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ABSTRACT Automatically understanding and describing the visual content of videos in natural language
is a challenging task in computer vision. Existing approaches are often designed to describe single events in
a closed-set setting. However, in real-world scenarios, concurrent activities and previously unseen actions
may appear in a video. This work presents the OSVidCap, a novel open-set video captioning framework
that recognizes and describes, in natural language, concurrent known actions and deal with unknown ones.
The OSVidCap is based on the encoder-decoder framework and uses a detection-and-tracking-object-based
mechanism followed by a background blurring method to focus on specific targets in a video. Additionally,
we employ the TI3D Network with the Extreme Value Machine (EVM), which learns representations and
recognizes unknown actions. We evaluate the proposed approach on the benchmark ActivityNet Captions
dataset. Also, an enhanced version of the LIRIS human activity dataset was proposed by providing descrip-
tions for each action.We also provide spatial, temporal, and caption annotations for existing unlabeled actions
in the dataset – considered unknown actions in our experiments. Experimental results showed our method’s
effectiveness in recognizing and describing concurrent actions in natural language and the strong ability to
deal with detected unknown activities. Based on these results, we believe that the proposed approach can be
potentially helpful for many real-world applications, including human behavior analysis, safety monitoring,
and surveillance.

INDEX TERMS Video captioning, open-set recognition, deep learning.

I. INTRODUCTION
Video understanding is a challenging issue in computer
vision. It requires sophisticated techniques to process the
diversity of humans and objects appearances in different
environments and their relationships over time.

The ability to detect and identify specific events is also
a critical step towards video understanding. Video events
are high-level semantic concepts perceived by humans in a
video sequence [1]. Each event is composed of one or more
meaningful objective actions, such as walking or jumping,
and interaction with objects, such as typing a computer or
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handshaking [2]. Each perceived concept consists of an entity
(human, object, action, or scene attributes) that occupies a
specific position in a frame and may vary in size, color, shape
or other specific attributes.

Video description (also called video captioning) is one
of the many problems under video understanding. It has
become a hot topic in computer vision and deep learning [3]
and requires solving many different tasks simultaneously,
including object detection and classification, action detection
and recognition, and visual relationships among humans and
objects. A video description approach may be employed in
various applications such as human-robot interaction, video
indexing, assistance to the visually impaired, understanding
sign language, and video surveillance.
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Current deep learning techniques are effective to learn
discriminative spatio-temporal features from raw data. They
are used to solve several complex tasks, such as object detec-
tion and classification [4], human action recognition [5], [6],
video summarization [7], semantic image segmentation [8],
and video understanding [9]. However, a step beyond the sim-
ple categorical classification of actions in scenes is to describe
events in a human-comprehensible language. To accomplish
this, it is crucial to understand the semantics of a given video
scene.

Despite the efforts and progress that have been made in
the video description task, it is still an open problem and
has attracted much attention [3]. Existing approaches are
limited to the fixed list of activities in the training corpus
and have focused on generating a holistic description of
short-length videos with only one main action happening
in the video. However, in practical applications, such as
safety monitoring and surveillance, videos may have con-
current activities, and humans can perform many different
actions and even create new movements and hand gestures
at will.

Amore realistic approach is to assume an open-set scenario
for describing actions. Open-set classifiers allow performing
classification by enclosing each class in the feature space and
reserving space for new classes to emerge, unlike closed-set
classifiers, which assign infinite spaces to training classes.
This strategy allows rejecting data from previously unknown
classes instead of wrongly assigning the class label with the
highest probability value [10].

Following this idea, a video captioning approach in an
open-set scenario can adequately describe known actions
and deal with unknown ones. Thus, it is essential to detect
if the performed action was seen during the training step
to correctly describe known actions or activities and avoid
generating wrong descriptions of new detected actions.

Based on that, this work presents a novel open-set video
captioning framework that aims to describe, in natural lan-
guage, not only single but also concurrent events occurring
in a video. The proposed approach uses an open-set action
recognition model to detect unknown actions, thus avoiding
incorrect descriptions and hallucinations. Some recent works
have successfully performed video action recognition in an
open-set scenario [10], [11]. However, to the best of our
knowledge, this is the first time such properties are explored
in the video captioning task.

The proposed representation learning approach is based
on the encoder-decoder framework and uses a detection-and-
tracking-object-based mechanism followed by a background
blurring method to define the targets and recognize the con-
current actions to be described. Additionally, we employ
the Triplet Inflated 3D Neural Network recently proposed
by [11], which uses Deep Metric Learning and the Extreme
Value Machine (EVM) [12] as the open-set classifier. The
main contributions of this paper can be summarized as
follows:

• We propose a novel video captioning framework to rec-
ognize and describe concurrent actions/activities per-
formed by humans in an open-set scenario;

• We present a novel open-set mechanism to detect out-
of-domain videos of unseen activities;

• We present extensive experiments and analysis, using
2D and 3D feature representations, demonstrating the
effectiveness of our approach.

The remainder of this paper is organized as follows.
Section II presents a brief description of related works.
In Section III, we present the theoretical aspects related
to the proposed method for open-set action recognition.
In Section IV, we describe in detail the proposed framework.
Next, in Section VI, we present the experimental settings,
their results, and a discussion. Finally, in Section VII we
present the conclusions and suggestions for future research
directions.

II. RELATED WORKS
Early proposed methods for the video description task started
with template-based methods in which the Subject (S),
Verb (V), and Object (O) were detected and then, used in a
sentence template [3]. Although these methods could gen-
erate descriptions based on grammar, they did not take into
account the spatial and temporal associations between entities
and suffered from the lack of diversity of generated sentences.
Inspired by the rapid development of deep learning tech-
niques in the Computer Vision and Natural Language Pro-
cessing area, video description research has recently become
a hot topic.

The video description approaches based on deep learning
methods are mainly designed in the encoder-decoder archi-
tecture [3], [13]. The encoder is usually a combination of 2D
and/or 3D CNN and LSTM that converts the input into a
feature vector representation of fixed length. The decoder is
usually an LSTM or GRU that generates a sequence of words.

Pre-trained deep learning models, such as VGGNet [14] or
ResNet [15], are commonly used to extract spatial features
from frames. These features are usually combined across
the frames by an average pooling or max-pooling operation,
resulting in a single fixed-length feature vector representation
for a short video clip. Besides, the C3D [16] or I3D [17]
models, pre-trained in a large dataset such as the Sports-
1M dataset [18] or Kinetics dataset [19], are used to extract
temporal features. The use of pre-trained models on large
datasets provides a strong visual representation of objects,
actions, and scenes depicted in the video [20].

Reference [20] proposed the first end-to-end learning
approach based on deep neural networks for the video cap-
tioning task. A variant of AlexNet pre-trained on a subset
of the ImageNet [21] dataset was used to extract visual
features from frames. Then, the mean pooling method was
employed, resulting in a single vector representing the entire
video. Finally, two stacked LSTM was used to generate the
sentence.
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Since then, many approaches have been proposed to use
attention mechanisms to dynamically select spatial and tem-
poral features focusing on important frames and regions
inside them, providing meaningful visual evidence for cap-
tion generation [22]–[26]. The use of attention mechanism
has improved the video captioning task suggesting that the
this method can efficiently improves the descriptions, espe-
cially in discontinuous videos, by focusing on specific parts
of the visual input.

Considering that open-domain videos cover a broad range
of topics, such as sports, music, food, and so on, some
approaches have been proposed to generate sentences guided
by latent topics [27] and semantic attributes [28]. The use of
multimodal data, such as visual, audio, motion, and textual
information, was also explored in some works [29], [30].
The combination of audio, movement, and visual information
has been shown to play an important role in the description
generation process.

The dense-captioning events task was proposed by [31]
and consists of detecting and identifying all events in a given
video and describe them in natural language. Their proposed
approach uses DAPs [32] to localize temporal event proposals
and a caption module based on LSTM to generate a sen-
tence for each event proposal. Reference [33] also propose
a unified end-to-end approach for video dense captioning.
However, instead of using RNN for description generation,
the authors used Transformers [34]. Their proposed approach
is composed of three components: a video encoder, a proposal
decoder, and a captioning decoder. The video encoder is
composed of multiple self-attention layers. The Temporal
Action Proposal (TAP) is based on ProcNets [35], which
was designed to detect actions in long videos. Moreover,
the captioning decoder module uses Transformers to generate
the sentence for each event proposal.

Despite achieving promising results, these approaches
often fail to describe concurrent activities happening in a
video. Also, the datasets used to evaluate these approaches
are created with videos extracted from movies or YouTube
videos. Such videos cover a broad range of topics, such as
sports, music, food, and so on, and a wide variety of differ-
ent individual and collective actions performed by humans,
animals, and even moving cartoon objects. These videos
also present specific challenges, including the presence of
discontinuity points between frames, as reported by [36],
which may result in inadequate temporal representation
features.

Besides the limitations presented above, the lack of well-
labeled data is a crucial problem in the deep learning area. The
zero-short learning task has been studied to classify actions
with no or few examples during the training step [28], [37].
Some approaches have been proposed for visual descriptions
task [38], [39] to describe novel objects not presented in
paired image sentence dataset. The zero-shot video caption-
ing task [40] focuses on describing out-of-domain of a novel
activity without paired captions, but with the knowledge of
the activity.

The approaches presented so far assume that all possible
classes are already known during the train or test phase.
However, new classes emerge as time passes in the real-world
dynamic environments. An open-set Human Action Recog-
nition approach requires the classifier to accurately classifies
known classes seen during the training stage and deals with
unknown classes, which are unseen and with no semantic
information provided during the training stage [10]. In this
work, we also exploit the nature of the open-set recognition
problem to propose a framework to describe videos in an
open-set scenario. As previously stated, to the extent of our
knowledge, there is a lack of related works in this approach
in the literature, being the main original contribution of the
present work.

III. THEORETICAL ASPECTS
This Section presents the fundamentals of the methods used
in our open-set recognition module: the Extreme Value
Machine and the Triplet Inflated 3D Neural Network.

A. THE EXTREME VALUE MACHINE
The Extreme Value Machine (EVM) was initially proposed
by [12] to perform open-set classification. In the EVM,
the modeling of each class in the training set is based on a
set of extreme vectors, which are associated to a Probability
of Sample Inclusion (9).

The key concept of EVMs is the use of margin distribu-
tions, which is the distribution of the half margin distances
of the training data. In the original formulation, one can
consider xi as a training sample and yi the corresponding
label. Considering xi and xj, where ∀j, yj 6= yi, xj can be
considered the nearest point to xi and, in this case, the margin
estimate for the pair (xi, xj) is given bymij = || xi − xj || /2.
The mij value can be computed for the τ nearest points

and the distribution of the margins is estimated with those
points using the Extreme Value Theorem (EVT). The EVT
states that the minimum values of xi is given by a Weibull
distribution [12]. The probability of inclusion 9 for a point
x′ is given by

9(xi, x′, κi, λi) = exp

(
−

∥∥xi − x′
∥∥

λi

)κi
, (1)

in which
∥∥xi − x′

∥∥ is the distance between x′ and xi, λi and
κi are the Weibull’s shape and scale parameters.
Each 9 is considered an EVT rejection model and

9(xi, x′, κi, λi) corresponds to the probability that a sample
is not beyond the negative margin. Even though a sample has
zero probability around the margin, the model can also be
extended to support soft margins. The probability that a point
x′ belongs to class Cl , where l is the class index, is given by
Equation 2:

P̂(Cl |x′) = argmaxi:yi=Cl9(xi, x′, κi, λi). (2)
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Finally, the classification function is:

y∗ =

{
argmaxi:yi=Cl P̂(Cl |x

′), if P̂(Cl |x′) > δ

unknown, otherwise,
(3)

in which δ is a threshold responsible for defining the bound-
ary between known and open-space.

In order to reduce the size of the model, many redundant
[xi, 9(xi, x′, κi, λi)] pairs can be discarded with minimal
impact on performance. Details of this procedure can be
found in [12].

B. TRIPLET INFLATED 3D NEURAL NETWORK (TI3D)
The TI3D is a Deep Metric Learning Neural Network intro-
duced in [11]. It uses the I3D as the base model to build a
cosine triplet loss network. The TI3D learns a feature map-
ping such that intra-class distances are small and inter-class
distances are large.

The TI3D takes three inputs: Anchor, Positive, and
Negative. For the human action recognition task, the Anchor
(a) represents a video of any given action, the Positive (p)
represents a video of the same action, and the Negative
(n) represents a video of a different action, both w.r.t. the
anchor. Given N (a, p, n) triplets, the Triplet loss function L
is defined by:

L2 =
N∑
i=1

[
2(f (xai ), f (x

p
i ))−2(f (xai ), f (x

n
i ))+ α

]
+
. (4)

in which i is the triplet index, f (xa), f (xp), f (xn) are the
Anchor, Positive and Negative embeddings, respectively, α is
the margin parameter, and 2 denotes the cosine distance
between two vectors xi and xj:

2(xi, xj) = 1−
xi · xj

‖ xi ‖ ‖ xj ‖
. (5)

Additionally, the symbol + indicates the operator
max(β, 0), for β = 2(f (xai ), f (x

p
i )) − 2(f (xai ), f (x

n
i )) + α,

which imposes L2 ≥ 0 for every f (xai ), f (x
p
i ) and f (x

a
i ), f (x

n
i )

pairs, since max(β, 0) = 0, ∀β ∈ R | β < 0. This loss
function attempts make the cosine distance between Anchor
and Positive samples smaller than the distance between the
Anchor and Negative instances by, at least, a margin of α.
Alternatively, it will force examples of the same class to be
mapped closer than examples of different classes (or even
previously unknown examples).

We employ the TI3D with its default parameters and use
hard and semi-hard triplet mining, as shown by [11]. Semi-
hard triplets are defined as triplets in which the distance
between the Anchor and Positive is smaller than the distance
between the Anchor and Negative videos, but this distance
is smaller than the margin parameter, i.e., 2(f (xa), f (xp)) <
2(f (xa), f (xn)) < 2(f (xa), f (xp)) + α. Hard triplets are
defined as triplets in which the distance between the Anchor
and Positive is larger than the distance between the Anchor
and Negative, i.e., 2(f (xa), f (xp)) > 2(f (xa), f (xn)). This
triplet mining strategy ensures that only triplets with a posi-
tive loss w.r.t. Eq. 4 are used during training.

IV. METHODS
In this section, we present theOSVidCap framework for video
captioning. It consists of five main modules: Target Detec-
tion and Localization (TDL), Features extraction, Open set
module, Encoder, and Caption Generation. The overall archi-
tecture of OSVidCap is presented in Figure 1 and detailed as
follows.

A. TDL MODULE
Detecting multiple concurrent events in a given video is
essential to describe them in natural language adequately. The
Target Detection and Localization (TDL) module consists of
a mechanism designed to detect and track significant moving
objects in a given video, which are considered the main
concepts of the event. The output of this module consists
of video segments for each moving object detected with a
blurred background.

More specifically, the TDL module detects and tracks
humans but is easily adaptable for other moving objects (such
as animals and vehicles). We employ the Yolo-v4 [4] to detect
humans and track them using the Deep SORT method [41].
The human-human or human-objects interaction is captured
when they overlap in consecutive frames. In such cases,
the entities are considered a single region of interest in the
final video segment.

Finally, inspired by [42], we use a background blur method
to guide the sentence generator module to focus on each
region of interest in each video segment during the generation
of the sentences.

B. FEATURES EXTRACTION
When human actions are described, it is important to con-
sider details of the person, place, and action [43]. Thus,
the Encoder module comprises four main classes of features
extracted from a given input video as shown in Figure 1.
All these features were extracted using off-the-shelf models,
pre-trained on large datasets, which proved to be beneficial
for video captioning tasks [20], detailed as follows:

• Scene type features: A sample of 16 evenly-spaced
frames per video was used to extract the max-pooling
features from the last convolutional layer using the VGG
model pre-trained on the Places365 dataset.1 The final
representation is a 512-dimensional feature vector.

• Spatial Features: For extracting spatial features,
we used the ResNet-101 model [15], pre-trained on the
Imagenet dataset. From a sample of 16 equally spaced
frames, we extracted a 2048-dimensional semantic fea-
ture vector of each frame from the last pooling layer.
Then, an average pooling operation was performed,
resulting in the final feature vector of dimension 2048.

• Temporal Features: The ResNeXt-101 with 3D con-
volutions [44], pre-trained on the Kinetics dataset [19],
was used to extract a 2048-dimensional semantic feature

1Weights available at https://github.com/GKalliatakis/Keras-VGG16-
places365.git
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FIGURE 1. An overview of the OSVidCap framework.

vector for every 16 frames (with 50% of overlap). Then,
followed an average pooling to obtain a final vector with
2048 features.

• Human body skeleton features: We used the ST-GCN
model [45], pre-trained on theKinetics dataset, to extract
significant complementary information for the spatial
and temporal features. This is a graph-based model
for modeling dynamic skeletons extracted with the
Openpose toolbox [46]. It is aimed to capture motion
information in dynamic skeleton sequences. We per-
formed a global max-pooling operation over all skele-
ton sequences to obtain a single 256-dimension feature
vector for a given video. The combination of skeleton
features with spatial and temporal features was intended
to improve the performance in action recognition and,
consequently, in the descriptions of the videos [47].

Except for the scene type features extracted from the orig-
inal video frames, all other features were computed with
the video segment processed by the TDL module. All these
features are used in the encoder model to compute the feature
final vector representation.

C. OPEN SET MODULE
The TI3D was initialized using the weights of the I3D and
trained according to Section III-B. Then, it was used to extract
features from both training and test videos. The features are
used to train the EVM classifier, which predicts each action
in the test set as known or unknown. The output of the module
supports the caption generation by signalling whether the
action belongs to a known or unknown class.

The TI3D was trained for 20 epochs, updating the triplets
every epoch using the hard and semi-hard triplet mining
strategy proposed by [11]. The learning rate was set to 0.02,
the margin parameter to 0.2, and the batch size to 256. For the
EVM, we set the tail size τ to 10% of the number of samples
in the train set, the cover threshold for model reduction was
set to 0.5, and the probability of inclusion (δ) to 0.5. These
parameters were empirically set, based on previous experi-
ments on the LIRIS dataset [48] used in this work.

D. ENCODER
This block aims to derive a feature vector representing the
essential concepts to predict the next word for describing
the ongoing action in the video. All the previous features
extracted from the video were mapped into a common high-
level abstract space by a feedforward network (FCN) with
ReLU activations, as depicted in Figure 1.

Before Features Fusion (FF) step, we fuse the output
processed by the Open Action Recognition Module with the
processed Temporal Features (Ftp) to consider the unknown
action information. Notice that the processed Place-type fea-
tures (Fp), Spatial features (Fsp), and Human body skeleton
features (Fsk ) were remained to preserve essential informa-
tion for caption generation, such as information about the
place-type and number of people detected in the scene.

The output calculation of the encoder module provided by
the FF can be formulated as follows:

Fp = 8(W1 ∗ Up + b1), (6)

Fsp = 8(W2 ∗ Usp + b2), (7)

Fsk = 8(W3 ∗ Usk + b3), (8)

Ftp = 8(W4 ∗ Utp + b4)⊗ Ouk , (9)

FF = Fp � Fsp � Fsk � Ftp, (10)

in which W1, W2, W3, and W4 are weight matrices;
Up, Usp, Usk , and Utp are features from the input mod-
ules: scene type, spatial, human body skeleton, and tem-
poral, respectively; b1, b2, b3, and b4 are the bias vectors;
8 denotes the ReLU activation function;⊗ denotes element-
wise multiplication operator; ∗ is the convolution; � is the
concatenation operator; and Ouk denotes the feature vector
provided by the TDL module.

E. CAPTION GENERATION
This module consists of the sentence generation and uses
two Long Short-Term Memory (LSTM), a variant of Recur-
rent Neural Network (RNN), which works better with long-
term dependencies. The first LSTM encodes the preceding
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sequence of words S = s0, s1, . . . , st−1. The second LSTM
predicts the next word based on the output of the first LSTM
combined with visual features computed by the Encoder
module. The LSTM calculation formula used in this work is
given by the following equations:

ht = tanh(Ct ) ∗ ot , (11)

Ct = σ (ft ∗ Ct−1 + it ∗ C̃ t ), (12)

C̃ t = tanh(xtUg
+ ht−1W g), (13)

in which Ug and W g are weight matrices; xt is the input at
time t; ht−1 is the previous state; and ft , it , and ot are the
forget, input and output gates, respectively. The calculations
of unit gates are:

ft = σ (xtU f
+ ht−1W f

+ bf ), (14)

it = σ (xtU i
+ ht−1W i

+ bi), (15)

ot = σ (xtUo
+ ht−1W o

+ bo), (16)

in whichU f , U i, Uo, W f , W i, andW o are weight matrices,
bf , bi and bo are bias vectors, and σ denotes the sigmoid
activation function.

V. DATASET
There are a few datasets publicly available for video cap-
tioning task [3]. The most used datasets in the literature are
MSVD [49] and MSR-VTT [50], containing a wide variety
of open domain short videos. Each video has only a single
main activity and multiple sentences with different details
describing the video.

Despite the availability of annotated datasets for the video
captioning task, none of them contain specific information
about the action performed in each video, such as an action
categorization. This information is essential in detecting and
recognizing known and unknown events in an open-set sce-
nario. Also, they do not contain concurrent events happening
in the same video.

To overcome the above-mentioned limitations, we
improved the LIRIS human activities dataset with cap-
tions and temporal annotations of new actions. Furthermore,
we evaluate the generalization of our method on the large-
scale ActivityNet Captions dataset. Both datasets are detailed
as follows and are made available for further studies.2

A. LIRIS CAPTIONS DATASET
It was designed for recognizing complex and realistic actions
in videos and made available for the ICPR-HARL’2012 com-
petition. The full dataset contains 828 actions (including
discussing, telephone calls, giving an item, etc.) performed
by 21 different people in 10 different classes. Each action
performed in a video contains spatial annotations in a bound-
ing box and temporal information (the beginning and end
of action). It was organized into two independent subsets:
the D1 subset, with depth and grayscale images, and the

2http://labic.utfpr.edu.br/datasets/UTFPR-OSVidCAP.html

FIGURE 2. Example of a video clip and the ground-truth sentences
created for each human activity in the LIRIS human activities dataset.
Blue and Brown captions correspond to two different concurrent
activities performed by different actors.

D2 subset, with color images. The dataset also has unanno-
tated actions, such as walking, running, whiteboard writing,
book leafing, etc.

In this work we used the D2 subset that contains 367 anno-
tated actions from 167 videos. Each action consists of one
or more people performing one or more different activi-
ties. Besides, we extract 116 video segments in 15 different
unannotated actions from the original videos to be used as
unknown classes. Each new video segment was also anno-
tated with spatial, temporal, and description information.

Reference [51] suggested that the number of reference
sentences directly affects the accuracy of automated metrics.
Also, those authors affirm that using five sentences models
obtain a substantial boost in performance compared with only
one sentence. Following this work, we improved the LIRIS
human activity dataset with five different descriptions for
each action, as shown in Figure 2.

B. ACTIVITYNET CAPTIONS DATASET
The ActivityNet Captions dataset [31] is a large dataset
proposed for dense-captioning events, which involves both
detecting and describing events in a video.

It contains 20,000 videos split into around 50%, 25%,
25% for training, validation, and testing set, respectively.
All videos were taken from the ActivityNet Dataset [52],
a benchmark for video classification and detection, which
covers 200 classes of activities. The dataset also has an over-
lap of 10% of the temporal descriptions, thus indicating the
presence of concurrent events. Each video is annotated with
a series of temporally localized descriptions.

Although the ActivityNet Captions dataset is available for
download as a collection of Youtube video links, many of
these videos are no longer available for download, as reported
in previous works [53], and only the pre-computed C3D
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features provided by the authors are not helpful in our exper-
iments. Thus, we used 12,714 videos that were still available
for download. Videos shorter than 3 secondswere disregarded
due to the small number of extracted frames. As our approach
focused on describing entire videos and not detecting a series
of events, we used the ground-truth event proposals to extract
34,934 video clips for each temporarily localized description
provided in the annotations.

While ActivityNet Captions was originally designed for
video dense captioning, we adapt it to our task by including
action annotations to evaluate the generality of the proposed
method in a large-scale dataset. Due to the considerable effort
required to annotate each video clip manually, these annota-
tions were collected from theActivityNet dataset based on the
video name, which is the same in both datasets. Each resulted
action class contains, on average, 114 videos for training and
55 videos for testing. The action annotations were used to
split videos into known and unknown classes for the detection
of known and unknown actions.

VI. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The proposedOSVidCap framework uses an encoder-decoder
architecture. Therefore, both the encoder and caption gener-
ation modules (decoder) were trained in an end-to-end way.
Before training, all captions were tokenized and converted to
lowercase. Sparse words occurring less than three times in the
training set were replaced with the unknown token. The fast-
text [54] word embedding pre-trained on the Common Crawl
Corpus was used to embed features into a 300-dimensional
feature vector. It provides much more powerful and effec-
tive low-dimensional word representations for video caption-
ing than other techniques such as sparse one-hot encoding
vectors [55].

During the training step, a begin-of-sentence and end-
of-sentence token were added to the sentence to deal with
varying lengths. Also, an unknown tag was used to replace
sparse words. We input the begin-of-sentence token into our
Caption Generation Module to start the description genera-
tion process during the test step. Then, previously generated
words are used as input to produce the following words
until the max sentence length or the end-of-sentence token
is achieved. In our experiments, the max sentence length
was set as 19 and 25 for the Liris dataset and ActivityNet
Captions dataset, respectively. Zero padding is applied if the
sentence is shorter than the max number of words. The Beam
Search method was employed to select the best sentence and
avoid local optima. In our experiments, the beam size k was
set to 3.

We empirically set the hidden state LSTM with 512 units
and applied dropout with a rate of 0.5 on the input and output
of the LSTM. The Adam algorithm, with a learning rate of
5 × 10−5 was used for optimization. The cross-entropy loss
was used to train our model. All experiments were imple-
mented using Tensorflow and Keras library.

To demonstrate the effectiveness of the proposed method,
we have conducted two experiments to analyze the influence
of the open set module and compare the video caption perfor-
mance with related works.

1) EXPERIMENTS ON THE LIRIS DATASET
Due to the small number of videos and known actions in
the Liris dataset, we performed a 5-fold cross-validation
procedure to assess the OSVidCap performance. The same
training and testing set of each cross-validation fold was used
to train the open set module. In addition, to evaluate the
effectiveness of the proposed approach in detecting unknown
events, we include in the testing set 116 videos with unknown
actions as described in Section V-A.

2) EXPERIMENTS ON THE ActivityNet CAPTIONS DATASET
The OSVidCap performance to generate captions of known
events was performed using the standard data split.3 Since
this dataset was made available as a challenge, the test set
was not provided with the ground truth. Thus, we follow
the previous works [33], [53] and report the results on the
validation set. The effectiveness of the proposed approach
in detecting unknown events was performed using a 5-fold
cross-validation procedure. Each fold contains known videos
of 40 actions for the training and testing set, as explained in
Section V-B. We also included in the testing set vr random
videos from other classes as unknown actions. The vr was
defined as the same number of videos presented in the train-
ing set to avoid imbalanced data.

B. EVALUATION METRICS
The captions generated by the proposed framework were
evaluated according some metrics, frequently used in the
area: BLEU [56], METEOR [57], ROUGE-L [58], and
CIDEr [51]. All metrics were computed using the COCO-
caption API [59].

BLEU is a metric based on n-grams precision modified
and measures the predicted sentence proximity with one or
more reference descriptions. Following most previous works
for video captioning [3], we used four-grams with the BLEU
metric, which is referred as BLEU-4. METEOR is based
on the precision, recall, and harmonic mean and consists of
creating an alignment between uni-grams from candidate and
reference sentences. The word matching supports morpho-
logical variants including stemming and synonyms. CIDEr
is a consensus-based metric and measures the similarity of a
generated sentence against a majority of a set of ground-truth
sentences. It employs morphological variations by changing
each word in their stem (or root form) to resolve word-level
correspondences. ROUGE-L computes the recall and preci-
sion scores using the longest common subsequences (LCS)
technique and tends to reward long sentences with high recall.
In our experiments, BLEU, METEOR, and ROUGE metrics
were normalized to range from 0 to 100, with 100 as identical

3https://cs.stanford.edu/people/ranjaykrishna/densevid/
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to the reference sentence. CIDEr ranges from 0 to 1000, with
1000 as identical to the reference.

C. QUANTITATIVE RESULTS
In this section, the performance evaluation of the proposed
method is presented and compared with two recent existing
approaches.

SGN [60] exploits the use of semantic groups based on
meanings such as people, objects, or actions, rather than
frame by frame for understanding a video. It is comprised of
four main components: (i) a Visual Encoder component that
aims to extract visual features from video frames; (ii) a Phrase
Encoder which produces phrase representations from words
by using the self-attention mechanism; (iii) a Semantic
Groupingwhich employs a semantic aligner to align the video
frames with phrases; and (iv) a Decoder based on LSTMwith
temporal attention.

Non-Autoregressive Coarse to-Fine (NACF) model [61]
proposes a coarse-to-fine captioning procedure using a
bi-directional self-attention-based network as caption gener-
ator. For improving caption quality, the decoder method is
decomposed into two stages. First, a coarse-grained ‘‘tem-
plate’’ is generated. Then, dedicated decoding algorithms
generate fine-grained descriptions by filling in the generated
‘‘template’’ with suitable words and modifying inappropriate
phrasing via iterative refinement.

For a fair comparison, all the methods utilize the
ResNet-101 and ResNext-101 features as input, and the
reported results were obtained using Microsoft COCO cap-
tion evaluation tool [59]. Furthermore, all approaches were
set with the same maximum sentence length and minimum
word frequency during training.

Table 1 presents a comparison performance of the OSVid-
Cap with existing approaches on LIRIS dataset. It can be
noticed that our model OSVidCap(S+T) achieved better per-
formance in terms of Rouge-L and CIDEr and competitive
performance in terms of Bleu and Meteor. Also, our model
OSVidCap(S+T+SK+P) surpasses the compared approaches
by 4.9% of BLEU-4, 5.1% of METEOR, 4.3% of ROUGE-L,
and 9.3% of CIDEr. This suggests that our approach can bet-
ter describe concurrent events in videos. In addition to spatial
(S) and temporal (T) features, the model considered Human
body skeleton (SK) extracted from human movements and
Place-Type (P) features extracted from places. This points out
that specialized features can be essential to better describe
similar actions or actions according to the context (place).
Such feature enrichment provides essential information to
distinguish some actions, such as shaking hands and giving
a small item to a second person. Also, the place type gives
meaningful semantic information, as some actions tend to
happen in specific places.

Table 2 presents the video captioning comparison onActiv-
ityNet Captions dataset. It can be noticed that the proposed
approach also achieved better or competitive results across
all metrics, showing robust generalization to other contexts
and scenarios. It is also noteworthy that the values of the

TABLE 1. Comparison performance of video captioning on the LIRIS
human activities dataset. 5-fold cross-validation results are presented in
terms of BLEU-4 (B), METEOR (M), ROUGE-L(R), and CIDEr (C). S denotes
spatial features. T denotes temporal features. SK denotes skeleton
features. P denotes places features.

FIGURE 3. Example of events temporally localized in the video with
independent start and end times, resulting in some events occurring
concurrently in the ActivityNet Captions dataset.

TABLE 2. Video captioning performance on the ActivityNet captions
validation set. Results are presented in terms of BLEU-4 (B), METEOR (M),
ROUGE-L(R), and CIDEr (C). S denotes Spatial features, T denotes temporal
features, SK denotes skeleton features, and P denotes places features.

metrics presented in Table 2 are significantly lower than
those presented in Table 1 due to the complexity of the
datasets, as reported in section V. The performance reported
on this dataset is similar to those reported in recent literature
[53], [62]. Note that, despite having used the same dataset to
report the results, they are not comparable with the presented
approach, as the videos and features used for training, valida-
tion, and testing are different.
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TABLE 3. Open-set module on Liris captions dataset.

TABLE 4. Open-set module on ActivityNet captions dataset.

In both datasets, the use of Place-type features did not show
significant improvements. This may indicate that previously
used features can also describe this visual information or are
irrelevant for the video description task.

In Table 3, one can observe the evaluation performance
of the open-set module in detecting known and unknown
actions on the Liris Dataset. Results are presented in a 5-fold
cross-validation procedure. The proposed method achieved
satisfactory results in detecting known and unknown classes
with an average F1-Score of 86.2%.

Table 4 shows the evaluation performance of the open-
set module in detecting known and unknown actions on the
ActivityNet Captions dataset. Five experiments with different
numbers of the known classes in a cross-validation procedure
were performed. The proposed method achieved satisfactory
results in detecting known and unknown classes with an aver-
age F1-Score of 79.80% when ten classes were considered as
known actions.

In Table 4, it can also be seen that the average precision of
the unknown class is about 9% higher than the known class,
and the average recall of the known class is 13% higher than
the unknown class. This shows that the proposed approach
achieves better results in detecting unknown classes than
known classes. The automatic annotation process of video
actions on the ActivityNet Captions dataset, as described in
section V-B, also produced some annotation noises during the
training and testing process. These noises can be a performed
action with a different label or even a video without human
actions. Figure 3 depicts an example of a video presented in
the dataset. It can be observed that the video has different
events with different start and end times. The automatic anno-
tation process set the action class ‘‘Removing ice from car’’
to all video clips. However, in this example, only two video
clips are related to the annotated action. Therefore, the degra-
dation in the average precision metric of the known class may
have been caused by the presence of these annotation noises.
When considering new actions as known classes, the average

F1-Score decreased due to the cumulative annotation errors
provided by the automatized annotation process, as reported
below.

Table 5 reports the impact of the open-set component on the
video descriptions generated by the proposed approach. The
results reported in the Liris dataset used the same data in a
cross-validation procedure, as used in Table 3. For reporting
the results on ActivityNet Captions Dataset, we used the
5-fold cross-validation applied in Table 4.

These results are significantly higher when compared with
those reported in Tables 1 and 2 because, in this experiment,
we considered videos in the test set with unknown activities.
For these videos, the model is supposed to generate descrip-
tions such as ‘‘a person is performing an unknown action’’.

The experiments with unknown actions in the testing set
suggested that Place-type features did not lead to a signif-
icant improvement. However, these features are important
to understand scenes in which the information about the
place type is relevant, for example, to describe whether the
person is entering or leaving an office or writing a white-
board in a classroom. In the testing set used to report the
experiments in Table 5, several videos from unknown classes
were included to evaluate the proposed open set module.
Therefore, the overall influence of the Place-type features has
quantitatively decreased due to the small number of sentences
that require such features. To the best of our knowledge,
this is the first work to address the video captioning task in
an open-set world by generating captions of known events
present in the training set and dealing with unknown events
not previously seen.

D. QUALITATIVE RESULTS
In Figure 4, we illustrate three examples of video descriptions
generated by the baselines method SGN and NACF and the
proposed OSVidCap. Figure 4a depicts a scene with two
sequential actions. First, a man in a striped t-shirt talks to
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TABLE 5. Influence of the open set module in the OSVidCap approach. S denotes spatial features. T denotes temporal features. SK denotes Skeleton
features. P denotes places features.

FIGURE 4. Qualitative example of generated descriptions on the Liris dataset.

a woman in front of a whiteboard. Then, another man in a
black t-shirt enters the room and gives an item to the man in a
striped t-shirt. Figure 4b shows two concurrent events. While
a man and a woman are handshaking, another man is leaving
baggage unattended. Finally, in Figure 4c, three events take
place in the video. At the same time, a man is performing an

unknown action. Another man leaves an item in the letterbox
cabinet and then enters the room.

For the examples of Figure 4, our approach described
concurrent actions better than the baselines. In Figure 4a,
the OSVidCap correctly described the ongoing action but
wrongly represented the color of the t-shirt, suggesting that
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the model did not learn this information from the input fea-
tures. Possibly, more specific features should fix this issue.

In Figure 4b, we can observe that the compared approaches
could not detect the shake hands action, suggesting the impor-
tance of using human body features in describing human
action videos. Also, they fail to detect and describe concurrent
actions in videos.

We can realize the importance of the open set module in
the situation considered in Figure 4c). While the OSVidCap
detected an unknown action performed by a man and cor-
rectly described it as such, the compared approaches gen-
erated a wrong description. It is worth highlighting that this
action was previously labeled as unknown and did not appear
in the training set.

VII. CONCLUSION AND FUTURE WORKS
The majority of artificial intelligence methods rely on the
closed-set world assumption. The same holds for the spe-
cific case of automatic video captioning systems. Existing
methods based on a closed-set world can adequately describe
only the temporal events previously seen during the training
step. Unless they are trained with all existing events and
actions of interest, they will not be able to recognize unknown
events found in videos in the wild. Furthermore, most cur-
rent approaches for video description focus only in single
actions occurring at a time, while in the real-world, concur-
rent events may take place. To address the above-mentioned
issues, in this paper we proposed the OSVidCap framework,
that can detect and describe concurrent events in an open-
set world scenario. From a given input video, the TDL mod-
ule detects and tracks humans and outputs a set of video
segments to be described. Then, spatial and temporal fea-
tures are extracted from each video segment. Also, the open
set module, built upon the TI3D metric learning approach
coupled with an extreme value machine (EVM), classifies
each detected action as a known or unknown class. Then,
the Encoder module computes the features and generate a
fixed-length vector that represents the whole video content.
Finally, the caption generation module, based on the LSTM,
generates the descriptions in a human-comprehensible form.

Experimental results demonstrate the effectiveness of the
framework in describing concurrent events in a given video.
Also, the open-set module allows the framework to describe
unknown events. Our experiments also show that different
features such as the Human body skeleton and Place-type
features are quite relevant to understand fine-grained actions,
frequently performed in specific environments. Such features
enrichment provides a better video representation for gener-
ating a more detailed description. Furthermore, due to the
lack of specific datasets for evaluating concurrent events in
an open-set scenario, we have contributed new annotations
of unknown actions in the LIRIS human activity dataset that
can be used as a benchmark for the proposed task.

Despite the excellent results achieved by OSVidCap,
we observed that it could provide a more detailed description
of people, for instance, including the type and color of the

clothes. This enrichment of details can plays an important role
for applications in surveillance. The TDL module is capable
of capturing individual humans or objects of interest and sim-
ple interactions between them, by capturing the overlapping
region among objects. However, the proposed module may
fail to capture more complex human interactions.

Therefore, in future work, the proposed framework will be
evolved by enriching the description of people in the scene,
as well as to improve the detection of events involving persons
that interact at a distance, such as watching TV or throwing
an object to another person. Another future work involves
providing a human evaluation over a subset of testing data,
as existing metrics used for automatic evaluation of video
captioning may not properly correlate with human judgment.
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