned
in Section III-A, as fundamental to science and proper mea-
surement; as a consequence, measurement of psychological
attributes, which is lacking such additive property, was not
possible in a proper scientific way. As explained by Michel
[76, p. 67]

Conjoint measurement involves a situation in
which two variables (A and B) are noninteractively
[e.g. non additively] related to a third (X). It is
not required that any of the variables be already
quantified, although it is necessary that the values
of X be orderable, and that values of A and B be
independently identifiable (at least at a classifica-
tory level). Then, via the order on P, ordinal and
additive relations on A, B, and X may be derived

Typical examples from physics are the momentum of an
object, which is affected by its mass and velocity, or the
density, which is affected by its mass and volume [65].

van Rijsbergen considered retrieval effectiveness as the
“orderable X’ mentioned above and took precision P and
recall R as the two variables A and B. In particular, he demon-
strated that on the relational structure (R x P, ) it was
possible to define an additive conjoint measurement and to
derive actual measures of retrieval effectiveness from it. Note
that, in this way, he avoided the need to explicitly define
what an ordering by retrieval effectiveness is and he con-
sidered that precision and recall contribute independently to
retrieval effectiveness. The problem of how to order runs
in the ERS has been addressed some years later by Fer-
rante et al. [39]-[41]. More subtly, van Rijsbergen treats
precision and recall as two attributes which can be jointly
exploited to order retrieval effectiveness but, each of them,
is already a measure and quantification of retrieval effec-
tiveness and, thus, this brings some circularity in the rea-
soning. Finally, van Rijsbergen did not address the problem
of which are the scale properties of precision and recall (or
other evaluation measures), which has been later addressed by
Ferrante et al..

Bollmann and Cherniavsky [14], [15] built on the conjoint
measurement work by van Rijsbergen and applied it to further
study under which conditions the MZ-metric [57]. In partic-
ular, Bollmann and Cherniavsky leveraged what they called
transformational viewpoints, i.e. elementary transformations
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of the runs which closely resemble the idea of swap and
replacement used by Ferrante et al. much later on.

Bollmann [13] studied set-based measures by show-
ing that measures complying with a monotonicity and an
Archimedean axiom are a linear combination of the number
of relevant retrieved documents and the number of not rele-
vant not retrieved documents and how this could be related to
collections and sub-collections. He thus addressed a problem
somehow different from the one of the present paper, still
leveraging the representational theory of measurement.

Busin and Mizzaro [19], Maddalena and Mizzaro [73]
and Amigé and Mizzaro [5] proposed a unifying framework
for ranking, classification, and clustering measures, which is
rooted in the representational theory of measurement as well.
They considered scales but as a way of mapping between
relevance judgements (assessor scales) and Retrieval Status
Value (RSV) (system scales) and of introducing axioms over
them rather than a way of studying which are the scales
actually used by IR evaluation measures and their impact on
actual experiments.

As already discussed, Ferrante et al. [39] relied on the rep-
resentational theory of measurement to formally study when
evaluation measures are on an ordinal scale while Ferrante
et al. [40], [41] proposed a more general theory of evalua-
tion measures, proving when they are on an interval scale
or not. Finally, Ferrante et al. [42] conducted a preliminary
experimental investigation of the effects of IR measures being
interval scales or not.

Even if not specifically focused on scales and their rela-
tionship to IR evaluation measures, there is a bulk of research
on studying which constraints define the core properties of
evaluation measures: Amigo et al. [6]-[9] and Sebastiani [99]
face this issue from a formal and theoretical point of view,
applying it to various tasks such as ranking, filtering, diversity
and quantification, while Moffat [77] adopts a more numeri-
cal approach.

As it emerges from the above literature review, to the best
of our knowledge, no one has dealt yet with the problem of
considering the meaningfulness of IR experimental results
and of transforming IR evaluation measures into interval
scales.

VI. TRANSFORMING IR MEASURES TO INTERVAL SCALES
Let (REL, <) be a totally ordered set of relevance degrees,
with a minimum called the non-relevant relevance degree
nr = min(REL) and a maximum rr = max(REL); in the case
of binary relevance, we set REL = {0, 1} without any loss
of generality. Let N be the length of a run, i.e. the number of
retrieved documents, we call judged run 7, € REL" the vector
of relevance degrees associated to each retrieved document,
denoting by 7[/] the j-th element of the vector.

Any IR evaluation measure M naturally defines an order
among system runs. Indeed, taken any two runs 7, § € RELY
we order them as follows

F<§ o MGE)<M@G). (1)
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FIGURE 4. Procedure 1: flow chart for generating all the possible runs of length N and rank them according to a measure score.

Note that this is a weak total order, since M(r) = M(5)
does not imply that 7 = §, and that it is the order called
induced total order by Ferrante et al. Ferrante et al. [41]. It has
the following characteristics, as discussed in the previous
sections:

o it differs from measure to measure, i.e. each measure

may produce a different RoS;

« it typically is not an interval scale, i.e. the produced

values are not equi-spaced.

The basic idea of our approach is to keep the weak total
order (1) produced by the measure M but making sure that all
the possible values are equi-spaced.

The simplest way to achieve this result is to define first
the nonlinear transformation ¢ from [0, 1] into N that maps
each value m in the image of the measure M into its
rank number. Then, we define the ranked version of the
measure, i.e. the interval-scaled version of it, as Mg
@(M). Note that this approach is in line with what sug-
gested by Gaito [50] to transform ordinal scales into interval
ones.

Most of the measures are not one-to-one mappings and
thus the cardinality of their image is strictly smaller than the
cardinality of their domain, i.e. [M(RELN)| < |REL"|. The
runs which are assigned the same value by the measure are
called ties. As pointed out before, this is the reason why the
order induced on RELY by a measure in general is just a weak
total order.

The map ¢ is then defined for any value m in the image
M(RELN) as

@(m) = |{x € M(REL") : x < m}| 2

Mpg @(M) is an interval scale since the ranks are
equi-spaced by construction; moreover, it preserves the RoS
of M and thus it constitutes an interval-scaled version
of it.

Finally, we have to deal with fied values in the mea-
sure. In statistics there are many ways of breaking ties [53])
and the most common are: average/mid, min, or max rank.
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However, each of these alternative strategies would result
in a scale where the possible values are no longer equi-
spaced. Indeed, suppose you have the following values M =
[0.000.250.400.400.70]; the tied value 0.40 has ranks 3
and 4. If we chose the mid-rank tie breaking strategy,
we would obtain Mg [123.53.5,5]; using min-rank,
we would obtain Mg = [12 3 3 5]; using max-rank, we would
obtain Mg = [12445]. In all these cases, the resulting scale
would be no more equi-spaced.

Therefore, we simply eliminate the duplicate rank values
and assign the same rank at all the tied positions, calling this
tie-breaking strategy unique (unq). In the previous example,
we would obtain Mg[12334].

For RBP with p = 1/2 we have that ¢(m) = 2¥m while
for RR we have that p(m) = N+1— % However, in general,
the function ¢ does not have any analytical expression, it is
nonlinear and it varies from measure to measure.

A. IMPLEMENTATION
The approach described in the previous section is imple-
mented in two procedures:

« generating all the possible runs of length N and ranking
them according to a measure score, shown in the flow
chart in Figure 4. This step computes the ranked version
of the measure Mp = ¢(M) for each of all the possible
runs of length N.
for each topic of a run r determine its rank, shown in the
flow chart in Figure 5. This steps computes the ranked
version of the measure Mg = ¢(M) for each topic of a
run r.

Let us consider the first procedure, shown flow chart
in Figure 4; as an example, we assume run length N = 4,
binary relevance judgements, and DCG with log, as measure,
corresponding to Figure 3g. The first step is to generate all the
possible runs: since we are working with binary relevance
judgments there are 2V 16 possible runs, shown in the
bottom part of Figure 4, and indexed from ry to r15. Note that
the index of each run is just the decimal encoding of the binary
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FIGURE 5. Procedure 2: flow chart for determining the rank for each topic
of a run.

vector corresponding to the run; this will then be exploited
in the next procedure. In the second step, we compute the
measure M for each run; in our example, we compute DCG
and we actually obtain 12 distinct values of DCG. In the
third step, we sort” the runs by the value of the measure M.
Then, in the fourth step, we break ties and we assign a rank
to each run; in the example at the bottom of we used the
unique strategy (unq) described above. Note that this step
determines the ranked version of the measure Mp = (M)
for each of all the possible runs; in our example, we have
that: ¢(3.131) = (p(M(l, 1,1, 1)) = 12, ¢(2.631) =
<p(M(1, 1, 1,0)) = 11, ¢(2.500) = <p(M(1, 1,0, 1)) = 10,
¢(2.131) = go(M(l, 0,1, 1)) = (p(M(O, 1,1, l)) = 9 and so
on until ¢(0.500) = go(M(O, 0,0,1)) = 2, and ¢(0.000) =
<p(M(0, 0,0, 0)) =1.

Let us consider the second procedure, shown flow chart
in Figure 5; as an example, we assume a run consisting of
two topics r;, = (0,0,1,1) and r, = (1,0, 0, 1); we have
that M (r;;) = 1.131 and M(r;,) = 1.500. In the first step,
we pick a topic of the run, say #1. In the second step we look
up the rank of this topic with respect to all the possible runs,
i.e. the fourth step of the previous procedure. To simplify
this step, we exploit the fact that the decimal encoding of
the binary vector of the run corresponds to its index; in
our case 0011, = 3y, so r;, corresponds to r3 in all the
possible runs, whose rank is 5. In the third step, we substitute
the measure score, i.e. M(r;) = 1.131, with its rank, i.e.
Mg(ry,) = go(M (ry, )) = 5; in other terms we determine the
ranked version of the measure for that topic. These steps are
repeated for all the topics constituting a run; in our case, for

9In our implementation we opted for ascending order but descending order
would have worked the same.
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topic #, we obtain that r;, corresponds to rg, whose rank is 6,
and thus Mg(ry,) = ¢(M(r;,)) = 6.

B. LIMITATIONS: RUNS OF DIFFERENT LENGTH

When working with runs all with the same length, the pro-
posed approach maps a measure into a proper interval
scale, actually the same scale for all the runs, and this
allows us to compute aggregates across runs with the same
length.

If we work with runs of different length, the proposed
approach maps each length (run) into a proper interval scale
but it differs from length to length. For example, in the case of
DCG with log, there are 24 distinct values for N = 5, 768 for
N = 10,24576 for N = 15, and so on; all of them correspond
to aranked measure (interval scale) with a different number of
steps. As a consequence, even using our approach, we cannot
aggregate across runs with different length.

However, as already discussed, this is a problem easily
manageable in practice. Indeed, for small run lengths or low
cut-offs of typical interest, such as the top 10 documents, it is
reasonable to assume that the runs have all the same length,
since runs are usually able to retrieve enough documents.
In the more general case and for bigger run lengths, if a
run does not retrieve enough documents, it could be padded
with not relevant documents. Therefore, we can consider
our approach as generally applicable with respect to this
issue.

C. LIMITATIONS: DIFFERENT TOPICS

Let us now assume that we have fixed a run length which
is the same for all the runs and which allows us to compute
aggregates across runs. What happens if we need to compute
aggregates across topics?

1) MEASURES NOT DEPENDING ON THE RECALL BASE

In the case of measures not depending on the recall base, since
the length of the run is the same for all the runs across all the
topics, our approach maps a measure into the same interval
scale for all the runs and all the topics. Therefore, we can
safely compute aggregates also across topics.

2) MEASURES DEPENDING ON THE RECALL BASE

In the case of the measures depending on the recall base,
as already explained, due to the recall base changing from
topic to topic, there exists no single (interval) scale which can
be used across all the topics. As a consequence our approach
could not be directly applied. However, we could use it as a
surrogate that brings, at least, some more ‘‘intervalness’ to a
measure.

Indeed, on each single topic, our approach maps a mea-
sure depending on the recall base into a proper interval
scale, whose steps are equi-spaced. When we deal with two
(or more) topics, we would need to find an interval scale
where it is possible to match the steps from the (two) scales
of each topic into some “‘bigger” set of equi-spaced steps,
which can accommodate all of them. However, as shown in
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Example 11 and in Section IV-D, this common super-set of
steps does not exist, with the exception of the trivial cases
mentioned.

Therefore, as an approximation, we can pretend that the
scale for each topic is the overall common scale — and,
as said before, this is exactly what happens in the case of
measures not depending on the recall base — and use it across
topics, even if this will actually stretch the steps of each
topic.

Example 12 (Surrogating Recall to an Interval Scale):

Suppose we are dealing with runs of length N = 2, i.e.
ro =1[00], ry =[01], » = [10], r3 = [1 1]. Ifthe recall base
for the first topic q1 is RB1 = 2, these runs are mapped to the
Recall values {0, %, %, 1}, if the recall base for the second
topic qp is RBy = 3, these runs are mapped to the Recall
values {0, %, %, %}.

Our transformation approach maps the runs of both topics
to {1,2,2, 3}, which is a proper interval scale on each topic
separately. However, if we look at the two topics together
and we use this mapped scale, we are slightly stretching the
steps of the original scales. For example, if we compute the
difference between r> and r3, on this mapped scale it is same,
i.e. 1, for both q1 and g, while on the original scales it is %
for q1 and % for qa. This means that our transformation also
effects ordinal scales when a recall base is involved.

D. LIMITATIONS: IMPLEMENTATION
A practical limitation of the proposed methodology is the
need to generate all the possible runs to determine their rank,
as shown in the flow chart in Figure 4.

To give an idea of the computational resources required,
runs of length N = 30 mean an occupation of 230 % 30 % 8 =
240 GByte of memory, just for holding all the possible runs.
A length N = 40 would mean 320 TByte of memory, which
is not feasible in practice.

The code is implemented in Matlab and thus we considered
8 bytes for representing a digit, since this is the size of a
double. Even if we considered a more compact representa-
tion, in some other language like C, using just 1 bit per digit,
it would have meant 40 TByte of memory for runs of length
N =40.

The case of multi-graded relevance is left for future work,
due to its exponential explosion in the number of possible
cases. For example, switching from a binary to a 4-valued
scale, for the run length N = 30 the number of possible runs
would grow from 230 ~ 10° to 430 = 260 ~ 1018,

VIl. EXPERIMENTAL SETUP

We regard the following evaluation measures: Precision
(P) and Recall (R) [111], AP [17], RBP [78], DCG and
nDCG [60] and RR [102]. We calculated RBP by setting
p € {0.3,0.5,0.8}, indicated respectively as RBP_p03,
RBP_p05, and RBP_p08; for DCG and nDCG we use a loga
and a log( discounting, indicated respectively as DCG_b02,
nDCG_b02, DCG_b10, and nDCG_b10.
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We considered the following datasets:

e Adhoc Track TO08 [120]: 528,155 documents of the
TIPSTER disks 4-5 corpus minus congressional record;
T08 provides 50 topics, each with binary relevance
judgments and a pool depth of 100; 129 system runs
retrieving 1,000 documents for each topic were submit-
ted to TO8.

e Common Core Track T26 [3]: 1,855,658 documents of
the New York Times corpus; T26 provides 50 topics,
each with multi-graded relevance judgments (not rel-
evant, relevant, highly relevant); relevance judgements
were done mixing depth-10 pools with multi-armed ban-
dit approaches [69], [118]; 75 system runs retrieving
10,000 documents for each topic were submitted to T2 6.

o Common Core Track T27 [4]: 595,037 documents
of the Washington Post corpus; 50 topics, each with
multi-graded relevance judgments (not relevant, rel-
evant, highly relevant); relevance judgements were
done adding stratified sampling [27] and move-to-
front [31] approaches to the T2 6 procedure; 72 system
runs retrieving 10,000 documents for each topic were
submitted to T27.

In the case of the T26 and T27 tracks we mapped their
multi-graded relevance judgement to binary ones using a
lenient strategy, i.e. whatever above not relevant is considered
as relevant.

For each track we experimented with the run lengths
N € {5, 10,20, 30}, i.e. we cut runs at the top-N retrieved
documents. In terms of our transformation methodology,
this means considering a space of possible runs containing,
roughly, {32, 103, 10°, 109} runs, respectively. We indicated
the run length in the identifier of the track, e.g. TO8_10
means TO08 runs cut down at length 10.

In significance tests, we used a confidence level « = 0.05.

To ease the reproducibility of the experiments, all the
source code needed to run them is available in the
following repository: https://bitbucket.org/frrncl/ieeea2021-
fff/src/master/.

VIIl. EXPERIMENTS
In this section we compare what happens when using a proper
interval scale to what happens when not using an interval
scale; in the case of IR measures, when they are not interval
scales, they are, at least, ordinal scales. We perform this com-
parison from three different points of view, detailed below
and discussed in dedicated Sections. In essence, we use our
ranked version of the measure Mg as interval scale, since it
guarantees by construction to be an interval scale, and we
contrast it to the IR evaluation measure M it is derived from.
When we the original IR evaluation measure is already an
interval scale, we observe the same behaviour for both M
and Mpg; when the original IR evaluation measure is not an
interval scale, we observe different behaviours.

More in detail, in Section VIII-A we validate our approach
and answer the research question ‘“How far is a measure from
being an interval scale?”’. Then, in the next two sections we
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investigate the effects of using or not a proper interval scale
in IR experiments. In particular, in Section VIII-B we study
how this affects the correlation among evaluation measures,
i.e. the main tool we use to determine how close are two
measures. In Section VIII-C we analyse how this impacts on
the significance tests, both parametric and non-parametric,
i.e. the main tool we use to determine when IR systems are
significantly different or not.

The overall objective of the experimentation is to provide
a first quantitative assessment of the impact of departing
(or not) from scale assumptions. As already anticipated, these
experiments motivate the need for and call for a more careful
consideration, in the IR field, of the scale assumptions and the
limitations they may pose on our experimental findings. The
goal of this section is to show neither that a specific evaluation
measure is broken nor that previous findings in the literature
are potentially wrong.

The following sections report, separately, the case of mea-
sures not depending on the recall base — namely, RBP, DCG,
RR, and P — and measures depending on the recall base —
namely, AP, nDCG, and R. Indeed, as previously explained,
with a fixed run length, in the former case it is possible to
find an overall interval scale, which is the same across all
the topics, and apply our transformation approach in an exact
way; in the latter case, an overall interval scale common to
all the topics does not exist and our transformation is just the
best surrogate that can be figured out.

A. CORRELATION BETWEEN MEASURES AND THEIR
RANKED VERSION. HOW FAR IS A MEASURE FROM BEING
AN INTERVAL SCALE?

In this section we study the relationship between each mea-
sure and its ranked version, i.e. its mapping towards an inter-
val scale, as explained in Section VI. This analysis allows
us: 1) to validate our approach, verifying that it produces
the expected results; 2) to understand how much a measure
changes when it is transformed, seeking an explanation for
this change; 3) to understand what happens when we apply
our transformation approach in a ““surrogate’” way in the case
of measures depending on the recall base.

We compute both the overall and the topic-by-topic
Kendall’s 7 correlation between each measure M and its
ranked version.!? Ferro [43] has shown that, even if the
absolute correlation values are different, removing or not the
lower quartile runs produces the same ranking of measures
in terms of correlation; similarly, he has shown that both
and AP correlation 7,4, [125] produce the same ranking of
measures in terms of correlation. Therefore, we focus only
on Kendall’s T without removing lower quartile systems.

As explained in Section IV-C, the fopic-by-topic correla-
tion is expected to be always 1.0, since the ranked version
of a measure preserves the same order of runs on each topic
by construction. As a sanity check, we verified that the

1070 avoid errors due to floating point computations, we rounded averages
to 8 decimal digits.
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topic-by-topic correlation is indeed 1.0 in all the cases and
we do not report it in the following tables for space reasons.
On the contrary, the overall correlation, i.e. the traditional
one, can be different from 1.0 for the reasons discussed above:
the preliminary average operation would be not allowed in
the case of an original measure which is not an interval scale
while it is allowed in the case of the corresponding ranked
measure; also, different recall bases across topics can lead to
different scales which should not be averaged together.

In general, we can consider the overall Kendall’s T corre-
lation between a measure and its ranked version as a proxy
providing us with an estimation of how far a measure is
from both being a proper interval scale and, in the case of
measures depending on the recall base, also being safely
averaged across topics. Note that this approach is in line and
extends what was proposed by Ferrante et al. [42] when they
suggested to use the overall Kendall’s t correlation between
a measure and the Set-Based Total Order (SBTO) and Rank-
Based Total Order (RBTO) interval scales as an estimation of
how much a measure is an interval scale.

Table 2 summarizes the outcomes of the overall corre-
lation analysis between measures and their ranked version,
e.g. we computed Kendall’s T correlation between DCG and
DCGeg, the interval-scaled version of DCG according to the
approach we described in Section VI.

From a very high level glance at Table 2 we can see that
Kendall’s  correlation changes due to the transformation but
not in a too excessive way which suggests that we are not
running into any pathological situation.

1) MEASURES NOT DEPENDING ON THE RECALL BASE

As previously discussed, Precision is already an interval scale
— a different scale for each run length but, fixed a length,
the same scale for all the topics, allowing to safely average
across them. In this case, our transformation is just a mapping
between interval scales, as the transformation between Cel-
sius and Fahrenheit is. As the overall Kendall’s T correlation
is always 1.0, we are experimentally confirming the correct-
ness of our transformation approach and that everything is
working as expected.

The other case in which we see this happening is RBP_p05,
which we already know to be an interval scale, but different
from the one of Precision.

On the other extreme, there is RR, which is the farthest
away from being an interval scale, among the measures not
depending on the recall base. The overall Kendall’s 7 correla-
tion is in the range 0.67 — 0.93 which is systematically lower
than the correlation of all the other measures in this group —
namely P, RBP, and DCG. This suggests that transforming
RR into an interval scale requires a more marked correction
or, in other terms, that it experiences a drop in “intervalness”
in the range 7% — 33%. We can also observe another stable
pattern in the case of RR: the bigger the length of the run,
the lower the correlation between RR and its ranked ver-
sion. This suggests that RR departs more and more from the
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TABLE 2. Kendall’s = overall correlation analysis between each measure and its respective ranked version, using the ung tie breaking approach.

Track P RBP_p05 RR RBP_p03 RBP_p08 | DCG_b02 | DCG_b10 R AP nDCG_b02 | nDCG_b10
T08_05 1.0000 1.0000 | 0.9211 0.9522 0.9605 0.9759 1.0000 0.8145 | 0.8219 0.9759 1.0000
T08_10 1.0000 1.0000 | 0.8466 0.9500 0.9527 0.9553 1.0000 0.8030 | 0.8243 0.9541 0.9965
T08_20 1.0000 1.0000 | 0.7677 0.9498 0.9498 0.9334 0.9537 0.7943 | 0.8197 0.9285 0.9452
T08_30 1.0000 1.0000 | 0.7329 0.9498 0.9508 0.9128 0.9261 0.7948 | 0.8377 0.9072 0.9147
T26_05 1.0000 1.0000 | 0.9219 0.9706 0.9661 0.9717 1.0000 0.6974 | 0.6903 0.9717 1.0000
T26_10 1.0000 1.0000 | 0.8232 0.9704 0.9610 0.9567 1.0000 0.8207 | 0.7633 0.9582 0.9982
T26_20 1.0000 1.0000 | 0.7500 0.9704 0.9560 0.9517 0.9690 0.8848 | 0.8600 0.9560 0.9661
T26_30 1.0000 1.0000 | 0.6725 0.9704 0.9582 0.9264 0.9127 0.8901 0.8701 0.9264 0.9141
T27_05 1.0000 1.0000 | 0.9350 0.9597 0.9536 0.9730 1.0000 0.7540 | 0.8312 0.9730 1.0000
T27_10 1.0000 1.0000 | 0.8830 0.9601 0.9476 0.9436 1.0000 0.7860 | 0.8442 0.9491 0.9912
T27_20 1.0000 1.0000 | 0.8227 0.9601 0.9288 0.9272 0.9358 0.7929 | 0.8309 0.9155 0.9068
T27_30 1.0000 1.0000 | 0.7958 0.9601 0.9303 0.9295 0.9397 0.8191 | 0.8380 0.9068 0.9139
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FIGURE 6. All the possible values of P, RBP with p = 0.5, and RR for runs of length {5, 10, 20, 30}.

interval scale assumption as the run length increases; we will
now see why this is happening.

Figure 6 plots the values of P, RBP with p = 0.5, and RR
for all the possible runs of a given length. On the X axis there
are the runs, increasingly ordered by the value of the measure;
this is the order of runs considered by the ranked version
of the measure which then just equi-spaces the values and
removes ties. The Y axis reports the value of the measure for
each run. The labels on the X axis report the fraction of runs
up to that point; so, for example, in the case of Pand N = 5,
we can understand that 20% of the runs receive the value
P = 0.2, 30% the value P = 0.4, 30% the value P = 0.6,
and 20% the value P = 0.8; 1 run gets the value 0.0 and 1 run
the value 1.0.
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RBP with p = 0.5 yields distinct equi-spaced values for
each of the possible runs or, in other terms, it produces equi-
spaced clusters of values containing one single value in each
cluster. In the case of P, we can see how the clusters are still
equi-spaced but they contain tied values, visible as horizontal
segments. Finally, in the case of RR, not only the clusters are
not equi-spaced — and this breaks the interval scale assump-
tion — but they also increase more and more, and only in one
region of the range, as the run length increases, making RR
less and less interval. Indeed, the number of clusters is not
equi-spaced but always constant to 5 in the range [0.2, 1.0],
independently from the run length; on the other hand, in the
range [0, 0.2) it increases from 1 to 6, 16, and 26 as the run
length increases.
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FIGURE 7. All the possible values of RBP with p € {0.3, 0.5, 0.8} for runs of length {5, 10, 20, 30}.

Moreover, Figure 6 visually shows us why different run
lengths correspond to different scales — interval or not
depending on whether clusters are equi-spaced or not. In all
the cases, the number of clusters increases as the length of
the run increases and this makes the scales to be different.
Note that this behaviour is not like getting a more and more
accurate scale, which would be a desirable property, but it is
rather like saying that the height scale would become denser
and denser as you measure taller and taller people. Therefore,
as already said, we should avoid to mix values of measures
coming from runs with different lengths, e.g. by averaging.

When it comes to RBP, we know from Ferrante et al. [40],
[41] that: RBP_pO05 is an interval scale; RBP_p03 is an ordi-
nal scale keeping the same ordering as RBP_p05 but being
no more an interval scale; and, RBP_pO8 uses a different
ordering from RBP_p05 and it is not an interval scale. This
is also reflected in the overall correlation values. As already
noted, and expected, the overall correlation for RBP_p05 is
always 1.0 while it drops in the range 0.95 — 0.97 for
RBP_p03. RBP_p03 and RBP_p05 order runs in the same
way, which also means that their ranked version is the same.
Therefore, the 3% — 5% difference between RBP_p03 and
RBP_p05 depends only on the lack of equi-spacing of
RBP_p03 and the problems it causes when averaging. This
also means that this drop in “intervalness” of RBP_p03 is
not the effect of a user model somehow different from the
one of RBP_p05, possibly resulting in a different order of the
systems, which is the typical explanation provided in these
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cases instead. In the case of RBP_p08 we observe a similar
behaviour and the correlation drops in the range 0.93 — 0.96
with an “intervalness” loss in the range 4% — 7%.

When it comes to increasing run lengths, we can observe
that the correlation values of RBP oscillate a bit, they tend
to get more stable as the run length increases and this hap-
pens more for RBP_p08 than for RBP_p03. While this still
might be partially due to the measure being more or less
interval scale depending on the run length, we think that in
the case of RBP this is mostly motivated by another reason.
Indeed, as previously discussed, RBP does not use the full
range [0, 1] because of the 1% overestimation which impacts
more as p increases and the length of the run is smaller.
Therefore, we think that the increase in range of RBP is the
motivation of the observed small changes in the correlation
values. We can clearly see this behaviour in Figure 7 for
RBP_p08 whose values fall in the full range [0, 1] only for
N = 20 and N = 30, while this effect is mostly negligible
for RBP_p03 and RBP_p05. As a consequence, correlation
values tend to get more stable for N = 20 and N = 30 in the
case of RBP_p08 while they are quite stable for RBP_p03 and
RBP_p05, independently from the run length.

Finally, when it comes to DCG, we can observe from
Table 2 that its overall correlation is above 0.9 with an
“intervalness” loss in the range 2% — 9%, suggesting it is
moderately departing from its ranked version. We can also
observe for DCG_b10 that the correlation for run lengths
N =5and N = 10is always 1.0, which may look surprising;
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FIGURE 8. All the possible values of DCG with log base b = 2 and b = 10 for runs of length {5, 10, 20, 30}.

this is actually an artefact of the log base 10 which causes the
discount to be applied from the 11th rank onwards. Therefore,
for run lengths up to the log base, DCG is basically counting
the number of relevant retrieved documents, as it is clear
from Figure 8, and this produces the same interval scale
as P. However, we should be aware of this somehow unusual
behaviour of DCG_b10 because it changes from being an
interval scale for runs up to length 10 to not being it anymore
afterwards.

Moreover, as a general trend, DCG tends to be less and
less an interval scale as the run length increases. If we look
at the possible values of DCG in Figure 8, this may sound
surprising since DCG visually behaves in a very similar way
to RBP_p08, at least after the run length is big enough to com-
pensate for possible effects of the log base itself. However,
while RBP_08 does not have tied values, DCG exhibits an
increasing number of tied values, clustered unevenly across
the range — this is not visible from the figure, especially
for DCB_b02, due to the small size of the tied clusters but
we have verified it on the numerical data underlying the
plot. Therefore, the increasing number of uneven tied cluster
explains, as in the case of RR, why DCG is less and less an
interval scale.

2) MEASURES DEPENDING ON THE RECALL BASE

Let us go back to Table 2 and consider the case of R. We know
that Precision and Recall, on each topic separately, are already
interval scales and just a transformation of the same interval
scale. Therefore, when we map them to their ranked version,
it is actually the same interval scale for both of them and it is
yet another transformation of their common original interval
scale. However, while this means an overall correlation 1.0 in
the case of Precision, it drops in the range 0.7 —0.9 in the case
of Recall. This 10% — 30% loss in ““intervalness’ is entirely
due to the effect of the recall base and let us understand how
careful we should be before averaging across topics.

136206

AP follows a somehow similar pattern with overall corre-
lation values in the range 0.69 — 0.86 with an “intervalness”
loss in the range 14% — 31%.

On the other hand, nDCG exhibits overall correlation val-
ues very close to those of DCG, all above 0.9 with an “inter-
valness™ loss in the range 2% — 10%. We observe another
somehow surprising behaviour of nDCG_b10: for runs of
length N = 5 the correlation is always 1.0, indicating that
it is an interval scale and, most of all, that there is no effect
of the recall base. The fact is that on all the tracks under
examination, all the topics have at least 5 relevant documents,
so the recall base is never below 5; when you trim runs
to length N = 5, the DCG_b10 of the ideal run, i.e. the
factor used to normalize DCG in nDCG, is constant to 5 for
all the topics and so there is no recall base effect for this
reason. On the other hand, there is 1 topic with less than 10
relevant documents on both T08 and T26 and 4 topics on
T27. As a consequence, nDCG_b10 drops slightly below 1.0
on TO8_ 10 and T26_10 and a bit more on T27_10. This
further stresses the need to be careful, or at least aware of,
the fact that DCG/nDCG may change behaviour and nature
for document cut-offs below the log base. Moreover, this
gives us an idea of how much even very small changes in the
recall base can have an impact and how careful we should be
when aggregating across topics.

Finally, both DCG and nDCG are mapped to the same
ranked measure, exactly as P and R are mapped to the same
ranked measure. However the loss of ““intervalness” of R is
much bigger than the one of nDCG. We hypothesise that this
is due to how the recall base is accounted for in the measure:
in the case of R it is a straight division by the recall base itself
while in the case of nDCG it is a division by the DCG of the
ideal run, which is also one of the possible runs considered
in the mapping. The latter is a much smoother normalisation
than just an integer number representing the total number
of relevant documents. The behaviour of AP, very close to
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TABLE 3. Kendall's = overall correlation analysis between each measure and its respective ranked version, using the mid-rank tie breaking approach.

Track P RBP_p05 RR RBP_p03 | RBP_p08 | DCG_b02 | DCG_b10 R AP nDCG_b02 | nDCG_b10
T08_05 0.9680 1.0000 | 0.9694 0.9522 0.9605 0.9622 0.9680 0.7973 | 0.8208 0.9622 0.9680
T08_10 0.9392 1.0000 | 0.9713 0.9500 0.9527 0.9462 0.9392 0.7725 | 0.8213 0.9450 0.9362
T08_20 0.9043 1.0000 | 0.9736 0.9498 0.9498 0.9276 0.9045 0.7809 | 0.8161 0.9227 0.8970
T08_30 0.8978 1.0000 | 0.9743 0.9498 0.9508 0.9094 0.8931 0.7625 | 0.8401 0.9038 0.8851
T26_05 0.9670 1.0000 | 0.9794 0.9706 0.9661 0.9614 0.9670 0.6816 | 0.6907 0.9614 0.9670
T26_10 0.9624 1.0000 | 0.9782 0.9704 0.9610 0.9502 0.9624 0.8153 | 0.7540 0.9502 0.9599
T26_20 0.9245 1.0000 | 0.9854 0.9704 0.9560 0.9488 0.9242 0.8615 | 0.8557 0.9517 0.9257
T26_30 0.8785 1.0000 | 0.9832 0.9704 0.9582 0.9228 0.8831 0.8319 | 0.8665 0.9228 0.8846
T27_05 0.9535 1.0000 | 0.9782 0.9597 0.9536 0.9607 0.9535 0.7501 | 0.8294 0.9607 0.9535
T27_10 0.9432 1.0000 | 0.9827 0.9601 0.9476 0.9272 0.9432 0.7628 | 0.8521 0.9327 0.9354
T27_20 0.9086 1.0000 | 0.9843 0.9601 0.9288 0.9225 0.9084 0.7352 | 0.8356 0.9076 0.8873
T27_30 0.9103 1.0000 | 0.9835 0.9601 0.9303 0.9264 0.9100 0.7650 | 0.8395 0.9037 0.8873

the one of R, supports this intuition, since also AP adopts a
straight division by the recall base itself.

3) IMPACT OF THE TIE BREAKING STRATEGY

In this section, we perform a further validation of our map-
ping approach. As explained in Section VI, evaluation mea-
sures often produce tied values and we remove these tied
values by assigning them their unique rank position, since this
ensures that values are kept equi-spaced. However, as pointed
out by Gibbons and Chakraborti [53], there are many other
common ways of breaking ties, one of which if the mid-
rank strategy, i.e. keeping the average of the ranks of the tied
values.

Table 3 shows what happens to our transformation
approach when using the mid-rank tie breaking instead of
the ung one used in Table 2. Let us consider Precision
whose overall correlation values drops from 1.0 to the range
0.90 — 0.97. Since Precision is already an interval scale, this
drop is entirely due to the fact that the mid-rank tie breaking
strategy produces a scale whose values are not equi-spaced
anymore and thus a scale which is not interval anymore.
Only RBP_p05 keeps the overall correlation 1.0 because it
is already an interval scale but it does not have any tied
value, so it is insensitive to the tie breaking strategy. As a
general trend, we can see that the overall correlation values
in Table 3 are lower than those in Table 2 due to the loss of
“intervalness’ caused by the tie breaking strategy.

Therefore, we validated that the appropriate way of imple-
menting our transformation approach is by using the ung
tie breaking strategy. Moreover, this further stresses how
much the lack of equi-spaced values, lack due to any reason,
impacts on our measurement process.

B. CORRELATION AMONG MEASURES AND AMONG
THEIR RANKED VERSIONS. UNVEILING THE “TRUE”
CORRELATION AMONG EVALUATION MEASURES

Table 4 summarizes the outcomes of the correlation analysis
among measures and among their ranked versions, i.e. on the
one side we compute Kendall’s 7 overall correlation among
all pairs of measures, on the other side we compute Kendall’s
T overall correlation among the same pairs of ranked
measures. In this way, we can study whether and how the esti-
mated relationship among measures changes when passing to
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their ranked version or, in other terms, to what extent being
an interval scale or not biases our estimations. In particular,
the column A% reports the percent increase/decrease of the
correlation between the ranked measures (labelled RnkMsr)
with respect to the correlation between the original measures
(labelled Msr), i.e. how much the correlation between two
measures is underestimated/overestimated due to the fact that
a measure is not an interval scale. Table 4 reports results for
the TO8_30, T26_30, and T27_30 tracks; results for the
other tracks are similar but not shown here for space reasons.

We can observe from Table 4, as very coarse and general
trends, that correlation is overestimated (A% column nega-
tive) in the range [—33.30%, —0.16%], i.e. two evaluation
measures are less close to each other than what we would
be induced to think; conversely, correlation is underestimated
(A% column positive) in the range [0.4%, 25.82%], i.e. two
evaluation measures are closer to each other than what we
would be induced to think. This observation opens up a rele-
vant question for IR experiments: are IR measures really that
different? Do we need all of them? Are we really scoring runs
according to different user viewpoints or are these differences
just an artefact of violating the scale assumptions? How much
of what reported in the literature is due just to this scale
violation bias?

In the following sections we discuss a few examples from
Table 4 of how the correlation may change.

1) MEASURES NOT DEPENDING ON THE RECALL BASE
Let us start from the correlation between Precision and RBP
with p = 0.5. We already know that they are interval scales
and, therefore, their ranked version is just another mapping
of their respective interval scales — and this is why in Table 2
their overall correlation is 1.0. We can observe from Table 4
that on TO8_30 the correlation between RBP_p05 and P
is 0.7858 and, as expected, the correlation between their
ranked versions is the same, since the interval scale behind the
original measures and their ranked version is the same. The
same happens for the other tracks,i.e. T26_30 and T27_30.
Note that ‘“‘the correlation between Precision and RBP with
p=0.50nT08_30is0.7858” is an example of a meaningful
statement in IR, since it is invariant to a permissible transfor-
mation of the interval scales of these two measures and it does
not change its truth value.
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TABLE 4. Kendall's 7 overall correlation analysis between each pair of measures (labelled 11sr) and between each pair of ranked measures
(labelled rnkVsr) on tracks T08_30, T26_30, and T27_30, using the unq tie breaking approach. The A% column reports the percent

increase/decrease of the RnkVsr correlation with respect to the Msr one.

Measure T08_30 T26_30 T27_30
Msr | RnkMsr A% Msr | RnkMsr A% Msr | RnkMsr A%
P vs RBP_p05 0.7858 0.7858 +0.00% || 0.8604 0.8604 +0.00% || 0.7963 0.7963 +0.00%
Pvs RR 0.7151 0.6322 | -11.60% || 0.8126 0.6049 | -25.56% || 0.7615 0.6764 | -11.18%
P vs RBP_p03 0.7494 0.7858 +4.86% || 0.8503 0.8604 +1.19% || 0.7798 0.7963 +2.11%
P vs RBP_p08 0.8641 0.8447 -2.24% || 0.9009 0.8944 -0.72% || 0.8748 0.8465 -3.23%
P vs DCG_b02 0.9352 0.8962 -4.17% || 0.9623 0.9312 -3.23% || 0.9478 0.9203 -2.90%
P vs DCG_b10 0.9866 0.9243 -6.32% || 0.9861 0.9254 -6.15% || 0.9871 0.9360 -5.17%
RBP_p05 vs RBP_p03 0.9498 1.0000 +5.29% || 0.9704 1.0000 +3.05% || 0.9601 1.0000 +4.16%
RBP_p05 vs RBP_p08 0.9045 0.9082 +0.40% || 0.9250 0.9351 +1.09% || 0.9068 0.8998 -0.78%
RBP_p05 vs RR 0.8840 0.6733 | -23.84% || 0.9046 0.6228 | -31.15% || 0.9230 0.7590 | -17.77%
RBP_p05 vs DCG_b02 0.8461 0.8166 -3.49% || 0.8896 0.8593 -3.41% || 0.8489 0.8082 -4.79%
RBP_p05 vs DCG_b10 0.7931 0.7686 -3.09% || 0.8687 0.7958 -8.39% || 0.8082 0.7886 -2.42%
RBP_p03 vs RBP_p08 0.8606 0.9082 +5.53% || 0.9069 0.9351 +3.10% || 0.8701 0.8998 +3.42%
RBP_p03 vs RR 0.9144 0.6733 | -26.37% || 0.9154 0.6228 | -31.97% || 0.9394 0.7590 | -19.21%
RBP_p03 vs DCG_b02 0.8054 0.8166 +1.39% || 0.8773 0.8593 -2.06% || 0.8215 0.8082 -1.62%
RBP_p03 vs DCG_b10 0.7547 0.7686 +1.84% || 0.8564 0.7958 -7.08% || 0.7918 0.7886 -0.40%
RBP_p08 vs RR 0.8133 0.6430 | -20.94% || 0.8656 0.6307 | -27.13% || 0.8547 0.7213 | -15.61%
RBP_p08 vs DCG_b02 0.9266 0.8822 -4.79% || 0.9372 0.8939 -4.62% || 0.9233 0.8646 -6.36%
RBP_p08 vs DCG_b10 0.8745 0.8333 -4.71% || 0.9149 0.8304 -9.23% || 0.8857 0.8434 -4.77%
RR vs DCG_b02 0.7668 0.5971 | -22.13% || 0.8375 0.5902 | -29.52% || 0.7998 0.6545 | -18.17%
RR vs DCG_b10 0.7214 0.5896 | -18.28% || 0.8209 0.5475 | -33.30% || 0.7700 0.6514 | -15.41%
DCG_b02 vs DCG_b10 0.9435 0.9273 -1.72% || 0.9747 0.9221 -5.40% || 0.9593 0.9632 +0.41%
RvsP 0.7948 1.0000 | +25.82% || 0.8901 1.0000 | +12.35% || 0.8191 1.0000 | +22.08%
R vs RBP_p05 0.6848 0.7858 | +14.76% || 0.8102 0.8604 +6.20% || 0.8098 0.7963 -1.67%
R vs RBP_p03 0.6648 0.7858 | +18.20% || 0.8052 0.8604 +6.86% || 0.8169 0.7963 -2.52%
R vs RBP_p08 0.7424 0.8447 | +13.78% || 0.8391 0.8944 +6.59% || 0.8082 0.8465 +4.74%
RvsRR 0.6611 0.6322 -4.37% || 0.7841 0.6049 | -22.86% || 0.7971 0.6764 | -15.14%
R vs DCG_b02 0.7756 0.8962 | +15.54% || 0.8730 0.9312 +6.67% || 0.8169 0.9203 | +12.67%
R vs DCG_b10 0.7957 0.9243 | +16.15% || 0.8853 0.9254 +4.54% || 0.8184 0.9360 | +14.37%
R vs AP 0.8859 0.8932 +0.83% || 0.8709 0.9319 +7.01% || 0.9078 0.9211 +1.46%
R vs nDCG_b02 0.7899 0.8962 | +13.45% || 0.8788 0.9312 +5.97% || 0.8427 0.9203 +9.21%
R vs nDCG_b10 0.8338 0.9243 | +10.85% || 0.8911 0.9254 +3.86% || 0.8490 0.9360 | +10.25%
AP vsP 0.8244 0.8932 +8.35% || 0.8583 0.9319 +8.58% || 0.8481 0.9211 +8.61%
AP vs RBP_p05 0.7524 0.7936 +5.48% || 0.8326 0.8413 +1.04% || 0.8614 0.7980 -71.36%
AP vs RBP_p03 0.7271 0.7936 +9.14% || 0.8160 0.8413 +3.09% || 0.8575 0.7980 -6.94%
AP vs RBP_p08 0.8081 0.8587 +6.27% || 0.8672 0.8730 +0.67% || 0.8685 0.8466 -2.52%
AP vs RR 0.7030 0.5869 | -16.52% || 0.7761 0.5707 | -26.47% || 0.8249 0.6545 | -20.66%
AP vs DCG_b02 0.8316 0.9673 | +16.32% || 0.8651 0.9632 | +11.34% || 0.8748 0.9757 | +11.54%
AP vs DCG_b10 0.8280 0.9411 | +13.67% || 0.8672 0.9444 +8.90% || 0.8575 0.9750 | +13.69%
AP vs nDCG_b02 0.8454 0.9673 | +14.42% || 0.8709 0.9632 | +10.60% || 0.8912 0.9757 +9.49%
AP vs nDCG_b10 0.8563 0.9411 +9.90% || 0.8687 0.9444 +8.72% || 0.8849 0.9750 | +10.17%
nDCG_b02 vs P 0.9330 0.8962 -3.95% || 0.9579 0.9312 -2.79% || 0.9305 0.9203 -1.10%
nDCG_b02 vs RBP_p05 0.8449 0.8166 -3.36% || 0.8925 0.8593 -3.72% || 0.8638 0.8082 -6.43%
nDCG_b02 vs RBP_p03 0.8051 0.8166 +1.42% || 0.8773 0.8593 -2.06% || 0.8395 0.8082 -3.73%
nDCG_b02 vs RBP_p08 0.9283 0.8822 -4.96% || 0.9401 0.8939 -4.91% || 0.9319 0.8646 -71.22%
nDCG_b02 vs RR 0.7684 0.5971 | -22.30% || 0.8389 0.5902 | -29.65% || 0.8179 0.6545 | -19.98%
nDCG_b02 vs DCG_b02 0.9804 1.0000 +2.00% || 0.9913 1.0000 +0.87% || 0.9695 1.0000 +3.15%
nDCG_b02 vs DCG_b10 0.9418 0.9273 -1.54% || 0.9719 0.9221 -5.12% || 0.9429 0.9632 +2.16%
nDCG_b02 vs nDCG_b10 || 0.9368 0.9273 -1.01% || 0.9690 0.9221 -4.84% || 0.9577 0.9632 +0.57%
nDCG_b10 vs P 0.9568 0.9243 -3.40% || 0.9832 0.9254 -5.88% || 0.9525 0.9360 -1.73%
nDCG_b10 vs RBP_p05 0.7841 0.7686 -1.98% || 0.8644 0.7958 -7.93% || 0.8278 0.7886 -4.73%
nDCG_b10 vs RBP_p03 0.7472 0.7686 +2.86% || 0.8535 0.7958 -6.76% || 0.8129 0.7886 -2.99%
nDCG_b10 vs RBP_p08 0.8684 0.8333 -4.05% || 0.9120 0.8304 -8.94% || 0.8928 0.8434 -5.52%
nDCG_b10 vs RR 0.7212 0.5896 | -18.25% || 0.8194 0.5475 | -33.18% || 0.7881 0.6514 | -17.35%
nDCG_b10 vs DCG_b02 0.9288 0.9273 -0.16% || 0.9719 0.9221 -5.12% || 0.9507 0.9632 +1.32%
nDCG_b10 vs DCG_b10 0.9610 1.0000 +4.06% || 0.9899 1.0000 +1.02% || 0.9616 1.0000 +3.99%
The correlation between RBP with p = 0.3 and this 5.3% underestimation of the similarity between them is

RBP with p =

0.5 is 0.9498 while the correlation

just due to RBP_p03 not being an interval scale. Note that

between their ranked versions is 1.0. As we discussed in
Section VIII-A, RBP_p03 and RBP_p05 order runs in the
same way and so their correlation should be 1.0. Therefore,
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this case is somehow particularly severe since it induces
us to attribute this 5.3% change to other reasons; typical
explanations for such changes you may find in studies about
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correlation among evaluation measures are: ‘“‘the user model
behind RBP_p03 slightly differs from the RBP_pO05 since it
represents a more impatient or less motivated user” or “due to
the smaller value of p, RBP_p03 is a slightly more top-heavy
measure’’; unfortunately, none of these explanations would
be correct since this 5.3% change is just due to fact that the
values of RBP_p03 are not equi-spaced, still ordering runs in
exactly the same way as RBP_p05.

For the sake of completeness, we can observe that 0.9498
is the same correlation value reported in Table 2 between
RBP_p03 and its ranked version. This is indeed correct since
both RBP_p03 and RBP_p05 are mapped to the same ranked
interval scale, which is just another mapping of the inter-
val scale of RBP_p05; therefore, the correlation between
RBP_p03 and its ranked version is the same as the correlation
between RBP_p03 and RBP_p05.

Another interesting case is RR: its correlation with respect
to P, RBP, and DCG is way over-estimated — in the range
12% —26% more on TO8_30,26% —33% moreon T26_ 30,
and 11%—19% more on T27_30, — mistakenly suggesting us
that this measure is closer to the others much more than what
it actually is. As it emerges from the previous discussion, RR
is one of the measures which departs more from being an
interval scale and which also has the highest number of tied
values. Therefore, the computation of averages on RR and on
its ranked version leads to sensibly different Rankings of Sys-
tems (RoS), as it is clearly shown in Table 2 when comparing
RR to its ranked version. As a consequence, the correlation
of the ranked version of RR with the other measures changes
more than in the other cases.

2) MEASURES DEPENDING ON THE RECALL BASE

Before proceeding, a word of caution has to be made remem-
bering that in this case our approach is just a surrogate,
which improves the “intervalness’ of a measure but stretches
the steps of the scale. Therefore, all the increases/decreases
in correlations should be taken as tendency to overestima-
tion/underestimation rather than exact quantification of it.

Let us consider Precision and Recall: we know that on each
topic they are the same interval scale and this is reflected
in Table 4 in the correlation between their ranked version
being 1.0. On the other hand, the correlation between the
original measures tends to be underestimated by 26% on
T08_30, 12% on T26_30, and 22% on T27_30. Apart
from suggesting that these two measures should be consid-
ered closer to each other than what they usually are, this wide
range of underestimation further stresses how much just the
recall base can affect the averaging across topics and how
careful we should be with such averages — not to say that we
should avoid them at all.

Coherently with what we discussed in Section VIII-A2,
we can observe that the correlation between DCG and nDCG
tends to be underestimated by just 1% — 4%, suggesting
that they are practically equivalent. Therefore, even if usually
nDCG is preferred over DCG because it is bounded and
normalised, it could be actually better to use DCG instead,
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since it avoids issues with the recall base and it can be easily
turned into a proper interval scale by using our transformation
approach.

Let us now discuss AP with respect to Precision and Recall:
the correlation with R is higher than the one with P and this is
usually attributed to AP embedding the recall base in the same
way as R does. However, when we turn to the ranked mea-
sures, we can see how the correlation between AP and R and
AP and P is the same (for all the reasons already explained)
and, especially, how this tends to be underestimated in the
range 1% — 9%, suggesting that AP is slightly closer to these
two measures than what is usually thought.

Finally, let us consider AP with respect to DCG: their
correlation tends to be underestimated in the range 9% — 16%
and the correlation between their ranked versions is actually
quite high, between 0.94 and 0.97. This suggests that, even if
these two measures have very different formulations and the
user model of DCG is considered much more realistic than the
somehow artificial one of AP, when they are turned into their
interval scale version, they are much closer than expected and
that part of their difference could have been just due to their
lack of ““intervalness™.

C. SIGNIFICANCE TESTING ANALYSIS. WHAT SYSTEMS
ARE ACTUALLY DIFFERENT, OR NOT?

In this section, we analyse how the results of statistical sig-
nificance tests change when using a measure or its ranked
version. In other terms, we study how much statistical sig-
nificance tests are impacted by using or not a proper interval
scale. Indeed, as discussed in Section VIII-C, there are signif-
icance tests which assume to work with just an ordinal scale
and others which assume to work with an interval scale and
they should be somehow affected by using a measure which
matches or not their assumptions. By impacted, we mean that
we can observe some change in which systems are considered
significantly different or not.

Moreover, as discussed in the previous sections, the recall
base makes working across topics problematic at best and sta-
tistical significance tests typically perform some aggregation
across topics. Therefore, they may be further affected by the
recall base.

As described in Section VIII-C, we consider the following
tests: Sign (ordinal scale assumption), Wilcoxon Rank Sum
(ordinal scale assumption), Wilcoxon Signed Rank (interval
scale assumption), Student’s t (interval scale assumption),
ANOVA (interval scale assumption), Kruskal-Wallis (ordinal
scale assumption), and Friedman (ordinal scale assumption).
For the ANOVA case we consider two alternatives:

o One-Way ANOVA for the System Effect: y;j = j.. +oj +

&jj checks for the effect of o, j = 1, ..., ¢ different
systems. It can be considered as an extension of the
Student’s t test to the comparison of multiple systems
at the same time and it is the parametric counterpart of
the Kruskal-Wallis Test.

o Two-Way ANOVA for the Topic and System Effects: A

more accurate model y; = .. + 7 + o + &; which
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accounts also for the effect of 7;, i = 1,...,p top-
ics, thus improving the estimation of the system effect
as well. Note that this is the ANOVA model adopted
by Tague- Sutcliffe and Blustein [106] and Banks
et al. [12] when analysing TREC data. It is the paramet-
ric counterpart of the Friedman Test.

In the case of the ANOVA, Kruskal-Wallis, and Friedman

tests we performed a Tukey Honestly Significant Difference

(HSD) adjustment for multiple comparisons [58], [108].

Table 5 (measures not depending on the recall base) and
Table 6 (measures depending on the recall base) show the
results of the analyses in the case of the TO8_30, T26_30,
and T27_30 tracks. Results for the other tracks are similar
but not shown here for space reasons. For each test, the tables
report:

« Sig: The total number of significantly different system

pair using the original measure;

o S2NS: Number of pairs changed from significantly to
not significantly different when passing from the origi-
nal measure to its ranked version; within parentheses we
report their ratio with respect to Sig;

o NS2S: Number of pairs changed from not significantly
to significantly different when passing from the original
measure to its ranked version; within parentheses we
report their ratio with respect to Sig;

A%: % the ratio of the total number of pairs
that changed significance when passing from the origi-
nal measure to its ranked version.

In Tables 5 and 6 rows corresponding to significance tests
based on an ordinal scale assumption are highlighted in grey.

In an ideal situation an oracle would have told us which
pairs of systems are significantly different and which are not
and this would have allowed us to exactly determine which
pairs of systems were correctly detected by each measure and
test. Unfortunately, this a priori knowledge is not available
in practice. On the other hand, we are comparing a mea-
sure to its ranked version and we know that changes in the
decision about what is significantly different and what is not
are a consequence of the steps of the scale being rearranged
from not equi-spaced and un-evenly distributed across the
their range to equi-spaced and evenly distributed across their
range. Therefore, we can interpret the S2NS count as a ten-
dency to false positives, since it accounts for significantly
different systems which are not significant when you remove
the effect of uneven steps in the scale; in other terms, S2NS
can be interpreted as a tendency of the ranked measure (the
interval scale) to reduce Type I errors. Symmetrically, we can
interpret the NS2S count as a tendency to false negatives,
since it accounts for not significantly different systems which
are significant when you remove the effect of uneven steps
in the scale; in other terms, NS2S can be interpreted as a
tendency of the ranked measure (the interval scale) to reduce
Type 11 errors. Note that we are not claiming that an interval
scale detects/removes false positives/negatives in any abso-
lute sense; we are rather saying that, starting from whatever
unknown level of false positive/negatives, we can interpret
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the S2NS and NS2S counts as a relative tendency to reduce
false positives/negatives.

As a side note not regarding measures being interval scales
or not, in Tables 5 and 6 we can observe that, as expected,
parametric significance tests are more powerful than non-
parametric ones, since they discover more significantly dif-
ferent pairs. Moreover, we can also observe as the Sign,
Wilcoxon Rank Sum, Wilcoxon Signed Rank, and Student’s
t tests find many more significantly different system pairs
than the ANOVA, Kruskal-Wallis, and Friedman tests. This
increase is not due to more powerful tests but rather to
the increase in Type I errors due to the lack of adjustment
in multiple comparisons for the former tests. This further
stresses the need for always adjusting for multiple compar-
isons, as also pointed out by Fuhr [49], Sakai [92].

We can observe from Tables 5 and 6, as very coarse and
general trends, that the less close an evaluation measure is to
be an interval scale, the stronger are the changes in statistical
significance tests based on an interval scale assumption while
those based on an ordinal scale assumption are not affected.
On the other hand, the presence of the recall base generally
affects both tests based on the ordinal scale assumption and
those based on the interval scale assumption, being the latter
more affected.

In particular, we have found that:

« for measures not depending on the recall base and sig-
nificance test assuming an interval scale, we have an
overall average increase in the S2NS count around 13%
and in the NS2 S around 5%. This suggests that the major
impact is on reducing Type I errors still improving Type
II errors and making the test more powerful;

« for measures depending on the recall base and signifi-
cance test assuming an ordinal scale, we have an overall
average increase in the S2NS count around 2% and in
the NS2S around 4%. This suggests that there is a small
reduction in Type I errors and some improvement in
Type II errors, making the test a bit more powerful;

« for measures depending on the recall base and signifi-
cance test assuming an interval scale, we have an overall
average increase in the S2NS count around 10% and
in the NS2S around 45%. This suggests that there is a
sizeable reduction in Type I errors and a quite substantial
improvement in Type II errors, making the test much
more powerful.

In general, these results indicate that adopting a proper inter-
val scale tends to reduce the Type I errors and, when the
situation get more complicated because of the effect of the
recall base across topics, it also brings substantially more
power to the test.

Overall, if we consider the grand mean across all the
tracks, measures, and significance test, we observe an overall
change A% around 25% =+ 11% in the decision about what is
significantly different and what is not. Even without wishing
to interpret it in term of Type I or Type Il errors, this figure lets
us understand the impact of using an interval scale or not,
as well as the effect of the recall base.
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TABLE 5. Measures not depending on the recall base: changes in significance test analyses between using a measure and its ranked version on tracks

T08_30, T26_30, and T27_30, using the unq tie breaking approach.

I T08_30 — 8256 system pairs T26_30 — 2775 system pairs T27_30 — 2556 system pairs
P | Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 5153 0 (0.00%) 0 (0.00%) 0.00% 1848 0 (0.00%) 0 (0.00%) 0.00% 1746 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test | 4276 0 (0.00%) 0 (0.00%) 0.00% || 1453 0 (0.00%) 0 (0.00%) 0.00% || 1473 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test [| 5644 0(0.00%) 0 (0.00%) 0.00% ][ 2017 0 (0.00%) 0 (0.00%) 0.00% 1857 0 (0.00%) 0(0.00%) 0.00%
Student’s t Test 3633 0(0.00%) 0(0.00%) | 0.00% || 2007 0 (0.00%) 0(0.00%) | 0.00% || 1830 0 (0.00%) 0(0.00%) | 0.00%
One-way ANOVA 1923 0(0.00%) 0 (0.00%) 0.00% 454 0 (0.00%) 0 (0.00%) 0.00% 724 0 (0.00%) 0(0.00%) 0.00%
Kruskal-Wallis Test 1740 0 (0.00%) 0 (0.00%) 0.00% 391 0 (0.00%) 0 (0.00%) 0.00% 692 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA ‘ 3362 0 (0.00%) 0 (0.00%) 0.00% 1155 0 (0.00%) 0 (0.00%) 0.00% 1214 0 (0.00%) 0 (0.00%) 0.00%
Friedman Test 2595 0 (0.00%) 0 (0.00%) 0.00% 883 0 (0.00%) 0 (0.00%) 0.00% 925 0 (0.00%) 0 (0.00%) 0.00%
RBP_p05 [ Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 4724 0 (0.00%) 0 (0.00%) 0.00% || 1414 0 (0.00%) 0 (0.00%) 0.00% || 1613 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test 4302 0 (0.00%) 0 (0.00%) 0.00% 1328 0 (0.00%) 0 (0.00%) 0.00% 1545 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test || 5108 0 (0.00%) 0 (0.00%) 0.00% 1683 0 (0.00%) 0 (0.00%) 0.00% 1679 0 (0.00%) 0 (0.00%) 0.00%
Student’s t Test 5091 0(0.00%) 0 (0.00%) 0.00% 1711 0 (0.00%) 0 (0.00%) 0.00% 1635 0 (0.00%) 0(0.00%) 0.00%
One-way ANOVA 1945 0 (0.00%) 0 (0.00%) 0.00% 377 0 (0.00%) 0 (0.00%) 0.00% 660 0 (0.00%) 0 (0.00%) 0.00%
Kruskal-Wallis Test | 1678 0 (0.00%) 0 (0.00%) 0.00% || 326 0 (0.00%) 0 (0.00%) 0.00% || 680 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA | 2861 0(0.00%) 0 (0.00%) 0.00% 733 0 (0.00%) 0 (0.00%) 0.00% 927 0(0.00%) 0 (0.00%) 0.00%
Friedman Test 2228 0 (0.00%) 0 (0.00%) 0.00% 588 0 (0.00%) 0 (0.00%) 0.00% 806 0 (0.00%) 0 (0.00%) 0.00%
RBP_p03 | Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 4724 0 (0.00%) 0 (0.00%) 0.00% 1414 0 (0.00%) 0 (0.00%) 0.00% 1613 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test 4302 0 (0.00%) 0 (0.00%) 0.00% 1328 0 (0.00%) 0 (0.00%) 0.00% 1545 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test [| 5027 29 (0.58%) 110 (2.19%) 2.77% 1638 10 (0.61%) 55 (3.36%) 3.97% 1651 3 (0.18%) 31 (1.88%) 2.06%
Student’s t Test 4801 70 (1.46%) 360 (7.50%) 8.96% 1551 19 (1.23%) | 179 (11.54%) | 12.77% 1486 7(0.47%) | 156 (10.50%) | 10.97%
One-way ANOVA 1730 18 (1.04%) | 233 (13.47%) 14.51% 317 3(0.95%) 63 (19.87%) | 20.82% 606 4 (0.66%) 58 (9.57%) 10.23%
Kruskal-Wallis Test 1678 0 (0.00%) 0 (0.00%) 0.00% 326 0 (0.00%) 0 (0.00%) 0.00% 630 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA [ 2432 8(0.33%) | 437 (17.97%) | 18.30% 573 2(0.35%) | 162 (28.27%) | 28.62% 807 0(0.00%) | 120 (14.87%) | 14.87%
Friedman Test 2228 0 (0.00%) 0 (0.00%) 0.00% 588 0(0.00%) 0 (0.00%) 0.00% 806 0(0.00%) 0 (0.00%) 0.00%
RBP_p08 | Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 5105 0 (0.00%) 0 (0.00%) 0.00% 1615 0 (0.00%) 0 (0.00%) 0.00% 1678 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test 4375 0 (0.00%) 0 (0.00%) 0.00% 1378 0(0.00%) 0 (0.00%) 0.00% 1487 0(0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test || 5508 165 (3.00%) 114 (2.07%) 5.07% 1879 70 (3.73%) 30 (1.60%) 5.32% 1846 110 (5.96%) 3 (0.16%) 6.12%
Student’s t Test 5425 221 (4.07%) 123 (2.27%) 6.34% 1924 144 (7.48%) 60 (3.12%) 10.60% 1853 | 236 (12.74%) 14 (0.76%) 13.49%
One-way ANOVA 2183 200 (9.16%) 44 (2.02%) | 11.18% 469 59 (12.58%) 15 (3.20%) | 15.78% 712 98 (13.76%) 1(0.14%) | 13.90%
Kruskal-Wallis Test 1781 0(0.00%) 0 (0.00%) 0.00% 384 0 (0.00%) 0 (0.00%) 0.00% 691 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA | 3474 257 (7.40%) 20 (0.58%) 7.97% 950 | 104 (10.95%) 21 (2.21%) | 13.16% 1105 | 187 (16.92%) 6(0.54%) | 17.47%
Friedman Test 2589 0 (0.00%) 0 (0.00%) 0.00% 741 0 (0.00%) 0 (0.00%) 0.00% 851 0 (0.00%) 0 (0.00%) 0.00%
DCG_b02 [ Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 5227 0 (0.00%) 0 (0.00%) 0.00% 1781 0 (0.00%) 0 (0.00%) 0.00% 1738 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test 4425 0 (0.00%) 0 (0.00%) 0.00% 1457 0 (0.00%) 0 (0.00%) 0.00% 1499 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test 5743 260 (4.53%) 147 (2.56%) 7.09% 2020 127 (6.29%) 40 (1.98%) 8.27% 1887 91 (4.82%) 21 (1.11%) 5.94%
Student’s t Test 5664 408 (7.20%) 161 (2.84%) | 10.05% || 2026 176 (8.69%) 47 (2.32%) | 11.01% 1881 155 (8.24%) 15 (0.80%) 9.04%
One-way ANOVA 2125 | 633(29.79%) 59 (2.78%) | 32.56% 495 | 113 (22.83%) 3(0.61%) | 23.43% 734 | 153(20.84%) 2(0.27%) | 21.12%
Kruskal-Wallis Test 1812 0(0.00%) 0 (0.00%) 0.00% 400 0(0.00%) 0 (0.00%) 0.00% 695 0(0.00%) 0 (0.00%) 0.00%
Two-way ANOVA ] 3609 | 601 (16.65%) 25 (0.69%) | 17.35% 1129 | 179 (15.85%) 36 (3.19%) | 19.04% 1201 | 328 (27.31%) 4(0.33%) | 27.64%
Friedman Test 2706 0 (0.00%) 0 (0.00%) 0.00% || 876 0 (0.00%) 0 (0.00%) 0.00% || 912 0 (0.00%) 0 (0.00%) 0.00%
DCG_b10 | Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 5095 0 (0.00%) 0 (0.00%) 0.00% 1813 0 (0.00%) 0 (0.00%) 0.00% 1755 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test | 4307 0 (0.00%) 0 (0.00%) 0.00% || 1458 0 (0.00%) 0 (0.00%) 0.00% || 1485 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test [| 5663 260 (4.59%) 127 (2.24%) 6.83% || 2019 105 (5.20%) 32 (1.58%) 6.79% 1861 60 (3.22%) 35 (1.88%) 5.10%
Student’s t Test 5636 370 (6.56%) 132 (2.34%) 8.91% || 2021 169 (8.36%) 50 (2.47%) | 10.84% 1843 114 (6.19%) 36 (1.95%) 8.14%
One-way ANOVA 1958 | 747 (38.15%) 37 (1.89%) | 40.04% 468 86 (18.38%) 12 (2.56%) | 20.94% 727 | 187 (25.12%) 0(0.00%) | 25.72%
Kruskal-Wallis Test 1750 0 (0.00%) 0 (0.00%) 0.00% 390 0 (0.00%) 0 (0.00%) 0.00% 687 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA ‘ 3438 | 623 (18.12%) 41 (1.19%) 19.31% 1139 130 (11.41%) 36 (3.16%) 14.57% 1216 | 256 (21.05%) 4(0.33%) | 21.38%
Friedman Test 2637 0 (0.00%) 0 (0.00%) 0.00% 882 0 (0.00%) 0 (0.00%) 0.00% 925 0 (0.00%) 0 (0.00%) 0.00%
RR [ Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A%
Sign Test 4074 0 (0.00%) 0 (0.00%) 0.00% || 1305 0 (0.00%) 0 (0.00%) 0.00% || 1309 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test 3951 0 (0.00%) 0 (0.00%) 0.00% 1198 0 (0.00%) 0 (0.00%) 0.00% 1280 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Signed Rank Test || 4578 | 479 (10.46%) 362 (7.91%) | 1837% 1497 | 201 (13.43%) | 180 (12.02%) | 25.45% 1462 94 (6.43%) 111 (7.59%) | 14.02%
Student’s t Test 4582 | 903 (19.71%) 454 (9.91%) | 29.62% 1517 | 455(29.99%) | 180 (11.87%) | 41.86% 1454 | 202 (13.89%) 110 (7.57%) | 21.46%
One-way ANOVA 1691 | 288 (17.03%) 162 (9.58%) | 26.61% 285 | 203 (71.23%) 2(0.70%) | 71.93% 696 92 (13.22%) | 148 (21.26%) | 34.48%
Kruskal-Wallis Test [ 1500 0 (0.00%) 0 (0.00%) 0.00% || 218 0 (0.00%) 0 (0.00%) 0.00% || 633 0 (0.00%) 0 (0.00%) 0.00%
Two-way ANOVA [ 2233 | 511(22.88%) 131 (5.87%) | 28.75% 527 | 349 (66.22%) 23 (4.36%) | 70.59% 868 | 145(16.71%) 92 (10.60%) | 27.30%
Friedman Test 1813 0(0.00%) 0(0.00%) 0.00% 428 0 (0.00%) 0 (0.00%) 0.00% 739 0 (0.00%) 0 (0.00%) 0.00%

As in the case of the correlation analysis, these observa-
tions open some questions about IR experimentation: since
violating the scale assumptions has an impact on the number
of significant/not-significant detected pairs and on Type I and
Type II errors, when we compare systems and algorithms,
how much of the observed differences is just due to the scale
violation bias? How many false positives/negatives are we
observing? How much have the findings in the literature been
affected by these phenomena?

1) MEASURES NOT DEPENDING ON THE RECALL BASE
Let us start from Precision and RBP_p0O5 in Table 5.
As we already know, both of them are interval scales and,
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as expected, we do not observe any changes in using them or
their ranked version.

As in the case of the correlation, we can take them as an
example of meaningful statements in IR, since a statement
like “There are 1,923 significantly different system pairs for
Precision according to one-way ANOVA on T08_30" does
not change its truth value for a permissible transformation of
the scale.

As said, RBP_p03 orders systems in the same way as
RBP_p05 but it is no more an interval scale. Coherently with
this, we can see how the significance tests assuming just an
ordinal case detect the same number of significantly different
pairs for both RBP_p03 and RBP_p05. On the other hand,
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TABLE 6. Measures depending on the recall base: changes in significance test analyses between using a measure and its ranked version on tracks

T08_30, T26_30, and T27_30, using the unq tie breaking approach.

T08_30 — 8256 system pairs T26_30 — 2775 system pairs T27_30 — 2556 system pairs

R Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% | Sig S2NS (%) | NS2S (%) | A%
Sign Test 5153 0(0.00%) 0(0.00%) 0.00% 1848 0 (0.00%) 0(0.00%) 0.00% 1746 0 (0.00%) 0 (0.00%) 0.00%
Wilcoxon Rank Sum Test || 3494 14 (0.40%) 796 (22.78%) 23.18% || 1239 25 (2.02%) 239 (19.29%) 21.31% [ 1254 17 (1.36%) 236 (18.82%)  20.18%
Wilcoxon Signed Rank Test 5434 185 (3.40%) 395 (7.27%) 10.67% 1892 35 (1.85%) 160 (8.46%) 10.31% 1799 27 (1.50%) 85 (4.72%) 6.23%
Student’s t Test 5073 303 (5.97%) 863 (17.01%) 22.98% 1723 62 (3.60%) 346 (20.08%) 23.68% 1554 34 (2.19%) | 310(19.95%) | 22.14%
One-way ANOVA 409 0 (0.00%) 1514 (370.17%) | 370.17% 69 0(0.00%) | 385(557.97%) | 557.97% 574 3(0.52%) 153 (26.66%) | 27.18%
Kruskal-Wallis Test [| 1417 28 (1.98%) 351 (24.77%) 26.75% [| 259 0 (0.00%) 132 (50.97%) 50.97% | 653 16 (2.45%) 55 (8.42%)  10.87%
Two-way ANOVA || 2440 47 (1.93%) 969 (39.71%) 41.64% || 683 3(0.44%) 475 (69.55%) 69.99% J 923 15 (1.63%) ‘ 306 (33.15%) ‘ 34.78%
Friedman Test 2595 0(0.00%) 0(0.00%) 0.00% 883 0 (0.00%) 0 (0.00%) 0.00% 925 0 (0.00%) 0 (0.00%) 0.00%

AP Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% [ Sig S2NS (%) | NS2§ (%) | A%
Sign Test 5233 0 (0.00%) 0 (0.00%) 0.00% || 1801 0 (0.00%) 0 (0.00%) 0.00% | 1727 0 (0.00%) 0(0.00%)  0.00%
Wilcoxon Rank Sum Test || 4067 25 (0.61%) 385 (9.47%) 10.08% [| 1455 84 (5.77%) 85 (5.84%) 11.62% [ 1446 48 (3.32%) 96 (6.64%)  9.96%
‘Wilcoxon Signed Rank Test 5659 242 (4.28%) 169 (2.99%) 7.26% 1896 91 (4.80%) 128 (6.75%) 11.55% 1853 97 (5.23%) 38 (2.05%) 7.29%
Student’s t Test 5156 339 (6.57%) 559 (10.84%) 17.42% 1683 145 (8.62%) 336 (19.96%) 28.58% 1759 118 (6.71%) 109 (6.20%) 12.91%
One-way ANOVA 391 3(0.77%) 955 (244.25%) | 245.01% 59 0(0.00%) | 295 (500.00%) | 500.00% 529 60 (11.34%) 65 (12.29%) | 23.63%
Kruskal-Wallis Test [| 1593 19 (1.19%) 225 (14.12%) 15.32% || 380 20 (5.26%) 37 (9.74%) 15.00% [ 700 21 (3.00%) 11 (1.57%) 4.57%
Two-way ANOVA || 2508 171 (6.82%) 560 (22.33%) 29.15% || 636 31 (4.87%) 360 (56.60%) 61.48% J 913 105 (11.50%) ‘ 73 (8.00%) ‘ 19.50%
Friedman Test 2706 0(0.00%) 0(0.00%) 0.00% 883 0 (0.00%) 0(0.00%) 0.00% 915 0 (0.00%) 0 (0.00%) 0.00%

nDCG_b02 Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% [ Sig S2NS (%) | NS2§(%) | A%
Sign Test 5227 0(0.00%) 0 (0.00%) 0.00% || 1781 0 (0.00%) 0(0.00%) 0.00% | 1738 0 (0.00%) 0(0.00%)  0.00%
Wilcoxon Rank Sum Test || 4420 49 (1.11%) 54 (1.22%) 2.33% [| 1457 14 (0.96%) 14 (0.96%) 1.92% [ 1530 52(340%)  21(1.37%)  4.77%
Wilcoxon Signed Rank Test 5726 245 (4.28%) 149 (2.60%) 6.88% 2004 115 (5.74%) 44 (2.20%) 7.93% 1892 96 (5.07%) 21 (1.11%) 6.18%
Student’s t Test 5623 384 (6.83%) 178 (3.17%) 9.99% 2013 174 (8.64%) 58 (2.88%) 11.53% 1883 163 (8.66%) 21 (1.12%) 9.77%
One-way ANOVA 2159 | 667 (30.89%) 59 (2.73%) 33.63% 498 116 (23.29%) 3 (0.60%) 23.90% 820 | 237 (28.90%) 0(0.00%) | 28.90%
Kruskal-Wallis Test [| 1827 34 (1.86%) 19 (1.04%) 290% [| 418 20 (4.78%) 2 (0.48%) 526% | 718 25 (3.48%) 2 (0.28%) 3.76%
Two-way ANOVA || 3642 | 631 (17.33%) 22 (0.60%) 17.93% || 1120 172 (15.36%) 38 (3.39%) 18.75% J 1201 330 (27.48%) ‘ 6 (0.50%) ‘ 27.98%
Friedman Test 2706 0(0.00%) 0(0.00%) 0.00% 876 0 (0.00%) 0 (0.00%) 0.00% 912 0 (0.00%) 0 (0.00%) 0.00%

nDCG_b10 Sig S2NS (%) NS2S (%) A% Sig S2NS (%) NS2S (%) A% [ Sig S2NS (%) | NS2§ (%) | A%
Sign Test 5095 0 (0.00%) 0 (0.00%) 0.00% || 1813 0 (0.00%) 0 (0.00%) 0.00% | 1755 0 (0.00%) 0(0.00%)  0.00%
Wilcoxon Rank Sum Test || 4312 52 (1.21%) 47 (1.09%) 2.30% [| 1453 15 (1.03%) 20 (1.38%) 241% [ 1532 62(4.05%)  15(0.98%)  5.03%
Wilcoxon Signed Rank Test 5632 250 (4.44%) 148 (2.63%) 7.07% 2021 111 (5.49%) 36 (1.78%) 7.27% 1851 65 (3.51%) 50 (2.70%) 6.21%
Student’s t Test 5579 370 (6.63%) 189 (3.39%) 10.02% 2012 162 (8.05%) 52 (2.58%) 10.64% 1816 122 (6.72%) 71 (3.91%) 10.63%
One-way ANOVA 2012 | 814 (40.46%) 50 (2.49%) 42.94% 480 97 (20.21%) 11 (2.29%) 22.50% 830 | 290 (34.94%) 0(0.00%) | 34.94%
Kruskal-Wallis Test 1782 50 (2.81%) 18 (1.01%) 3.82% 397 7 (1.76%) 0(0.00%) 1.76% 728 44 (6.04%) 3(0.41%) 6.46%
Two-way ANOVA 3478 | 670 (19.26%) 48 (1.38%) 20.64% 1125 121 (10.76%) 41 (3.64%) 14.40% \ 1203 | 281 (23.36%) \ 42 (3.49%) \ 26.85%
Friedman Test 2637 0(0.00%) 0(0.00%) 0.00% 882 0 (0.00%) 0(0.00%) 0.00% 925 0 (0.00%) 0 (0.00%) 0.00%

significance tests assuming an interval scale are affected by
this difference between RBP_p03 and RBP_p05, causing an
overall change A% in the range 2% — 29%. In particular,
we observe a marked increase in the number of significantly
different pairs (NS2S up to 28%), i.e. the reduction in the
number of false negatives, and a very marginal decrease in the
number of not significantly different ones (S2NS around 1%),
i.e. the reduction in the number of false positives. In the case
of RBP_p08 we note a much more marked increase in the
number of not significantly different pairs (S2NS up to 17%),
i.e. a reduction in the number of false positives; on the other
hand, the increase in the number of significantly different
pairs (NS2S around 2%), i.e. the reduction in the number of
false negatives, is more marginal.

Why do we observe such a different behaviour between
RBP_p03 and RBP_p087? If we look at Figure 7, we can see
that RBP_p03 condenses values at the top and the bottom
of the range of possible values, in spans with a very small
range of values but containing the same number of runs. As a
consequence, when the ranked version of RBP_p03 equi-
spaces these values, runs that before were very close, and
possibly not significantly different (NS) in the ranked version
become more distant, and possibly significantly different (S);
and this can explain why the NS2 S case is more prominent for
RBP_p03. On the other hand, RBP_p08 uses all the possible
range of values but very few runs, roughly 20% packed at
the bottom and at the top, cover almost 50% of the range of
values while the remaining 80% of the runs, in the middle
part, cover the other 50% of the range. Therefore, when we
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pass to the ranked version of the measure, very few runs
which were very distant, and possibly significantly different
(S), become closer, and possibly not significantly different
(NS); viceversa, many runs which were very close, and pos-
sibly not significantly different (NS), may become a little bit
more distant, and possibly (but not necessarily) significantly
different (S). As a consequence, the effect on S2NS is more
prominent than the one on NS2S.

In the case of DCG we observe a behaviour similar to the
one of RBP_p08, being the increase on S2NS and the reduc-
tion in the false positives even more prominent. If we look at
Figure 8, we can see how DCG is sharper than RBP_p08 both
at the top and the bottom of the range — less than 10% of the
runs account for almost 50% of the range of values — making
even fewer runs falling more apart.

Finally, RR exhibits both effects: a very remarkable
increase in S2NS, i.e. a reduction in the false positives, and
a sizeable increase in NS28S, i.e. a reduction in the false
negatives, causing an overall change A% up to a 72%. If we
consider Figure 6, we can see how most of the runs, over 90%,
are concentrated in just 4 possible values which are quite dis-
tant, possibly making them significantly different (S); when
we move to the ranked version, these 4 values become much
closer, possibly making the runs not significantly different
(NS); and this explains the big S2NS effect. Vice versa, few
runs, less than 10%, account for just the 20% of the range
of values in the lower quartile; when we move to the ranked
version, these values become more distant, possibly making
the runs significantly different (S); since this change may
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affect a smaller number of runs, this explains why NS2 S tends
to be more moderate with respect to S2NS.

2) MEASURES DEPENDING ON THE RECALL BASE

As in the case of the correlation among measures, a word
of caution has to be made remembering that in the case of
measures depending on the recall base our approach is just
a surrogate, which improves the ““intervalness” of a measure
but stretches the steps of the scale. Therefore, all the changes
in the significantly different system pairs should be taken as
tendency rather than exact quantification.

Regarding the significance tests assuming an ordinal scale
in Table 6, we can note — with the exception of the Sign
and Friedman tests — that these tests are also affected by the
transformation to an interval scale for an overall change A%
of up to 51%. This further confirms that aggregating across
topics when the recall base changes can cause variations
which go well beyond the loss of “intervalness”.

As another general trend, we can see that significance tests
based on an interval scale assumption are generally more
affected, since they experience both the violation of their
assumptions and the effect of the recall base.

If we consider Recall, we can see how the most prominent
effect is the underestimation of significant differences with a
very big increase in the number of significantly different pairs
(NS28), i.e. areduction in the number of false positives, up to
a striking 558% for the one-way ANOVA. Considering that
the interval scale behind Recall is the same as the one behind
Precision, these figures tell us how big the loss of power is for
Recall, mostly due to the impact of aggregating across topics
with different recall bases.

In the case of nDCG we can observe a behaviour quite
similar to one of DCG, with an overall change A% just
a bit bigger than the one of DCG. Considering that both
DCG and nDCG share the same interval scale, this further
suggests to use DCG to avoid the further bias due to the recall
base.

IX. CONCLUSION AND FUTURE WORK

We have discussed the problem that IR evaluation measures
typically are not interval scales. In a strict sense, accord-
ing to Stevens’s prescriptions, this fact has several conse-
quences: you should neither compute means, variances, and
confidence intervals nor perform statistical significance tests
which assume an interval scale. We have provided a detailed
discussion on the motivations and needs behind the inter-
val scales, both in the general field of the representational
theory of measurement and in the IR context in particular.
Moreover, since these prescriptions are very much debated
both within and outside IR we have presented viewpoints and
opinions both supporting and opposing these ‘“prohibitions”.
It is a matter of fact that these ““prohibitions’ have not been
accurately investigated by the IR community yet. However,
the validity of experimental results and drawn conclusions
should be considered ““at risk”” when departing and violating
assumptions, at least until when the impact of these violations
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has been thoroughly investigated, as it has been happening so
far in IR.

The main motivation for IR measures not being interval
scales is that their values are not equi-spaced. Therefore,
we have proposed a straightforward yet powerful way to turn
any measure into an interval scale by considering how all
the possible runs are ranked by the measure and keeping
the unique ranks, i.e. after removing tied values, as values
of the mapped measures. These ranks are equi-spaced by
construction and preserve the same order of runs of the
original measure. In this way, we obtain an interval scale
able to represent the order of runs produced by the original
measure.

We have also shown that the situation in IR is worsened
by the fact that mixing runs of different length and different
recall bases for different topics actually means mixing differ-
ent scales, being them interval or not. Therefore, computing
aggregations across runs and topics in such a way can lead
to invalid results. While the run length issue can be mitigated
by ensuring that all the runs have the same length, the recall
base one is more problematic, since you cannot force a single
recall base for all the topics. Therefore, this discourages the
use of measures depending on the recall base.

Overall, this discussion led us to raise the fundamental
question that IR should be more concerned with being able
to rely on meaningful statements, i.e. statements whose truth
values do not change when you perform legitimate transfor-
mations of the underlying scale, since they ensure for more
valid and generalisable inferences.

Relying on several TREC collections, we have conducted
a thorough experimentation on several (popular) state-of-the-
art evaluation measures in order to assess the differences
between using an evaluation measure and its interval-scaled
version.

The correlation analysis has shown that the relationship
between evaluation measures and their interval-scaled ver-
sion matches the expected theoretical properties and that
not using an interval scale somehow inflates the differ-
ences among evaluation measures. Notably, RR represents
an exception since its departure from being an interval scale
makes it look to be more similar to other measures than what
it actually is.

Most importantly, the correlation analysis provides us with
a rough estimator of how much interval scale an evaluation
measure is and it represents the first attempt to quantify how
much evaluation measures depart from their assumptions.

The analysis on many different types of statistical
significance tests has clearly shown the impact of passing
from an evaluation measure to its interval-scaled version.
In particular, for measures not depending on the recall base,
the transformation provides benefits in terms of reduced
Type I error and some increase in power of the test. While for
measures depending on the recall base, it produces sizeable
improvements in terms of Type II error and power of the
test, still delivering substantial enhancements in terms of
Type I error. Even apart from any interpretation in terms
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of Type I and Type II errors, we observed an overall mean
change around 25% in the decision about which systems are
significantly different and which are not.

Our results on both the correlation analysis and the statis-
tical significance tests open the question about which claims
and findings in the IR literature would be impacted by these
difference or, in other terms, which statements made in IR so
far would be actually meaningful. This should not be intended
as decades of IR research have drawn wrong conclusions
but rather that we should strengthen the foundations of our
field, by further validating our (previous) results and by more
explicitly stating the limitations and under which conditions
conclusions are drawn.

The main limitation of the proposed approach is practical,
since first you need to generate all the possible runs of RELY
and then you have compute the evaluation measures on all
these runs. For increasing values of N, and even more in
the case of multi-graded relevance, this becomes practically
infeasible. Therefore, our future work will concern approxi-
mating this generation process in order to make it possible to
deal with runs of whatever length.
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