
Received September 9, 2021, accepted September 28, 2021, date of publication September 29, 2021,
date of current version October 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3116880

Enabling Delegation of Control Plane
Functionalities for Time Sensitive Networks
NICOLA SAMBO 1, SILVIA FICHERA1, ANDREA SGAMBELLURI1, GIUSEPPE FIOCCOLA 2,
PIERO CASTOLDI 1, (Senior Member, IEEE), AND KOSTAS KATSALIS 2
1Scuola Superiore Sant’Anna, 56124 Pisa, Italy
2Huawei Technologies Duesseldorf Gmbh, 80993 Munich, Germany

Corresponding author: Nicola Sambo (nicola.sambo@sssup.it)

ABSTRACT This paper proposes a new paradigm for control plane in Time Sensitive Networks (TSN).
An SDN controller proactively instructs network elements on the reconfigurations to perform locally if some
specific events occur (e.g., failures, performance degradations). Instructions are given in the form of Finite
State Machines (FSMs), which store information related to the actions that each network element should
execute to react against a specific event. Thus, if such event occurs, the SDN controller is by-passed reducing
reaction (e.g., recovery) time. Such an approach is here implemented for recovery upon failures in TSN.
Experiments of failure recovery are carried out and measurements are presented comparing the FSM-based
solution with a fully-centralized reactive restoration. Moreover, the proposed approach is compared through
simulations against Frame Replication and Elimination for Reliability. Results will show how proactive
FSM manipulation can strongly reduce recovery time in SDN-based TSN networks without overloading the
network with frame replicas.

INDEX TERMS TSN, time sensitive networking, IEEE 802.1, SDN, NETCONF, YANG, recovery,
restoration, FRER.

I. INTRODUCTION
Emerging services supported by a number of challenging
applications like industrial automation, or autonomous driv-
ing, require efficient control and management of network
resources to assure requirements not only by means of
throughput but also by means of delay and jitter. Time Sensi-
tive Networks (TSNs) like the ones defined by IEEE TSN
Working Group [1], are able to satisfy stringent require-
ments by means of reliability, delay and jitter. However, still
there is no consensus within the industry on which control
plane (fully centralized or fully distributed) is ideal for TSN.
Regarding a fully centralized scenario, following the Soft-
ware Defined Networking (SDN) paradigm [2], a number of
benefits like rapid service deployment and global network
optimization can be achieved. However, several issues are
still open, e.g. concerning scalability and dynamic restora-
tion [3], especially in TSN. For example, for large net-
works, in the presence of failures, fast network recovery
is not easy to achieve. The reason is that a huge number
of restoration requests may need to be processed by the

The associate editor coordinating the review of this manuscript and

approving it for publication was Fung Po Tso .

SDN controller, thus greatly affecting recovery time [4].
In order to avoid such problems and thus to enhance net-
work reliability in TSN, more robust mechanisms can be also
adopted, asFrame Replication and Elimination for Reliability
(FRER) [5]. FRER is based on redundant transmissions along
alternative routes of each flow. Although using FRER indis-
putably increases reliability, the drawback is the increased
network load due to replicas and an higher scheduling com-
plexity especially in the presence of time critical flows.
Moreover, in general, in SDN networks, several recovery
mechanisms – like Fast Failover [6] – have been implemented
improving responsiveness in OpenFlow-based networks [4],
[6], [7]. However, there is a lack of methods which are
compliant with the NETCONF protocol [8] and YANG data
modelling [9], that are considered and already supported
in TSN networks [10]–[12], especially to offer open and
vendor-independent network configuration [10], [12].

Recently, within the Internet Engineering Task Force
(IETF), a NETCONF/YANG method [8], [9] has been
proposed to describe and manage events, operations, and
states related to a network [13]. Such method is based
on Finite State Machines (FSMs), which store information
related to events, network states, operations and network

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136151

https://orcid.org/0000-0002-5672-1726
https://orcid.org/0000-0003-1885-5106
https://orcid.org/0000-0003-4366-0730
https://orcid.org/0000-0001-9282-6747
https://orcid.org/0000-0001-9366-8285


N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

reconfiguration. FSM can be installed by an SDN controller
in a device agent which is responsible to autonomously
perform operations associated to a specific network state.
According to [13], the dynamic FSM loading mechanism can
be used in a variety of use cases and applications, includ-
ing: i) recovery and transmission adaptation in optical net-
works [14], [15]; ii) network telemetry to define and embed
custom data probes into data plane devices; iii) monitoring
optimization of packet loss and delay for real time systems.

In this work, in a context of an SDN scenario, we pro-
pose to transfer – through the NETCONF protocol [8] and
FSM – control logics into the agents of TSN devices. Thus,
the SDN controller proactively instructs the agents deployed
at each network element, while the network is properly oper-
ating, on the actions to perform in case of specific events.
This way, devices’ agents are able to autonomously take the
proper actions without the SDN controller intervention, thus
reducing control plane closed-loop delays due to signaling
and also due to processing at the SDN controller. We show-
case the FSM technique in TSN networks for a reliability
use case, proposing a recovery mechanism named Delegated
Restoration for TSN (DRTSN).

The contributions of this paper are the following. DRTSN
based on FSM is presented for recovery in TSN. The imple-
mentation of agent modules and of the data plane is detailed.
An experimental testbed is set up and the proposed method
analyzed throughmeasurements (e.g., recovery delay) against
a fully centralized reactive restoration. The analysis of time
contributions to perform agent functions is shown. After the
observation of measurements, an optimization of the whole
procedure is provided showing a further reduction in recovery
delay achievedwithDRTSN. Then, DRTSN is comparedwith
FRER by means of simulations. Measurements and simula-
tions show that DRTSN permits to achieve faster recovery
time than the reactive restoration, without overloading the
network as FRER.

The paper is organized as follows. We present background
information and related work in section II. In section III,
we present the system architecture and the adopted FSM
YANG model. In section IV, DRTSN for recovery in TSN
is detailed. In section V we present the implementation in
Linux. In section VI we evaluate the performance of the
proposed solution. We conclude our study and present future
research directions in section VII.

II. BACKGROUND INFORMATION AND RELATED WORK
TSN Data Plane: Techniques used to provide delay
guarantees are Scheduled Traffic (IEEE 802.1Qbv [16]),
Frame Preemption (IEEE 802.3br [17], IEEE 802.1Qbu [18]),
Asynchronous Traffic Shaping (802.1Qcr [19]) and Cyclic
Queuing and forwarding (802.1Qch [20]). These standards
define how frames belonging to a particular traffic class
or having a particular priority are handled by TSN-enabled
bridges. We focus on IEEE 802.1Qbv [16] which introduces
a transmission gate operation for each traffic class queue. The
transmission gates are in open or close state and controlled

by a Gate Control List (GCL). For each output port a GCL
consists of multiple schedule entries. For the open gates,
selected traffic is allowed to pass through to the transmis-
sion selection block, which provides access to the medium.
Frame Preemption, allows the ongoing transmission of a
lower priority frame to be preempted by a higher priority
frame (express traffic) and thus ensures lower latency for high
priority frames. Express frames can preempt preemptable
frames by either interrupting the frame transmission or by
preventing the start of a pMAC frame transmission. The
queueing model is different in case that ATS scheduling is
applied (802.1Qcr specification [19]).

Regarding 802.1Qbv scheduling, we refer interested read-
ers to [21]. In [22], [23], the TSN 802.1Qbv schedul-
ing problem is addressed by exploiting techniques, such
as Satisfiability Modulo Theory (SMT) and Optimization
Modulo Theory (OMT). Delay analysis for AVB traffic
in 802.1Qbv is presented in [24], [25]. More recently,
Window-Based Schedule Synthesis [26] has been proposed
for industrial IEEE 802.1Qbv TSN Networks with unsched-
uled end-systems. In [27] the problem of finding the routes
for AVB flows over TSN-based networks is addressed.
The authors use a K-shortest path heuristic to reduce the
search space of routes and a Greedy Randomized Adap-
tive Search Procedure (GRASP) metaheuristic for optimiz-
ing the routing. Authors in [28] explore how the routing
of time-triggered flows affects their schedulability and also
propose ILP-based algorithms for constructive deterministic
routes. Various ILP formulations for the combined routing
and scheduling time-triggered traffic problem, while follow-
ing the SDN-based paradigm are presented in [29]. Authors
in [30] propose a joint routing and scheduling approach for
both TT and AVB traffic. An ILP scheduling and routing
formulation to improve the TT traffic schedulability are pro-
posed in [31]. A List Scheduling-based heuristic and schedul-
ing and routing are proposed in [32]. The work in [33] has
shown how to reconfigure the GCLs at runtime, e.g., as a
reaction to network changes, which could also be due to
failures.
TSN Control Plane: three models have been proposed

in the 802.1Qcc amendment. In the fully centralized case,
the flow requirements are conveyed from a Centralized User
Configurator (CUC) to a Centralised Network Configurator
(CNC), using a User Network Information (UNI) described
in 802.1Qdj. The CNC is responsible for the configura-
tion and control of the TSN switch fabric, while the CUC
is responsible for the end-points (Talkers/Listeners). In the
802.1Qdd amendment, the fully distributed case is inves-
tigated, while in the Centralized Network-Distributed User
Model, the UNI exists between the endpoints and the access
TSN bridge; however, in the latter, the flow specs are passed
to a CNC which is responsible for the network segment. In
802.1Qdd amendment, the fully distributed case is investi-
gated where the resource allocation and registration is made
in a distributed fashion, while the endpoints only interact with
the access TSN bridge over the UNI.

136152 VOLUME 9, 2021



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

Failure Recovery: Recovery in SDN networks is clas-
sified in two main categories: proactive and reactive [4].
With the proactive methods, one or more alternative paths
are computed before the failure, while the reactive methods
require that switches send a restoration request to the central
controller. Proactive approaches permit to reduce recovery
time with respect to reactive approaches. Reliable Control
and Data Planes for SDN have been investigated in [34].
A method of handling data packets through a conditional
state transition table for implementing at least one finite state
machine is proposed by [35]. In OpenFlow environments,
Fast Failover has been proposed [6]. It leverages the concept
of Groups, where each group is composed of a series of
flows, all treated in the same way. Fast Failover is a proac-
tive approach that establishes switching rules before failure
with the objective of speeding up recovery time. A similar
approach has been proposed in [4], also managing congested
links. In [7], a segment-based recovery has been proposed for
OpenFlow. Basically, with these approaches, a node detecting
the failure, switches the traffic to another port, i.e. the one
associated to the backup route. In general, such methods may
suffer from the fact that, if the node detecting the failure
does not have any other ports (e.g., as in a ring topology) to
switch traffic, central controller interventionmay be required,
thus resulting in a reactive method. In general, previous
approaches in SDN networks have been mainly implemented
with the OpenFlow protocol.

Moreover, hybrid SDN has been investigated. In [36],
hybrid SDN is referred to networks with sparse SDN switches
in a legacy network or to a network composed of switches
having both SDN switching and legacy switching function-
alities (thus, based on both SDN and distributed protocols).
As an example, in [37], a recovery mechanism is proposed
in an environment where legacy network devices and SDN
switches co-exist. In [38], a centralized controller is used
for long-term optimization relying on OpenFlow to con-
figure arbitrary forwarding paths during normal operations,
while distributed protocols (e.g., Interior Gateway Protocol)
can be used for short-term reaction to failures. Hybrid SDN
may provide more robustness against failures than classical
SDN. In our paper, the proposed solution does not exploit
legacy-network distributed protocols, while it operates with
the only NETCONF/YANG in both normal and failure con-
ditions.

A different approach in order to enhance reliability is to
rely on redundant transmissions. IEEE 802.1CB specifies
the procedure for FRER in a redundant transmission for
reliability purposes [5]. FRER assumes the existence of a
Talker-Listener (i.e., source/destination) pair per data stream.
A stream is composed of a number of packets transmitted per
time interval. FRER replicates a stream (thus, the packets)
into copies named member streams, which follow alternative
routes along the network. Multiple member streams compose
a compound stream. Components receivingmultiple copies of
the same packet proceed with the elimination of the replicas.
As an example, a talker may be the only element generating

two member streams from a stream. In this case, the lis-
tener eliminates replicas of the same packets. According to
802.1CB [5], bridges can replicates the packets of the stream,
splitting the copies into the multiple member streams, and
then rejoins those member streams at one or more other
points, eliminates the replicates, and delivers the reconsti-
tuted stream from those points. FRER requires the manage-
ment of the following twomain parameters: a) stream_handle
which is an integer identifying the compound stream to which
the packet belongs and b) sequence_number, an unsigned
integer identifying the order in which the packet was trans-
mitted relative to other packets in the same compound stream.

The DRTSN method based on FSM proposed in this
paper falls within the umbrella of proactive schemes. It does
not require any central controller intervention upon fail-
ure neither packets/frames replica, and it is specifically
designed/implemented for the NETCONF protocol and
YANG data modelling language. User-defined FSM enforce-
ment can be also applied using P4 language and compil-
ers [39]. We plan to incorporate the concept of FSM with
P4 over a stateless data plane in our future work.

III. TECHNICAL APPROACH
We assume a network composed of multiple forwarding
devices with TSN-aware bridging capabilities and several
talker/listener pairs, generating and receiving traffic, respec-
tively. The solution we will present can be applied in both
pure L2 or L3 operations as long as there is TSN support
on the forwarding plane. During normal operation, the SDN
controller proactively configures the specific FSM in the local
agent deployed at each device. A FSM includes information
related to the set of actions to be locally taken to re-act against
an event. For example, a node detecting a failure triggers a
state transition into its FSM, from a ‘‘Stable’’ state, to ‘‘Fail-
ure’’ state. Then, such new state implies a set of specific
actions to be taken in order to react against the event. FSM
is generic and can model any system characteristic or event.
This paper will be focused on the recovery use case in TSN.
Depending on the state, we assume that the set of actions can
be: a) TSN related configuration, b) L2/L3 forwarding rules.

A. SYSTEM ARCHITECTURE
For each forwarding device, the system architecture we con-
sider is depicted in Fig.1. The proposed solution is thought
for the fully centralized control plane architecture presented
in IEEE 802.1Qcc [40]. Please note that a fully centralized
architecture may be required since, as reported in the stan-
dard, many TSN use cases require significant user configu-
ration in the end stations (talkers and listeners), such as in
many automotive and industrial control applications. In such
use cases, the computational requirements can be complex
and may require a detailed knowledge of the application
software/hardware within each end station. The fully cen-
tralized architecture includes two main control plane com-
ponents: the Centralized User Configuration (CUC) and the
Centralized Network Configuration (CNC). CUC discovers

VOLUME 9, 2021 136153



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

FIGURE 1. System architecture.

end stations, retrieves end station capabilities and user
requirements, and configures TSN features in end stations.
In this paper, the implementation of CUC is out of scope
and we assume end station discovery already performed
and end stations configured by CNC. CUC features can
be also assumed to be integrated into CNC. CNC acts as
the SDN controller. In general, CNC uses remote manage-
ment to discover physical topology, to retrieve bridge capa-
bilities, and to configure TSN features/resources in each
bridge. Regarding TSN resource management, the reader
may refer to IEEE802.1Qbv, which includes the Manage-
ment Information Base (MIB) for support of the Scheduled
Traffic Enhancements for 802.1Q Bridges. In the case of
our implementation, as it will be described in Sec. V, we
will refer to TAPRIO which implements a simplified version
of IEEE802.1Qbv. The next subsections will describe the
control modules involved in our proposed solution and the
FSM YANG model.

The main functional building blocks are detailed in the
following.
SDN Controller: it is responsible for traditional network

configuration and monitoring. Thus, the SDN controller con-
figures bridges in normal network conditions. Moreover,
the SDN controller installs FSMs as it will be detailed next.
The protocol considered between the SDN controller and the
TSN data plane is NETCONF. The SDN controller config-
ures each interested device at the data plane. To this pur-
pose, it sends a NETCONF <edit-config> message towards
each device agent. The content of this message is based on
a specific YANG data model describing the configuration
parameters of the device and includes the values of these
parameters should take. The NETCONF<edit-config>mes-
sage writes such values in the local NETCONF Server at

the agent. In our scheme, the SDN controller writes in the
NETCONF Server also the description of the FSM that each
agent should consider for delegation in the case of specific
events. We assume all the control plane messages sent in an
out-of-band control plane.

Then, each TSN node presents modules for local control:
the agent and the TSN App.
Agent: it is the local controller of each data plane device.

The agent has access to the local NETCONF Server, it parses
configuration parameters and performs device configuration
accordingly. Moreover, the agent is also responsible to parse
and interpret local FSMs and, if requested by network events,
to perform the corresponding set of actions. The agent han-
dles layer-2 and layer-3 operations and interacts with the TSN
App. With the proposed solution, control plane messages are
exchanged also between different agents. Even those control
plane messages are sent in the out-of-band control plane.
More details on the agent will be provided next.
TSN App: it is responsible for the actual configuration of

the TSN parameters in the bridge. TSN configuration can be
made either from a NETCONF call by the SDN controller
or locally by the agent, because of a FSM state transition.
No logic resides on the TSN App, it is only used to execute
the proper configuration.

B. YANG MODEL TO INSTALL FSM
FSMs are described by YANG [13]. The related YANG tree
is depicted in Fig. 2 and here described.

FIGURE 2. Yang tree of FSM.

The attribute <current-state> defines the current state of
the FSM. Then, the YANG tree presents a list of states, where
each <state> is associated to an identifier (<id>) and to a
string of description (<description>). Each state presents a
list of transitions to other states, where each <transition> is
associated to a name, a type (taken from a pool of possible
transition types predefined inside the YANG model), a string

136154 VOLUME 9, 2021



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

of description, and other attributes. Among them, the attribute
<filter> enables to further express a transition (e.g., when a
transition is triggered by a parameter exceeding a threshold,
as a monitored packet loss exceeding a threshold).

Finally, a list of actions is described. Each <action>
is defined by an identifier (<id>) and a type (<type>).
An action can be <conditional> or <simple>. The former
is executed depending on the check of specific conditions
described through the attribute<statement>, while the latter
is directly executed. An action can be taken locally or toward
a remote node. In the second case, the <remote-address>
attribute is needed to specify which node has to be involved.
The<execute> attribute actually recalls the execution of the
action. If more actions have to be executed, these actions
can be executed sequentially according to the<next-action>
attribute. Finally, the <next-state> attribute defines the new
state of FSM after that transition.

IV. A USE CASE: FAILURE RECOVERY WITH DRTSN
The proposed recovery scheme – DRTSN – is used to realize
recovery after failures without involving the SDN controller.
However, a similar technique can also be applied in the case of
performance degradation. Thus, several ‘‘Failure’’ states can
be considered, each one associated to a specific failure (e.g.,
port down) or performance degradation (e.g., experienced
delay above a given threshold).

The SDN controller pre-installs FSMs at each data plane
device in order to affect data plane operations in the case of a
failure, such as frame rerouting according to a pre-computed
path, buffer activation, scheduling, class of service redefi-
nition. An illustrative example is depicted in Fig. 3, where
a stream of frames is considered between a talker-listener
pair along the path A-E-D. Our goal is to instruct data plane
devices to perform rerouting without SDN controller inter-
vention upon fault in order to speed up recovery.

FIGURE 3. Network and FSM installation.

During Normal Operation: The NETCONF
<edit-config> message installs FSMs. The content of
these messages is based on the YANG model described in
Sec. III-B. Upon reception of the <edit-config> messages,
data plane devices are instructed on the actions to perform
based on the network state.

FSM can be dynamically updated based on traffic load,
thus, as an example, under stable conditions, the pre-
computed backup path of a stream can be changed by the
SDN controller based on buffers load. For the case of hard
failure, the installed FSMs are abstracted in Fig. 4 and are
composed by two states, ‘‘Stable’’, ‘‘Failure’’, each one asso-
ciated to an identifier as reported in the YANG model of
Fig. 2. At the ‘‘Stable’’ state, devices operate according to the
original configurations acted by the SDN controller. Recon-
figurations are taken at the ‘‘Failure’’ state as described in the
following.

FIGURE 4. FSMs installed in the nodes.

Failure event handling:Once a failure is detected by a node
(e.g., through loss of frame), a state transition of the FSM at
this node is taken, moving the state to ‘‘Failure’’, as shown
in Fig. 4. Following the example in Fig. 3, the link between
nodes E and D fails. Assuming D detecting the failure, the
FSM at D moves to ‘‘Failure’’ state. At this state, some of
the actions summarized in Tab. 1 are executed. In particular,
the node detecting the failure performs the following main
action: an ad-hoc defined <rpc> message is sent to each
node of the pre-computed backup path to trigger its state
transition. Such <rpc> simply changes the FSM <current-
state> value to the ‘‘Failure’’ state at the interested nodes
(A-B-C-D in Fig. 3). The content of the <rpc> is shown
in Fig. 5 and consists of an XML including the new value
of the <current-state> attribute in the FSM YANG model.
If the node detecting the failure is the destination node, further
actions must be taken. In this work, layer-3 rerouting is
assumed. The following actions are then considered: update

TABLE 1. Actions for DRTSN.

VOLUME 9, 2021 136155



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

FIGURE 5. <rpc> triggering state transition.

the local routing table in order to receive frames from the
backup path; reconfigure TSN buffers. Finally, to address
synchronization issues, the node may inform, through a NET-
CONF <notification> message, the SDN controller that the
recovery action has been taken.

Each node receiving the <rpc> message (from the node
that detected the failure) changes its FSM state and takes
actions at the data plane according to the information stored in
its local FSM. Actions involve: updating of the local routing
table and TSN buffers reconfiguration. This second operation
consists in calling the TSN app with proper configuration
parameters. The FSM could also encompass other actions
such as the change of traffic priority.

Finally, it has to be mentioned that after the traffic is
rerouted along a backup path, the SDN controller may
pre-compute another backup path (together with TSN config-
urations) and install the related FSMs to provide robustness
against several failures. If a failure occurs while FSMs are
not installed – and thus DRTSN cannot be applied – the
agent of the node detecting the failure should inform the

SDN controller. Then, it sends an alarm (implemented with a
NETCONF <notification> message) to the SDN controller,
which will perform classical reactive restoration.

V. IMPLEMENTATION IN LINUX
In this subsection the implementation of the main control
modules and data plane involved during delegated restoration
is presented.

A. DATA PLANE
The data plane has been realized by connecting different
Ubuntu 20.04 machines (from 2 to 4 physical PCs). Each
machine has been configured to act as a router by enabling
the IP forwarding and installing the routes to let the traffic
flowing along the primary paths. TSN has been exploited
through TAPRIO qdisc, implementing a simplified version
of the scheduling defined by IEEE 802.1Qbv [16]. TAPRIO
has been configured on the egress interface of each machine
and iptables classifier rules have been installed. Referring to
Fig. 6, as a configuration example, in Switch-1 we configured
the interface enp4s0f1 to use TAPRIO. Such configuration is
acted by the TSN app, whose implementation is described
next. The iptables command is launched to set the priority
field to the forwarded traffic according to the traffic class
defined by TAPRIO. The following command assigns an

FIGURE 6. Data plane and control plane with 4 nodes.

136156 VOLUME 9, 2021



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

highest priority to the UDP traffic that has as destination
port 6666 :

iptables -t mangle -A POSTROUTING
-p udp --dport 6666 -j CLASSIFY
--set-class 0:1

Lowest priority is assigned to the traffic that has as UDP
destination port 7777 :

iptables -t mangle -A POSTROUTING
-p udp --dport 7777 -j CLASSIFY
--set-class 0:0

Each data plane node is locally controlled through an
agent. The implementation of the following control modules
is described: TSN app, FSM in the NETCONF Server, and
the FSM agent.

B. TSN APP
The TSN app is implemented in Python and applies con-
figuration to TAPRIO qdisc. The TSN app has access to
the NETCONF server (whose implementation is based on
Netopeer). The TSN app parses the TAPRIO configuration
XML stored in the NETCONF Server and issues the related
command. In this case, the TSN app reads the TAPRIO con-
figuration parameters set by the SDN controller through the
<edit-config> message, as it happens during normal opera-
tion on the primary path. Alternatively, the TSN app can be
invoked to read the TAPRIO configuration from the specific
FSM state. In the latter case, the TSN app also updates the
NETCONF Server based on the new TAPRIO configuration.

The view of the TAPRIO module is shown in Fig. 7. The
parameters described by the YANG model of Fig. 7 are:

FIGURE 7. TAPRIO module.

• interface: it represents the list of interfaces at the node,
each one identified by the string dev

• dev: the name of the interface
• parent: class id. Default: root
• handle: unique handle identifier for qdisc
• num-tc: number of traffic classes. Max 16;
• maps: list to map priority to traffic classes;
• queues: identifies a list of queues, where each element
is identified by id

• elem: mapping. The format is queue_countqueue_offset;
• base-time: reference time in nanoseconds to start the
schedule;

• clock-id : reference clock. Default: CLOCK_TAI
• sched-entries: list of sched-entries
• id : to identify the element in the sched-entries list;
• command : the only supported <command> is ‘‘S’’,
which means ‘‘SetGateStates’’;

• gatemask: a bitmask where each bit is associated with a
traffic class;

• interval: time duration in nanoseconds specifying for
how long the sched-entry should be held before moving
to the next one.

C. FSM INSTALLED IN THE NETCONF SERVER
The NETCONF server is based on Netopeer and stores cur-
rent configuration parameters (e.g., running TSN configura-
tion) and FSMs. Fig. 8(a) shows part of the FSM installed at
a destination node when it identifies a failure in an incoming
port, while Fig. 8(b) summarizes the actions to be locally
executed based on the XML at the ‘‘Failure’’ state. The
actions are stored in the<execute> attribute, which includes
the following fields spaced by ‘:’’: i) a mask; ii) the state to be
configured in remote nodes. Then, the <execute> attribute
also includes the XML configuration of TAPRIO reflexing
the YANG model of Fig. 7 (for simplicity an example is
shown in a separate figure, Fig. 9). The mask appears as a
set of rdnt digits, as follows:
• ‘‘r’’: if equal to 1, an <rpc> has to be sent to at least a
remote node; 0 otherwise

• ‘‘d’’: if equal to 1, the communicationwith the data plane
node in order to change the local routing table is enabled;
0 otherwise

• ‘‘n’’: if equal to 1, the <notification> message to the
SDN controller is enabled; 0 otherwise

• ‘‘t’’: if equal to 1, TSN buffers reconfiguration is locally
enabled; 0 otherwise

Thus, in the reported XML, the considered agent should
perform the following actions, as summarized in Fig. 8(b).
The digit r set to 1 implies that<rpc>messages must be sent
to agents with address identified by the <remote-address>
attribute, thus to the following agents: 192.168.255.129 and
192.168.255.4. The remote state set by the <rpc> in the
current example has identifier 002, i.e., ‘‘Failure’’ state. The
digit d set to 1 drives a reconfiguration of the local routing
table on the pre-installed entry associated to the backup path.
Considering L3 forwarding, the SDN controller pre-installed

VOLUME 9, 2021 136157



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

FIGURE 8. Installed FSM (a); Summary of the actions to be executed (b).

FIGURE 9. TAPRIO configuration XML.

in the routing table the backup routewith an high-metric value
(30 in our implementation). This way only the primary route
(which has a lower metric value of 20) is exploited before
the failure. At the moment of the failure, the metric of the
backup route is set to a low value (10 in our implementa-
tion) in order to preempt the primary route. Then, the TSN
app is called with TAPRIO configuration XML parameters,

as shown in Fig. 9, with values associated to the attributes of
the YANG model in Fig. 7.

D. FSM AGENT
The node agent is implemented in a docker container and it
is composed of different frameworks used by the Netopeer
software to implement the agent. In order interact with the

136158 VOLUME 9, 2021



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

NETCONF server we have developed a Sysrepo plugin that
implements the actions related to the state change in the FSM
YANG model. The implemented agent is shown in Fig. 10,
connected with the TSN switch at the data plane. At the
data plane, once a failure is detected, a Python script (Failure
Detector in the figure) sends a message over a socket to notify
the local agent about the failure. At the agent, a Listener
implemented in Python is responsible to receive and process
the failure notification. Once the Listener is notified about
the failure, it invokes the Sysrepo rpc_fsm caller to trigger
the FSM parsing based on the failure. A Sysrepo rpc_fsm
handler receives the RPC request, parses it, and retrieves
the information associated to the new state in the configured
FSM. The information in the FSM is described in the previous
subsection including <rpc> messages sent to remote nodes
and local data plane reconfiguration. Regarding the latter
action, a Sender implemented in Python may invoke the TSN
app and may update the local routing table.

FIGURE 10. Agent implementation.

VI. PERFORMANCE EVALUATION
Performance of DRTSN is compared with a fully central-
ized recovery (CR) in an experimental testbed. According to
CR, once a failure is detected, a NETCONF <notification>
message (used as an alarm) is sent to the SDN controller
(implemented based on ONOS [41]). The SDN controller
processes the received alarm and then acts the reconfiguration
of the traffic interested in the failure. Several experiments
have been carried out for performance evaluation. Three net-
work topologies have been tested: a 2-nodes ring, a 3-nodes
ring, and a 4-nodes meshed network (represented in Fig. 6).
The characteristics of each PCs are reported in Table 2. Each
network node is a physical machine emulating a TSN switch
with TAPRIO enabled at each Ethernet port. Moreover, each
physical machine runs the dockerized node agent. Control
plane communications between node agents, and between

TABLE 2. Characteristics of the switches.

node agents and SDN controller are done in an out-of-band
control plane network. Thus, exchanged control plane mes-
sages (e.g., <rpc> messages during recovery with DRTSN)
do not affect the traffic in the data plane. Traffic is injected in
the network through a Spirent traffic generator/analyzer [42]
enabling time performance measurements. Each constant bit
rate stream is composed of frames of 128 Bytes generated
with a rate of 10000 frames/second. Single-link failures are
generated forcing a node port down. Recovery delay is mea-
sured, defined as the time between the failure and the traffic
is rerouted on the recovery path.

Finally, DRTSN is also compared with FRER in terms of
the average number of frames per queue.

A. DATA PLANE PERFORMANCE
This section presents the performed measurements at the data
plane.

1) Experiment 0: the proof of concept is demon-
strated with the higher- and the lower-priority streams
(as described in Sec. V-A) on the 4-nodes mesh
topology (Fig. 6). The failure is generated on port
enp4s0f1 of Switch-1, then the streams are recovered
with DRTSN and CR. In average, with DRTSN, traffic
is recovered in 823 ms, while with CR in 5171 ms.
DRTSN permits to reduce recovery delay with respect
to CR because DRTSN enables a direct communication
between the node detecting the failure and the nodes
involved in the recovery path, without involving a com-
munication also with the SDN controller. Time contri-
butions to the recovery delay in the case of DRTSNwill
be detailed in Sec. VI-B.

2) Experiment 1: recovery delay is measured at varying
the number of network nodes. 2-nodes and 3-nodes
ring topologies, and the 4-nodes meshed topology have
been tested, with higher and lower priority streams
(as in Sec. V-A) present in the network. Routing for
the primary path is performed on the shortest path
in terms of hops, while for the backup path on the
shortest path which is link-disjoint from the primary.
Fig. 11 shows the recovery delay versus the number
of network nodes. The behavior of DRTSN and CR
is confirmed with the former reducing the recovery
delay. With DRTSN, the recovery delay increases with
the number of nodes. In particular, with two nodes,
DRTSN requires around 520 ms, while with three and
four nodes 846 ms and 823 ms, respectively. Thus, with
3 and 4 nodes, the recovery delay is comparable. This
is due to the fact that <rpc> messages triggering FSM

VOLUME 9, 2021 136159



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

FIGURE 11. Average recovery delay [ms] vs. the number of network nodes.

FIGURE 12. Average recovery delay [ms] vs. the number of streams
present in the 4-nodes network.

state transition are sent sequentially and not in parallel.
Indeed, in the case of 2-nodes topology, the recovery
path is composed of one hop and the node detecting
the failure has to send only one remote<rpc>message.
In the case of the 3- and 4-nodes topologies, the backup
route is always of two hops, thus the node detecting
the failure sends two remote <rpc> messages. This
sentence is supported also by the intra-node time con-
tributions analysis presented in Sec. VI-B.

3) Experiment 2: recovery delay is measured at varying
the number of streams present in the 4-nodes meshed
network. Streams are generated by the Spirent and are
routed randomly in the network following available
paths. Then, the failure is generated and the affected
streams are recovered. Fig. 12 shows the recovery delay
versus the number of streams in the network. Again,
the behavior of DRTSN and CR is confirmed with
DRTSN reducing the recovery delay. The number of
streams in the network does not impact the performance
of the recovery schemes.

B. INTRA-NODE TIME CONTRIBUTIONS AND CONTROL
PLANE OVERHEAD
The time contributions to perform the agent operations with
DRTSN – which also have an impact on the recovery

delay – have been analyzed and summarized in Tab. 3. After
a failure, the node agent requires around 1 ms to parse FSM.
The main time contribution is required by the generation of
<rpc> message to a remote node, which is around 325 ms.
This delay includes the following contributions: i) the time
to establish an ssh session between the agent and the agent
at the remote node; ii) the time to establish NETCONF over
ssh; iii) the time for transmitting the <rpc> message. The
<rpc> generation time is also comparable with the difference
between the recovery delay achieved in the 2-nodes (520 ms)
and in the 3-nodes (846ms) topologies, where one<rpc> and
two <rpc> messages are sent to remote nodes, respectively.
The TSN app execution requires 20 ms. This time contri-
bution includes the reconfiguration of TAPRIO and also the
updating of the NETCONF server based on the new TAPRIO
configuration. Finally, the local routing table update takes
around 6.32 ms.

TABLE 3. Intra-node time contributions upon failure at the node
detecting the failure.

With DRTSN, upon failure, <rpc> messages to remote
nodes are exchanged. In particular, an<rpc> is generated for
each remote node of the pre-computed backup path, exclud-
ing the node detecting the failure if present in the backup path.
With CR, more control plane messages are exchanged. First,
a NETCONF<notification>messages is sent from the node
detecting the failure to the SDN controller to inform it about
the failure. Then, the NETCONF <edit-config> messages
are sent to each node in the backup path to reconfigure it upon
failure.

C. OPTIMIZATION OF DRTSN
By observing Tab. 3, the main bottleneck is due to the<rpc>
generation time contribution, which includes the time to open
a ssh session, a NETCONF session, and finally the time to
generate the <rpc>. Thus, we made other tests on recovery
delay by having already open NETCONF sessions (and ssh as
well) between the node detecting the failure and the remote
agents. Then, at the time of recovery, the <rpc> to change
FSM state on remote agents can be directly sent because the
ssh session and NETCONF over ssh are already open. Results
are shown in Table 4 in comparison with the DRTSN as in
Sec. VI-B (requiring to open ssh and NETCONF sessions

TABLE 4. Recovery delay after DRTSN optimization.

136160 VOLUME 9, 2021



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

before sending <rpc> messages). The considered topology
is the 4-nodes meshed one as in Fig. 6.

This optimization of DRTSN permits to reduce the<rpc>
generation time from 325ms to 7ms. This results in an overall
recovery delay decreased by a factor higher than three (from
823 ms to 254 ms), which includes the generation of two
<rpc> messages.

D. COMPARISON BETWEEN DRTSN AND FRER
To compare DRTSN, CR, and FRER a custom-built simulator
has been utilized, given that current TAPRIO implementation
does not support FRER. The simulator is event driven and
it is written in C++. The events are organized in a Binary
Heap Tree [43] and the flow of the simulation is driven by
events such as traffic streams arrival, frame transmission,
link failures, control packet generation and transmission.
A ring-topology with ten nodes and 100-Mb/s interfaces has
been assumed. Traffic streams arrive following a Poisson
distribution with an average inter-arrival time of 1/λ. Bursts
of 100 frames per stream are considered. Single-link failures
are randomly generated among the network links. We con-
sidered that queues are long enough to avoid packet loss in
the buffers. For FRER, we considered the implementation
where two Member Streams are generated following two
disjoint routes. For FRER, the secondary path is computed
as the shortest path that is link disjoint from the primary
one. DRTSN, CR, and FRER are compared in terms of the
average number of frames per queue during normal network
operations. Results are plotted with a confidence interval
of 95% at varying 1/λ.

Fig. 13 shows the average number of frames in a queue
versus the mean inter-arrival time of streams for all the three
schemes: DRTSN, FRER, and CR. The figure shows that
FRER may create a very high load in the network due to
the redundant transmission with respect to DRTSN and CR.
Moreover, note that the slope of the curve associated to FRER
is much larger than the ones associated to DRTSN and CR.
This is due to the fact that, in a ring topology, with FRER,
a stream (considering the twomember streams of a compound
stream) always use all the nodes, thus highly loading the
network.

FIGURE 13. Average number of frames per buffer vs. 1/λ.

VII. CONCLUSION AND FUTURE WORK
The paper proposed a new mechanism for managing reliabil-
ity in SDN-controlled TSN networks with NETCONF. Finite
State Machines (FSMs) permit to proactively instruct the
nodes on the actions to perform in case of specific events such
as failures or performance degradation. If an event occurs,
the SDN controller is by-passed thus reducing recovery time.
A failure recovery use case has been analyzed providing
details of the implementation and of the performance evalu-
ation. Measurements in an experimental testbed have shown
that the proposedmethod strongly reduces recovery time with
respect to a reactive restoration. Simulations have shown that
the proposed method avoids to overload the network with
respect to FRER. However, our method is not proposed to
replace FRER: the FSM-based delegation can coexist in the
network with FRER, e.g. for specific service classes.

Future works will further investigate the optimization of
the proposed method. Based on the observations in the exper-
imental testbed we have seen that a relevant time contribution
to the recovery delay may be the generation of <rpc> mes-
sages. Then, future works will investigate the potentials of
integrating FSM and P4. Other possible studies may investi-
gate the trade off between the number of pre-installed backup
routes (and related TSN features) and calculations/memory
needed, with the objective of guaranteeing robustness against
multiple faults.

ACKNOWLEDGMENT
The authors acknowledge Muhammad Usman who con-
tributed to the data plane deployment.

REFERENCES
[1] Time-Sensitive Networking (TSN) Task Group. [Online]. Available:

https://1.ieee802.org/tsn/
[2] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[3] M. Karakus and A. Durresi, ‘‘A survey: Control plane scalability
issues and approaches in software-defined networking (SDN),’’ Com-
put. Netw., vol. 112, pp. 279–293, Jan. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912861630411X

[4] G. Saldamli, H. Mishra, N. Ravi, R. R. Kodati, S. A. Kuntamukkala, and
L. Tawalbeh, ‘‘Improving link failure recovery and congestion control in
SDNs,’’ in Proc. 10th Int. Conf. Inf. Commun. Syst. (ICICS), Jun. 2019,
pp. 30–35.

[5] Frame Replicaton and Elimination for Reliability, Standard ISO/IEC/IEEE
8802-1CB, 2019.

[6] F. von Tüllenburg and T. Pfeiffenberger, ‘‘Layer-2 failure recoverymethods
in critical communication networks,’’ in Proc. ICNS, 2016, pp. 1–6.

[7] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
‘‘OpenFlow-based segment protection in Ethernet networks,’’ J. Opt. Com-
mun. Netw., vol. 5, no. 9, pp. 1066–1075, 2013.

[8] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network
Configuration Protocol (NETCONF), document RFC 6241, Internet Engi-
neering Task Force (IETF), Jun. 2011.

[9] M. Bjorklund, YANG—A Data Modeling Language for the Network Con-
figuration Protocol (NETCONF), document IETF RFC 6020, 2010.

[10] S. Brooks and E. Uludag, ‘‘Time-sensitive networking: From theory to
implementation in industrial automation,’’ Time Sensitive Netw., Intel,
Mountain View, CA, USA, Tech. Rep. WP-01279-1.0, 2018.

[11] S. Kehrer and F. Chen, ‘‘TSN configuration–focusing on
network management protocols,’’ IEEE 802.1 Working Group,
Hirschmann Automat. Control, Neckartenzlingen, Germany,
Tech. Rep., 2017. [Online]. Available: https://www.ieee802.
org/1/files/public/docs2017/cc-kehrer-TSN-Configuration-0317-v01.pdf

VOLUME 9, 2021 136161



N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

[12] TTTech Releases World’s First Vendor-Independent TSN Configura-
tion Software. [Online]. Available: https://www.tttech.com/tttech-releases-
worlds-first-vendor-independent-tsn-configuration-software/

[13] N. Sambo, P. Castoldi, G. Fioccola, F. Cugini, H. Song, and T. Zhou, YANG
Model for Finite State Machine, document draft-sambo-netmod-yang-fsm-
05, May 2019.

[14] M. Dallaglio, N. Sambo, F. Cugini, and P. Castoldi, ‘‘Method for managing
a telecommunication network,’’ Patent U.S. 10 749 624 B2, Aug. 18, 2020.

[15] N. Sambo, ‘‘Locally automated restoration in SDN disaggregated net-
works,’’ J. Opt. Commun. Netw., vol. 12, no. 6, pp. C23–C30, 2020.

[16] Enhancements for Scheduled Traffic, Standard IEEE 802.1Qbv, 2016.
[17] IEEE Standard for Ethernet Amendment 5: Specification and Management

Parameters for Interspersing Express Traffic, IEEE Standard 802.3br-
2016, 2016.

[18] Frame Preemption, Standard IEEE802.1Qbu, 2015.
[19] IEEE Standard for Local and Metropolitan Area Networks–Bridges

and Bridged Networks—Amendment 34: Asynchronous Traffic Shaping,
Standard IEEE 802.1Qcr-2020, 2020.

[20] Cyclic Queuing and Forwarding, Standard P802.1Qch, 2015.
[21] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,

M. Reisslein, and H. ElBakoury, ‘‘Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL research,’’
IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 88–145, 1st Quart., 2019.

[22] W. Steiner, S. S. Craciunas, and R. S. Oliver, ‘‘Traffic planning for time-
sensitive communication,’’ IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, Jun. 2018.

[23] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, ‘‘Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst. (RTNS), 2016, pp. 183–192.

[24] Z. Luxi, P. Paul, and S. S. Craciunas, ‘‘Worst-case latency analysis for IEEE
802.1 Qbv time sensitive networks using network calculus,’’ IEEE Access,
vol. 6, pp. 41803–41815, 2018.

[25] D.Maxim andY.-Q. Song, ‘‘Delay analysis of AVB traffic in time-sensitive
networks (TSN),’’ inProc. 25th Int. Conf. Real-TimeNetw. Syst., Oct. 2017,
pp. 18–27.

[26] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, ‘‘Window-based schedule
synthesis for industrial IEEE 802.1Qbv TSN networks,’’ in Proc. 16th
IEEE Int. Conf. Factory Commun. Syst. (WFCS), Apr. 2020, pp. 1–4.

[27] S. M. Laursen, P. Pop, and W. Steiner, ‘‘Routing optimization of AVB
streams in TSN networks,’’ SIGBED Rev., vol. 13, no. 4, pp. 43–48,
Nov. 2016.

[28] N. G. Nayak, F. Duerr, and K. Rothermel, ‘‘Routing algorithms for
IEEE802. 1Qbv networks,’’ ACMSIGBED, vol. 15, no. 3, pp. 13–18, 2018.

[29] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Time-sensitive software-defined
network (TSSDN) for real-time applications,’’ in Proc. 24th Int. Conf.
Real-Time Netw. Syst. (RTNS), 2016, pp. 193–202.

[30] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, ‘‘AVB-aware routing
and scheduling of time-triggered traffic for TSN,’’ IEEE Access, vol. 6,
pp. 75229–75243, 2018.

[31] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, andG.Mühl,
‘‘ILP-based joint routing and scheduling for time-triggered networks,’’ in
Proc. 25th Int. Conf. Real-Time Netw. Syst., Oct. 2017, pp. 8–17.

[32] M. Pahlevan, N. Tabassam, and R. Obermaisser, ‘‘Heuristic list scheduler
for time triggered traffic in time sensitive networks,’’ SIGBEDRev., vol. 16,
no. 1, pp. 15–20, Feb. 2019.

[33] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, ‘‘Enabling fog
computing for industrial automation through time-sensitive networking
(TSN),’’ IEEE Commun. Standards Mag., vol. 2, no. 2, pp. 55–61,
Jun. 2018.

[34] C. Mas-Machuca, F. Musumeci, P. Vizarreta, D. Pezaros, S. Jouët,
M. Tornatore, A. Hmaity, M. Liyanage, A. Gurtov, and A. Braeken,
Reliable Control and Data Planes for Softwarized Networks. Cham,
Switzerland: Springer, 2020, pp. 243–270.

[35] G. Bianchi, S. Pontarelli, M. Bonola, C. Cascone, D. Sanvito, and
A. Capone, ‘‘Method of handling data packets through a conditional state
transition table and apparatus using the same,’’ U.S. Patent 10 708 179,
Jul. 7, 2020.

[36] R. Amin, M. Reisslein, and N. Shah, ‘‘Hybrid SDN networks: A survey
of existing approaches,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[37] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, ‘‘Congestion-aware single link
failure recovery in hybrid SDN networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 1086–1094.

[38] O. Tilmans and S. Vissicchio, ‘‘IGP-as-a-backup for robust SDN net-
works,’’ inProc. 10th Int. Conf. Netw. ServiceManage. (CNSM)Workshop,
Nov. 2014, pp. 127–135.

[39] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
‘‘P4: Programming protocol-independent packet processors,’’
SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014,
doi: 10.1145/2656877.2656890.

[40] Bridges and Bridged Networks—Amendment 31: Stream Reservation
Protocol (SRP) Enhancements and Performance Improvements, IEEE
Standard 802.1Qcc, 2018.

[41] ONOS—A New Carrier-Grade SDN Network Operating System Designed
for High Availability, Performance, Scale-Out. [Online]. Available:
https://onosproject.org

[42] Spirent AION. [Online]. Available: https://www.spirent.com/products/aion
[43] J. W. J. Williams, ‘‘Algorithm 232: Heapsort,’’ Commun. ACM, vol. 7,

no. 6, pp. 347–348, 1964.

NICOLA SAMBO received the Ph.D. degree from
Scuola Superiore Sant’Anna, Pisa, Italy, in 2009.
His activity is focused on networks, ranging from
signal transmission to control plane, architecture,
and design. He took part in several projects,
such as the EU HORIZON 2020 ORCHESTRA
(on monitoring and automation) and the Italian
PRIN FIRST (on space division multiplexing in
optical networks). He collaborates with several
industrial and academic partners. He is currently

an Assistant Professor at Scuola Superiore Sant’Anna. He is also associated
with the FIBER CNIT National Laboratory, L’Aquila, Italy. He is an author
of more than 150 publications including international journals, conference
proceedings, and patents.

SILVIA FICHERA received the Laurea degree
(cum laude) in telecommunications engineering
from the University of Catania, Catania, Italy,
in 2014, and the Ph.D. degree in emerging dig-
ital technologies, curriculum photonic technolo-
gies, at Scuola Superiore Sant’Anna, Pisa, Italy,
in April 2019. In 2013, she was also a Trainee with
the Laboratory for Communication and Appli-
cations (LCA), École Polytechnique Fédérale de
Lausanne (EPFL). She is currently serving as a

Research Assistant at Scuola Superiore Sant’Anna. During her Ph.D., she
spent sevenmonths with the CommunicationNetworks Division, Centre Tec-
nològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
Her research interests include network control and management, software
defined networking, network security, and cloud computing.

ANDREA SGAMBELLURI received the master’s
degree in telecommunications engineering from
the University of Pisa, in 2007, and the Ph.D.
degree from Scuola Superiore Sant’Anna, Pisa,
Italy, in 2015. In March 2015, he won the grand
prize at 2015 OFC Corning Outstanding Student
Paper Competition for the paper ‘‘First demon-
stration of SDN-based segment routing in multi-
layer networks.’’ In 2016, he was Postdoctoral
Researcher at the Optical Networks Laboratory

(ONLab), KTH Royal Institute of Technology. He is currently a Postdoctoral
Researcher at the TeCIP Institute, Scuola Superiore Sant’Anna. His main
research interests include the field of control plane techniques for both packet
and optical networks, including software defined networking (SDN) protocol
extensions, network reliability, industrial ethernet, switching, segment rout-
ing application, YANG/NETCONF solutions for the dynamic management,
telemetry, (re)programming, and monitoring of optical devices.

136162 VOLUME 9, 2021

http://dx.doi.org/10.1145/2656877.2656890


N. Sambo et al.: Enabling Delegation of Control Plane Functionalities for TSNs

GIUSEPPE FIOCCOLA was born in 1983.
He received the master’s degree in electronic engi-
neering from the University of Naples Federico
II, in 2008, and the postgraduate master’s degree
from the Polytechnic University of Turin, in 2009.
He has been a Standardization Specialist and the
Technology Planning and Cooperation Manager at
Huawei Technologies, since 2018. Prior to Huawei
Technologies, he started his career at Telecom
Italia, in 2009, as a Researcher and a Network

Engineer. He has more than ten years of experience in developing communi-
cation solutions and exploring new networking technologies. He is an active
contributor to SDOs, such as IETF, ETSI, and MEF with relevant standard
documents published. He also holds several patents in the field of IP network
and performance measurement.

PIERO CASTOLDI (Senior Member, IEEE) is
currently a Full Professor and the Leader of
the ‘‘Networks and Services’’ research area at
the TeCIP Institute, Scuola Superiore Sant’Anna,
Pisa, Italy. He is also serving as a member
of the Management Board of the Consorzio
Nazionale Interuniversitario per le Telecomuni-
cazioni (CNIT) and the Executive Board of the
Inphotec Foundation, and he is the Director of the
Erasmus Mundus Master on Photonic Integrated

Circuits, Sensors and Networks (PIXNET). His research interests include
telecommunications networks and system both wired and wireless, and more
recently reliability, switching paradigms and control of optical networks,
including application-network cooperation mechanisms, in particular for
cloud networking.

KOSTAS KATSALIS is currently a Network
Architect at DocomoEuro Lab,Munich, Germany.
He is also an ETSI NFV and Open-RAN Stan-
dards delegate. He has served as the techni-
cal project manager for a number of projects
in the area of time-sensitive-networking (TSN).
He has also participated in numerous EU FP7and
H2020 projects (CONTENT, COHERENT,
Q4Health, and 5G-Picture). His research interests
include new network designs and technologies,

SDN/NFV, time-sensitive deterministic network communications, network
programmability, network optimization, orchestration, and management.
He serves as a Regular Reviewer in a number of conferences/journals, such as
IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, IEEE INFOCOM, and IEEE GLOBECOM.

VOLUME 9, 2021 136163


