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ABSTRACT Smart electric vehicles (EVs) are attractive because of their clean, zero-emission, low impact
on the environment whilst providing a safer and smoother riding experience. To provide the latter, driving
control requires appropriate systems and algorithms to optimize smart vehicle performance, maximize
vehicle stability and protection, minimize accident probability, heighten driving comfort, and optimize
transportation costs. Despite advancements in these areas, the realization of optimal smart EVs still requires
considerable effort. This paper reviews driving control systems and algorithms for smart EVs, including the
advanced driving assistant system, implementation of sensors, vehicle dynamics, and control algorithms. The
major contribution of this review is to identify promising work to assist researchers with the most advanced
trends in this area for prospective regulations.

INDEX TERMS Smart electric vehicles (EVs), driving control systems (DCS), advanced driving assistance
system (ADAS), algorithms.

I. INTRODUCTION
Electric Vehicles (EV) show significant potential in the
reduction of greenhouse gas (GHG) emissions [1] as well
as offering other significant advantages. Unlike internal
combustion engine vehicle, an EV operates each wheel using
an individually mounted motor producing independent power
output. This feature offers greater power density, greater
safety stability, and improved dynamic efficiency [2]. Integra-
tion of EV technology and automatic control methodologies
creates a smart EV possessing visual, auditory, olfactory, and
tactile functions [3] allowing it to react faster and potentially
more accurately than a human driver.

A smart EV is capable of intelligently identifying and
evaluating a vehicle’s running and driving condition [4]. The
smart EV can also use a control system to automatically
detect road conditions and receive road traffic guidance,
resulting in environmentally friendly driving, efficient traffic

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

flow, automated traffic conditionmonitoring, and safe control
under erratic driving conditions, all of which reduce the likeli-
hood and severity of traffic accidents. Yang et al. [5] presents
several advanced control systems with control modules for
traffic accident avoidance and minimisation. The Advanced
Driving Assistance System (ADAS)is a convenient option to
increase driving safety and includes control mechanisms such
as adaptive headlights, blind-spot monitoring (BSM) [6],
obstacles and accidentWarning, fixed-lane driving, automatic
emergency braking, and environmental driving comfort.

Figure 1 shows Driving Control Systems (DCS) and
algorithms for a smart EV. DCS encompasses control
methods and control modes based on ADAS [7], including
Adaptive Cruise Control (ACC) [8], Automatic Emergency
Braking System (AEBS) [9], Lane Departure Warning
(LDW) [10], [11], Lane Change Assist (LCA) [12], Lane
Keeping Assist (LKA) [13], Night Vision [14], Traffic
Sign Recognition (TSR) [15], Pedestrian Detection [16],
Automatic Parking [17], and Traction control [18]. Traffic
flow parameters, driver behavior, and driving conditions

135440 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4688-5399
https://orcid.org/0000-0002-1404-2258
https://orcid.org/0000-0002-9727-6171
https://orcid.org/0000-0002-7463-7675
https://orcid.org/0000-0001-9389-2666
https://orcid.org/0000-0003-3701-9357
https://orcid.org/0000-0002-0596-4816
https://orcid.org/0000-0002-9772-4130
https://orcid.org/0000-0002-7373-0149
https://orcid.org/0000-0002-3360-9440


T. S. Haque et al.: Review on Driving Control Issues for Smart EVs

FIGURE 1. Driving control systems and algorithms.

can be detected and shared with vehicles within their
vicinity. To share this information and increase the efficient
communication between vehicles, vehicular ad hoc net-
works (VANETs) have been introduced [19], [20]. Multiple
VANET surveys referring to security and privacy schemes
have been developed in recent years [19]. To establish these
security concerns, the smart EV requires some security
mechanisms like Access Control [21]. The majority of those
approaches are discussed in this review.

The control systems and algorithms depend on the infor-
mation generated by relevant vehicle sensors to determine
the vehicle’s condition and position, the surroundings, and
several other factors. Elementary sensors include Vision
sensors, LiDAR, radar, Ultrasonic sensors, and Time of
Flight (TOF). ADAS, for example, utilizes ambient sensors
such as camera, radar, LiDAR, night vision, and ultrasonic
sensors to track, sense, and evaluate the vehicle’s position
and surroundings [22]. The system fuses sensor information
from multiple sensors to avoid the sensory drawbacks and
inconsistencies of each individual sensor [23].

This review also discusses several kinematic and dynamic
models used for longitudinal control and lateral control
systems, which are the main control methods for smart EV.
Longitudinal control is of acceleration and braking; lateral
control is of the steering mechanism. Both are essential.
Researchers have established several techniques to control
longitudinal and lateral dynamics including Proportional

Integral Derivative (PID), Model Predictive Control (MPC),
Feed-forward, Pure-Pursuit, and Stanley [24]–[28].

The major aims of longitudinal control is to maintain a
comfortable distance from the vehicle in front, to maintain
a relatively constant velocity with minimum use of the
brake, and to apply the brakes as quickly as possible in
emergency situations. Thus, longitudinal control aids in
accident prevention by providing sufficient time to apply
breaking. Lateral control holds the vehicle in the middle of
the lane and steers it into an adjacent lane while ensuring
good comfort for passengers. Lateral control requires lane-
holding, reversing, lane changing, and avoiding obstacles
which might emerge in front of the vehicle. By imple-
menting a lane departure warning system and advanced
steering control, automatic steering will minimize road
accidents [29].

Table 1 shows a comparison of the current study and
previous surveys on DCSs and vehicle perception sensors.
This article presents all of the DCSs and sensors for
those control systems in Table 1. These control systems
require control algorithms to provide control over all the
previously mentioned systems; sensor performance; and
longitudinal, lateral, and actuation systems [30]. Some of the
popular algorithms researched in recent decades for precise
and accurate driving control systems are: machine vision,
machine learning, and deep learning [31].

Advanced vehicle control systems are of significant
interest in the automobile industry–see Table 1 for a brief
summary. In [32], a substantial variety of research papers
have reviewed the use of deep learning techniques to control
a vehicle, since vehicle control systems and perception
are related. This paper focuses mainly on the control
system aspect, offering a comparative analysis identifying
the strength and limitations of available deep learning
methods. Research challenges are also discussed in terms
of computation, architecture selection, goal specification,
generalization, verification, validation, and safety.

Path tracking control focuses on lateral and longitudinal
vehicle control to follow a predetermined path or trajectory.
In [33], This paper discusses path tracking control in terms
of the primary vehicle model that is usually used, the control
methods that are typically used in path tracking control,
and the performance measures that are used to calculate
the controller’s output. A nonlinear vehicle model is used
to construct an adaptive geometric controller, which is then
validated with hardware-in-the-loop.

Many active and passive sensors (such as cameras, laser
sensors, radars, ultrasonic sensors, and GPS sensors) can
now be used in autonomous vehicles using various AI
techniques. In [34], the authors provide a comprehensive
overview of an artificially intelligent vehicle, including the
various approaches used, such as neural networks and fuzzy
logic, as well as the various modules and their benefits
and drawbacks. The paper also discussed how to make an
autonomous car more stable by using multiple sensors and
creating maps.
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Despite the existence of a number of surveys, most
concentrate only on a single aspect of the vehicle control
system [9], [35], [36] or a small number of aspects such
as in [34] and [33], in which the authors discussed only
sensor operation, path control and vehicle control systems.
No review presents a holistic approach of smart EV
technology.

The current state-of-the-art methods for improving the
efficiency of smart EV systems in local area or urban
vehicle environments are reviewed in this article. Indicatively,
it discusses on recent research that employs machine learning
techniques for vehicle perception, localization, and actuation
control (i.e., vehicle lateral and longitudinal control). The
main goal is to provide a detailed overview of the most
effectivemachine learning and control techniques in the fields
of DCSs, sensor technologies, and vehicle control for smart
EV.

Smart EV technology is being gradually introduced into
the current vehicles with leading automotive companies
developing various control systems and algorithms for the
advancement of autonomous vehicles. It is therefore timely
to review the driving control issues for smart EV, including
DCS and algorithms, to provide a survey, discussion, and
comparisons. This review may help in terms of developing
smart EV by surveying research that develops DCS, identifies
appropriate sensors for perception, realizes vehicle dynamics
control for vehicle actuation to improve the vehicle’s stability,
and reduces vehicular accidents. It should be noted, however,
that there has recently been a significant increase in research
in the automatic control of smart vehicles we do not pretend
to have conducted a comprehensive review of the widely
accessible driving control systems and algorithms in the
literature–rather we have focused on presenting major work.

The remainder of the review is organized as follows:
Section II describes the driving control systems. Section III
presents a description of the control system algorithms.
Section III(A) and III(B) respectively discuss perception and
localization algorithms, and control algorithms. Section IV
provides a summary and Section V concludes and presents
the future scope of DCS.

II. OVERVIEW OF SMART EV
EV are based on an electric propulsion system and all power is
based on electrical power, such as a battery, super-capacitor.
There are two basic classifications of EV: Full Electric
vehicle (FEV) and Hybrid Electric Vehicle (HEV). The main
advantage of EV, through its electric motor system, is the high
efficiency of electricity conversion. The driver simply turns
on the power by choosing ‘‘Forward’’ or ‘‘Reverse’’ and steps
on the throttle [40].

EV utilise several types of electric motors for EVs. Motors
can be connected directly to the wheel shaft in order to
reduce transmission loss and increase control ability. Hub
motors can control each wheel independently in an all-wheel
drive system, which reduces energy loss. Either approach
can easily incorporate anti-lock braking and electronic

brake distribution, so EV can incorporate several types of
control systems such as traction control, brake control, and
vehicle stability control. The implementation of these control
methodologies can make EV a smart vehicle which can
implement several DCS and several types of sensor to provide
driving safety and driving comfort. Smart control systems
include ACC, AEBS, LDW, automatic park parking, and
several driving assistance systems [41].

Smart EVs also comprise of smart Battery Management
System (BMS). The BMS system enhances the safety and
reliability of batteries and reduces the stress due to charge
and discharge. The systemwould help to avoid high discharge
rates by preventing sudden current abruption. BMS also
prevents single cells from overstressing by equalizing charge
on all cells to extends battery pack life [42]. The BMS should
cover important features like thermal management, electrical
management, thermal management, safety management, and
communication, driving range calculation. Smart energy
demandmanagement enhances parameters including the state
of charge, the state of health, and the state of life. Several
studies show that BMSs will be more efficient integrating on
chips and will have capabilities to accurately estimate driving
ranges and smart adapting to load changes for better power
delivery. BMSs will also support: (i) different and adaptive
charging protocols, (ii) any battery cell number, sizes, and
configurations, and (iii) vehicle to grid capabilities, enabling
charging transactions or booking charging slots [43].

The powertrain of the smart electric vehicle is a simpler
and more efficient system, comprising far fewer components,
which makes it more compact and convenient. It enhances
the efficiency of power transmission of the system. There are
multi-objective powertrain control strategies that accomplish
operational objectives like energy consumption minimization
or increasing battery life. The choice of a control system
is always subject to certain constraints. These approaches
acknowledge physical component properties, such as speed
restrictions or battery state of charge limits. The practical
implementation of these strategies considers driving comfort.
So that large torque gradients, frequent gear changes, start
and stop intervals can be avoided. Modern powertrain
control systems include a large number of different control
approaches and combinations of these [44].

III. DRIVING CONTROL SYSTEMS (DCS)
The driving control system (DCS) determines control meth-
ods and control modes based on the ADAS [7] which,
in recent years, has received considerable interest from
researchers and the automotive sector.

A. ADAS
ADAS is a well-known term in the vehicle industry for
advanced technologies, the popularity of which as the most
prominent road safety system is increasing day by day.
ADAS takes precautions to avoid road collisions by providing
supportive information on incoming traffic in a range of
circumstances [45]. Johnson and Trivedi [46] notes that most
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FIGURE 2. Adaptive cruise control [51].

vehicle drivers are more likely to commit potentially danger-
ous actions due to lack of attention. ADAS provides real-time
observation and auditory risk warnings to improve the overall
attentiveness of the driver and to optimize road safety [47].
ADAS is considered to be a prime characteristic of control
and safety in modern vehicles and fundamental technology
for the emergence of the autonomous vehicle [48].

ADAS was originally vision-based and GPS-based, but
object detection and position measurement (radar, LiDAR,
and Ultrasonic sensor), as well as other sophisticated-sensing
technologies are increasingly incorporated [48]. By supply-
ing additional knowledge from the vehicle’s surrounding
environment, ADAS assists a driver in taking important
decisions. The systemic output of a number of ADAS
applications depends on the combination of the driver’s
behavior and environmental data [49]. In order to gain a
greater understanding of the applications and functionality
of existing state-of-the-art sensors, this paper reviews ADAS
currently available on the market. The following subsections
review ten control systems of ADAS for smart EV: ACC [8],
AEBS [9], LDW [10], [11], LKA [13], LCA [12], Night
Vision [14], TSR [15], Pedestrian Detection [16], Automatic
Parking [17], Traction control [18].

1) ADAPTIVE CRUISE CONTROL (ACC)
The ACC system for longitudinal monitoring of the vehicle
offers improved driving comfort and convenience. It enables
the cruise control option to function for prolonged periods,
even during the presence of other traffic. Since human failure
causes more than 90% of highway incidents [50], the ACC
system promises improved highway protection.

ACC can replace Conventional Cruise Control (CCC).
By automatically controlling the accelerator and the brake,
ACC regulates vehicle speed velocity and contributes to safe
driving with the least distance to the previous vehicle [51]
aided by a range sensor (such as radar, lidar, or vision sensor)
that measures the relative velocity and distance of the two
successive vehicles [51]. See Figure 2 An ACC-equipped

vehicle moves at a user-set velocity in the absence of any
preceding vehicle. The system operates, just like CCC,
by regulating the throttle position. In presence of a preceding
vehicle, ACC determines and predicts whether or not the
following vehicle can still drive safely at the fixed speed.
When the preceding vehicle is slow or near, the ACC switches
the power from the fixed speed control to the fixed forward
velocity control by regulating both the throttle position and
the braking pedal position [18]. ACC also has an extension
system called Cooperative-ACC (CACC) which provides
vehicle-to-vehicle (V2V) connectivity. Highway developers
are interested in CACC as it has the potential of organizing
cooperating vehicles to provide opportunities to enhance
traffic efficiency [52].

In [53], the study demonstrated a practical process to allow
ACC-CACC implemented vehicles to follow a preceding
vehicle free of collisions. The work introduced various
combined ACC-CACC systems to achieve longitudinal
vehicular movement with driver actions. The study also
showed through simulation that the suggested models were
collision-free under standard traffic conditions and most
security situations, testing the models for various vehicle
states and for several conditions.

In [54], the authors presented an adaptive neuro-fuzzy
predictor based control approach for cooperative ACC. That
study also offered a preceding vehicle estimation system for
future state prediction of the previous vehicle in which the
system would predict the future state by employing the fuzzy
model Takagi-Sugeno, depending on the vehicle information
including sensor data of the previous vehicle state. It work
also comprised the previous vehicle control law achieved via
V2V communication.

Zhang and Zhutan [55] presented a control strategy on car
following process for EV ACC. The analysis described the
control structure for the ACC system, which includes the
upper and the lower level controller. The upper controller,
which optimizes the power consumption by implementing the
model predictive control (MPC) process, contributes to safe
driving, vehicle monitoring and comfortable ride. The lower
controller is used to recover the energy during braking.

ACC has a number of types of control operations:
1) Speed Control: A standard ACC system can control

the speed of the car at the desired level using
throttling input. The upper and lower level controller
constitute the centralized longitudinal control system
architecture for the ACC. see figure 3 The upper level
controller measures the predictive acceleration of the
supported (host) vehicle and the lower level controller
controls the input actuators to monitor the preceding
vehicle [56].
The upper level control model is:

p′′(x) =
1

τ s+ 1
p′′(xdes) (1)

where x denotes the vehicle’s longitudinal position
as determined by a reference line. p′′(x) defines the
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FIGURE 3. Speed control system design.

FIGURE 4. ACC vehicles string [59].

acceleration of the vehicle and p′′(xdes) defines the
desired acceleration of the vehicle according to the
preceding vehicle dynamic states. The upper-level con-
troller control input is therefore the desired acceleration
from the MPC strategy [56]. It is assumed that the real
velocity of the car would track the required velocity
with the τ time constant which is ensured by the lower-
level controller.

2) Vehicle Following: Vehicle following is part of the
ACC’s steady-state operation. The system includes two
significant terms that must be satisfied including the
stability of the single vehicle and the stability of the
string.
a) Vehicle Stability: The stability of a single vehicle is
provided by following the process of spacing control.
In Figure 4, let the position of i th car be di, determined
from the point of comparison. The i th vehicle’s spacing
error is then defined as δi = di − di−1 + xdes.
The preceding vehicle runs at a steady velocity if
the spacing error stabilizes to zero. The discrepancy
between the previous vehicle’s actual spacing and the
intended spacing is the result of this spacing error. The
spacing error should be negligible when the previous
vehicle accelerates or slows down [57], [58].
The required space is xdes and the required length of the
previous vehicle is xi−1. Vehicle speed is denoted by ḋi
and the optimal spacing of xdes could be selected. If the
following condition is met, the ACC control regulations

enhance the safety of single vehicles.

d̈i−1 −→ 0 H⇒ δi −→ 0 (2)

b) String Stability: The stability of the string of the
group is a feature of the ACC vehicle. When errors
propagate to the end of the group, the stability of the
string constrains the spacing errors from diverging [60].
String stability describes the relationship of a vehicle in
a group.

In [61], authors investigated the problems of L2 string
stochastic stability analysis. It also introduced a new
algorithm for stabilizing Vehicular Network Systems (VNS).
Feng et al. [62] defined the stability of the string and the
applicable analytical techniques by which the appropriate
features of string stability are obtained. The study addressed
current issues and opportunities for research in this area, such
as general topology string stability, lateral string stability,
primary disturbance string stability, and nonlinear systems.
Spacing Policies for ACC. The Spacing Policy is of prime

importance in an ACC system. The design of the ACC starts
with the identification of an acceptable spacing policy [63]
such that the design meets several criteria [59]:

• Individual Vehicle Stability is a fundamental prerequi-
site for the spacing policy and the principle of control
associated with it.

• A conjunction ACC controller which maintains the
stability of the string is needed for the selected spacing
policy.

• The selected spacing policy should ensure the stability
of traffic flow.

• The spacing policy must allow a host vehicle to avoid
potential conflicts with the preceding vehicle.

• The spacing policy should have equivalent driving
characteristics to human driving habits to prevent driver
and passenger discomfort.

Wu et al. [59] discussed the primary spacing policies
of the current ACC and also observed the advantages and
disadvantages of the spacing policies with a comparison
study. That survey reviewed five types of spacing policies
and investigated their performances. These spacing policies
cannot ensure stability, comfort, and safety at a time. The
future of ACC systems demands the implementation of a
coordination strategy and includes a real-world road network
scenario for traffic grids.

2) ADVANCED EMERGENCY BRAKING SYSTEM (AEBS)
Autonomous Emergency Braking (AEB), also known as
AEBS, is a road vehicle safety device. Sensors are used
by AEBS to track the presence of vehicles in front of it.
It also defines conditions such as an impending accident
with relative motion and distance between host and target
vehicles [64]. The system automatically applies emergency
braking to prevent or mitigate the impact of a collision on an
approaching vehicle or a pedestrian [65].
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Yang et al. [66] presents the functional requirement of
AEBS to avoid collision with a pedestrian (AEB-P) and to
ensure the pedestrian’s safety by determining TTC (Time To
Collision) and to brake at a safe distance. This work presents
a Fuzzy Neural Network (FNN) controller for a braking
function to avoid collision with a pedestrian. The research
also presented a PID controller for vehicle speed reduction.
The control strategy efficiently distributes advanced warning
and stopping periods to reduce pedestrian collisions.

AEBS systems are known as percipient assistance systems
and uses ACC sensor technology to assist drivers in avoiding
rear-end collisions with the approaching vehicle [67]. AEBS
is divided into three types:

1) Forward Collision Warning Systems (FCW) monitor
forward motion to identify and warn of approaching
conflicts. Emergency warning signals are activated
when the driver fails to act on the conflict warning.

2) Collision Mitigation Braking Systems (CMBS) are
part of the FCW system. CMBS immediately deploys
maximum braking when the conflict is imminent and,
furthermore, tries to mitigate the effects of the crash.

3) Unlike the CMBS and FCW systems, the Collision
Avoidance System (CAS) attempts to prevent an
accident by employing the brakes until the impact is
certain. The CMBS and FCW systems can prevent
collisions below a particular speed but can only
attenuate the effects of the crash during higher velocity
movements.

Maximum Road accidents take place due to insufficient,
late, or no application of brakes by drivers to avoid an
collision. The AEBS is designed to work in a variety of
road conditions [68]. When the driver fails to react on time,
the AEB device can use an adaptive algorithm to apply
various levels of pressure to the emergency brakes, based on
speed, direction, momentum, and other variables, to prevent
or mitigate the impact of the collision. Some models will also
begin to tighten the restraint system ready for impact [9].

In [69], the study presents a new AEBS nonlinear MPC
technique based on an algorithmwithmore reliable integrated
performance in reducing collision uncertainty and riding
convenience and energy efficiency improvisation of an
intelligent vehicle similar to the current individual AEBS.
The work also presents a hierarchical control structure for
decoupling and coordinating the system in order to increase
vehicle stability and comfort.

Coordination requires measurement of the distance
between the host and the preceding vehicle and object,
commonly employing a radar sensor placed behind the
grille to calculate the distance from an object using radar
reflections. Metallic substances such as cars partially reflect
radar pulses and the system measures the return time of the
radar echo by examining the Doppler shifts in reflections
frommoving objects [70] which allows the device to calculate
the moving object’s speed. Long-range sensing is also
possible using radar [71]. Some of the devices have a sensor
module to capture images in addition to radar tracking.

Kim and Song [72] presents a vehicle recognition tech-
nique based on the information of radar and camera sensors
for AEBS. The commercial radar identifies the vehicles and
road infrastructure and provides improved radar detection of
the nearest preceding vehicle on the road. The work discussed
a vehicle identification method for improvised detection
based on structure and acceleration characteristics.

Hamid et al. [73] provides an improved AEBS with a
potential field (PF) risk management approach that limits
nearby incidents. In this process, the host vehicle produces the
desired degree of braking actuation, in accordance with the
risk measurement, that allows the vehicle to stop in time.
The research also showed the efficient implementation of
AEBS and PF, which aids the vehicle to moderate the effects
of a impact and assists in providing a safe distance from the
obstruction in front.

AEBS is bringing positive changes in collision avoidance
as an ADAS that helps prevent and mitigate crashes. With
continuous improvement in capability, studies anticipate
that autonomous steering may prevent the effects of severe
head-on collisions and ‘‘run-off-road’’ strikes in the future,
resulting in lower road user deaths.

3) LANE DEPARTURE WARNING (LDW)
The LDW system [11] provides warning for drivers when the
vehicle unintentionally leaves its present lane. During the
process, the system follows lane markings with forward-
looking vision systems, defining the area within the current
route, providing appropriate warnings [10]. Lane detection is
an essential component of LDW. Narote et al. [36] provides
a detailed description of some of the vision-based lane
detection and departure warning systems and highlighted
the problem of lane detection under different complex
environmental conditions.

Chen and Boukerche [11] presents an improvised novel
LDWS model for image processing, lane detection, and
lane departure recognition. The algorithm retains necessary
portions of the road lane and removes useless details
during the image processing stage, which minimizes the
possibility of false warnings caused by false lane detection.
Wang et al. [74] presents Time-to-lane-change (TLC) and
Personalize driver model (PDM) methods to reduce the false
warning rate of LDR systems.

The computer vision based LDW system consists essen-
tially of a camera module, video recording device, com-
puter CPU, warning module, monitor facilities and several
supporting items [75]. Tan et al. [76] presents a vision-based
LDW system with Deep Fourier Neural Network (DFNN) to
assist in lane departure prediction using an image processing
unit for making lane-departure decisions. For this purpose,
the system utilizes a camera and video storage device for a
high-speed running vehicle to provide photos of the road. The
image processing segment produces digital photos in order
to develop an understanding of left and right lanes in real
environments. If the car diverges or tends to diverge from
the initial lane, the device will transmit a warning message
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FIGURE 5. System structure for LKA [80].

to the display and alarm system. This warning would signal
the driver to take a different direction [11], [77].

4) LANE KEEPING ASSIST (LKA)
LKA, also known as lane departure prevention (LDP),
is a type of ADAS as it aims to avoid unintentional lane
departures [13]. Numerous LKA model approaches are
proposed by the use of various types of actuators, such
as electrical power steering, automatic braking, and hybrid
solutions.

Hu et al. [78] addresses an integrated control method for
LKA which also offers an improved Sliding mode con-
trol (SMC) for rollover prevention during the lane-keeping
operation. Modern advancements in LKA also involve
learning-based design approaches [74], [76] and dataset-
based assessment and testing procedures [79]. Bian et al. [80]
present an advanced LKA system utilizing self-learningMPC
methods and also present two switchable control function
assistance those are LDP function and lane-keeping co-pilot
function.

Figure 5 provides a suggested LKA system structure which
focuses on five sections [80].

The surrounding sensing and vehicle actuation section
collects environmental data from on-board sensors and
digital maps and also obtains the speed, steering angle,
and lateral acceleration of the vehicle. The Human-machine
interface (HMI) section assists the driver in selecting the
initial assistance mode which implement different strategies
and controller algorithms. The decision-making strategy
section makes a decision if it is needed to provide assistance
control. The decision-making strategy module commands the
vehicle’s LKA controller. The road tracking system section
understands the dynamics of the vehicle relative to the
road [80].

5) LANE CHANGE ASSIST (LCA)
Lane change is a dynamic process which simplifies the
driving environment for the driver by allowing adjustable
driving behavior. Zhu et al. [81] offers a personalized LCA
framework for vehicles combined with a recognition strategy
for driver actions. The framework utilizes a neural network
of back-propagation (BP) optimized for driver behavior by
a particle swarm optimization (PSO) algorithm. The driver’s
actions are stimulated with information obtained from the

FIGURE 6. Blind spot area detection.

surroundings (including vehicle velocity, inter-vehicle space,
and lane lines) essential for the integral monitoring of
longitudinal and lateral movements of the vehicle [12].

The LCA system is a lateral control mode that engages
the steering assistance system (SAS). Bujarbaruah et al. [82]
approaches a predictive control mode implementation for
SAS through both Active Front Steering (AFS) and Electric
Power Assisted Steering (EPAS) systems. The system also
utilizes a model-predictive controller (MPC) to follow the
intended lateral path, maintaining the vehicle on track and
improving lateral stability. The LCA system employs short-
range radar sensors for improvised blind-spot detection [83].

LCA facilitates maneuverability of lane-change during
execution. The system alerts the driver in a hazardous
situation by scanning the neighboring lanes for vehicles in
two broad ways:

1) Blind Spot Monitoring (BSM) devices detect the host
driver’s blind spots for the presence of an approaching
vehicle and then propagates warning alerts to prevent
collisions. Cameras and radar systems are used by
the device to protect areas laterally and behind the
side mirrors. [6], as illustrated in the Figure 6. Kwon
et al. [84] presents an improved BSM system using
radar and camera sensor on an IoT (Internet of Thing)
based vehicle.

2) Lane Change Warning (LCW) is equivalent to Blind
Spot Monitoring (BSM). However, LCW can also
help with the traffic detection technique from behind.
It incorporates the host vehicle’s adjacent lanes from
behind up to a predefined limit [10]. For tracking,
the LCW system often makes use of a radar system.
It also sends out warning signals if a potentially
dangerous situation is observed [6].

Figure 7 depicts the entire design of the LCA scheme based
on the proposed approach. This strategy includes two parts,
one being the relative motion estimator and the other is the
supervisor. To estimate and re-examine the data, the system
employs an Extended Kalman Filter (EKF) as an estimator.
The estimator deals with relative motion in the adjoining
lane connecting the host vehicle and the approaching vehicle.
The system includes the supervisor to evaluate protection
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FIGURE 7. The overall design of the LCA system [85].

measures and estimate essential dynamics for lane change
situations. The supervisor analyzed vehicle kinematics in
both the longitudinal and lateral aspects. The analysis defines
the initialization conditions of the LCA system. Then the
supervisor will evaluate the safety measures and calculate
an applicable longitudinal and lateral acceleration. The
calculation is necessary for collision prevention between the
host and threatening vehicle in adjoining paths [85].

6) NIGHT VISION
The Automotive night vision scheme uses the infrared
spectrum to provide vision beyond the scope of the vehicle’s
headlights using a thermographic camera to improve the
vision of a driver with an additional display in darkness or
bad weather. This system uses image recognition algorithms
to issue warnings whenever there are any pedestrians and
animals in the path of the vehicle [14]. A comparative analysis
was performed in [86] using a multi-resolution image fusion
algorithm for night vision system enhancement.

The primary functions of the night vision system are
pedestrian detection and crash warning, image view, and
audio warning. The pedestrian detection and collision
warning utilises image processing, called a pedestrian
detection algorithm, to analyze pedestrian patterns to accu-
rately detect pedestrian detection of adults, children, and
animals [87], [88].

Image display is an essential function of pedestrian
detection. Symbols are used for detection and warning: each
time a pedestrian is detected, a yellow box symbol appears
on screen around the figure; a warning symbol is placed in
the upper part of the image when a pedestrian is detected in
the estimated collision area; after which the warning symbol
begins to flash when impact is imminent.

7) TRAFFIC SIGN RECOGNITION (TSR)
As part of ADAS, TSR enables a vehicle to identify and
classify traffic signs (such as speed limits or children or
turn ahead) with image processing techniques applied to
camera data. Hatolkar et al. [89] offer a TSR system that
employs pre-processing methods and a fuzzy classification
module based on a Convolutional Neural Network (CNN) to
improve image frame quality. Detection range and accuracy
vary with the properties of the camera, and the algorithm [90].
A good number of automotive suppliers have developed this

FIGURE 8. Pedestrian detection process.

technology over time using key detection techniques that are
color-based, shape-based, and learning-based [15].

Image pre-processing is an essential part of TSR in order to
prepare the image for detection by eliminating low-frequency
ambient noise, simplifying the amplitude of individual
particle images, removing reflections, and masking segments
of images. The following section describes some techniques
utilised in image pre-processing [90].

Shape Matching Based Identification: The general concept
for shape matching based identification is to use color
characteristics to detect the desired object, which accelerates
detection as it doesn’t require time-consuming processes
such as those used by model-based classifiers. The features
of the detected object are then filtered and analyzed and
the appropriate traffic sign is chosen on the basis of shape
matching [91].

In [92] presents a CNN for TSR that includes both text and
symbol-based signs. Jung et al. [93] also offers the LeNet-5
CNN architecture that helps to recognize traffic signs through
training. These machine learning-based methods play a vital
role in automatic TSR.

8) PEDESTRIAN DETECTION
The Pedestrian Detection system detects pedestrians and
estimates their risk. The PDS is an integral part of the
AEBS system which also applies full braking to counteract
or moderate possible collision with a pedestrian. This system
generally utilizes a radar-fused vision system to detect and
categorize objects to determine whether a pedestrian is
present [94]. Various research shows that lidar-based systems
are also useful for pedestrian detection [16], but lidars are not
broadly used due to a shortage of those devices in the market.
Night vision systems can also be beneficial for pedestrian
detection in low-light conditions [14].

Traditional pedestrian detection methods are based on
artificial feature extraction, which extract the main features
that describe pedestrians and then use them to form instruc-
tions for classifiers to discriminate between pedestrians and
other structures, therefore fulfilling the goal of pedestrian
detection [95]. Figure 8 shows the procedure of pedestrian
detection.

In [96], pedestrian detection systems are analyzed depend-
ing on their area of use, acquisition techniques, computer
vision methods, and classification techniques. The paper also
discussed Deep Learningmethodologies, including CNNs for
pedestrian detection and tracking. The integration of Deep
Learning with classical Machine Learning models is the best
way of high precision and simple calculation for pedestrian
detection.
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FIGURE 9. Automatic parking process.

In [97], [98], and [95], a pedestrian detection system is
presented based on deep learning that Faster R-CNN obtains
competitive output through multiple training on general
object detection. The authors also proposed the Caltech and
city persons method which collect data of city pedestrians.
The CityPersons dataset is based on the data from Cityscapes
to provide the pedestrian detection group with a new dataset
of importance. This algorithm plays an important role in
pedestrian detection.

9) AUTOMATIC PARKING
Automated parking assistance is needed to reduce the
likelihood of frequent vehicle park collisions. The initial
parking assist system assists the driver during parallel parking
chores by utilizing beeping warning noises generated by
side-mounted ultrasonic sensors that analyze the size of the
parking space. It notifies the driver if the parking spot is broad
enough and if the move is possible. It uses ultrasonic sensors
on both the front and back of the host vehicle to determine
the distance between it and other vehicles or obstacles. Some
parking assistance systems additionally use backward-facing
camera modules positioned at the rear end of the vehicle to
offer a visual inspection of the area behind the host vehicle.
The automated parking system enables the host car to park
itself with little or no driver intervention [17]. The automatic
car parking system is made possible by Android application
commands [99], which control the steering wheel while the
driver operates the throttle and brake pedal.

Figure 9 depicts the principal parking assistant system
(PAS). To begin, the sensor takes data from the surroundings
and analyses information such as obstacle distance, current
vehicle speed, and parking space length. The next stage is to
create a map based on the evidence and estimate the relative
position of the vehicles. The algorithm produces a desired
trajectory and then, if there is enough parking space, converts
it to an intended steering angle principle. The steering
angle sensor and the speed sensor of the wheel provide the
desired data for position estimation. In the following phase,
the vehicle position changes in response to steering angle
changes, which are controlled by the steering motor. The
tracking controller controls the action of the steering motor

in accordance with the steering law’s variables of direction,
velocity, and time [100].

In [101], a literature review is conducted of automated
parking systems, describing the recent progress including
vision, ultrasonic and radar sensor technology, image pro-
cessing, path and trajectory planning, control algorithms,
and neural networks. In [102], proposes a technique for an
automated parking system for a self-driving car based on
lidar technology. The paper also discusses calculating the
minimum distance between two vehicles in a parking area
using dynamic theories of vehicles.

10) TRACTION CONTROL
Traction Control is themost important component of a control
strategy because it regulates vehicle speed and can directly
improve driving performance, protection, and stability [18].
The vehicular propulsive force is defined as traction which is
the product of friction between the tire surface and the road
surface. The friction is dependent on factors such as the type
of tire, road surface, condition of the road surface, and wheel
slip ratio. Maximal torque from the propulsion system is
given by the slip ratio which makes it possible for the vehicle
to move forward so the slip ratio providing the maximum
coefficient of friction is required. Consequently, traction
control aims to operate vehicles with an adequate wheel
slip ratio. Compared with conventional internal combustion
engines, electric motors produce rapid and accurate torques.

In [103], a maximum transmission torque estima-
tion (MTTE) method is presented based an open-loop
disturbance observer which requires input torque and
wheel motion. In the control rule, the estimated maximum
transmission torque was used as a limit to avoid the slip.
A fault-tolerant solution is suggested in [104] dependent
on MTTE to prevent the EV from sliding. To improve
the steering efficiency of the MTTE solution, a PI-type
observator is proposed which was expected to make a
remarkable enhancement of the control system in robustness.

In [105], a sliding-mode investigator was applied to
determine the skidding and vehicle speed of the EV. The
observer is used to evaluate the average friction, dependent on
the dynamic frictionmethod of LuGre. The controller utilizes
the calculated maximum friction to calculate the acceptable
max torque for the tires. Sliding mode control (SMC)
provides robustness, which is why it is widely used in the
control of uncertain nonlinear systems. In [106], a PID sliding
surface dependent SMC control approach is suggested for the
tracking problem of nonlinear uncertain systems. Using the
Lyapunov stability principle, the stability and robustness of
the proposed control technique are proven.

For SMC, [107] suggested wheel slip control of EVs
based on a sliding-mode system. An active braking controller
configuration of a sliding-mode was presented in [108] who
merged the regulated parameter with wheel deceleration and
wheel slip. The existing traction control system discusses
torque control and SMC. In [109], a smart traction control
system is developed using acoustic road surface estimation
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FIGURE 10. VANET system.

which includes friction co-efficient and slip-ratio which is
important for input torque.

11) COMMUNICATION-VANETs
Information and communication technologies have influ-
enced some of the most significant innovations in the
automobile sector. Intelligent transportation systems (ITS)
play a critical role in making citizens’ lives more comfortable
in every way in today’s digital society. The vehicular
communication network (VANET) is an integral feature
of an ITS. It allows for vehicle-to-vehicle communication.
A VANET is a type of Mobile Ad Hoc Network (MANET)
in which vehicles equipped with wireless and computing
capabilities can form a network on the fly as they travel down
the road [39].

VANETs are categorized into two kinds: vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications [110]. VANET facilitates V2V communications
between neighboring vehicles and V2I and V2R communi-
cations from vehicles to other communication equipment.
A VANET system is shown in Figure 10. The principal
objective of VANETs is to facilitate successful communica-
tion. In general, nodes require specific qualities to acquire
information, communicate with neighbors, and then make
judgments based on the data collected via sensors, cameras,
GPS receivers, and omnidirectional antennas [111]. Multiple
VANET surveys referring to security and privacy schemes
have been developed in recent years [19], [20]. These studies
addressed the majority of the aspects of VANETs. However,
it covers a small portion of VANET security services and
contemporary state-of-the-art methods. C-V2X technology,
a unified connectivity platform designed to support V2X
communications, was recently introduced [112]. C-V2X is
a robust communication technology that can conduct V2X

communications. It is an establishment that is a part of
the third generation partnership project (3GPP). It connects
each vehicle, allowing cooperative intelligent transportation
systems (C-ITS) to decrease traffic congestion and improve
traffic efficiency [113].

VANET security assures that outsiders do not inject or
corrupt the conveyed messages. In addition, the driver is
accountable for accurately updating the traffic conditions
within the time constraints. VANETs are more vulnerable
to hacking because of their unique properties. In particular,
security concerns need to be handled adequately. Otherwise,
secure communication in VANETs will be relatively lim-
ited [114].

Comfort Applications: This VANET application is clas-
sified as a non-safety application that attempts to improve
the comfort of drivers and passengers. It can deliver
updated weather information, hotels, nearby restaurants, and
petrol stations [115]. Safety Applications: The VANET’s
safety applications are used to improve security. Vehicle-
to-vehicle and/or vehicle-to-infrastructure communications
can be utilized in this application to develop traffic safety,
lane change warning, emergency video streaming, collision
avoidance, and accident evasion. The primary goal of this
application is to ensure drivers, passengers, and pedestrians
safe [115].

The fundamental issue with the VANET is communication
security. Because of the rapid growth of topology, small-
sized devices, and other factors, ad-hoc networks have more
security challenges than regular wireless communication.
Because of the dynamic nature of the topology, maintaining
security is complicated because there is no pre-existing
infrastructure for ad-hoc networks, such as the cellular frame-
work, that can regulate the network’s security [116]. VANET,
like all other computing systems, confronts data security
constraints such as integrity, confidentiality, authenticity, and
availability [117].

Data Confidentiality in VANET: Confidentiality is known
as privacy. Its purpose is to keep sensitive information from
getting into the wrong hands. According to [118], there are
several challenges to VANET data confidentiality.

Data Authentication in VANET: Data Authenticity is the
process of confirming a person’s identity, which can be
performed using a user id and password. After passing
through the identification procedure, authentication is the
evaluation used to verify that only an authorized user enters
the system. Furthermore, this procedure is regarded as the
primary course of protection against illegitimate users [119].

Data Availability in VANET: Availability can be described
as the system’s ability to be used at all times. It is necessary
to do regular hardware equipment maintenance and keep the
system up to date with upgrades to avoid any ambivalence.

There are numerous hurdles concerning VANETs. The
unique characteristics of VANETs require alternative
communication paradigms, security, privacy techniques,
and wireless communication technologies compared to
MANETs [120]. Network connections, for example, may not
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be steady for an extended period. Researchers have looked to
make the most from existing infrastructure, such as roadside
units and cellular networks, to enhance communication
performance. Although some specific VANET issues have
been overcome, some significant research challenges remain
partly resolved [120].

Though existing algorithms have implemented some
resolutions to definite data dissemination difficulties in
VANETs. Due to the unique characteristics of VANETs,
it is still difficult to assess their performance and security.
The end-to-end communication path, for example, may
not exist due to non-persistent network connections. The
authors of [121] propose that using the carry-forwarding
pattern, the opportunistic routing algorithm can overcome
this problem. As a result, advanced algorithms should be
developed with a low communication delay, communication
overhead, and time complexity in mind.

12) SECURITY AND ACCESS CONTROL
The Internet of Things has propagated to every domain
from wearable mobile gadgets, smart homes, manufacturing
units, and power grids. Artificially intelligent and connected
automobiles are essential for smart city envisioning and pro-
viding users with a comfortable, safe, and pleasurable driving
experience. These automobiles include sensors, electronic
control units (ECUs), software with about 100 million lines
of code, and internet connectivity. This ecosystem facilitates
inter communications between vehicles (V2V), vehicles and
infrastructure (V2I), vehicles and pedestrians (V2H), and,
ultimately, anything associated.

Security and privacy are the principal concerns in Smart
cars. These vehicles feature a large attack surface (TPMS,
keyless entry, smartphone, engine ECU, OBD ports, etc.)
also accessible external interfaces. As a result, attacks such
as sending false and unauthorized basic safety messages
(BSMs), controlling ECUs, accessing personal information,
and sensor spoofing are possible, as documented in various
publications [122]–[124]. To establish these security con-
cerns, the smart EV requires some security mechanisms like
Access Control.

Access Controls (ACs) are an essential security mech-
anism. It ensures only authorized users have access to
resources. Smart automobiles also require similar controls
for security purposes. It secures trust among entities that
exchange BSM communications and also eliminates unau-
thorized system control. Outchakoucht et al. [125] develops
a global framework to address policy management and AC
models to achieve the fundamentals of Access Controls.
It also profoundly discusses the mechanisms that allow them
to fit so precisely. It leads to a smooth and uniform Machine
Learning (ML) integration, also highlights the requisite ML
algorithm and where they should perform.

Due to the fast growth of the smart automotive sectors,
there’s been a surge in interest in Internet of Vehicles (IoV)
technology. IoV was developed to improve the experience
of drivers and passengers by reducing traffic congestion,

enhancing traffic management, and assuring road safety.
Precise monitoring of the privacy of large data groups and
vehicles in IoV is one of the critical challenges. In [126], This
study performed a critical analysis using analytical modeling
for offloading mobile edge-computing decisions based on
machine learning and Deep Reinforcement Learning (DRL)
techniques for IoV. The study estimates a Secure IoV edge-
computing offloading paradigm with multiple data process-
ing and traffic flow scenarios. In offloading the decision
process of various task progress of the IoV network control
cycle, the suggested analytical model acknowledges the
Markov decision process (MDP) and machine learning (ML).

The automatic identification of vehicle license plates is
a critical component of intelligent vehicle access control
and monitoring systems. Islam et al. [127] offer a method
for identifying license plates that aim to establish a balance
between these two objectives. An ANN classifier trained
on HOG characteristics identifies the segmented characters.
There are two stages there in the proposed method: detection
and identification. The image is evaluated in the detection
step to determine a region of interest, with a 99.3% prediction
performance. In the identification step, the system uses the
HOG technique to extract features from the range of interest,
with a classification accuracy of 99.5%.

This study suggested an extended access control-oriented
(E-ACO) [21] architecture that addresses the access control
constraints in the smart car ecosystem and facilitates
appropriate access control model selection at various layers.
The E-ACO architecture consists of four layers [128]. Object
Layer contains clustered objects (such as cars and traffic
signals), each of these, holds numerous individual objects like
sensors and in-vehicle applications. The Virtual Object Layer
addresses the concerns of heterogeneity and connectivity by
providing a cyber-twin of all physical items. In automobiles,
as mobility and location do not always guarantee internet
access, a virtual entity that maintains physical object status
information is required. Cloud Services and Application lay-
ers provide cloud infrastructure for data storage and process-
ing. The application layer contains end-user apps that utilize
data in the cloud to offer services to users. Entities within
and across neighboring levels interact with one another; for
example, a car can ’speak’ to other vehicles as well as its
virtual object. Users can also use their phones or remote keys
to issue commands to sensors within the car [128].

IV. ALGORITHMS
An algorithm is utilized to calculate a particular problem
or to perform a number of calculations. This part of the
article presents basic image analysis algorithms, information
storage, and decision algorithms used in the prototype
construction of autonomous systems. Smart EV Usually
have three types of algorithms: perception, localization, and
control.

• The sense of perception is used to perceive and re-
imagine one’s surroundings. It detects pedestrians,
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TABLE 2. A summary of driving control systems.

traffic signs/signals, and obstacles in the vehicle’s
immediate vicinity.

• The term ‘‘localization’’ refers to the process ofmapping
the surrounding area and determining the precise
location of a vehicle.

• The control section deals with low-level activities
that are driven by the perception algorithm’s planning
and sensor data. Low-level behaviors are determined
by a vehicle’s steering, acceleration, and braking
systems.
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Here, all the sensors used for perception and localization are
reviewed.

A. PERCEPTION AND LOCALIZATION
The perception algorithm combines and integrates the
information from the sensors using sensor-fusion algo-
rithms that help to detect static and dynamic objects
while driving. Sensors include ranging sensors (lidar, radar,
Ultrasonic sensors) and vision sensors (camera and night
vision). Sensor-fusion algorithms aids in overcoming the
individual limitations of ranging sensors and vision sensors.
Goelles et al. [38] reviewed limitations of perceptions
sensors, and also discussed fault detection and recovery.
Fayyad et al. [129] presents a review of sensor fusion
algorithms using deep learning for vehicle perception and
localization.

Localization algorithms predict and determine the location
and behavior of the host vehicle on the map monitor
display using GPS or Vehicle on-board sensors. A smart
driving system demands an accurate determination of the
vehicle’s position and orientation requiring precise, effective
and stable localization techniques to support maneuvering,
prevent collisions and enforce the necessary driving actions.
Furthermore, the method of localization must be robust in
handling variant complex environments and a wide range
of weather conditions. In addition to supporting perception,
sensor fusion is also used for localization [129]. This paper
describes the sensors and sensor fusion used in perception and
localization. Table 3 summarizes the relevant algorithms.

This section discusses the sensors available for use in
automobiles, with a focus on those that detect and deal
with objects. Along with the calculations to condition the
necessity of a sensor set, they will also be addressed in
relation to the important prospects of autonomous driving.
Finally, the definition of sensor fusion is discussed including
the improvements over use of data from individual sensors.

1) VISION
A vision system forms image of the surroundings with a
light-sensitive sensors. Since only a few sensors can pick
up sections of the infrared spectrum that allow for night
vision, the vision system relies on the benefits of the visual
light spectrum to function [130]. It requires an unobstructed
sightline, which means the system needs to be mounted on
the windshield in the open air or on a clear surface.

Two types of vision systems are primarily available:
monoscopic and stereoscopic. The monoscopic vision system
uses one optical sensor, while the stereoscopic one uses two
with a distance in between. Stereoscopic vision provides
benefits equivalent to a pair of human eyes allowing the
ability to measure differences in range. The accuracy varies
with range, as the difference is relatively smaller for points
further from the sensor [131].

To detect and classify images, the camera system depends
on image processing techniques for multiple functions, such

as positioning and routing, object identification, collision
avoidance, and to collect and extract data from images [131].

Borkar et al. [132] presents a lane detection algorithm for
street lane detection based on the Kalman filter, which is also
used in [133] for precise lane detection on the highly curved
road applying parabolic and circular equations with a Kalman
filter.

In [134], a histogram of oriented gradient (HOG) fea-
tures and support vector machines (SVM) methods were
utilized for road surface detection. A CNN and supervised
learning were also used for road surface detection in [135].
In [136], HOG features and SVM-based techniques were
also proposed to detect the shadow of the preceding vehicle
(in daylight) with a camera module. The HOG and SVM
qualified vehicle classifier has good generalization ability and
can effectively exclude non-vehicle objects such as houses,
trees, flowers, fence, and pedestrians.

Vision systems are passive because they rely on external
lighting conditions. Incidents at night with inadequate light
can reduce a sensor’s functionality which may also be
blinded by light sources with sharp rays of high intensity
(sun or bright headlights). For vision sensors, environmental
conditions often play a prime role such that the effective
range of the image processing algorithm is also limited by
heavy rain, snow, and foggy conditions. Multi-purpose units
have the maximum number of sensors available at the current
time and come with a built-in image processor. The units
typically contain algorithms for various forms of detection
and classification purposes such as for pedestrian detection,
road surface detection, general object detection, traffic sign
recognition.

2) LiDAR
Laser scanners, also known as lidar, are active sensors that
serve many applications such as blockage identification,
pedestrian and vehicle identification [137], host vehicle
lane detection [138], and describing the precise location
of a vehicle [139]. Using a laser, the lidar emits high-
frequency pulses. The amount of reflected light is determined
by whether the projected light reaches and reflects from
an object in its path. The delay between transmission and
reception determines the distance between the lidar and the
subject. However, lasers can only identify a single isolated
spot, so scanning at a high rate is required in order to
develop a high-resolution depth image. Scanning is achieved
by reflection from rotating mirrors or by rotating the whole
sensor unit. Lidar primarily scans horizontally in layers.
A larger number of layers compensates the pitch angle of the
vehicle [140] and minimizes the effects of blockades [141].

The lidar produces a point cloud, where a single distance
measurement is described by each and every point. The
point cloud must be analyzed to collect object data.
Classification techniques may be utilized to categories the
objects identified [142]. At least two lidar reflections from
each object are required to detect the object reliably [143].
The space between the lidar positions d in Figure 11 can
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FIGURE 11. Low lidar point at given range.

be determined utilizing the following formula, including the
angular resolution α and the range r:

d = 2rsin(
α

2
) (3)

Since r � d , so equation is:

d = αr (4)

To guarantee two outputs from the lidar, an object must
be at least 2d wide to be seen from range r if a single layer
scanning is assumed. Lidar primarily has a high angular
resolution that helps in the detection of smaller objects. For
an object of size x from the range r, the equation for necessary
angular resolution is (5) [143]:

α =
x
2r

(5)

As it requires significant amounts of computation, lidar
sensors do not instantaneously output velocity data as a track-
ing algorithm is required to provide velocity estimation [144]
relying on two or more lidar readouts to be compared.
Ch Fuerstenberg [140] discusses a filtering method called
gatingwhichminimizes the area linked between data readings
and thus eliminates unnecessary calculation steps. However,
it also implies that a quickly moving object might be regarded
as a new object as it could end up extending beyond the gated
area.

The quality of lidar data is based on algorithms for object
recognition–a supervised 3d CNN has been created in [145].
A CNN-based 3D object classification system in [146] uses
the lidar point cloud Hough space to resolve the computation
of a large volume of data and unstructured point cloud.
Initially, a Hough transform is used to transform the object
point clouds to Hough space. Then the CNN classifier is
trained to identify four types of artifacts: walls, bushes,
pedestrians, and trees.

There are some difficulties with using lidar. Lidar lasers are
harmful to the eyes of humans and animals and are therefore
subjected to regulations defined by the laser safety standard
IEC 60825-1 [147]. During unfavorable weather and lighting
conditions, lidars are affected like vision systems [148].
An NIR gated imaging system was used in [148] to cope
with poor weather conditions such as fog. The gated camera
exhibits much greater contrast and it is possible to detect
higher viewing distances. Table 3 summarises methods for
detecting an object using lidar.

3) RADAR
Radar operates using high-frequency radio waves transmis-
sion and receives the reflected signals from any object within
the Field of View (FOV) of the sensor. Radar sensors will
automatically define the relative motion of the object which
is detected. Although radar systemsmay provide a wide range
of FOVs, a trade-off is required [149].

Automotive radar sensors primarily use two frequency
bands around 24 gigahertz and 77-81 gigahertz. 24 gigahertz
was once very common due to its rady the availability
in industry [150], however automotive radar requirements
have moved towards 77-81 gigahertz with many innovations
due to the shorter wavelength at that frequency, which
improves range, resolution, and precision. 77-81 gigahertz
is therefore more appropriate for pedestrian detection and
vehicle detection [151].

A radar sensor’s detection area is separated into resolution
cells. The detection area of a RADAR sensor is divided into
resolution cells. The size of a resolution cell is determined by
the angular resolution and the range resolution. A cell’s length
remains the same but with range, the width increases since
the width ω of a radar cell is the multiplication of angular
resolution α and range r which can be defined by the equation
(6) [152].

ω = α ∗ r (6)

Elimination of Ghost target generation is another promis-
ing issue for the radar sensor. If the radar signal reflects from
several objects before the sensor device is received, it can
lead to false identification at random locations of non-existing
targets [153]. In order to eliminate a shadow objective that
is not a real entity, an artificial neural network (ANN) is
suggested in [154].

Reference [155] proposes a deep-learning approach for the
identification of vehicles running on an image-like tensor
where the radar data consists of a 3D tensor which is typically
processed by utilizing a Constant False-Alarm Rate (CFAR)
technique to obtain a sparse 2D point-cloud that separates
the targets of interest from the surrounding clutter. The paper
also suggested a new way to manage the 3D radar signal and
the Doppler dimension, which could enhance the accuracy of
detection. In addition, [156] designed a Doppler radar-based
vehicle detection and parking space detection system.

In [157], a radar-based pedestrian detection system is built
using the SVM and Micro-Doppler effects. SVM is designed
for pedestrian short-range detection and speed resolution
enhancement for micro-Doppler effects extraction. In [158],
a pedestrian detection system for the clutter area is also built
using a 2D range-Doppler Frequency Modulated Continuous
Wave (FMCW) radar. A 2D Fast Fourier Transform (FFT)
with Fast-ramp based FMCW radar is a very helpful
algorithm for detecting slow-moving targets from unwanted
clutter.

Using ground penetrating radar (GPR), an automated road
surface crack detection method was built in [159]. GPR
detects cracks on the road by electromagnetic reflection.
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TABLE 3. Algorithms for environmental recognition with camera and sensors.

The Singular Value Decomposition (SVD) algorithm ana-
lyzes this GPR image to minimize noise from the image.
A CNN was also developed in [160] for the detection of road
users such as pedestrians, vehicles, bicycles using 3D radar
cubes.

Radars are sensitive to interference by other surrounding
radars since signals could be selected from another nearby
radar which will trigger false detection and create noise.
Noise Radar Technology proposed in [161] eliminates
interference effectively.
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4) ULTRASONIC
Ultrasonic sensor transmit high-frequency audio signals
observing the time taken to receive the reflected signal to
measure the distance between the object and the sensor.
Ultrasonic sensors are now commonly used to assist in
parking [162]. An automated parking system based on a grid
projection to detect parking space is suggested in [162] using
an ultrasonic signal with grid projection to detect the edges of
the obstacle. A smart parking system is suggested in [163],
using ultrasonic sensors to detect the parking slots in the
parking area which are occupied by vehicles.

Like radars, ultrasonic sensors may suffer interference
from signals in the same frequency range, possibly from other
nearby ultrasonic sensors. A solution identical to that for
the radar problem is suggested in [164]. Stochastic coding
was used to distinguish the signal from other signals by the
use of an adaptive filter, efficiently solving the interference
problem.

A system for detecting and tracking moving objects is
suggested in [165], using an ultrasonic sensor around the
vehicle. EKF and Unscented Kalman filter (UKF) tracking
algorithms are designed for precise dynamic object tracking
using arrays of ultrasonic sensors which are cost-effective.
In [166], Bayesian Networks are suggested to predict the
velocity and size of the automobile detected by means of a
passive infrared sensor and an ultrasonic sensor.

In [167], a road surface monitoring technique is developed
using ultrasonic sensors and image processing. The paper
uses a dynamic time warping (DTW) technique and proposes
a HANUMAN algorithm for the ultrasonic sensor to enhance
the detection process of road track surface, crack road and
speed bumps.

A system for the identification of a vehicle road accident
using an ultrasonic sensor is suggested in [168]. It is a good
option to use an ultrasonic sensor for accident detection since
it operates on the concept of reflection of sound waves that
are capable of moving through all types of matter with less
environmental effects and other considerations, such as the
color of the colliding object.

5) NIGHT VISION
There are two types of night vision sensors: near-infrared
(NIR) and far-infrared (FIR) sensors (FIR). NIR requires
active IR sources that are mounted in the headlights, which
implies that one NIR system in opposing traffic may be
blinded by another NIR system from a car. Additionally,
the NIR sensor could also be blinded by Xenon headlight
bulbs, since it absorbs a broad spectrum of light. FIR systems
are on the other hand, more passive taking advantage of the
emission of natural thermal radiation. That is, FIR systems
differentiate artifacts by temperature differences so that it is
possible to use these systems to track cyclists, pedestrians and
animals. However, the FIR device can not detect an object if
the temperature difference with respect to the atmosphere or
background is minimal [130], [169].

6) TIME-OF-FLIGHT
Lidar can also be implemented by a time-of-flight (ToF)
sensor that utilizes photonic mixer devices (PMD). The
amount of time between pulse firing, pulse reflection and
reception at the sensor is calculated to determine the range
to the reflecting point. A large scale single pulse is more
effective that repetition of a small laser pulse because the
reflection is measured at the same time for the whole field-of-
view of the sensor instead of being measured for a particular
point which enables smoother operation and avoids moving
components [170].

Using the ToF camera, a pedestrian detection method
is suggested in [171] using an SVM classifier including
Scale Invariant Feature Transform (SIFT), Gradient Oriented
Histogram (HOG), and Extractors with Holistic Shape
Feature (GIST). Such extractors are used for the classification
of pedestrians and non-pedestrians.

In [172], a restriction and ramp identification method was
proposed for a smooth car park utilizing ToF. Ultrasonic
sensors for detecting these curbs and ramps are not that
useful, so this work introduces a robust algorithm for CC-
RANSAC to precisely detect the location of curbs and ramps
on the side of the road in a parking space.

ToF sensors are capable of detecting both light intensity
and detail information. The stereo camera can read informa-
tion in detail, but it requires heavy processing for analysis
of data and image processing. A review paper for ToF is
presented in [173] addressing ToF concepts, advantages and
challenges. ToF sensors are good for the protection of humans
and animals as they are safe for the eyes.

7) SENSOR FUSION
A combination of pieces of information gathered from
various sensors is called sensor fusion which is used to
improve the sensing capability of an automated vehicle.
By integrating the output of a number of sensors, any
individual sensor shortcoming or defect is offset by the
strengths of one or more other sensors. The fusion of vision,
radar, and lidar sensors therefore enhances the efficiency of
pedestrian detection [16], [174] by utilising the strengths of
each technique.

A pedestrian detection technique using lidar and single
camera fusion is provided in [175] by merging lidar
and vision spaces in a single vector classifier (FLDA,
RBF-SVM, and MCI-NN) improving detection efficiency.
A pedestrian detection system using Lidar-Camera Fusion is
also introduced in [16] and a faster R-CNN architecture was
suggested for more accurate detection.

A vehicle detection process is suggested using vision
and lidar sensor fusion in [137]. To accurately identify the
vehicle, the proposed technique is theYOLOv3 deep learning
algorithm. In [176], based on UKF using Sensor fusion,
a similar vehicle detection approach is suggested. In another
study [177], classifier-based vehicle detection is proposed
using SVM by radar and vision sensor fusion.
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FIGURE 12. Combination of both Lateral and Longitudinal dynamics.

A parking space detection and safe parking method are
proposed in [178] using AVM and lidar sensor fusion.
The proposed method is simultaneous localization and
mapping (SLAM) through the suggested parked line, which
can identify an empty parking space. For road detection,
a fully CNN (FCN) architecture is developed in [179] using
lidar camera sensor fusion. This FCN performs good and
provides an accurate road image.

B. VEHICLE CONTROL ALGORITHM
Vehicle control algorithms follow perception algorithms by
actuating the acceleration, braking and steering systems for
comfort and safe driving according to the DCS previously
discussed.

The factors related to longitudinal vehicle control are
discussed here to understand speed regulation of smart EV,
including classical linear time-invariant control, development
of PID control law for a longitudinal vehicle model, and
combined feed-forward and feedback control for improved
desired speed tracking. Here the design of the longitudinal
speed control includes everything about vehicle performance
on the track, and is a key element of autonomous operation.

Lateral vehicle control is also discussed here including two
geometric paths that pursue control strategies built on the no-
slip assumption of kinematic modeling. Lastly, the review
focuses on the model predictive control system, for example,
an advanced control strategy in autonomous vehicles [189].

1) VEHICLE ACTUATION
Vehicle actuation of the vehicle involves steering, acceler-
ation, and brake systems so the key objective of vehicle
control is to provide appropriate accelerator, brake and
steering commands to maintain the vehicle following a
certain velocity profile on a targeted route.

Considering the figure 12, in the lateral vehicle dynamics
system, the steering angle is the principal input. Similarly,
in longitudinal vehicle dynamics, the key inputs are the
throttle and the brake position.

The inputs include the friction forces operating on the
vehicle which are fed into the ordinary differential equations
that are used to regulate the condition of the car. The lateral
forces and moments drive the lateral kinematics of the car
inducing the optimal lateral velocity rate of the vehicle. The
longitudinal forces drive the longitudinal kinematics. Both
the resultant forward velocity and displacement are defined.

FIGURE 13. Steering system.

FIGURE 14. Throttle system.

It should be noted that lateral dynamics and longitudinal
dynamics impact one another.

• Steering
The steering translates the driver input by changing the
steering angle of the steered wheels. Here the driver
input is the turning action practiced by the driver on
the steering wheel. Simultaneously it provides hap-tic
feedback as information for the diver informing them of
the driving conditions and condition of the road.
The steering model operates the vehicle by moving it to
the right or left. The operation follows the driver input or
autonomous system command and the steering angle is
converted into a wheel angle. The lateral force provided
by the interveningmechanisms and gear ratios maintains
the vehicle while riding on a curved path. The wheel
angle is considered proportional to the steering angle,
according to the general steeringmodel which is why the
αs steering angle is linearly proportional to theα steering
angle, where k is the steering coefficient.

• Throttling
The throttling system calculates the traction force
required to move the vehicle in the desired direction.

• Braking
The process of vehicle braking starts with a brake pedal
position that is commanded by the driver. An electronic
unit converts the position to brake pressure, the outcome
of which is the braking force that acts on the brake disk
or the brake drum. The braking forces are then convert
into a braking wheel torque on the wheel which results in
a reverse longitudinal force that slows down the vehicle.
Basic Function of Brake system.

1) To stop the vehicle within the desired distance
while braking.
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FIGURE 15. Brake system.

FIGURE 16. Longitudinal forces of vehicle on inclined road.

2) Tomaintain vehicle steerability while braking with
ABS (Anti-lock Braking System).

3) To maintain vehicle stability while braking to
prevent for overturning.

C. LONGITUDINAL CONTROL ALGORITHM
Vehicle and power-train dynamics are two main aspects of
the longitudinal model. Forward tire force, rolling resistance,
aerodynamic drag, and gravitational forces are all factors that
affect the vehicle dynamics system. The electricmotor, torque
converter, transmission, and wheels are all part of the car’s
power-train dynamics system.
• Vehicle Dynamics:
From Figure 16 Vehicle longitudinal forces Equation:

mẍf = Fxr + Fxf − Fair − Rxr − Rxf − mgsinα (7)

Here, in equation (7) Fxf denotes the front tire forces,
Fxr denotes the rear tire forces, Fair denotes the
aerodynamic drag force, and the rolling resistance of
front tires is Rxf and back tires is Rxr . The gravitational
forces mgsinα act on the slope of the road.
The combination of these forces determines the acceler-
ation of the vehicle which is indicated by ẍf . Let, Fx be
the total longitudinal force that is:

Fx = Fxr + Fxf (8)

Let, Rx be the total rolling resistance that is:

Rx = Rxr + Rxf (9)

as α is small angle so:

sinα = α (10)

FIGURE 17. Power and load transmission in vehicle power-train.

So, from equation (8),(9)and (10) we can find the
simplified equation:

mẍf = Fx − Rx − mgα − Fair (11)

• Power-train Dynamics:
The dynamic equations are constructed from power train
elements. The vehicle wheel is the junction between
the torques operating on the power train and the outer
resistance forces. See Figure 17.
Where from equation (12), we can say that Rx , mgα and
Fair are the resistance load for a vehicle.

Resistantload = Rx + mgα + Fair (12)

where from equation (13), we can say that Fx is the
power that is generated by the EV’s electric motor.

Power = Fx (13)

In longitudinal vehicle modelling, equation (11) states
that, if a vehicle’s power is greater than the vehicle’s
load, then the vehicle will move forward.

In [190], a Deep kinematic model(DKM) is introduced
which estimates using convolutional neural networks (CNNs)
accurate position and acceleration and deceleration of a
vehicle. In [191], a connected and automated vehicle (CAV)
longitudinal controller is developed for driver safety, comfort
and operational efficiency of the vehicle. An information-
aware driver model (IADM) is also developed in this paper,
which provides local stability and string stability as well as
driving comfort for a range of autonomous driving.

In [192], neural networks with various architectures
are developed as methods for modeling the longitudinal
dynamics of a vehicle. The difference in the modeling output
of CNN and RNN reveals that the convolutive design is
more accurate and stable for a comparable number of training
parameters. In [193], a predictive controller is also developed
based on the Deep Reinforcement Learning (RL) algorithm
for the longitudinal motion dynamics of autonomous cars.

The vehicle’s longitudinal control measures the vehicle’s
longitudinal velocity to govern the cruise velocity. This
control system facilitates monitoring of the speed and
acceleration, and to follow a vehicle while driving on a
highway. Neural networks, PID, MPC, fuzzy control, and
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FIGURE 18. Close-loop system of cruise control.

feedforward control techniques have been commonly used in
the longitudinal drive control system.

1) PID
PID control is expressed using three types of mathematical
terminology, depending on the error function: proportional,
integral, and derivative. Each one is proportional to the
mistake e. To manage longitudinal speed and provide
adaptive cruise control, a PID controller is used [24].

The cruise controller and plant vehicle model are shown
as a closed-loop system in the block diagram in Figure 18.
The goal of this system was to keep the vehicle velocity Vf
constant and near to the reference velocity Vr . The controller
has two levels: a high-level controller and a low-level
controller (although the low-level controller is not an essential
part of the control task). To reduce the disparity between the
set point speed and the actual speed of the vehicle, the high-
level controller provides vehicle acceleration.

With the vehicle acceleration, the low-level controller
initiates a throttle or breaking actuation. This braking or
throttle actuation aids in the monitoring of the reference
acceleration. Each time, the top level controller calculates the
required acceleration. The calculation is based on the velocity
error as an input, with the required acceleration as the output.
This controller makes use of PID [18]:

ẍac = KP(ẋref − ẋ)+ KI

∫ t

0
(ẋref − ẋ) dt + KD

d(ẋref − ẋ)
dt

(14)

where ẍac is the desired acceleration, ẋref is the reference
velocity, and ẋ is the output velocity in equation (14). The
error’s current values are represented by KP. The error’s
previous values are represented by KI . According to the
current rate of change, KD represents the probable future
values of the error [194].

In [195], a novel approach using a self-adapting radial-
based function neural network PID (RBFNN-PID) was
developed to improve longitudinal vehicle speed control with
precision and robustness. In [196], a control strategy based on
fuzzy adaptive control is proposed that can control PID gain
parameters using a genetic algorithm in order to control brake
actuators.

2) MPC
Model Predictive Control (MPC) focuses on optimal control
theory, usually described as receding horizon function, where
a plant model and a collection of predicted inputs are used

to predict future system states. The methods are focused on
the use of a model’s mathematical representation to forecast
a system’s future behavior within a finite time horizon. The
control action is obtained by minimizing a cost function that
may involve constraints [197].

In [198], a simple MPC is proposed for longitudinal
motion, considering a motion planner based on estimated
curved path. In [25], a longitudinal collision avoidance
control system is proposed based on MPC applied to control
the desired deceleration and yaw moment for collision
avoidance.

In [193], a predictive controller is presented on the basis of
a Deep RL algorithm for the longitudinal motion dynamics
of autonomous vehicles. Compared with a Nonlinear Model
Predictive Controller, this paper also presents a Deep
Reinforcement Learning based controller, once trained, with
significantly low computation times, while achieving close-
to-optimal efficiency.

3) FEED-FORWARD CONTROL
The combination of feed-forward and feedback loops
improves controller performance. The main rationale for
using both of these controllers in a control system is because
feed-forward controllers give a predicted response by gen-
erating reference output in order to achieve the appropriate
tracking response, which is especially important when the
required inputs are non-zero. The feedback controllers’
reactive response eliminates any control faults that may have
happened as a result of the disruptions [201].

The feedback controller correctsmistakes caused by distur-
bances or inaccuracies, while feed-forward control supplies
the required inputs as predicted to build a reference trajectory
to keep the vehicle on track. Because the vehicle system
requires a consistent radius turn, throttle and brake command,
and steering angle while driving for a comfortable riding
experience, the previously reported combination is widely
employed in the advanced automobile industry. The feed-
forward control and the feedback control must be coupled
in order to develop the vehicle actuation system [201].
In Figure 19, the input of the feed-forward controller is
reference velocity Vref and the input of the feedback or PID
controller is velocity error that is, Vref − V . The throttle and
braking commands are produced by these controllers. The
feedback controller’s primary function is to obtain the desired
acceleration. A mapping from accelerations is used by the
controller to build up the. The engine commands are then
handled by the feed-forward block.

In [26], for a vehicle model, a feedback and feed-forward
control technique is proposed. The vehicle’s desired speed
is maintained via the control algorithm. The throttle and
braking pedals are controlled by the feedback section. The
feed-forward section is in charge of the gear shift and
clutch, as well as the feedback signals. In [202], feedback-
feed-forward control architectures are also used for steering
control systems.
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TABLE 4. Longitudinal vehicle control system.

FIGURE 19. Combination of feedback and feed-forward controller.

D. LATERAL CONTROL ALGORITHMS
This section discusses dynamic control modeling for a four-
wheel vehicle. The model was created using the bicycle
modeling method. Side slip, yaw rate, lateral acceleration,
lateral speed, and lateral displacement are the key focuses of
lateral dynamics [18].

The longitudinal velocity v is considered to be constant in
lateral vehicle dynamics, as shown in Figure 20. The left and
right axles are united into a single wheel, allowing the four-
wheel vehicle to be classified as a bicycle. The debate also
ignores the effects of road slope and aerodynamics.

The fundamental context of this lateral vehicle model
methodology is the modeling of the vehicle’s rotation rate.
The simulation was based on the events that occur while
the car is driving. During the development of the dynamic
model in this part, the vehicle’s center of gravity is used as a

FIGURE 20. Lateral vehicle dynamics.

reference point. This was done to make Newton’s second law
easier to apply.

Lateral acceleration equation:

ay = ÿ+ ω2R (15)

Here, the total acceleration in the inertial frame denotes as
ay, the lateral acceleration in the body frame denotes as ÿ,
and the centripetal acceleration from rotation of the vehicle
denotes as ω2 R.

Equation (15) can be rewritten as equation (16), where φ̇
is the slip angle rate of change and ψ̇ is the heading rate of
change.

we know, v = ωR and ω = ψ̇ . So, the lateral acceleration
equation:

ay = vφ̇ + vψ̇ (16)
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The lateral dynamic model equation is:

mv(φ̇ + ψ̇) = Fyr + Fyf (17)

here in equation (17), mass of the vehicle is m, v is the vehicle
longitudinal velocity. The lateral dynamic formula is formed
with the lateral forces on the front and rear tires. Fyr is the
rear tires force and Fyf is the front tires force.
The angular acceleration equation is:

Ivψ̈ = lf Fyr − lrFyf (18)

here in equation (18), ψ̈ is the angular acceleration of the
vehicle and Iv is the vehicle inertia. lf and lr are the distance
between the CG(Center of Gravity) and the front and rear
axle.

Front and Rear tire forces Equations are:

Fyf = Cf af = Cf (α − φ −
lf ψ̇
v

) (19)

Fyr = Crar = Cr (−φ +
lr ψ̇
v

) (20)

In equation (19) and (20), af is front tire slip angle and ar is
rear tire slip angle. The linearized cornering stiffness for both
front and rear wheels are Cf and Cr respectively. Cornering
stiffness of a tire is its ability to resist deformation in the shape
of a tire while the vehicle corners. α is the steering angle.
From equation (17), (18), (19) and (20) we can rearrange

the equations:

φ̇ =
−(Cr + Cf )

mv
φ + (

Cr lr − Cf lf
mv2

− 1)ψ +
Cf
mv
α (21)

ψ̈ =
Cr lr − Cf lf

Iv
φ −

Cr l2r + Cf l
2
f

Ivv
ψ +

Cf lf
Iv
α (22)

As the resultant lateral dynamic model is linear, we can
define a state vector.

state vector:

Xstate =


y
φ

ψ

ψ̇

 (23)

In equation (23), y is the lateral position, φ is side slip
angle, ψ is yaw angle and Dotψ is yaw rate.
Standard state space equation is:

˙Xstate = AstateXstate + Bstateα (24)

The dynamics matrices in this system are Astate and
Bstate. If the forward speed (V) is kept constant, both of
these are time-invariant. The main input of the system is
α, which is defined as the driver steering angle command.
While designing different control strategies, the state-space
representation is predicted as a necessity. As an example, PID
or MPC for lateral control. The model is suitable for state
estimation with Kalman filters, as it provides linearity.

In [205], a deep reinforcement learning (RL) based
vehicle lateral control model is proposed. This methodology
developed a generalized RL model which is capable of

controlling a host vehicle from the previously unseen vehicle
in an unseen trajectory without additional training. In [204],
an ML-based trajectory design technique is presented for the
overtaking process on the road. The paper also proposed a
method of neural network trajectory design to determine the
desired trajectory.

The major goal of a smart vehicle is to ensure that the
vehicle can follow a specific path. To follow that desired
path, the vehicle must adjust the required steering angle
to correct the errors that accumulate. We have to calculate
the errors between position of vehicle and the co-ordinates
of the desired following path. We should choose a control
system that eliminates errors within steering angle limits. The
control system must recognize the tire forces and not exceed
the vehicle’s capability while removing such errors. There
are other options for reference paths, but you must choose
the easiest and most consistent approach for smooth riding,
which is continuous parameterized curves. These curves
create a continuous variable speed and smooth derivatives to
ensure error and error computation uniformity. The vehicle
eliminates the offset of the vehicle using the lateral controller
and aligns back to the reference path to follow the reference
path [27]. Some lateral control approaches are presented
in Table 5

There are two main controllers for lateral control:
1) Geometric Controller: This controller depends on the

geometry and coordinates of the reference trajectory
and the vehicle kinematic model.

2) Dynamic Controller: The most advanced type of
controller is the Model Predictive Controller or MPC.
MPC can identify the control commands that are
applicable through finite-horizon optimization.

1) GEOMETRIC LATERAL CONTROL - PURE PURSUIT
Pure pursuit and Stanley are the two types of geometric lateral
control. Geometric controller, also known as a geometric path
tracking controller, can track the reference path using the
reference trajectory’s geometry and the vehicle’s kinematic
model. The reference point on the reference path was
determined by the pure pursuit controller, whereas the Stanley
controller derives the same reference point as is required for
error computations. The pure pursuit method is discussed
here.

The pure pursuit method’s fundamental idea is to place a
reference point on the reference path at a given distance, and
then have the vehicle intercept the reference point using a
determined constant steering angle. As the car approaches
the point, the steering angle is reduced, and the vehicle
arrives at the location gently [27], [206]. The reference
point in Figure 21 is the vehicle’s rear wheel axle center,
and the distance between it and the targeted reference
point highlighted in red is d, which is known as the look-
ahead distance. The angle formed by the vehicle body and
the look-ahead distance line is called theta. We examine
an instantaneous centre of rotation in which the intended
reference point and the rear axle’s center form a triangle with
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TABLE 5. Lateral vehicle control systems.

FIGURE 21. Pure pursuit geometry.

R and d as the lengths of the two sides. We’ll draw a non-
linear/circular line from the vehicle’s reference point to the
desired reference point. The angle formed on the center of
the circle by the vehicle’s reference point and the targeted
reference point is called 2θ [28], [207]. Now from the sine
formula we get:

d
sin2θ

=
R

sin(π2 − θ)
(25)

d
2sinθcosθ

=
R

cos(θ)
(26)

d
sinθ
= 2R (27)

now the path curvature is kc = 1
R , so

kc =
2sinθ
d

(28)

FIGURE 22. Pure pursuit geometry with cross-track error.

Now, from the bicycle model in figure 20 it can determine
the steering angle α that is:

α = tan−1kL (29)

α = tan−1
2Lsinθ
d

(30)

The equation (29), The length between the front and the
back axle is L. This is how we can calculate the steering
angle α.

However, the cross-track error (e) must be taken into
account, which is the difference between the heading vector
and the intended reference point, see Figure 22. From this
Fig. 22:

sinθ =
e
d

(31)

so from the equation (28) and (31) we get:

kc =
2e
d2

(32)
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FIGURE 23. Stanley control geometry.

From equation (32), we can say that if the error decreases,
the path curvature kc will also decrease, which brings the
vehicle smoothly to the target point.

We utilize a proportional controller with path curvature as
the output to eliminate this inaccuracy. The proportional gain
is 2

d2
, as calculated by equation (32). The look-ahead distance

is responsible for modifying the steering angle in this case,
but vehicle speed must also be taken into account; otherwise,
the steering angle will remain constant regardless of whether
the vehicle is traveling at 10 km/h or 100 km/h. Because they
are distinct lateral accelerations, we must take the vehicle’s
forward speed into account. To solve this issue, we’ll change
the controller.

We consider distance d is related with forward velocity vf
such that:

d = Kppvf (33)

where Kpp is the pure pursuit proportional gain.
From the equation (30) and (34) we get:

α = tan−1
2Lsinθ
Kppvf

(34)

The controller chooses the steering angle that will produce
a curvature to the chosen reference point, and the faster the
vehicle goes, the faster the reference point changes and a
new curvature is created. Controlling steering is how the car
travels forward.

2) GEOMETRIC LATERAL CONTROL - STANLEY
In the DARPA Global Challenge, Gabe Hoffman at Stanford
University designed the Stanley Controller, a geometric path
tracking control. It is essential for autonomous robotics and
cars, as it allows a car to maneuver at any speed while
remaining independent. The reference point is switched to the
front axle in this controller, and it considers both heading and
position error while advancing towards the intended point,
removing all mistakes without taking into account the look-
ahead distance [28].

For correcting the heading error, the steering angle α is
equal to the heading alignment ψ . see in equation (35)

α(t) = ψ(t) (35)

FIGURE 24. MPC structure.

For correcting the cross-track error, it uses a proportional
controller whose gain is C:

α(t) = tan−1(
Ce(t)
vs(t)

) (36)

where, the cross-track error is e(t) and vf is the forward
velocity of the vehicle.

The final equation can now be derived from (35) and (36)
for the steering angle α(t)ε[αmin, αmax] which is:

α(t) = ψ(t) + tan−1(
Ce(t)
vf (t)

) (37)

The equation (38), if the vehicle speed is quite low, tending
to zero, denominator value vf (t) will tend to zero. so to solve
this problem we use a constant ks to stabilize the system and
maintain a non-zero denominator. So the resultant equation
is:

α(t) = ψ/(t) + tan−1(
Ce(t)
ksvf (t)

) (38)

This controller could be enhanced by adding a feed-
forward controller to enhance the tracking of the reference
path on the curve.

3) ADVANCED STEERING CONTROL - MPC
MPC is commonly used to find optimum solutions that
take into account future prediction mistakes in addition to
current errors, as well as its ability to operate with a wide
range of disciplines. MPC may improve the performance and
operating range of any controller, which is why it’s utilized
in traction control, steering control, speed control, and other
automotive applications. This control system has a number
of advantages, including the fact that it may be used for
both linear and nonlinear vehicle control approaches. The
controller, on the other hand, has a significant drawback in
that it is extremely expensive and demands more control
resources [208]. Here in Figure 24, the MPC structure
consists of two blocks that form a closed-loop feedback
controller. One is a dynamic model, which uses historical
inputs and states to generate predicted outputs, which are then
compared to the reference trajectory to generate a future error.
The optimizer, the second block, takes the future error and
gives the current inputs to themodel while taking into account
the cost function and a number of restrictions.
• Linear MPC control design process:
Discrete State space formula:

xt+1 = Axt + Bwt (39)
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FIGURE 25. Vehicle lateral and longitudinal control with MPC controller.

where in (25), xt+1 is the future state, xt is the current
state and wt is the actuation command. A and B are the
time-invariant coefficient matrices.
Control policy is:

W = wt|t ,wt+1|t ,wt+2|t... (40)

Optimize the cost function:

J (x(t),W ) =
t+T−1∑
j=t

xTj|tQxj|t + w
T
j|tRwj|t (41)

Optimized cost function for desired trajectory:

δxj|t = xj|t,des − xj|t (42)

J (x(t),W ) =
t+T−1∑
j=t

δxTj|tQδxj|t + w
T
j|tRwj|t (43)

where in equation (43), Q and R are the weight metrics
of the cost function.
Now, Linear Quadratic regulator:

J (x(t),W ) = xTt+T |tQf xt+T |t

+

t+T−1∑
j=t

xTj|tQxj|t + w
T
j|tRwj|t (44)

The state space solution is:

xj+1|t = Axt|t + Bwt|t t ≤ j ≤ t + T − 1 (45)

The LQR solution specifies a control gain k, which
is computed using the state space functions A and B,
as well as the cost functions Q and R.

• Non-Linear MPC control:
Non-linear MPC (NMPC) incorporates a repeated
solution of the optimization problem at every sampling
moment in the receding horizon method. The NMPC
issue in terms of a non-linear optimization problem
is convenient to solve by numerical optimization. The
cost function and constraints set out the NMPC con-
trol features and dynamic performance requirements.
The system utilizes these control methods in turning
and for the stability of wheeling calculation steering
angles [209].

Implementation of MPC controller for Vehicle lateral and
Longitudinal Control:

As shown in Figure 25 MPC takes reference velocity,
reference route, and heading angle as inputs. The longitudinal
forces Fx and lateral forces Fy are outputs, and these forces

are inputs to the low-level controller. As previously stated,
the low-level controller’s outputs are the accelerator and
brake instructions for longitudinal control and the steering
instruction for lateral control.

In [210], a NMPC is also developed for speed and steering
control based on a genetic algorithm to construct the cost
function and constraints in a more precise, meaningful and
straightforward way. The vehicle under the guidance of
the advanced NMPC is capable of accurately and reliably
following the center line of the lane, even at sharp edges.

V. SUMMARY AND COMPARISON
There is a considerable amount of research on driving control
system for smart EV, concerningADAS. These studies survey
and discuss ADAS and propose significant types of methods
such as ACC, ABES, LCA, LKA, LDW, Night Vision, TSR,
Automatic parking assistance, Pedestrian Detection, Traction
control, Communication VANETs, and Security and access
control. These systems are applied in a smart EV for safe
driving and driving comfort.

A comparison between current study and existing surveys
is shown in Table 1, on DCSs and vehicle perception sensors.
From this Table 1, this paper present all the DCSs and sensor
for those control system. Each of the control systems is
important enough in terms of security, comfort and ease of
implementation. The following systems of control are based
on lateral and longitudinal control of the vehicle. Several
types of control methods operate these control systems
discussed in the ADAS section.

An analysis between the control systems of ADAS is
shown in Table 2, on findings, performances, and disad-
vantages. In addition, this paper analyzed some research
articles on various control approaches, which are summarized
in Table 2. The extensive examination of driving control
schemes as well as performance measures are discussed in
order to identify the optimal control schemes in DCSs.

The investigation regarding algorithms is the key to DCS.
Various algorithms have been used to rectify the performance
of DCS, which are based on perception, localization, and
vehicle control. For perception and localization algorithms
this paper presents various types for sensor: Vision, lidar,
radar, Ultrasonic, Night vision, Time of Flight. These sensors
and sensor fusion are compared in Table 3 for road surface
detection, object detection, vehicle detection, parking space
detection, and so on.

We conduct a performance analysis of these sensors in
terms of their accuracy when used with a certain detection
method. From Table 3 we can understand that vision sensor
works well for vehicle detection. Fusion of vision and
radar sensor works well for road surface detection. The
ultrasonic sensor is ideal for detecting moving objects.
Furthermore, sensor fusion of camera and radar is the most
effective for detecting pedestrians. In addition, the LIDAR
sensor performs well in terms of detecting road lines but
vision sensor has better accuracy. Figure 26 shows the
performance comparison of sensors. The perception and
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FIGURE 26. Histogram of performance comparison of sensors.

localization algorithms are used for understanding the vehicle
environment and perform accordingly.

The vehicle control algorithms are presented to perform
perception algorithms. To understand vehicle control, vehicle
control dynamics and actuation are presented in this paper.
Vehicle control dynamics are longitudinal and lateral dynam-
ics are about acceleration, brake, and steering system. This
paper presents a comparison of Longitudinal and Lateral
vehicle control systems in Table 4, 5.

There are three controllers: PID, MPC, and feed-forward
for longitudinal control. PID has a moderate performance
for longitudinal control; MPC and feed-forward schemes
show better performances. For lateral control, there are also
two types of controller: geometric and dynamic. Geometric
control has two forms of pure pursuit and Stanley. The
geometric controller is a path tracking controller that uses the
reference path geometry and the vehicle’s kinematic model to
map the reference route. The reference point on the reference
path is derived from the pure pursuit controller, while the
Stanley controller derives the same reference point as is
used to measure errors. The MPC is the most advanced sort
of controller, as it can use finite-horizon optimization to
discover the control instructions that are appropriate.

All driving control systems and algorithms discussed
earlier for driving safety and driving conformity of smart EVs
need to be further enhanced with software that implements AI
techniques [211], [212]. To improve these control systems,
the accuracy of the sensors must also be improved. For
vehicle longitudinal and lateral control, the emergence of
further improvements is also required. However, to gain
greater control, fault avoidance, and higher stability, all
of these control systems and algorithms need to be
improved.

VI. CONCLUSION AND FUTURE SCOPE
Control methodologies for improving the performances of
smart EVs have been actively developed and implemented.
Furthermore, one of the most notable areas of growth in the
transportation business is road safety. As a result, automakers
are developing a variety of driver aid technologies to make
driving easier, reduce driver stress, and reduce the severity of
accidents.

This paper provides an overview of many control systems
and algorithms for control systems. Many of the control
systems are used in the ADAS. Perception, localization,
and vehicle control is covered in the algorithms section.
Perception and localization include sensor metrics as well as
the types of sensors used in smart EVs. Vehicle dynamics,
longitudinal, and lateral control algorithms are among
the vehicle control algorithms, and these control system
algorithms and sensor styles are briefly discussed in a number
of research papers. There are, however, several methods and
algorithms that can be applied to smart EVs. For decades,
the smart vehicle has been an active research field.

Moreover driving control system for smart EV has
numerous research scopes including:
• The application of Big Data may entail interconnecting
multiple smart vehicles, i.e. connecting vehicle to
vehicle (V2V) and building the infrastructure.

• It is important to understand human behavior for
perception, information processing and decision mak-
ing. Human Machine Interaction (HMI) system can
be improved to increase dynamic interaction between
people and the controlled system.

• AI-driven algorithms for Vehicle-to-Everything (V2X)
applications can be developed and improved for greater
driving safety and vehicle stability.
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We hope that this paper will provide some ground for
researchers wishing to conduct research on Smart Electric
Vehicle Technology.
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