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ABSTRACT Network slicing and Multiple-Access Edge Computing (MEC) are key technologies in fifth-
generation (5G) networks. The flexible programmability of network slicing and the decentralization of MEC
facilitate the deployment of Information-Centric Networking (ICN). The caching feature of ICN can provide
users with low-latency data services. Although many existing works have addressed the cache deployment
problem or the cache optimization problem, most of them do not consider the issue of caching resource
allocation in the dynamic and hierarchical environment. Dynamic deployment of cache nodes can improve
the operator’s revenue as much as possible while accurately allocating the caching resources can reduce the
user-requested latency. Therefore, in this study, a problem of the operator’s expected revenue maximization
is presented in an environment combining dynamic deployment of the MECs and the caching-enabled
node ICN-Gateway (ICN-GW). To solve this problem, we propose an optimal stopping theory (OST)-based
dynamic hierarchical caching resources allocation (ODH-CRA) algorithm. The algorithm consists of three
parts. Firstly, an Integer Linear Programming (ILP) solution is proposed to determine the optimal deployment
of the MECs. This method determines the optimal location and number of the MECs by considering
deployment costs and service requirement costs synthetically. Secondly, a redeployment technique based
on the OST is proposed to determine the best redeployment time of the MECs according to the values of
latency violations and the service latency requirements. Finally, an improved elite genetic algorithm (IEGA)
is proposed to find the optimal solution of the hierarchical caching resource allocation. This method searches
the optimal scheme by maximizing the operator’s revenue joint caching costs and energy consumption.
Ultimately, we perform a series of simulation experiments to compare the proposed method’s performance
to dynamic and hierarchical methods. Our solution can effectively reduce the latency for users’ requesting,
improve the revenue of ICN Communication Service Provider (ICSP), and provide an effective caching
resource allocation scheme for the next generation of Internet of Things (IoT) networks.

INDEX TERMS Network slice, MEC, ICN, hierarchical caching resource allocation, dynamic deployment.

I. INTRODUCTION
A very low latency communication environment plays a
vital role in the Internet of Things (IoT). Network caching
appears essential to accommodate the Quality of Experi-
ence (QoE) requirements of latency-sensitive applications.
However, there is an evident mismatch between the expecta-
tion and implementation that existing IoT devices are intrinsi-
cally resource-constrained devices and cannot offer real-time
scalable applications with minimal latency and high QoE.
Now many researchers are committed to the research of the
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new generation IoT with Information-Centric Networking
(ICN), Network slicing, and Multiple-Access Edge Comput-
ing (MEC) enabled in 5G [1]–[3].

5G, as an underlying technology, has an indispensable
role to play for advancements of numerous technologies and
services, IoT being one of them [4]. Significant differentiator
operators seek in 5G is the transition toward a service-centric
infrastructure. At present, many researchers are committed
to enabling ICN service in 5G networks [5]–[7] since ICN
is a content-centric service decoupling in time and space
between publisher and subscriber [8]. ICN can introduce
the named content as a network primitive and provide the
in-network cache function. The design of caching schemes
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has been attracting a lot of attention, and many researchers
use game theory to solve the caching-related problem.
M. Hajimirsadeghi et al. [9] developed an analytical frame-
work in ICN and used game theory to study the caching
strategy. The authors perform cache operation under the
assumption that the caching cost is inversely proportional to
popularity. The demand of some users can not be satisfied
since caching cost is very high for these content with low
popularity but higher quality. Y. Song et al. [10] applied cache
function on the radio access network side. They paid attention
to the joint optimization of latency and energy consumption
of popular content by using the bargaining game method,
which ensured good fairness. However, the author did not
consider the importance of caching costs. To stimulate CPs,
F. Shen et al. [11] proposed an incentive proactive caching
mechanism based on game theory. The mechanism pays
attention to caching costs while ignoring the influence of
transmission energy consumption.

The optimal caching scheme has been studied, and
the problem of offering the low-latency data service and
the high-speed migration of content between the edge and
the central cloud system is not yet resolved, for which
MEC has been proposed. The typical characteristics of
MEC technology include the closest proximity, ultra-low
latency, multi-access function, and network context informa-
tion [12]. This brings in the importance of the caliber ofMEC.
A. Ndikumana et al. [13] proposed a collaborative caching
resource allocation and computing resource sharing scheme
for the MECs. This method can reduce the number of data
exchanges between users and the remote cloud, reducing
network latency. However, there are many high-mobility 5G
applications such as tactile Internet and autonomous vehicles.
To further adapt to the needs of users with high mobility,
R. Xie et al. [14] considered a hierarchical caching architec-
ture that core network and radio access network (RAN) have
the caching capability in 5G networks and studied the prob-
lem of hierarchical caching resource sharing for the mobile
virtual network operators (MVNOs). Y. K. Tun et al. [15]
examined a two-level resource allocation problem while used
the Kelly mechanism to enable efficient resource utiliza-
tion and maximized the total valuation of MVNOs. How-
ever, they ignored the latency requirement of the ICN-UE.
Z. Zhang et al. [16] proposed a novel hierarchical proactive
caching approach to relieve the high latency caused by users’
high speed. The approach could determine the location of
the video segment and proactively cache videos by predicting
users’ future demands. However, they ignored the influence
of operators’ revenue.

The expected revenue of operators cannot be ignored.
This parameter ensures that users can obtain reliable data
and improve this parameter by reasonably deploying storage
resources. In the 5G network, network slicing can divide
a physical network into multiple virtual networks consist
of a series of virtual network functions (VNFs) to support
ICN service requirements [17]. H. Jin et al. [18] proposed
a heuristic method on the virtual cache function deployment

from the point of view of ICN and service provision in
the slicing framework, which are formulated to minimize
the weighted hops for gaining contents. J. Liu et al. [19]
proposed a hierarchical ICN slice system and determined the
quantity, the types, and the locations of the ICN-related VNF
from the perspective of the requirements and distribution of
ICN users by using the integer linear programming (ILP)
method. However, these approaches imply a running cost
by reserving resources that might never be used. Moreover,
in the 5G Network, MEC has made an outstanding contri-
bution in providing caching, implemented by the User Plane
Function (UPF) sinking to the edge of the network. Therefore,
dynamic MEC-oriented ICN can be implemented in the 5G
architecture driven by the network slicing framework and
can improve the network transmission efficiency, network
performance and significantly reduce the capital expendi-
tures (CAPEX) and operational expenditures (OPEX) [20]
of the ICN Communication Service Provider (ICSP).
T. Subramanya et al. [21] integrated the MEC node and UPF
element to reap the benefits of the MEC system and used the
ILP technique to solve the VNF-related dynamic deployment
problem. This method could reduce the latency from users
to the MEC nodes while ignoring the benefits of the opera-
tor. Although these researchers have considered the dynamic
deployment and hierarchical caching in ICN slices, there is a
lack of comprehensive analysis between the service demand
of ICN-UE and the ICSP’s revenue in the 5G networks.

By comparing with the existing articles, this paper studies
the dynamic hierarchical caching resource allocation prob-
lem for the 5G-ICN slice to meet the latency demand of
ICN-UE and improve the income of the ICSP as much as
possible. To this end, our work has made the following
contributions:

1. According to the 5G core network design tenet, we dis-
cuss the 5G core network architecture supporting ICN.
On this basis, we propose a dynamic hierarchical caching
architecture.

2. We comprehensively set up a revenue maximization
problem joint caching cost and energy consumption based
on the dynamic hierarchical caching architecture. Moreover,
we prove the feasibility of the problem and propose an
optimal stopping theory (OST)-based dynamic hierarchical
caching resource allocation (ODH-CRA) algorithm to solve
this problem.

3. We used the ILP method to determine the optimal num-
ber and location of the MEC nodes. Based on the latency
requirement of the ICN-UE, we used the OST algorithm to
find the best redeployment time for the MECs.

4. We propose an improved elite genetic algorithm (IEGA)
to solve the hierarchical allocation problem of the internal
caching resources of the operator, which can seek a set of
optimal solutions to maximize the benefits of the ICSP.

5. Compared with other algorithms, the proposed algo-
rithm can improve the revenue of the ICSP and reduce the
latency for users’ requesting. Therefore, this scheme provides
an efficient caching resource method for the IoT network.
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FIGURE 1. 5G core network architecture supporting ICN.

The rest of this article is organized as follows. In Sec-
tion II, we discuss the network architecture and systemmodel.
A dynamic deployment algorithm for theMECs is designed in
Section III, including the optimal deployment number, loca-
tion, and redeployment time of MEC nodes. Section IV intro-
duces an IEGA algorithm to solve the hierarchical caching
resource allocation problem within the operator. The sim-
ulation results are presented in Section V. In Section VI,
we summarize this paper.

II. NETWORK ARCHITECTURE AND SYSTEM MODEL
This section describes the network architecture and system
model. We also elaborate on the dynamic deployment of
MEC, the expected revenue maximization function, and rev-
enue maximization analysis in detail.

A. NETWORK ARCHITECTURE
Fig. 1 shows the 5G core network architecture support-
ing ICN [22]. ICN can provide a location-independent
cache function, which matches the information-centric nature
of IoT applications. In the 5G networks, the ultra-low-
latency services are accompanied by the critical cost require-
ment, which can be solved by placing storage resources
with advanced applications to the network edge. Moreover,
the core network has formed a cloud interconnection network
architecture with the new core and the MECs. On this basis,
we propose the dynamic hierarchical caching architecture
shown in Fig. 2, which consists of the ICN components such
as ICN-Gateway (ICN-GW) and local ICN-DN consisting of
the MECs. The ICN components should be implemented by
UPF as a user plane function. UPF is used as the protocol

data unit (PDU) session anchor point and uplink classifier
(UL-CL) in the diagram.

The 5G core network architecture supporting ICN mainly
includes the essential functions of the 5G core network and
ICN service expansion functions. The ICN Session Manage-
ment Function (ICN-SMF) is an extension of the Session
Management Function (SMF) and is responsible for man-
aging session requests for ICN services. The ICN Applica-
tion Function (ICN-AF) is an extension of the Application
Function (AF) and is responsible for providing business to
users. The ICN-AF northbound interface interacts with the
5G operators’ Network Exposure Function (NEF) to deploy
ICN services and direct traffic. The Access and Mobility
Management Function (AMF) reports user location infor-
mation to the Policy Control Function (PCF) through SMF.
According to the user location information and subscription
information, PCF adds edge UPF anchor points and inserts
UL-CL. When ICN-UE accesses the network, the ICN-SMF
communicates with the SMF for PDU sessions and is respon-
sible for flexible forwarding within the ICN-GW and MEC.
The SMF is accountable for managing the communication
links. As shown in Fig. 2, ICN-UEs set as the red color
move to another region of the MEC, resulting in a reassign-
ment of the MEC. When the MEC region can not meet a
user’s request, the network can trigger the UL-CL function
to prevent all users of the MEC region from occupying edge
resources.

B. SYSTEM MODEL
The system model includes the ICSP and ICN Commu-
nication Service Consumer (ICN-CSC). ICSP is primarily
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FIGURE 2. Dynamic hierarchical caching architecture.

responsible for providing ICN services, including the design,
construction, and operation of ICN services. ICN-CSC is
a consumer of ICN services, including the CPs and the
ICN-UE. The difference is that CP is responsible for provid-
ing content to ICN-UE, and ICN-UE requests content from
the ICSP. This article considers only the case where ICN-UE
moved within a single operator.

To reap the benefits of ICN and the MECs, we consider
a caching architecture consisting of ICN-GW and the MECs
implemented by the UPF in the 5G-ICN slice. The ICSP is
responsible for managing the caching resource of the 5G-ICN
slice. Moreover, the ICSP can allocate the caching resource to
the CPs according to the requirements of the ICN-UEs. The
CPs can place the content to the cache nodes based on the
content demands of the ICN-UEs. However, the request of
the ICN-UE can not be satisfied, the dynamic deployment of
cache nodes and allocation of the caching resource are con-
sidered. The dynamic deployment of the MECs is introduced
in subsection C, and resource allocation of the cache nodes is
introduced in subsectionD and E. At t , we express the number
of theMEC asM t

ald, and the number of CP isN . The notations
used in this article are summarized in Table 1.

C. MEC DEPLOYMENT
To satisfy the demand of the ICSP and reduce the latency
for reaching the content, we propose a deployment problem
of the MECs in the 5G-ICN slice. The deployment of the
MECs is implemented by the UPF, which is responsible for
processing data plane packets to the MECs.

The network is represented as a tuple G(M ,L,U ), where
M , L and U denote the sets of all MEC nodes, links between
the MECs, and the users with active PDU sessions. The MEC
nodes contain the potential deployment nodesMa, the content
cache nodeMc and the target nodeMtar . PDu denotes the set
of PDU session requests. The PDU sessions are characterized
by the latency requirement (θ) and the minimum number of

TABLE 1. Table of notations.

the MECs (Mu
a ) to guarantee the service quality. The detail

will be introduced in Section III.

D. REVENUE MAXIMIZATION FUNCTION
In order to improve the operator’s revenue, we formulate
a Stackelberg game with the ICSP as leader and CPs as
followers for caching resources allocation. The Stackelberg
game can maximize the profit function of the player. For
convenience, the number ofMECs deployed at time t isM t

ald .
The ICSP sets the price p per unit of cached resources, and
CPs determine the amount of cached resources kn to purchase
from the ICSP based on the ICSP’s price p.

We first analyze the profit function of the followers. If the
CP purchases caching resources from the ICSP to place a
large amount of popular content, the user requests time is
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reduced, and each CP will obtain revenue by caching the
popular content. At the same time, CP needs to pay the rent
for purchasing caching resources from the ICSP. The more
caching resources purchased, the higher the cost to the CPs.
αn is CPn’s cost coefficient. We can estimate the CP revenue
by the following equation:

Rn = log2

(
1+

ln∑
n′ 6=n ln

)
− αnpkn (1)

αn ≥ 0 (1.1)∑
n

xn,jkn ≤ sj (1.2)

Constraint (1.1) states that CPn will pay attention to
caching cost. Constraint (1.2) ensures the number of caching
resources that all CPn place cannot exceed the total storage
capacity, and sj is the storage capacity of MEC j.
The probability of the occurrence of any content ranked

k obeys the Zipf distribution, denoted as p(k) = z/kβ , z is a
constant, β is the Zipf distribution index. Inspired by [23], for
Zipf-like distributions, the cumulative requested probability
of the top kn popular contents can be presented as:

ln =

∑kn
k=1 k

−β∑
k k
−β
≈

k1−βn

(1− β)�
(2)

Because the sum interval is limited, we can use the calculus
method to get the approximate solution.

The ICSP makes profits by selling caching resources to
CPs, and the profit is affected by the price and the amount
of caching resources. We define the ICSP’s revenue as:

RICSP =
∑
n

pkn −∑
j+1

cost (kn)

 (3)

The cost of ICSP is affected by the caching cost and
transmission energy consumption, set the weight factor λ1
and λ2 to be equal, and then adjust them according to the
requirements of the ICSP. Therefore, cost(kn) is defined as:

cost (kn) = xn,jkn,j (λ1an + λ2wa)

+ xn,C N kn,CN (λ1aCN + λ2wb) (4)

p ≥ 0 (4.1)∑
j

xn,j + xn,C N = 1 (4.2)

λ1 + λ2 = 1 (4.3)
where an is the cost of caching a single resource for the
ICSP in the MEC. an is determined by the cost of dynamic
deployment of the MEC. aCN is the cost of caching a single
resource for the ICSP in the ICN-GW. wa is the energy
consumption that the ICSP transfer a single resource from
the CP to the MEC. wb is the energy consumption that the
ICSP transfer a single resource from the CP to the ICN-GW.
xn,j(xn,j ∈ (0, 1)) and xn,CN (xn,CN ∈ (0, 1)) represent whether
the caching resources of CPn will select the MEC j and the
ICN-GW, respectively (=1, yes; =0, no).
Constraint (4.1) states that the price is non-negative. Con-

straint (4.2) ensures that CPn can only select one node for
content caching at time t . Constraint (4.3) indicates that we

need to balance the relationship between caching cost and
transmission energy consumption, and the sum of weight
factors for cost and energy consumption is 1.

E. REVENUE MAXIMIZATION ANALYSIS
We need to find the perfect Nash equilibrium of the Stack-
elberg game. In this paper, given the pricing of the ICSP,
the relationship between CPs is a non-cooperative game, and
when every rational participant will not have the impulse
to change the strategy independently [24], there is a Nash
equilibrium solution.
Theorem 1: For a non-cooperative game, if the game sat-

isfies: 1) the set of players in the game is limited; 2) The
set of strategy space of the game belongs to the bounded
closed set in Euclidean space; 3) If the profit function of
the non-cooperative game is continuous and concave in the
strategy space, there is a Nash equilibrium solution.

Proof: Given the price of caching resources, the number
of game players is limited, and the first partial derivative of
the function in Eq.(1) is:

∂Rn
∂kn
= −αnp− (β − 1)

∑
n′ 6=n k

1−β
n′∑

n′ 6=n k
1−β
n′ k1−βn + 1

k−βn (5)

The second partial derivative of Eq.(1) can be calculated
as:

∂2Rn
∂ (kn)2

= −c(1− β)
βk1−βn + c(
ckn + k

β
n

)2 (6)

where c =
∑

n′ 6=n k
1−β
n′ , it is the sum of other CPs’ popularity.

When αn > 0, λ1, λ2 ≥ 0, an, aCN > 0, xi,j, xi,C N ∈

[0, 1], 0 < β < 1, p > 0, kn > 0, the set of the strategy space
of each player is a bounded closed set in Euclidean space,
the profit function is continuous on its strategy space, and
the functions of Eq.(1) and Eq.(3) about kn and p are quasi-
concave, so there is a Nash equilibrium solution to the game.

Next, we analyze the ICSP’s revenue function of Eq.(3),
which can be rewritten as Eq.(7), as shown at the bottom of
the next page. The second derivative of the ICSP’s revenue
function can be calculated as Eq.(8), as shown at the bottom of
the next page. Therefore, the Stackelberg equilibrium exists.
Theorem 2: When the second derivative is a strictly con-

cave function in the domain of definition, and the first deriva-
tive is a monotone function in the domain, the solution of
Nash equilibrium exists and is unique.

Proof: When 0 < β < 1, αn > 0, kn > 0, ∂2Rn
∂(kn)2

< 0.

Eq.(6) is a strictly concave function, and the first derivative
is monotonically decreasing. We can get from Eq.(9) and
Eq.(10), there is a unique extreme value, which is proved by
Theorem 2.

lim
kn→0

∂Rn
∂kn

> 0 (9)

lim
kn→∞

∂Rn
∂kn

< 0 (10)

We have proved that the Stackelberg game exists a Nash
equilibrium. The CPs maximize revenue by calculating the
optimal amount of caching resources to purchase according to
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Eq.(5). The ICSP maximizes revenue by deciding the price of
caching resources and choosing the node to allocate caching
resources. The problem of maximizing the ICSP’s revenue
is an NP-hard problem since p > 0, xn,j ∈ (0, 1), and
xn,CN ∈ (0, 1).

In Section IV, we propose an IEGA algorithm to solve
the optimal caching resources allocation scheme within the
ICSP. Algorithm IEGA initializes the price and then evaluates
where to allocate the caching resources based on the price.
Tomaximize the revenue of the ICSP, we optimize the scheme
x and then search for the price p. The iterative process contin-
ues until the change of resource allocation scheme does not
follow the price evolution within a predetermined threshold
or the predefined maximum number of iterations. After the
Stackelberg game reaches the equilibrium, the CPs obtain the
optimal amount of caching resources to purchase via Eq.(5).

III. DYNAMIC DEPLOYMENT OF THE MEC
In order to solve the deployment problem of the MECs,
we use ILP for solving in this section. This approach consid-
ers the deployment cost and service requirements comprehen-
sively. Then, we propose an OST algorithm to reduce latency
further.

A. OPTIMAL DEPLOYMENT OF MEC
NFV technology enables the separation of different functions
on the same infrastructure [25]. NFV technology provides
technical support for the deployment of the MEC. We use
ILP method to get the optimal numberM t

ald . The following is
a detailed introduction.

The essential cost of deploying a MEC in a network con-
sists of two parts: deployment cost Ddepp and operation cost
Drunp . mdepa ∈ (0, 1) indicates whether the ICSP needs to
deploy MEC when ICN-UE is moving into the MEC region.
We can denote Cdep as:

Cdep =
∑
a∈M

(
Ddepp + D

run
p

)
· mdepa (11)

ICN mainly focuses on the time spent by users requesting
content, which is the critical technical indicator to evaluate
the performance of ICN. The routing cost of ICN-UE request
to content is Crou , aua ∈ (0, 1) states whether user u’s PDU
session request is assigned to node a. We can denotes Crou as
follows:

Crou =
∑
a∈Ma

∑
u∈PDu

∑
l∈L

tuac · a
u
a (12)

After MEC is deployed, ICN-UE sends name-based PDU
session requests to a MEC node. If the content is found
in Content Store (CS) of the MEC node, the content will
be sent to the user, and the request time of ICN-UE is tcs.
If the content is not found, then the MEC node will check its
Pending Interest Table (PIT) for an entry of the same content.
If an interest already exists, the ingress interface is added to
the existing entry and updates its traffic path toMc [26]. At the
same time, the current interest packet is dropped. The request
time for ICN-UE is t lPIT . Otherwise, a new entry is created
in PIT. Then, turn to the Forward Information Base (FIB)
and forward the interest to the next-hop MEC [27] based
on the name prefix. When the packet arrives, MEC looks in
the PIT for a match. If found, the MEC will transmit and
cache the data to the requesting node. Otherwise, UPF will
act as UL-CL and send the request to the core network node
ICN-GW, and the request time of ICN-UE is t lFIB.
tproc is the time used by the MEC node to process the

PDU session; tprop is the time used by reaching the content,
including tcs, t lPIT and t lFIB. The request time to the content tac
consists of tproc and tprop.

tac = tproc + tprop

= tproc +
(
tcs + t lPIT + t

l
FIB

)
· xn,j (13)

tac ≤ θ (13.1)

xn,j ∈ X (13.2)
The constraint (13.1) states that the request time cannot

exceed the service time, θ is the service latency requirement
of the PDU session. Constraint (13.2) states that the content
must be cached where the content is requested.

The ICSP is responsible for the cost of reassignment of
the MEC when the ICN-UE moves. The cost is expressed
as Cu

a,tar . The reassignment of a PDU session is indicated by[
autar − a

u
a
]+. This expression is 1 if the PDU session has been

reassigned. Otherwise,
[
autar − a

u
a
]+ is 0.

Crea =
∑
a∈M

∑
tar∈M

∑
u∈PDu

Cu
a,tar ·

[
autar − a

u
a
]+ (14)

The ultimate goal of the MEC deployment is to
minimize the ICSP’s costs while meeting user latency
requirements:

min
(
η1Cdep + η2Crou + η3Crea

)
(15)

η1 + η2 + η3 = 1 (15.1)

mdep
a ≤

∑
u∈U

aua (15.2)

RICSP =
∑
n

pkn −∑
j

xn,jkn,j (λ1an + λ2wa)− xn,C N kn,CN (λ1aCN + λ2wb)


=

∑
n

{(
1
αnp

(1− β)
) 1
β+1

( ∑
j xn,j (p− λ1an − λ2wa)

+xn,CN (p− λ1aCN − λ2wb)

)}
(7)

∂2RICSP
∂p2

= −
1

αnp3(β + 1)

{∑
n

2(1− β)
(∑

j xn,j (λ1an + λ2wa)+ xn,C N (λ1aCN + λ2wb)
)
(p+ 1)

}
< 0 (8)
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∑
a∈M

mdep
a ≤ |M | (15.3)∑

a∈M

aua ≥ M
u
a (15.4)∑

a∈M

∑
tar∈M

(
autar + a

u
a
)
= 1 (15.5)

η1, η2, η3 are the weights of essential cost, routing cost, and
reassignment cost in the MEC deployment process, respec-
tively. Constraint (15.1) ensures that we need to comprehen-
sively analyze the importance of deployment cost, routing
time, and reassignment cost. Constraint (15.2) indicates that
the allocation of PDU sessions during MEC deployment
cannot be empty. Constraint (15.3) states that the number of
MEC deployments cannot exceed the total number of nodes.
Constraint (15.4) ensures that the reliable transmission of
a PDU session should be guaranteed, Mu

a is the minimum
number of MEC nodes required by a PDU session. Constraint
(15.5) indicates that PDU sessions are allocated to at most one
MEC node after migration.

B. OPTIMAL STOPPING THEORY
To further reduce the latency of users’ requests, we pro-
pose an OST algorithm. This method can determine the best
redeployment time t∗ based on satisfying the users’ latency
requirements.

The optimal stopping theory determines the time of action
based on past events to maximize the average reward [28].
The reward is related to time violations. Specifically, we have
a sequence of random variables Tt and a sequence of reward
functions f (Tt ). If stop at time t , we can get a reward function.
The optimal stopping theory determines the stopping time
T that maximizes the expected reward, usually called the
stopping time T = t .
For example, we determine the optimal time t∗, the payoff

is calculated as f (Tt∗ ). At the stop time t + 1, f (Tt∗ ) cannot
be less than the payoff f (Tt+1).

t∗ = inf {t ≥ 0 : f (Tt) ≥ E [f (Tt+1) | F (Tt)] (16)
Due to the constant change of user location, the status of

the MEC deployment can be adjusted due to user latency,
service interruptions, and additional overhead. To reduce the
deployment cost and latency, we define a random variable T ut .
If the request time of the PDU session exceeds the service
latency requirements at time t , T ut is 1. Otherwise, T ut is 0.

T ut =

{
1 if tuac ≥ θ
0 otherwise

(17)

At time t , the number of PDU sessions violating the latency
requirement can be defined as:

Tt =
∑
u∈PDu

T ut (18)

If this threshold is exceeded, the MEC needs to be rede-
ployed, where A is the expected number of affected PDU
sessions and incurs the expected cost E[θ].

E[θ ] =
∑
a∈M

∑
t∈M

∑
uθ∈PDu

A ·
[
auθt − a

uθ
a
]+ (19)

To reduce the impact of the MEC redeployment, we need
to allocate as many PDU session requests to the MEC as
possible at time t , and the number that violates service level
should not exceed 2. If the number of PDU sessions violat-
ing latency requirements has exceeded the latency tolerance
2, we will measure whether MEC needs to be redeployed.
Tt is the number of violations of delay tolerance at time t .
κ ∈ [0, 1] is a weight factor. E[θ] is the redeployment cost
after exceeding latency tolerance. Therefore, the maximum
number of allowed latency violations can be defined as:

f (Tt) =

{
Tt if Tt ≤ 2
−κE[θ ] if Tt ≥ 2

(20)

Our target is to find the optimal time t∗ to maximize f (Tt )
when giving time series Tt . In other words, if the latency
violations are not exceeded, find the time t∗ to reach the
maximum Tt . If the latency violations are exceeded, find the
time t∗ to maximize −κE[θ]. We can define it as follows:

sup
t≥0

E [f (Tt)] (21)

According to [29], we evaluate the optimal deployment
of the MEC at the next moment. Given that T0 = 0, 2,
T1, . . . ,Tt and the constraint conditions are satisfied, the opti-
mal stopping time t∗ can be obtained as:

t∗ = inf

{
t ≥ 0 :

2−Tt∑
t=0

(Tt + t)P(T = t)

+ κE[θ ]

(
1−

2−Tt∑
0

(Tt + t)P(T = t)

)
≤ Tt

}
(22)

Proof:Given Tt ≤ 2, the conditional probability of Tt+1
is:

E [f (Tt+1) | Tt ≤ 2]

= E [Tt+1 | Tt ≤ 2,Tt+1 ≤ 2]P (Tt+1 ≤ 2)

+E [κE[θ ] | Tt ≤ 2,Tt+1 > 2]P (Tt+1 > 2)

= E [Tt + T | T ≤ 2− Tt ]P (T ≤ 2− Tt)

+E [κE[θ] | T > 2− Tt ]P (T > 2− Tt)

=

2−Tt∑
0

(Tt + t)P(T = t)

+κE[θ ]

(
1−

2−Tt∑
0

(Tt + t)P(T = t)

)
(23)

The specific algorithm is presented in Alg. 1. In order
to verify the effectiveness of the algorithm, we deploy it in
a limited time T lit , the complexity of the OST algorithm is
O(T lit ).

IV. HIERARCHICAL CACHING RESOURCE ALLOCATION
WITHIN THE ICSP
Network edge caching can improve network performance.
In order to make rational use of network resources and reduce
the load of edge networks, users with low-performance
requirements can migrate their demands of caching resources
to the ICN-GW. And caching in the ICN-GW and
dynamic MECs decreases the session migration costs of the
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Algorithm 1 OST Algorithm
Input: Node setM ,L,U , latency tolerance 2.
1: Initialize T ut = 0.
2: Derive Tt based on T ut .
3: for t = 1, 2, . . . ,T lit do
4: t∗ = inf {t ≥ 0 : f (Tt) ≥ E [f (Tt+1) | F (Tt)] .
5: if Tt ≤ 2 then
6: Generate latency violations Tt
7: else
8: Generate latency violations −κE[θ]
9: end if

10: Find the optimal time t∗ to maximize f (Tt ), that can
be defined as supt≥0 E [f (Tt)]

11: end for
12: return t∗, and f (Tt )

high-mobility users and significantly satisfies the low-latency
applications in the 5G network environment. Moreover, rea-
sonable caching resource allocation can improve the opera-
tor’s revenue. In this section, hierarchical caching resource
allocation can improve the ICSP’s revenue through integrat-
ing cache costs and energy consumption. However, the prob-
lem of allocating caching resources is an NP-hard problem.

The genetic algorithm (GA) draws on Darwin’s theory of
evolution and Mendel’s theory of heredity. GA can be used
to solve game problems and 0-1 knapsack problems [30].
It operates directly on the structure object and has better
global optimization ability. Compared with other heuristic
algorithms, the solution set is closer to the global optimal.
Due to the statistical error in the selection process, the canon-
ical genetic algorithm (CGA) may lose the optimal individ-
ual and cannot converge to the global optimal. Therefore,
an ‘‘IEGA’’ algorithm is proposed in this paper to directly
copy the best individuals in the evolutionary process to
the next generation. We use cosine similarity to define the
crossover probability, which ensures the system is only per-
formed on the chromosomes with low similarity to improve
the accuracy of the solution. Our method can find the global
optimal solution of caching resource allocation.

Eq.(3) combines the caching cost and transmission energy
consumption, and the ICSP’s allocation of the caching
resources cannot be determined, which belongs to the
NP-hard problem. The IEGA algorithm is proposed to solve
the problem. It consists of four parts: selection, crossover,
mutation and repair.

In this paper, the genetic code is represented as xn,j+1,
the maximum number of iterations is It , and the popula-
tion number is I . The chromosomes are denoted by Xi =
(xn,1, xn,2, . . . , xn,M t

ald+1
). Population is expressed as X =

(X1,X2, . . . ,XI ). If the corresponding individual cannot find
aMEC node to respond to CP’s request, the individual should
be reinitialized until the condition is met. If a CP is paired
with multiple MEC nodes, the node with the most significant
profit and satisfying the constraints should be selected. Oth-
erwise, the individual should be reinitialized.

In the IEGA algorithm, the most common selection strat-
egy is the proportional selection strategy. The probability of
an individual is the ratio of the difference between individual
fitness and minimum fitness to the sum of all individual
differences. f (Xi) is individual fitness value, fmin is the mini-
mum value of individual fitness, and the probability of Xi is
expressed as PXi , which is the possibility of being selected for
offspring breeding. we can define it as follows:

PXi =
f (Xi)− fmin∑I
i=1(f (Xi)− fmin)

(24)

For the ω round, ξw ∈ U (0, 1). When satisfied PPXi−1 <
ξw < PPXi , Xi is selected [31]. Existing work has proved that
the elitist genetic algorithm is globally convergent [32].

The purpose of crossover is to produce new offspring
by combine two chromosomes. Many scholars recommend
selecting a crossover probability in a fixed value. In this
paper, we improve the cross probability, which is defined
by a cosine probability. Furthermore, its crossover opera-
tion can only be manipulated when the two chromosomes
have low similarity. This operation is carried out to reduce
the probability of producing unnecessary chromosomes [33].
Chromosome Xi and chromosome Xi′ cosine similarity is
defined as:

cos (Xi,Xi′) =
Xi · Xi′

|Xi| |Xi′ |
(25)

Mutation operation is to maintain the diversity of the pop-
ulation. In this paper, we do not change the mutation prob-
ability. The mutation probability is Pm. A repair operation
follows the mutation is to remove the chromosomes that do
not meet the requirements. Suppose the CP has not yet sent
a request to the ICSP corresponding to one or more new
individuals. In that case, the individual will be replaced by
the corresponding individual from the previous generation
population.

We can obtain the ultimate solution of hierarchical caching
resources allocation through selection, crossover, mutation,
repair operations. IEGA algorithm is shown in Alg. 2. We are
assuming that the algorithm converges within itst iterations,
where each iteration has the complexity of O(I3). Therefore,
the overall complexity of the IEGA algorithm is itst ×O(I3).
The IEGA algorithm considers the population crossover char-
acteristics, and the computational complexity is relatively
higher than the greedy algorithm.

V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
For simulations, we used the GT-ITM tool to generate
a network slice instance request. We implemented the
MEC deployment model using the Python-based package
Pyomo [34] and Gurobi as the underlying solver. All sim-
ulations were performed on a computer configured with
Intel(R) Core(TM) i5-6300HQ CPU@2.30GHZ and 16GB
of RAM. In the simulation, eight MECs were considered,
and the capacity of each MEC is sj = 100, the capac-
ity of ICN-GW is twice that of the MEC. In the dynamic
deployment of MEC, we consider deployment, routing costs,

VOLUME 9, 2021 134979



L. Ge et al.: Dynamic Hierarchical Caching Resource Allocation for 5G-ICN Slice

Algorithm 2 IEGA Algorithm
Input: Initialization population X , population number I ,

multiplication algebra It , node set M t
ald + 1, CP set N ,

ICN-MVNO’s initial price p, storage capacity collection
S = (s1, s2, . . . , sM t

ald+1
).

Output: Get the optimal solution X∗i .
1: According to Eq.(1) and Eq.(3) based on the initial price
p, generate CPn’s caching resource request list kn;

2: RICSP← 0.
3: According to kn, select CPn and map M t

ald + 1 and CPn
as a set of genetic coding.

4: Determine the fitness RICSP and feasibility of solutions
via Eq.(3).

5: for it = 1, 2, . . . , It do
6: Calculate the probablity that each individual i can be

selected by Eq.(24).
7: Select individuals according to probability PX .
8: if RICSP(Xi−1) > RICSP(Xi), (i 6= i− 1) then
9: X = X + Xi−1
10: According to Eq.(25), calculate similarity matrix.
11: Crossover via correlation matrix.
12: Mutation via probability Pm.
13: Repair the set and eliminate the duplicate individ-

uals.
14: Find the optimal solution X∗i .
15: end if
16: it = it + 1
17: end for
18: return result X∗i ,RICSP

TABLE 2. Simulation parameters.

and reassignment and giving more importance to the latter
(η1 = 0.3, η2 = 0.3, η3 = 0.4) [35]. We model the number
of sessions with latency violations as a Poisson distribution
with a mean of λ = 20. The basic simulation parameters are
shown in Table 2. We further compared it with latency-aware
service placement and live migration (LALM) [36], the best-
availability algorithm that the current demand queue has the
earliest finish time[37], and the low-latency algorithm that the
scheme sets up new VNF for each demand [38].

B. FEASIBILITY ANALYSIS
The simulation parameters of the IEGA algorithm are shown
in Table 3. In order to test the feasibility of the IEGA,we com-
pare it with the genetic placement (GP) algorithm [39]. The
purpose of the GP algorithm is to find the optimal global

TABLE 3. Simulation parameters of the IEGA algorithm.

FIGURE 3. Optimisation process.

solution in the hierarchical caching architecture. The selec-
tionmethod is roulette, with a crossover probability of 0.8 and
a mutation probability of 0.06. We provide the optimal solu-
tion obtained using a dynamic programming algorithm to
the MEC caching problem compared to the proposed IEGA
algorithm. As shown in Fig. 3, the results show that the
latency in the MEC gradually decreases to a fixed value.
The distance between the IEGA algorithm and the optimal
solution gradually decreases, and the value between the GP
algorithm and the optimal solution shows the same trend.
At the beginning of the iteration, the latency of the IEGA
algorithm is slightly higher than that of the GP algorithm
due to inaccurate crossover probability. When the number of
iterations reaches 200, the performance of the two algorithms
tends to be stable, and the performance of the IEGA algorithm
is better than that of the GP algorithm.

C. IMPACT OF LATENCY VIOLATIONS
Latency violationsmay occurwhen the deployedMEC can no
longer meet the user’s requirements. However, not all devia-
tions are responsible for latency violations, while deviations
from an optimal deployment happen at any time. Because
the latency violations can distribute between all users and
content sources, it is essential to note that the value of latency
violations is the key to finding optimal redeployment time.
The number of the latency violations will be shown in Table 4.
Eq.(23) can solve the problem of finding redeployment prob-
ability at the next moment.

To show the performance of dynamic algorithms, we com-
pare the impact of latency violations on the benefits of the
ICSP under different algorithms. The Iterative Greedy and
Search (IGS) algorithm [40] and the GP algorithm using the
genetic placement method are static deployment algorithms.
Fig. 4 illustrates that the number of latency violations affects
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TABLE 4. Number of latency violations.

FIGURE 4. Impact of the latency violations on ICSP revenue.

the benefits of the ICSP. It can be seen that when MEC is
deployed statically, the ICSP benefits have barely increased
in general. With the increase of deployment time, the benefits
of the algorithm presented in this paper show a significant
increase. At 10min, the ICSP gains were lower than static
deployment due to the higher cost of dynamic deployment of
MEC. At 20min, due to the violation of the latency tolerance
condition, MEC generates additional cost expenditure, result-
ing in decreased revenue. At 25min, the number of latency
violations is 1, and the income of the ICSP increases less.
Over the following period, ICSP’s revenue of the proposed
algorithm is far more than the other algorithm.

D. IMPACT OF THE CACHING ARCHITECTURE
In order to better reflect the advantages of dynamic hier-
archical caching architecture, we first test the latency
of ICN-UE requests under four conditions at time t:
1) ICN-GW only: the content is only cached in ICN-GW.
2)MEC only case: the content is only cached inMEC. 3) ICN
- GW+MEC+ODH-CRA. 4)ICN-GW+MEC situation: the
content is cached in ICN-GW and MEC. If the local MEC
node is not hit, the content is directly requested to ICN-GW.
As shown in Fig. 5, our hierarchical caching architecture
significantly reduces latency. For example, when the cache
size is 80%, the latency performance of our scheme is 36%
improvement over the MEC only scheme, 61% better than
that of ICN-GW only scheme, and 24% improvement over
the ICN-GWzMEC scheme.

E. LATENCY EVALUATION
Fig. 6 illustrates the impact of cache capacity on the latency
performance of different algorithms. With the increase of

FIGURE 5. Impact of the caching architecture on latency.

FIGURE 6. Influence of cache size on latency.

cache space, the ODH-CRA algorithm showed a decreas-
ing trend. Compared to the LALM and the best-availability,
the ODH-CRA can reduce the latency by about 9%, 21%,
respectively. The benefits come from the fact that, in the
ODH-CRA, an integrating method with the service require-
ments and latency violations is found to satisfy the frequent
service migration requirements in the limited service area.
Moreover, the latency of the ODH-CRA algorithm is higher
than that of other algorithms. This is because when the cache
space is small, we pay more attention to the impact of the
ICSP’s revenue under the condition of satisfying the users’
demands. The latency of the ODH-CRA algorithm is higher
than that of the low-latency algorithm, which focuses on
latency requirements.

Fig. 7 shows the impact of the number of PDU session
requests on latency. To avoid the limited cache capacity,
we set the capacity of the MEC to a fixed value of 100. The
ODH-CRA algorithm determines the best redeployment time
through the OST algorithm. When the redeployment time is
reached, the ICSP redeploys the MECs to meet the latency
requirements of user requests. As shown in Fig. 7, the per-
formance of the ODH-CRA algorithm is significantly better
than the LALM algorithm satisfying the latency of ICN-UE
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FIGURE 7. Effect of the number of PDU sessions on latency.

FIGURE 8. Evolution of the revenue.

by increasing the latency of service migration. Moreover,
the best-availability and the low-latency algorithm ignoring
the number of latency violations of the ICN-UE.

F. REVENUE EVALUATION
Fig. 8 displays the change of the ICSP’s revenue under the
four algorithms. On the whole, the income of the ICSP
is in an upward trend. At first, the ODH-CRA algorithm
grew slowly. When the time reached 25min, the growth rate
of the ODH-CRA algorithm was significantly higher than
that of other algorithms. Compared to the LALM algorithm,
the best-availability, low-latency, the ODH-CRA can increase
the revenue by about 14%, 28%, 51%, respectively. This is
because the algorithm in this paper considers deployment
costs, service requirements, and reassignment costs. When
the deployment is relatively stable, the ODH-CRA algorithm
can maximize the benefits of the ICSP while satisfying the
service requirements.

VI. CONCLUSION AND FUTURE WORK
The paper concluded by arguing the dynamic hierarchi-
cal characteristics of nodes when studying the 5G-ICN
slice caching resource allocation. First, we built a dynamic

hierarchical caching architecture. On this basis, we set up
a revenue maximization problem under the condition that
users’ service requirements cannot be satisfied. To solve
this problem, we proposed an ILP approach that combines
deployment cost and latency requirements to find the optimal
deployment location and number of theMECs. Then, we used
the time-category-based OST method to determine the best
redeployment time of the MECs to reduce latency further.
In addition, to further enhance the benefits of the ICSP,
we used the IEGA algorithm to find the optimal solution
of caching resources allocation. Finally, we compared our
algorithm with the other three approaches and compared
the impact of different caching architectures. The proposed
algorithm has a significant improvement in the ICSP revenue
and user request latency.

With the rapid development of mobile communication
networks, the dynamic hierarchical deployment of network
cache nodes is inevitable. Our solutions could meet users’
needs, improve the ICSP’s revenue, and reduce user request
latency. Our proposed solution is a step forward in deploy-
ing the 5G-ICN slice, which is critical for an effective IoT
scheme. In the future, we plan to consider the hierarchical
caching problem while joint the cooperation between nodes.
Caching cooperation, in this case, are complex, and we need
to investigate them further.
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