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ABSTRACT Internet of Things applications can be represented as workflows in which stream and batch
processing are combined to accomplish data analytics objectives in many application domains such as smart
home, health care, bioinformatics, astronomy, and education. The main challenge of this combination is the
differentiation of service quality constraints between batch and stream computations. Stream processing is
highly latency-sensitive while batch processing is more likely resource-intensive. In this work, we propose
an end-to-end hybrid workflow scheduling on an edge cloud system as a two-stage framework. In the first
stage, we propose a resource estimation algorithm based on a linear optimization approach, gradient descent
search (GDS), and in the second stage, we propose a cluster-based provisioning and scheduling technique for
hybrid workflows on heterogeneous edge cloud resources. We provide a multi-objective optimization model
for execution time and monetary cost under constraints of deadline and throughput. Results demonstrate
the framework performance in controlling the execution of hybrid workflows by efficiently tuning several
parameters including stream arrival rate, processing throughput, and workflow complexity. In comparison
to a meta-heuristics technique using Particle Swarm Optimization (PSO), the proposed scheduler provides
significant improvement for large-scale hybrid workflows in terms of execution time and cost with an average
of 8% and 35%, respectively.

INDEX TERMS Hybrid workflow scheduling, streaming scheduling, gradient search optimization, resource
estimation and provisioning.

I. INTRODUCTION
The Internet of Things (IoT) is a technology that refers to a
large set of objects (machines, devices, etc.) that can connect
and share data without requiring human intervention. The
adoption of this technology steers innovation in the form
of smart and intelligent applications to simplify human life
and enables new business-oriented, user-specific, and human-
centric applications. The next generation of IoT platforms
will be applied in domains like 1) industrial for business
continuity management and collaborative supply chain man-
agement [1], 2) public services in smart cities and social
sensing [2] and 3) customer services for autonomous cars and
smart homes [3]. In IoT, the large network of connected phys-
ical devices of sensors and actuators can produce a massive
amount of data that need to be handled in real-time or near
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real-time. Moreover, IoT devices generate data with different
frequencies and different timeliness requirements for data
delivery. Thus, the IoT-generated data possesses properties
that conform to the big data paradigm [4]. However, IoT big
data is difficult to process in traditional computing systems.
Data stream is not available at once, the stream rate is often
of high speed and may vary with time, and timely analysis of
the data stream is critical [5].

Data analytic applications are commonly managed and
executed with workflow technology. Generally, a workflow is
a systematic representation of a process as a set of dependent
tasks accordingly to a set of rules [6]. The workflow model
aims to automate and minimize the complexity of manag-
ing various types of processes, such as human activities,
business processes, and scientific experiments [7]. In data
analytic applications, it is common to integrate batch and
stream processingmodels [8]. Batch processing involves stor-
ing the upcoming data before processing while streaming
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processing is related to performing operations on data streams
in a real-time or near-timemanner.We refer to this integration
as a hybrid workflow [9]. Hybrid workflows can be applied in
many application domains like traffic monitoring [10], social
sensing [11], and business analytic [12].

Stream and batch processing have different Quality
of Service (QoS) requirements. Stream processing is
latency-sensitive and subjects to constraints like stream rate
and throughput [13]. Data stream arrival rate may change
over time making it hard to estimate data stream collection
and processing intervals. Thus, it’s not trivial to determine
the size of these intervals in advance. If the interval is too
large, the accuracy of prediction can deteriorate when the
nature of the data changes, and if the interval is too small,
accuracy can deteriorate when that is rather stationary. On the
other hand, batch processing has a less time sensitivity pro-
cessing and more computation-intensive to conduct large
data computation for data aggregation and predictive mod-
elling functions. Overall, both processing models aim for
maximizing throughput, which determines the efficiency of
processing computation under certain user and application
QoS requirements.

Cloud computing offers a robust and scalable computa-
tion model. However, the bottleneck of pushing continuous
data stream from a large number of IoT devices cannot be
neglected for latency and cost constraints [14]. Transmitting
large chunks of data requires a high network bandwidth to
reduce data migration latency. Moreover, much of the raw
data (from IoT devices) is unnecessary or unusable and can-
not be directly injected into computation cycles. As a result,
reducing transmitted data to the cloud and performing more
analytic closer to IoT devices is convenient. This refers to
edge computing which is a general term of enabling tech-
nologies allowing computation to be performed at the edge of
the network [15]. However, this may increase the complex-
ity of managing and monitoring the execution of IoT-based
workloads (such as hybrid workflows) on such a heteroge-
neous computing system, i.e., edge cloud. Hybrid workflow
scheduling implies an understanding of the differences in pro-
cessing behaviour of stream and batch applications to propose
workflow schedulers that support maintainable integration
between these applications with consideration of user QoS
constraints.

Few research works have studied the hybrid stream-batch
workflows and proposed general-purpose execution mod-
els [16]–[19] to maintain QoS constraints like latency,
throughput, fault-tolerant, etc. However, the hybridmodelling
is not well-formulated to reflect the data and computation
dependency between stream and batch tasks. The motivation
of hybrid model is to provide an efficient management and
control over applications which are complex in scale and
internal dependencies, involve short-term stream intervals
and online batch feeding, and flexible to their parameters
tuning. In this paper, we are extending our previous work [9]
to propose a hybrid workflow scheduling framework on edge
cloud computing that considers the integration requirements

for hybrid workflows while optimizing the workflow exe-
cution time and monetary cost. The framework involves
algorithms for resource estimation, provisioning, and task
scheduling. This paper has the following contributions:

• Hybrid workflow resource estimation algorithm based
on the gradient descent search (GDS) technique.

• Cluster-based resource provisioning and denting adjust-
ment scheduling algorithm for hybrid workflow on edge
cloud computing environment.

• Comprehensive performance analysis of estimation and
scheduling algorithms, including scheduling adaptabil-
ity, edge capability, and optimization time

Next, we discuss some of the state of the art algorithms
and techniques for resource estimation, provisioning, and task
scheduling in the cloud and edge cloud systems are presented
in Section II, and then the problem formulation is described
in Section III, including the edge cloud system model and
a detailed description of the application model. The hybrid
workflow scheduling in the edge cloud system is described in
Section IV and the system performance is evaluated based on
experimental findings from various perspectives in SectionV.
Finally, conclusions are provided in Section VI.

II. RELATED WORK
The main objective of workflow scheduling is to generate
scheduling plan(s) that maximize efficiency under certain
optimization objective(s) such as makespan, execution time,
monetary cost, reliability and resource utilization. Directed
acyclic graph (DAG) is commonly used to represent a
scheduling plan; vertices denote workflow tasks, and the
edges show the dependencies among them [20]. Workflow
and DAG are often used interchangeably in the literature.
Generally, a workflow is a systematic representation of a
process as a set of dependent tasks accordingly to a set of
rules [6]. The workflow model aims to automate and mini-
mize the complexity of managing various types of processes,
such as human activities, business processes and scientific
experiments [7].

However, few researchers have proposed models which
are efficient and relevant to hybrid workflows. This section
provides a broad analysis of the research body on workflow
scheduling, including resource provisioning and task alloca-
tion in different computing systems.

A. RESOURCE PROVISIONING AND TASK SCHEDULING IN
CLOUD COMPUTING
In cloud computing, resource provisioning is an adaptive
process of provisioning and deprovisioning resources accord-
ing to workload changes and service demand at a cer-
tain point in time [21]. Resource provisioning is critical to
control resource utilization and cost by avoiding resource
over-provisioning. Provisioning is estimated by reactive or
proactive mechanisms. Reactive mechanisms continuously
track service workloads and fire scaling triggers in response
to resource demands. However, the time needed to update and
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apply a new provisioning plan can be detrimental, particularly
for latency-sensitive applications that involve real-time or
near real-time processing. Proactive mechanisms are efficient
in incorporating timely-constrained provisioning by observ-
ing workloads and predicting resource demands by applying
statistical or mathematical models, such as queuing theory,
reinforcement learning and control theory [22].

Mao and Humphrey [23] proposed two algorithms to
resolve the auto-scaling issue: scheduling-first, and scaling-
first. The first algorithm applies total budget distribution
to each workflow task, generates the fastest execution
plan, and finally acquires cloud resources. The second
algorithm estimates the required resources concerning data
size and resource capabilities, and finally schedules the
workflow tasks. Nikravesh et al. [24] proposed a predictive
auto-scaling system to scale cloud resources automatically
for different types of workloads and fixed observation win-
dow size. The work does not illustrate how workload fea-
tures are injected into the prediction model. Wagner and
Michalewicz [25] worked on time series data prediction based
on an adaptive sliding window. The technique is not suit-
able for time-sensitive applications due to the complexity of
real-time windows size identification. Deypir et al. [26] used
an adjustment technique for stream arrival rate with variable
window size. Experimental evaluations showed the proposed
technique efficiency in adapting window size to improve
system performance. However, the technique involves user
intervention to set the window size reduction threshold.
Warneke and Kao [27] considered the dependencies between
application tasks, and determined the specifications of cloud
resources needed to provide efficient resource allocation and
scheduling framework. However, application modelling does
not study how changes in workflow structure or input data are
reflected in generated schedules.

For task scheduling in cloud systems, the literature has
demonstrated an extensive research bodywhich covers a wide
range of task scheduling aspects for optimizing objectives
like cost, execution time, energy, reliability, security, energy,
etc. [28]–[30]. Topcuoglu et al. [31] proposed one of the best
heuristics scheduling algorithms, the heterogeneous earli-
est finish-time (HEFT) algorithm to minimizes the overall
workflow makespan through minimizing the earliest finish
time for critical tasks. HEFT performs task allocation in two
steps: task prioritizing and instance selection. Task prioritiz-
ing ranks tasks in a list according to the cumulative execution
time on each VM instance and average communication time
between VMs of dependent tasks. The unallocated task with
the highest rank is selected and mapped to its best instance,
which guarantees the lowest finish time. Durillo and Prodan
extended the HEFT algorithm [31] by proposing the Multi-
objective-HEFT (MOHEFT) algorithm [32]. MOHEFT is a
generic multi-objective scheduling algorithm, which works
by generating several scheduling solutions. The quality of
a solution is assessed using the metric of crowding dis-
tance. However, complete coverage traversing is adopted in
MOHEFT to generate new solutions for assigning tasks to

instances, which consumes a large amount of time. Thus,
the technique is not efficient for large-scale workflows [33].

Abrishami et al. [34] adapted the partial critical path (PCP)
algorithm for deadline-constrain. The algorithm works by
generating PCPs, and for each PCP, included tasks are allo-
cated to the same VM instance based on heuristics. Grouping
critical tasks can enhance resource utilization and reduce
the total execution time while meeting the deadline. The
technique can reduce computation time and cost, but the
communication time and cost are not considered.

B. THE CONTRIBUTION OF EDGE COMPUTING
In cloud computing, data transfer times can maximize the
overall workflows execution time and cost. IC-PCP over-
comes the issue by grouping and scheduling dependent tasks
on the same VM to reduce the amount of transferred data
between VMs [34]. However, IC-PCP does not provide an
accurate estimate of execution and transmission time. Sahni
andVidyarthi [35] applied the grouping strategy by construct-
ing pipelines of interdependent tasks aiming to reduce the
workflow execution cost while meeting the deadline. How-
ever, no priority policy is applied to select the next allocated
pipeline [44]. Lin and Wu [45] proposed a technique to
minimize the overall workflow execution delay considering
the budget constraint. The scheduling problem assumes a
one-to-one VM allocation to each workflow task. However,
latency is a bottleneck for running stream applications on
cloud systems. Issues like streaming from devices over long
distances with cloud resources and the unpredictable quality
of transmission networks need to be considered in stream
workflow scheduling. However, in reality, migrating streams
from the smart objects and transferring the data to the cen-
tralized cloud environment is considerably not efficient due
to the increase in the latency time and response time of the
real-time data items.

Computing models like edge computing and edge cloud
computing are proposed to resolve such issues [46]–[50].
Edge computing is intended to overcome the challenges
(limited bandwidth and network latency) of migrating large
amounts of data for real-time data processing. Recently, many
models have been proposed to conquer the challenges of
streamworkflows by adopting resource provisioning and task
scheduling techniques for use in an edge cloud computing
environment, to improve edge resource utilization, reduce
latency by processing data-intensive tasks in nearby edges,
maximize communication stability for high-performance
stream processing, and provide an efficient task placement
strategy to achieve reliable resource provisioning.

Madej et al. [37] proposed a fairness-based scheduler for
edge cloud computing. The paper compares four scheduling
techniques, namely, (First-in First-out) FIFO, a client fair,
priority fair, and a hybrid that accounts for the fairness
of both clients and job priorities. The experimental results
demonstrate that the hybrid technique is the best and that the
fair scheduler is feasible to implement in edge cloud systems.
Naha et al. [38] proposed deadline-constrained resource
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TABLE 1. Summary of the related work.

allocation and provisioning in the fog cloud environment.
The algorithm addresses the issue of user QoS variation
and resource limitations on fog computing. Resources are
allocated based on a scoring system and considering vari-
ous parameters. Zhou et al. [39] proposed an online gradient
descent technique to estimate the rate of data streams to
reduce the cost of cross-edge IoT data streaming process-
ing. The work does not consider tuning other streaming
processing parameters like aggregation processing interval
and throughput. Farhadi et al. [41] proposed a data-intensive
application scheduler using a mixed-integer linear pro-
gram (MILP) on an edge cloud system. The technique aims
to maximize the system utilization in terms of the number of
placed scheduled services. Zhang et al. [42] adopted a deep
reinforcement learning (DRL) framework for joint workflow
scheduling optimization on a hybrid edge cloud system.
Wu et al. [43] also applied a DRL framework to schedule
IoT stream applications on an edge system while reducing
the execution latency.

C. HYBRID WORKFLOW SCHEDULING
Hybrid workflow, or batch stream combination, has been
sufficiently studied andmany research frameworks have been
proposed to address some of the requirements of such an
integration. Kailasam et al. [16] proposed BStream which
combines batch and stream processing at different cloud
layers and uses a predictive model to estimate resource
allocation and task distribution to meet task deadlines.
Carbone et al. [17] developed Flink, so-called Apache Flink,
a unified stream and batch computing framework which
expresses various classes of data processing applications as
fault-tolerant dataflows in a low-latency and high throughput.
Apache Flink is designed for ‘‘stateful streaming processing’’
which handles batch tasks as a bounded stream resolving the
high latency of micro-batch architecture in some streaming
processing frameworks like Spark [18].

Zhang et al. [36] proposed an online heuristic algo-
rithm called DyBBS for adaptive batch size and execution

parallelism to reduce end-to-end processing latency and
reflects the workload changes. Pishgoo et al. [19] proposed
batch-stream processing architecture for distributedmodeling
of streaming events to detect anomalies in such events. They
argue that there is a limitation on considering the hybrid
architecture regarding how different processing units should
interact with each other specifically at the algorithm level.
Huang et al. [40] proposed a linear optimization model to
schedule IoT batch tasks in a mobile edge computing (MEC)
system. Meanwhile many industrial frameworks demonstrate
adequate support for hybrid workflows, but the influence
of workflow structure, i.e., the dependency between stream
and batch tasks (in terms of data and computation), is not
well formulated to reflect workflow execution optimization
for cost, throughput, deadline, etc. Thus, the need arises for
developing schedulers that can adopt the hybrid workflow
execution behaviour.

Table 1 summarizes the most related works in terms of
application type, optimization technique, objectives and com-
puting system. The current literature does not effectively
illustrate the opportunities of edge cloud systems in resolv-
ing scheduling issues of hybrid workflows like load bal-
ancing, edge capacity limitations and data communication
between edge and cloud resources. In this work, we pro-
vide an end-to-end hybrid workflow scheduling framework
in an edge cloud computing environment. The framework
handles the requirements of integrating stream and batch
processing in IoT applications. The framework is relied on
proposed algorithms and techniques for resource estimation
using gradient descent search (GDS) technique and resource
provisioning and task scheduling using a cluster-based
approach.

III. THE SYSTEM MODEL
Cloud computing is not the ideal computing system for
latency-sensitive applications, such as real-time gaming,
augmented reality and real-time streaming [51]. Because
cloud resources are located closer to the core network,
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FIGURE 1. Edge cloud computing system model.

the round-trip latency of these applications will be high due to
passing data through multiple gateways. Edge computing
refers to technologies that permit the computation at the
network edges, and act as an intermediate layer to transmit
streams to cloud services on behalf of IoT devices [15].
However, a high percentage of this data is temporary and
only a small amount might contain meaningful information.
Edge computing has a significant role in processing massive
data and enables better filtering of what data is uploaded
to the cloud. For instance, an autonomous vehicle requires
a huge amount of data, in the forms of images and video,
to be processed in real-time to make safe driving decisions.
However, the availability and low efficiency of edge servers
are decisive factors in quality achievement [39]. Hybrid
workflow specifications require the development of efficient
resource provisioning and scheduling techniques that coor-
dinate the execution of hybrid workflows on edge cloud
systems.

A. EDGE CLOUD COMPUTING SYSTEM
The edge cloud system is convenient for hybrid workflows
because the stream tasks with latency sensitivity can benefit
from the availability of edge resources, whereas batch tasks
with heavy workloads can be processed at powerful compu-
tation nodes in the public cloud. Figure 1 shows the adopted
edge cloud systemmodel which is composed of IoT, edge and
multi-cloud resource layers. The three layers are explained as
follow:

• Layer 1 (IoT). The layer represents the user interac-
tion layer, in which IoT devices (sensors, smartphones,
relays, etc.) generate data which can be on various for-
mats and bounded to a particular point of time. IoT
devices can send workloads to the nearest edge nodes
or cloud resources.

• Layer 2 (edge layer): This layer represents all devices on
the path between the IoT layer and cloud layer. An edge

TABLE 2. Mathematical notations.

node can be a non-stationary computation device, such
as mobile devices or a Raspberry Pi, or a stationary
device, such as a personal desktop, company server or
a cloudlet.
We assumed that edge devices are limited in computa-
tion and storage capabilities, but able to handle some
pre-processing tasks on the stream processing pipeline.
Overall, the edge layer offers computation close to data
sources (IoT devices and sensors) to reduce data transfer
time, and performs pre-processing in a timely manner
constraint [15].

• Layer 3 (multi-cloud services): The third layer includes
cloud resources that have high computational and stor-
age capabilities, and can handle heavyweight compu-
tations such as predictive analysis, machine learning,
business intelligence, big data analytics, and complex
visualization. Cloud providers offer a range of comput-
ing types including Virtual Machines (VMs), Containers
and Serverless computing.

B. APPLICATION MODEL
A hybrid workflow w = G(T ,E) is modelled as a Direct
Acyclic Graph (DAG) of tasks V = {t1, t2, . . . , tn} with direct
edges E and no cycles or conditional dependencies. A task ti
represents a stream (tiS ) or batch (tiB) task application. The
two types of application are fundamentally different in their
modelling features. Table 2 presents mathematical notations
used in the hybrid workflow modeling.

A stream task tiS represents the execution of a stream
processing pipeline and it is modeled as an M/G/c queuing
system [52]. The queuing modeling provides an estimation of
the amount of resources to run a stream processing pipeline
under constraints like system utilization, waiting time, and
system throughput. Stream processing system must consider
these constraints with the variation in workload to achieve
a highly optimized, minimal overhead execution engine to
deliver real-time response for high-volume applications [53].
The number of servers c in a queuing system refers to the
level of parallelism where processing cycles are replicated in
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case of a high stream arrival rate. A stream task tiS is modeled
as:

tiS = {λi, µi, ωi, τi, αi, di, ci} (1)

Based on the approximation by Kleinrock [52], the number
of queuing system servers ci is estimated as follow:

ci =
λi

µiρ
ρ < 1 (2)

To reduce the complexity of M/G/c queues, we assume
that at a givenmoment, all servers cwill be busy. Hokstad [54]
showed that we an M/G/c queue which has an identical
service time (S = 1/µ) can be represented as aM/G/1 queue
with service time (S = 1/µc). Based on this assumption,
the approximation provided by Kleinrock [52] is adopted to
estimate the waiting time on queueWq:

Wq =
ρ(1+ S2)
2(1− ρ)µ

(3)

A batch task tiB has the following features:

tiB = {ϑi, τi, αi, µi, di,Li, ci} (4)

A batch task tiB receives data collectively from stream and
batch tasks. The total amount of data Li received by a batch
task is computed based on the following formula:

Li =
τi

∑n
j=1 dj
µi

(5)

where dj is the amount of data generated from task tj, which
can be a stream or a batch task. The number of servers ci
(parallelization factor) to run a single iteration of a batch
application is estimated as follow:

ci =
Li
ϑiαi

(6)

IV. HYBRID WORKFLOW SCHEDULING IN EDGE CLOUD
RESOURCES
Workflow scheduling is utilized for mapping tasks to com-
putation resources and planning their execution while ful-
filling dependency between tasks and achieving certain QoS
parameters and resource preservation goals. Without loss
of generality, Figure 2 shows hybrid workflow scheduling
framework which consists of three steps, including resource
estimation, resource provisioning, and workflow scheduling.
In the resource estimation stage, the amount of resources and
time to run the workflow are estimated under task execution
constraints, including deadline, throughput, and waiting time.
Accordingly, workflow tasks are formulated in execution
groups. Next, the required computation nodes at the edge
cloud system are provisioned to host the execution of these
groups. Two type of resources are involved, namely, public
clouds (D1 and D2) and edge nodes (D3). Lastly, the work-
flow tasks are mapped to provisioned resources considering
a multi-objective scheduling optimization of execution time
and monetary cost.

FIGURE 2. A High-level abstraction of hybrid workflow estimation and
scheduling.

A. RESOURCE ESTIMATION WITH GRADIENT DESCENT
SEARCH APPROACH
The optimization objective of our framework aims to mini-
mize the total execution time E and the number of computa-
tion units (cores) R while meeting the execution constraints
of stream and batch tasks. The estimation process works
by grouping workflow tasks to construct an execution plan
considering their execution dependencies and maximizing
resource utilization at the group level. The group-based tech-
nique can simplify resource provisioning and task schedul-
ing in an edge cloud environment, particularly for complex
hybrid workflows. The optimization function for resource
estimation is formulated as:

min(E ∗ R) (7)

1) RESOURCE ESTIMATION PROBLEM FORMULATION
Gradient descent (GD) is a first-order iterative optimiza-
tion technique of finding a local minimum for linear and
non-linear functions [55]. Gradient descent comes in three
variants: batch or vanilla gradient descent, stochastic gradient
descent (SGD) and mini-batch gradient descent. Based on
the minimum of data required to perform the estimation
process and the low complexity of the estimation model
with pre-defined workflow execution functions, the batch
gradient descent variant is used [56]. The gradient descent
search (GDS) process starts at some arbitrary point x(0) and
then iteratively moving at direction 1x(k) after every step
k ≥ 0 by step size γk to the next point x(k+1) as:

x(k+1) = x(k) − γk1f (x(k)) (8)

Since the objective is minimizing the function, the step size
γi value should be selected in a way that will minimize the
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function value of the new point such that the step size γ ∗k at
step k satisfies:

γ ∗k = argmin
k≥0

f (x(k))− γ1f (x(k)) (9)

The application of the gradient descent search (GDS) on
the resource estimation problem is described as follow:
• A stationary search point x(k) is a 3 × d matrix, where
3 refers to the number of problem parameters (λi, ωi, τi)
of a stream task tiS and d refers to the number of stream
tasks.

x(k) =


λ0 ω0 τ0
. . .

. . .

λd−1 ωd−1 τd−1

 (10)

• The workflow execution function f at point (workflow
setup) x(k) is written as:

f (x(k)) = E(x(k)) ∗ R(x(k)) (11)

where E(x(k)) and R(x(k)) are the workflow execution
time and amount of resources, respectively. This reflects
the resource estimation optimization objective provided
in Equation 7.

• The estimation process is a constrained GDS problem
as it relies on constraints such as minimum throughput
τi and maximum deadline ϑi.

• The optimization problem objective is to find the matrix
x(∗) in which the function has a local minimum and
mostly a global minimum (as dealing with convex work-
flow execution functions).

2) RESOURCE ESTIMATION ALGORITHM
The estimation algorithm includes a set of steps to find the
optimized estimation cost (number of cores R) with minimum
execution time E . Next, The Constrained-based Gradient
Descent Hybrid Workflow (C-GDHW) resource estimation
algorithm is described in algorithm 1.

The algorithm receives three inputs including 1) workflow
structure w, 2) an initial solution x(0) which represents a 3×d
stream task configuration matrix. As shown in Equation 10,
the configuration matrix presents the execution setup for all
stream tasks including the arrival rate λ, the window size
ω of collecting and processing incoming streams, and the
percentage of stream of data to be processed or throughput
τ . The window size, so-called batch sizing in Spark Stream-
ing [18], is the time duration to create a batch input and send
it to a batch queue. Zhang et al. [36] experimented stream
parameters tuning and their results illustrated the significance
of an adaptive batch streaming processing control algorithm
for reducing the end-to-end application processing latency.
3) The maximum deadline relaxation factor ∂ .
At each iteration k , the algorithm performs the following

steps:

1) Based on the current solution x(k), the workflow execu-
tion cost f (x(k)) is estimated according to Equation 11.
The cost estimation flow is described in lines 4-18.
At line 4, the callculateTaskTimes is called to calculate
the execution times for all workflow tasks including the
EST , which is the earliest task starting time and the
LFT , which is the maximum execution finish time.

2) Based on task execution times, at line 5, the given
solution is validated to satisfy the following constraints
for a stream task tiS (Equations 12 and 13) and for a
batch task tiB (Equation 14):

Constraint 1: ωi ≥ ω′i ≥
ρ ∗ µi ∗ ci

τi
(12)

Constraint 2: λi−1 ≥ λ′i ≥ ρ ∗ µi ∗ ci (13)

where ω′i and λ
′
i are minimum values of window size

and arrival time, respectively.

Constraint 3: ϑi ≥ Ei ≥
ETi
ci

(14)

where ETi and Ei are processing time, and task exe-
cution time, respectively. A batch task processing time
ETi (as provided in Equation 15) is the total time
required to process the total amount of received data
Li based on task service rate µi. Accordingly, the task
execution time Ei (as provided in Equation 14) is com-
puted, such that, it does not exceed the task deadline ϑi
and maintain the least amount of resources ci.

ETi = µi ∗ Li (15)

3) If the solution is valid, the grouping process for work-
flow task V is started. The algorithm tries to fit the task
t to a group in the group list G in respect to a certain
level of deadline relaxation, otherwise, a new group is
created.

4) Once all tasks are assigned to execution groups,
the cumulative execution time E and the total number
of cores R are calculated in lines 15-19. Accordingly,
the cost function value f (x(k)) at the given solution is
computed based on Equation 11.

5) At line 21, the algorithm convergence is checked
against the threshold ∂ . If not converged yet, the gradi-
ent value g(k) is computed and the next step (solution)
x(k+1) is generated as presented in lines 24 and 25,
respectively. Lastly, the best workflow configuration
x(best) is returned.

6) The time complexity of the C-GDHW algorithm is
O(kn2) where k is the cost of computing the function
derivative and n is the number of iterations for the
function to converge [57].

7) The space complexity of the C-GDHW algorithm is
O(nd + d) where d is the number of tasks and also
can be the number of groups in the worst case.
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Algorithm 1Workflow Resource Estimation

1: procedure C-GDHW(w, x(0), ∂)
2: x(best) = x(0)

3: for k = 0 to n do
4: callculateTaskTimes(w,V , x(k))
5: if isValidSolution (x(k)) then
6: V = w.Tasks
7: G = {}
8: for each t ∈ V do
9: if t .isInGroup() == false then

10: g = allocateTaskGroup(t , G, ∂)
11: if g 6= null then
12: addTaskToGroup(t ,G)
13: else
14: createNewGroup(t ,G)
15: E = R = 0
16: for each g ∈ G do
17: E = E + g.leadTaskET ()
18: R = R+ g.totalCores()
19: R = R+ groupStreamTasks()
20: f (x(k)) = E ∗ R
21: if f (x(k)) - f (x(k−1)) ≤ ε then
22: x(best) = x(k)

23: break
24: g(k) = γk1f (x(k)

25: x(k+1) = x(k) − g(k)

26: return x(best)

B. HYBRID WORKFLOW PROVISIONING AND
SCHEDULING ON EDGE CLOUD COMPUTING
The next step after estimating the required amount of
resources is to provision them on the edge cloud environ-
ment and then map the allocated resources to workflow
tasks. In this work, we assume prior knowledge about the
incoming workload, i.e., the amount of data to be processed
and transferred during the execution cycles. Thus, offline
scheduling is a preferred option [58]. The workflow schedul-
ing is formulated as a multi-objective optimization problem
to jointly reduce the end-to-end workflow execution time
T and monetary cost C . Both the workload computation
and data transfer costs are included in the optimization pro-
cess, which approaches to achieve the following objective
function:

min(T ∗ C) (16)

A Cluster-based Hybrid Workflow Provisioning and
Scheduling (C-HWPS) technique is adopted to meet the
requirements of hybrid workflow scheduling to provision
demanded resources and schedule tasks in an edge cloud
computing system. The cluster-based technique works by
constructing sequential execution paths where each path rep-
resents the execution pathway of dependent tasks which
should lead to the last workflow task. As a result, one
task can be founded on different execution paths. Figure 2

Algorithm 2 Cluster-Based Hybrid Workflow Scheduling
procedure C-HWPS(G,D)

P = A = {}
T = C = 0
P = findExecutionPaths(G)
while P 6= ∅ do

Titer = Citer = Tmin = Cmin = 0
ptarget = null
U = getUnScheduledPaths(P)
for each u ∈ U do

p = u− A
Titer ,Citer , S =computePathInEdgeCloud
(p,D)
if Titer ∗ Citer < Tmin ∗ Cmin then

Tmin,Cmin,= Titer ,Citer
ptarget , Starget = p, S

p = ptarget − A
schedulePathInEdgeCloud(p, Starget )
A = A+ t
P = P− ptarget
T = T + Titer
C = C + Citer

return A,T ,C

provides an example of the execution of three paths based
on the input workflow. Three execution paths are constructed
{P1,P2,P3}.

The C-HWPS technique is an iterative process of provi-
sioning and scheduling tasks on edge nodesD1 and two public
clouds D2 and D3 based on the selection of an execution path
at each iteration, which has the minimum of the objective
function (T ∗ C). The execution time T is the sum of com-
putation time (for unscheduled tasks) and the data transfer
time (between scheduled and unscheduled tasks). Similarly,
execution costC (processing and data transfer) on edge cloud
resources is computed. The scheduling process will continue
by adding paths and optimizing time T and cost C until
allocating all tasks.

Algorithm 2 presents the cluster-based hybrid workflow
resource provisioning and scheduling which aims to min-
imize the objective function T ∗ C . The algorithm takes
the inputs of task groups G as the outcome of the resource
estimation phase and the current status of the edge cloud sys-
tem resources D. The status provides details about resources
capacity, availability, connectivity and cost. At line 4,
the algorithm calls the findExecutionPaths function to con-
struct workflow execution paths P based on tasks dependen-
cies structure.

Next, the algorithm iterates over execution paths P to find
the one which has the minimum optimization value of the
current iteration Titer ∗Citer where execution time T and cost
C on edge cloud system D. The algorithm starts with the
first unallocated path u which has at least one unscheduled
task, in other words, [u − A] 6= ∅ where A is a set of
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Algorithm 3 Compute Execution Path in Edge Cloud
1: procedure computePathInEdgeCloud(p,D)
2: T = C = 0
3: S = null
4: ETe,ECe, Se = scheduleInEdge(p,D)
5: TTe,TCe = computeTransferTimeAndCost()
6: OptimCoste = (ETe + TTe) ∗ (ECe + TCe)
7: ETc,ECc, Sc = scheduleInCloud(p,D)
8: TTc,TCc = computeTransferTimeAndCost()
9: OptimCostc = (ETc + TTc) ∗ (ECc + TCc)
10: if OptimCoste < OptimCostc then
11: T = ETe + TTe
12: C = ECe + TCe
13: S = Se
14: else
15: T = ETc + TTc
16: C = ECc + TCc
17: S = Sc
18: return T ,C, S

scheduled tasks. Unscheduled task set [u − A] computation
is evaluated in the edge cloud system D using the function
computePathInEdgeCloud, line 11, which calls the routine
provided in Algorithm 3. In addition to the optimization
values, the function returns the associated resource provi-
sioning and scheduling plan S on the edge cloud system
D. The path with minimum time and cost ptarget will be
selected and scheduled based on the resource provisioning
and scheduling plan Starget . Finally, the algorithm returns
scheduled tasks A, and optimization object variables T and
C . The time and space complexity of the C-HWPS algo-
rithm is O(n) where n is the number of execution paths
and also can be the number of tasks groups in the worst
case.

Algorithm 3 describes the resource provisioning and task
scheduling steps for executing a path p in an edge cloud
system. This work does not assume collaboration between
edge and cloud resources. Thus, the scheduler will effectively
try to keep the execution path unity in one computing sys-
tem and reduces the amount of data exchange at different
computing layers. The algorithm provides two main func-
tions. The first is to schedule tasks in either edge or cloud,
lines 4 and 7. Based on the available resource configura-
tion, execution time and cost are calculated. Stream tasks
have the priority for scheduling at the edge layer. The sec-
ond function computeTransferTimeAndCost, lines 5 and 8,
computes the data migration time and cost computing nodes
based on the data transmission (bandwidth) quality and
cost. Finally, the algorithm returns the resource provisioning
and scheduling plan S with the expected execution time T
and cost C for the given execution path p. The time and
space complexity of the Algorithm 3 is O(1) as execu-
tion time and cost calculations are performed at constant
time.

FIGURE 3. High level stream and batch applications dependencies for
data analytics workflows [60].

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-
posed resource estimation technique, C-GDHW, against two
nominated and comparable techniques. The first technique
is a meta-heuristics technique using Particle Swarm Opti-
mization (PSO) proposed in our previous work [59] and
the second one is the full-mode technique which conducts
a semi-optimization process at queuing system utilization
level with no reduction mechanism to be applied for stream
arrival rate and window size. This technique works as a
baseline to assess the performance parameters’ tuning of
the other two techniques. In addition, this section evaluates
the contribution of edge capability in optimizing the execu-
tion of hybrid workflows. Finally, the optimization time of
the proposed algorithm is investigated in comparison to the
PSO-based algorithm.

Next, we provide the experimental setup which includes
building various hybrid workflow models from an existing
IoT application benchmarking and the resource configuration
of the edge cloud system.

A. EXPERIMENTAL SETUP
For the purpose of experimenting with hybrid workflow
scheduling, we used IoT dataflow benchmarking results pro-
vided by Shukla et al. [60] to build three types of workload
models that satisfy the design concepts of hybrid work-
flow with a reasonable level of structural complexity and
data dependency. In brief, dataflow tasks were evaluated as
sub-workflows and then micro-benchmarking has been con-
ducted by running each sub-task in a single-core machine.
Figure 3 shows a typical IoT dataflow with four types of IoT
data processing tasks. ‘‘Extract Data’’ block involves stream
pre-processing, data normalization and quality check. ‘‘Pre-
dict Behaviours’’ block includes applications for determining
the future state of an IoT system based on a pre-trained
models. ‘‘Train Models’’ involves building and training sta-
tistical models based on historical data. In ‘‘Show Statistics’’
block, related tasks like statistical aggregation and analytics
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TABLE 3. Hybrid workflows characteristics.

TABLE 4. Resource types for edge and cloud systems.

TABLE 5. Bandwidth setup at edge cloud system.

are applied over data streams to understand the behavior of an
IoT system.more related to batch processing. Table 3 presents
the main characteristics of the three hybrid workflowmodels:
small, medium and large.

We extended CloudSim [61] simulator to reflect the
adopted resource model as an edge cloud computing envi-
ronment. The simulated scenario comprises two cloud data
centers (CloudA and CloudB) and edge nodes that reflect
the edge cloud resource model. For each data center, vari-
ous VM configurations, including processing power and cost
were applied. CloudA and CloudB VM configurations are
based on configurations provided by AWS and Microsoft
Azure, respectively. Table 4 provides the resource model
setup for the experiments. At the edge layer, we simulated
two edge resource setups, high and low capability. The former
is used for resource estimation evaluation, while the latter
is used for edge capability analysis in the context of hybrid
workflow computation. Moreover, we consider the variation
in networking quality and cost among the edge cloud system
resources. Table 5 shows the bandwidth setup for the three
type of resources.

Three experiments were conducted. The first experiment
evaluates the performance of the proposed resource esti-
mation technique against PSO-based and Full-mode tech-
niques and with variation in estimation model parameters
(arrival rate, window size and throughput). The second
experiment measures scheduler adaptability and stability
to maintain an optimized workflow execution in response
to windows size and arrival reductions. The third experi-
ment sought to identify the contribution of edge resource
capability to optimization objectives (execution time T and
cost C).

TABLE 6. 95% Confidence interval (CI) - execution time for large
workflow and window size scenario.

B. RESOURCE ESTIMATION EVALUATION
The evaluation of C-GDHW is based on its capability to
optimize the execution of hybrid workflows in terms of exe-
cution time T and cost C concerning the variation of model
parameters (stream window size ω, stream arrival rate λ, and
execution throughput τ ) and workflow structure complexity
(small, medium and large). The window size is the time
interval of processing incoming streams (data messages) to
generate the desired outcome. This involves applying func-
tions for stream pre-processing, validation, aggregation, etc.
The arrival rate is the number of received messages per
unit of time. We defined the throughput as the minimum
percentage of incoming messages to be processed during
the window size. The throughput is a user-defined parame-
ter which reflects the business requirements associated with
the workflow execution. Maintaining a highly accurate pre-
dictive model is an example of high-throughput demanding
applications.

To attain stable estimation results, simulation was carried
out 30 times for each model parameter and workflow struc-
ture combination, and average values are recorded for each
estimation technique. Model parameter values are varied in
a range of 20% to 180% for both windows size and arrival
rate, and in a range of 10% to 90% for throughput. Rela-
tive percentages for the default workflow configuration were
proposed due to the variation in parameter values among
workflow tasks. At 95% confidence level, results show an
acceptable level of variation with reasonable data normal-
ity of sample size of 30. Table 6 shows a statistical anal-
ysis of large workflow execution time for each technique
at the maximum percentage of each model parameter. The
full-mode technique has almost no variance in results as it
applies a deterministic model withminimal optimization. The
PSO-based technique shows the highest variation in reflec-
tion to the randomization behaviour of the meta-heuristics
technique. Next, each optimization case based on each param-
eter variation is discussed.

1) WINDOW SIZE
Figures 4, 5 and 6 show the results of varying window size on
execution time and monetary cost. The C-GDHW technique
shows high stability in controlling the workflow execution
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FIGURE 4. Window size variation impact on the small workflow.

FIGURE 5. Window size variation impact on the medium workflow.

FIGURE 6. Window size variation impact on the large workflow.

time with the increase in window size length. Even though all
techniques are linearly responded to the change in window
size (after 40%), the C-GDHW accomplished the smallest
execution time increase, particularly for medium and large
workflows with 45% and 60%, respectively compared to 60%
and 75% execution time increase in the case of PSO-based
for the same workflow scenarios. In addition, the proposed
estimator was able to maintain the cost of adding more
resources since more and more data streams are collected

during extended data collection intervals. In comparison to
the PSO-based technique, the C-GDHW performed 58% less
cost for running the large workflow with 180% window
size. This potential reduction implies the C-GDHW’s ability
to group a larger number of tasks and effectively perform
periodic resource provisioning. This feature allows IoT appli-
cations to produce more data by adding more IoT devices
or distributing incoming workload on current computation
resources.
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FIGURE 7. Arrival rate variation impact on the small workflow.

FIGURE 8. Arrival rate variation impact on the medium workflow.

FIGURE 9. Arrival rate variation impact on the large workflow.

2) ARRIVAL RATE
Figures 7, 8 and 9 compare the behaviour of the three esti-
mation techniques regarding the variation of stream arrival
rate. Under all hybrid workflow execution scenarios, the
C-GDHWshows steady control over the incoming arrival rate
under the constraints of the queuing system and throughput.
The results revealed C-GDHW capability to maintain a min-
imal increase in the execution time curve regardless of the
stream speed. The PSO optimizer requires more execution

time in response to change in stream speed, particularly with
long-term execution workflow.

Figure 7 shows that for a small workflow with 12 stream
tasks, both estimators demonstrate relatively similar cost-
saving behaviour. Contrarily, with 36 stream tasks, for large
workflow in Figure 9, the proportional difference in cost
reduction is increased as the arrival rate is getting higher.
Reduction percentage increased from 35% to 70%, in the case
of 40% and 180% arrival rate, respectively. An additional
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FIGURE 10. Throughput variation impact on the small workflow.

FIGURE 11. Throughput variation impact on the medium workflow.

FIGURE 12. Throughput variation impact on the large workflow.

advantage of the proposed optimizer is the linearity behaviour
in provisioning more resources (related to the monetary cost)
to overcome high rate streams.

3) THROUGHPUT
In this work, we studied the contribution of application
throughput on workflow execution time and cost. The pro-
posed optimizer was capable of reducing the influence of
high throughput, particularly for the monetary cost. For small

workflows, as shown in Figure 10, the cost increases expo-
nentially with the increase in throughput. Interestingly, the
C-GDHW optimizer shows ability to control the cost (effi-
cient resource utilization) as workflow model is getting more
complex as depicted in Figures 11 and 12.

For execution time, the proposed optimizer linearly
handles the increase in application throughput. Likewise,
the optimizer produced potential cost saving compared
to PSO of 46% with the highest throughput of 90%.
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FIGURE 13. Arrival rate and window size reduction with cost increase: large workflow.

FIGURE 14. Compare the variation of execution time for small and large workflows based on edge capability and change in arrival rate.

Furthermore, as the system progresses to high throughput,
the C-GDHW and PSO are not sufficiently outperforming the
full executionmode in reducing the end-to-endworkflow exe-
cution time. This clearly stated the contribution of migrating
more data to the cloud since edge nodes do not collaborate
to handle data flooding from IoT devices. Moreover, the high
workload at the network edge can degrade the performance
of delay-sensitive applications [62]. Thus, a problem still to
be solved is how to support the execution of delay-sensitive
applications at the edge layer.

4) ADAPTABILITY ANALYSIS
We studied the C-GDHW optimizer behavior in reducing
stream task arrival rate andwindow size to optimizeworkflow
execution cost. Such reduction in optimization parameters
has a direct impact on workflow execution outcomes. For
example, in predictive analytics, the amount of data plays a

vital role in training prediction models and produce highly
accurate results. On the other hand, processing more data
produces additional overhead on computation cost. Thus,
it is essential to provide a balanced estimation to handle the
trade-off between performance and cost. Figure 13 demon-
strates the optimizer potential in providing a stable arrival rate
and window size reduction for a large-scale hybrid workflow.
For example, with variation in throughput, the optimizer
provides the ability to preserve stable reduction for the arrival
rate and linear reduction for the windows size in responding
to the exponential cost increase.

5) EDGE CAPABILITY ANALYSIS
Figure 14 shows the relation between the capability of edge
resources and workflow execution time and cost with the
variation in stream arrival rate. Edge capability indicates the
computation performance of edge resources. Table 4 provides
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FIGURE 15. Compare optimization time between PSO and C-GDHW for
different hybrid workflows (log scale).

details about low and high edge resource configuration, low
capability refers to the small and medium types and high
capability refers to large and xlarge VM types, respectively.
Despite variation in stream arrival rate, results indicate a
steady workflow execution time with low and high edge
capability, with a 15% average difference andminimal contri-
bution of theworkflow complexity. On the other hand, the fig-
ure implies a linear increase in monetary cost, particularly for
the large hybrid workflow scenario. The cost increases grad-
ually from 56% (lowest arrival rate) to 8% (highest arrival
rate). Overall, the graph shows that as the stream arrival rate
increases, dependence on high-performance edge machines
becomes costly compared to low-performance machines.
This conclusion will motivate researchers to consider and
move toward commodity edge computing.

6) SCALABILITY ANALYSIS
The increase in optimization time can have a significant
impact on the scheduling process, particularly for large work-
flows. In a more complex scenario, the scheduling process
could be repeated at short intervals, for example, to provide
an accurate decision about model parameters, such as arrival
rate and window size. Figure 15 shows the advantage of
the proposed estimation algorithm, over our previous work
using the PSO algorithm, in sustaining the optimization time
with variation in workflow complexity and number of tasks.
The optimization time increases by 45%, 55% and 60% for
small, medium and large workflows, respectively. For the
GDS-based optimizer, the increase in optimization time
remains constant with 25% on average as the workflow struc-
ture is getting more complex, which reveal the scalability
of the proposed scheduling. Moreover, The low optimiza-
tion time of the GDS-based optimizer suggests that linear
optimization models should be adopted to solve complex
workflow estimation and scheduling problems.

VI. CONCLUSION
We presented a hybrid workflow scheduling framework for
an edge cloud computing resource model. The framework
includes two stages. In the first stage, we proposed a resource
estimation algorithm based on a linear optimization approach,

gradient descent search (GDS), while in the second stage,
we proposed a cluster-based provisioning and scheduling
technique for hybrid workflows in heterogeneous edge cloud
resources. The aimwas to achieve amulti-objective optimiza-
tion of execution time and monetary cost under constraints of
deadline and throughput. In comparison to the two nominated
scheduling techniques, namely, PSO and Full-mode, the pro-
posed technique performed better to control the execution
of hybrid workflows by efficiently tuning several param-
eters, including stream arrival rate, processing throughput
and workflow complexity. For large and complex workflows,
the proposed scheduler provides significant improvement in
terms of execution time and monetary cost in comparison to
the PSO-based optimizer with an average of 8% and 35%,
respectively. Moreover, the GDS-based technique shows a
significant reduction in the optimization complexity com-
pared to the PSO technique, with 50% on average.

For future work, we are planning to experiment with hybrid
workflow provisioning and scheduling on cooperative edge
cloud computing. We are also planning to extend the work
to provide a convenient cost model from user and service
provider perspectives.
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