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ABSTRACT In this work, we present Point Transformer, a deep neural network that operates directly on
unordered and unstructured point sets. We design Point Transformer to extract local and global features and
relate both representations by introducing the local-global attentionmechanism,which aims to capture spatial
point relations and shape information. For that purpose, we propose SortNet, as part of the Point Transformer,
which induces input permutation invariance by selecting points based on a learned score. The output of Point
Transformer is a sorted and permutation invariant feature list that can directly be incorporated into common
computer vision applications. We evaluate our approach on standard classification and part segmentation
benchmarks to demonstrate competitive results compared to the prior work.

INDEX TERMS 3D point processing, artificial neural networks, computer vision, feedforward neural
networks, transformer.

I. INTRODUCTION
Processing 3D point sets using deep neural networks
has become very popular the past few years. The
three-dimensional information has a wide range of applica-
tions in autonomous driving [1]–[6] and computer vision [7],
[8]. However, training neural networks on point sets is not
trivial. First, point sets are unordered, thus require the neural
network to be permutation invariant. Second, the number of
points in the set is usually dynamic and unstructured. Finally,
the network needs to be robust against rotation and translation
to operate in the metric space, and since the points describe
objects, the network needs to capture the spatial relations
between the points.

Standard neural architectures, such as convolutional neural
networks (CNN), have shown promising results for structured
data. For that reason, several point set processing approaches
attempt to transform the points into regular representations
such as voxel grids [9], [10] or rendered views of the point
clouds [11], [12]. However, transforming the point sets leads
to loss of shape information as geometric relations between
points are removed. Furthermore, these methods suffer from
high computational complexity due to the sparsity of the 3D
points.

To address these limitations, there is another family of
approaches that act directly on the point set. The main
idea is to process each point individually with a multi-layer
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perceptron (MLP) and then fuse the representation to a vector
of fixed size with a set pooling operation over a latent feature
space [7], [13]. Set pooling is a symmetric function that
is permutation invariant. Additionally, under certain condi-
tions, set pooling acts as a universal set function approxima-
tor [14]. Nevertheless,Wagstaff et al. [15] argue that reducing
the latent representation to a vector of fixed length can be
impractical since the cardinality of the input set is usually
not considered. Thus, the capacity of the vector may not be
sufficient enough to capture the spatial relations of the point
set which may reduce the overall performance. Therefore,
the set pooling mechanism can become a bottleneck for point
processing networks.

Our goal and motivation stems from removing the set
pooling method and overcoming the aforementioned bot-
tleneck, while still achieving a permutation invariant rep-
resentation that models the point set relations in terms of
object shape and geometric dependencies. Therefore, it is
necessary to introduce a symmetric set function that replaces
traditional set pooling operations. For that, we adapt the
attention mechanism [16], which was originally introduced
for natural language processing, that is used to weight and
score sequences (words) based on learned importance. To our
understanding, we face a similar problem in 3D point process-
ing, given that we need to relate representations of the input
points to capture and describe the object’s shape. Addition-
ally, attention itself does not depend on the input ordering, i.e.
it is permutation-invariant, as it is comprised of matrix mul-
tiplication and summation only, which makes it well-suited
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FIGURE 1. Overview of the Point Transformer pipeline. A point cloud serves as input to our network from which local and global features
are extracted. We sort local features using SortNet, a module that focuses on important points based on a learned score. We then employ
local-global attention to relate global and local features. We aim to capture geometric relations and shape information. The resulting
feature representation is permutation invariant and can be used for common computer vision tasks.

for our problem. However, the output is still unordered, thus,
directly processing the output of attention for standard com-
puter vision tasks is not possible. Consequently, our goals can
be outlined as follows:

• Avoid the bottleneck that can occur while employing set
pooling operations [15].

• Present a novel permutation invariant network archi-
tecture that adapts the popular and prevalent attention
mechanism for 3D point processing.

• Demonstrate superior performance compared to tradi-
tional set pooling methods to justify the use of attention
and reinforce the claims made by Wagstaff et al.

To address these problems, we propose SortNet, a per-
mutation invariant network module, that learns ordered sub-
sets of the input with latent features of local geometric and
spatial relations. For that, we learn important key points,
which we call top-k selections, that replace the set pooling
operation. Since current state-of-the-art methods have shown
that aggregating local and global information increases the
network’s capabilities of capturing context information [7],
[17], [18], we employ SortNet to generate local features of
the point cloud. Moreover, global features of the entire point
cloud are related to the sorted local features using local-
global attention. Local-global attention attends both feature
representations to capture the underlying shape. Since the
local features are ordered, the output of local-global atten-
tion is ordered and permutation invariant; and thus it can
be used for a variety of visual tasks such as shape classifi-
cation and part segmentation. An overview of our network
is outlined in Fig. 1. Since we aim to process 3D point
sets using the ideas proposed by the Transformer network
architecture [19], we took inspiration from [20], and name
our network Point Transformer.
Overall, our contributions can be summarized as follows:

• We propose Point Transformer, a neural network
that uses the multi-head attention mechanism and
operates directly on unordered and unstructured point
sets.

• We present SortNet, a key component of Point Trans-
former, that induces permutation invariance by selecting
points based on a learned score.

• We evaluate Point Transformer on two standard bench-
marks and show that it delivers competitive results.

II. RELATED WORK
Below, we discuss approaches that process 3D points and are
related to our work.

A. POINT SET PROCESSING
Point clouds are irregular and unordered sets of points with
a variable amount of elements, thus applying standard neu-
ral networks on 3D points is not possible. For that reason,
previous approaches rely on transforming the point sets into
an ordered representation, such as voxel grids. The metric
space is discretized into small regions (voxels), which are
labeled as occupied if a point lies inside the voxel. Then,
3D convolutional networks (CNN) can be easily applied
to the voxel-based representation [9], [10], [21]. This pre-
processing, however, reduces the resolution asmultiple points
are combined into a single voxel and thus damages important
spatial relations of the metric space. Furthermore, voxeliza-
tion increases the memory requirements and computational
complexity due to the sparsity of the 3D points. To address
these limitations, multiple extensions have been proposed
that try to leverage the sparsity of 3D data [22]–[24], but still
fail to process large amounts of input points.

1) VIEW-BASED METHODS
In contrast to building voxel grids, a lot of research has
been conducted on rendering point clouds into 2D images,
i.e. structured representation of the underlying 3D shape.
Then, working with traditional CNNs is possible [12], [25].
Since shape information can be occluded by rendering point
clouds from a specific viewpoint, multi-view approaches
have been proposed that render multiple images from dif-
ferent angles [11], [12], [26], [27]. Even though images are
rendered from different views, the model still fails to capture
all geometric and spatial relations. To this day, multi-view
approaches achieve impressive results on standard 3D bench-
marks. However, the transformation from sparse 3D points
into images increases computational complexity as well as
required memory.

2) SHAPE-BASED METHODS
PointNet [13] is a pioneering network architecture that oper-
ates directly on 3D point sets, and it is invariant to input
point permutations. Therefore, a transformation into a struc-
tured representation is no longer necessary. PointNet uses
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a multi-layer perceptron (MLP) with shared weights that
encodes spatial features to each input point separately. Then,
a symmetric function, e.g. max pooling, is applied to the
latent features to induce permutation invariance and create
a global feature representation of the input. PointNet estab-
lished the de facto standard for point processing that many
state-of-the-art approaches still rely on [1], [28]. However,
it is not able to encode and capture local information, since
the max pooling operation induces permutation invariance,
but also destroys local structures and relations of the points
in metric space. To address this issue, Qi et al. proposed the
improved PointNet++ [7] architecture, a hierarchical model
that abstracts the input points with every layer to produce
sets with fewer elements. First, centroids of local regions are
sampled using hand-crafted algorithms, then local features
are encoded to the centroids by exploring the local neigh-
borhood. Thus, allowing the network to capture fine-grained
patterns and improving the performance on current datasets.
A general approach related to unordered sets was introduced
by Zaheer et al. [14] demonstrating the capabilities of pool-
ing operations to induce permutation invariance. Importantly,
they prove that the set pooling method is a universal approxi-
mator for any set function. In general, problems arise with set
pooling when the reduced feature vector lacks the capacity
to capture important geometric relations. Our work addresses
this limitation with a network topology that encodes the entire
point cloud by relating local information with the global
shape structure.

3) CONVOLUTIONS ON POINT CLOUDS
Classic convolutional neural networks require the input data
to be ordered, such as images or voxel grids. Since points are
unstructured, an active research area is the definition of con-
volution operations that can operate on irregular 3D point sets
such as KPConv [29], SpiderCNN [30] or PointCNN [31].
These methods achieve state-of-the-art performance on a
variety of tasks. However, due to the irregularities of the
shape and point density, point convolutions are usually hard
to design and the kernel needs to be adapted for different input
data [32].

B. ATTENTION
Attention itself has its origin in natural language pro-
cessing [16], [33]. Traditionally, encoder-decoder recurrent
neural networks (RNN) were used for machine translation
applications, where the last hidden state is used as the context
vector for the decoder to sequentially produce the output.
The problem is that dependencies between distant inputs
are difficult to model using sequential processing. Bahdanau
et al. [16] introduced the attention mechanism that takes the
whole input sequence into account by taking the weighted
sum of all hidden states and additionally, models the relative
importance between words. Vaswani et al. [19] improved the
attention mechanism by introducing multi-head attention and
proposing an encoder-decoder structure that solely relies on
attention instead of RNNs or convolutions. Therefore, they

reduce the computational complexity. In this work, multi-
head attention is the basis for Point Transformer.

1) ATTENTION WITH POINT CLOUD PROCESSING
Neural networks that rely on attention achieved impres-
sive results in machine translation, and were adopted
to function on point clouds by utilizing the points as
sequences. Vinyals et al. [34] proposed a network that pro-
cesses unordered sets using attention. They show that the
network is able to sort numbers. However, they only focus
on generic sets. In contrast, we present an approach that is
applied to different point cloud related tasks for capturing
shape and geometry information. Recently, Lee et al. [20]
proposed Set Transformer, a method that is related to our
approach. They adapt the original Transformer network to
process unordered sets by using induced points, i.e. trainable
parameters of the network, that are attended to the input. Set
Transformer focuses on general sets as input. Furthermore,
Lee et al. demonstrate that it is applicable to point sets. In our
work, Point Transformer is specifically designed to process
point clouds and leverage important characteristics of points
in metric space such as shape and geometric relations.

Xie et al. [35] propose ShapeContextNet, where they hier-
archically apply the shape context approach that acts as a
convolutional building block. To overcome the difficulties
of manually tuning the shape context parameters, Xie et al.
employ self-attention to combine the selection and feature
aggregation process into one trainable operation. However,
similar to point cloud convolutions, shape context relies on
a manual selection of the shape context kernels which is
sensitive to the irregularities of point cloud data.

The Point2Sequence model [17] uses an attention-
based sequence-to-sequence network. The approach first
extracts local regions and produces local features using an
LSTM-based attention module. Using a set pooling method,
a global feature vector is generated following the ideas of [14]
and [13]. However, it relies on a sequence-to-sequence archi-
tecture that tends to be more computational complex than
multi-head attention [19]. Furthermore, in contrast to our
method, Point2Sequence uses a max-pooling operation to
make the network permutation invariant. Yang et al. [36]
introduce a network architecture that replaces traditional sub-
sampling methods like furthest point sampling (FPS) with an
attention-based selection process using the gumbel-softmax
function, which is similar to the proposed SortNet module.

Recently, Tao et al. [37] proposed a multi-head attentional
point cloud processing network that uses a rotation invariant
representation of point clouds as input. For that, they employ
a multi-head attentional convolution layer (MACL) with
attention coding. However, their work focuses on designing a
rotation invariant network that relies on global max pooling
operations, whereas Point Transformer together with SortNet
leverages the strengths and advantages of the attention oper-
ation to select useful local point structures and relates them
to the global shape to induce permutation invariance.
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III. FUNDAMENTALS
Attention has been first proposed for natural language
processing, where the goal is to focus on a subset of impor-
tant words [16]. Here, we frame the problem in the con-
text of point sets. We consider the unordered point set
P = {pi ∈ RD, i = 1, . . . ,N }. Our goal is to map P to the
output space RO with the set function f : P → RO. Further-
more, we assume that f is invariant to input permutations.
Since the input point set represents some object, e.g. from
laser scans, the points are not independent of each other.
We aim to make use of the attention mechanism to capture the
relations between the points, as well as shape information for
performing visual tasks such as object classification or seg-
mentation. Next, we shortly present attention and introduce
the Transformer architecture in the context of point sets.

A. ATTENTION
The idea of the attention mechanism is to set an
importance-based focus on different parts of an input
sequence. Consequently, relations between inputs are high-
lighted that can be used to capture context and higher-
order dependencies. The attention function A(·) describes a
mapping of N queries Q ∈ RN×dk and Nk key-value pairs
K ∈ RNk×dk , V ∈ RNk×dv to an outputRN×dk [19]. Using the
pairwise dot product QKT

∈ RN×Nk , a score is calculated
indicating which part of the input sequence to focus on

score(Q,K ) = σ (QKT ), (1)

where score(·) : RN×dq ,RNk×dk → RN×Nk . Furthermore,
we set the activation function σ (·) = softmax(·) and scale
QKT by 1/

√
dk to increase stability [19]. To capture the

relations between the input points, the values V are weighted
by the scores from Equation (1). Therefore, we have

A(Q,K ,V ) = score(Q,K )V , (2)

with A(Q,K ,V ) : RN×dk ,RNk×dk ,RNk×dv → RN×dk . It is
apparent, that the attention function (2) is a weighted sum of
V , where a value gets more weight if the dot product between
the keys and values yields a higher score. If not specified
otherwise, we set the model dimension to dk = dq = dm.

B. TRANSFORMER
The Transformer network [19] is an extension of the atten-
tion mechanism from Equation (2) that consists of an
encoder-decoder structure and introduces multi-head atten-
tion. In the following, we explain multi-head attention in
detail, as our Point Transformer architecture relies on it.

Instead of employing a single attention function, multi-
head attention first linearly projects the queries, keys and
values Q,K ,V h times to dk , dk and dv dimensions, respec-
tively, using separate feed-forward networks to learn relations
from different subspaces. Then, attention is applied to each
projection in parallel. The output is then concatenated and
projected again using a feed-forward network. Thus, multi-
head attention can be defined as follows:

Multihead(Q,K ,V ) = (head1 ⊕ . . .⊕ headh)WO, (3)

where headi = A(QWQ
i ,KW

K
i ,VW

V
i ) with learnable param-

eters WQ
i ∈ Rdm×dk , WK

i ∈ Rdm×dk and WV
i ∈ Rdm×dv . The

⊕ operation denotes matrix concatenation and WO
∈

Rhdv×dm is a learnable parameter matrix [19]. To achieve
similar computational complexity as traditional attention,
the dimensions of each head dk , dv are reduced such that
dk = dv = dm/h. For the transformer architecture,
Vaswani et al. [19] define encoder and decoder stacks of
identical layers that are comprised of multi-head attention
and a point-wise fully connected layer, each with a residual
connection followed by layer normalization [38]. We call this
layer multi-head attention and define it as follows:

AMH(X ,Y ) = LayerNorm(S + rFF(S)), (4)

where AMH
: RN×dm ,RNk×dm → RN×dm . The sublayer

S is defined as S = LayerNorm(X + Multihead(X ,Y ,Y ))
and rFF is a row-wise feed-forward network that is applied
to each input independently. In practice, multiple multi-head
attention layers can be deployed in sequence to further cap-
ture higher-order dependencies. Note that the output ofAMH

depends on the ordering of X , thus it is not permutation
invariant. However, the values of the corresponding outputs
for each input point are always the same regardless of the
input order, sinceAMH only consists of matrix multiplication
and summation.

For the task of point processing, we take the unordered
point set P and generate a latent feature representation platenti
with dimension dm for every pi ∈ P using a rFF and concate-
nate them to form P = [platent1 , . . . , platentN ] ∈ RN×dm . Based
on P we now define the self multi-head attention as:

Aself(P) := AMH(P,P), (5)

which performs multi-head attention between all elements
of P, thus resulting in a matrix of same size as P.
To attend elements of different sets, we additionally intro-
duce a second matrix representation Q of another set
Q = {qj ∈ RD, j = 1, . . . ,Nk} that has been projected to
latent feature dimension dm, thus Q ∈ RNk×dm . We can now
define cross multi-head attention as:

Across(P,Q) := AMH(P,Q), (6)

that outputs a matrix of dimension N × dm which order
depends on the ordering of P. Since the output is not permu-
tation invariant but follows the ordering of the input, Trans-
former and multi-head attention cannot be used directly for
point data without further processing. To solve this problem,
we introduce our novel Point Transformer architecture that
handles unordered point sets.

IV. POINT TRANSFORMER
This section presents Point Transformer, a neural network
that operates on point set data and it is based on themulti-head
attention mechanism. The network is permutation invariant
due to a new module that we name SortNet. Our goal is to
explore shape information of the point set by relating local
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FIGURE 2. Overview of the Point Transformer architecture which consists of two branches to generate local and global features. SortNet produces
an ordered set of local features that are attended against the global structure of the input point cloud. Depending on the task, classification or
part segmentation heads are employed. Red Boxes denote sorted sets. * only for part segmentation.

and global features of the input. This is done using cross
multi-head attention. To introduce our method, we first give
an overview of the complete Point Transformer architecture,
which is shown in Fig. 2. Our approach is divided into three
parts:

1) SortNet that extracts ordered local feature sets from
different subspaces.

2) Global feature generation of the whole point set.
3) Local-Global attention, which relates local and global

features.

As introduced in Sec. III, we consider the point set
P = {pi ∈ RD, i = 1, . . . ,N } as input to our network.
In most cases, the point dimension is given by D = 3 when
xyz coordinates are considered. Moreover, it is possible to
append additional point features, for example lidar intensity
values (D = 4) or point normal vectors (D = 6). Point
Transformer consists of two independent branches: a local
feature generation module, i.e. SortNet, and a global feature
extraction network. For the local feature branch, the input P
is projected to latent space with dimension dm using a row-
wise feed-forward network. Then, we employ self multi-head
attention on the latent features to relate the points to each
other. Finally, SortNet outputs a sorted set of fixed length.
This module is comparable to a kernel in convolutional neural
networks, where the activation of a kernel depends on regions
of the input space, i.e. the receptive field. SortNet works in
a similar fashion: It focuses on points of interest according
to the learnable score derived from the latent feature repre-
sentation. For the extraction of global features, we employ
set abstraction with multi-scale grouping introduced by [7].
After obtaining features from both branches, we employ our
proposed local-global attention to combine and aggregate
local and global features of the input point cloud. Since we
use local-global attention such that the ordering of the output
depends on the local features, the output of Point Transformer
is permutation invariant and ordered as well and can directly
be incorporated into computer vision applications such as
shape classification and part segmentation.

A. SortNet
The local feature generation module, i.e. SortNet, is one
of our key contributions. It produces local features
from different subspaces that are permutation invari-
ant by relying on a learnable score. We show the
architecture in Fig. 3. SortNet receives the original
point cloud P ∈ RN×D and the projected latent fea-
ture representationP = [platent1 , . . . , platentN ] ∈ RN×dm from
the row-wise feed forward network. We employ an addi-
tional self multi-head attention layer on the latent fea-
tures to capture spatial and higher-order relations between
each pi ∈ P .
Subsequently, a row-wise feed forward (rFF) network is

used to reduce the feature dimension to one, thus creating
a learnable scalar score si ∈ R for each input point pi,
which incorporates spatial relations due to the self multi-head
attention layer. We now define the pair which assigns the cor-
responding score to every input point 〈pi, si〉Ni=1. Let (Q,≥)
be a totally ordered set.We select from the original input point
list K ≤ N points with the highest score value and sort them
accordingly such that:

Q = {qj, j = 1, . . . ,K }, (7)

where qj = 〈p
j
i, s

j
i〉
K
j=1, p

j
i ∈ P such that s1i ≥ . . . ≥ sKi .

In other words, we employ the top-k operation to search
for the K highest scores si and select the associated input
points pi. After selecting K points using the learnable score,
we now capture localities by grouping all points from P that
are within the euclidean distance r of each selected points, i.e.
we perform a ball query search similar to [7]. The grouped
points are then used to encode local features, denoted by gj ∈
Rdm−1−D, j = 1, . . . ,K . We choose the feature dimension
of the grouped points gj such that the resulting dimension of
the local feature vector corresponds to the model dimension
dm. The scores sji, as well as the local features gj from the
grouping layer, are concatenated to the corresponding input
points pji to include the score calculation into our optimization
problem and encode local characteristics to the selected point.
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FIGURE 3. Overview of the SortNet. A score is learned from a latent feature representation to extract important points from
the input. Local features are aggregated from neighboring points. SortNet outputs a permutation invariant and sorted
feature set. Red boxes denote sorted sets.

Thus, we obtain our local feature vector

f ji = pji ⊕ s
j
i ⊕ g

j, f ji ∈ Rdm . (8)

Consequently, the output of SortNet constitutes one local
feature set

FL
m = {f

j
i , j = 1, . . . ,K }. (9)

Since Q is an ordered set, it follows that FL
m is ordered

as well. To capture dependencies and local features from
different subspaces, we employM separate SortNets. Finally,
theM feature sets are concatenated to obtain an ordered local
feature set of fixed size

FL
= FL

1 ∪ . . . ∪ F
L
M , FL

∈ RK ·M×dm . (10)

B. GLOBAL FEATURE GENERATION
The second branch of Point Transformer is responsible
for extracting global features from the input point cloud.
To reduce the total number of points to save computational
time and memory, we employ the set abstraction multi-scale
grouping (MSG) layer introduced by Qi et al. [7]. We sub-
sample the entire point cloud to N ′ < N points using the
furthest point sampling algorithm (FPS) and find neighboring
points to aggregate features of dimension dm resulting in
a global representation of dimension N ′ × dm. Note that
the global feature representation is still unordered since no
sorting or set pooling operation was performed.

C. LOCAL-GLOBAL ATTENTION
The goal of Point Transformer is to relate local and global
feature sets, FL and FG respectively, to capture shape and
context information of the point cloud. After obtaining both
feature lists, we employ self multi-head attentionAself on the
local features FL as well as the global features FG. Then,
cross multi-head attention layer Across from Equation (6) is
applied such that every global feature is scored against every
local feature, thus relating local context with the underlying
shape. We call this operation local-global attention ALG (see
Fig. 2) and define it as follows:

ALG
:= Across(Aself(FL),Aself(FG)), (11)

where FL and FG are the matrix representations of
FL and FG, respectively. The last row-wise feed for-
ward layer in the multi-head attention mechanism of

ALG reduces the feature dimension to d ′m < dm
in order to decrease computational complexity, thus we
have ALG

: RK ·M×dm ,RN ′×dm → RK ·M×d ′m . In other words,
we take every local feature from SortNet and score the
global features against it. At this point, it is important to
note that we relate the local features, i.e. a subset of the
input FL

⊆ P , with the global structure. Thus, we avoid
reducing the shape representation using set pooling; instead,
the output of local-global attention includes information of
the entire point cloud, i.e. the underlying shape, as well
as local characteristics. As with multi-head attention, for
local-global attention, we employ multiple cross and self
multi-head attention layers in sequence to learn higher-order
dependencies [19]. Since the ordering of the local features
FL defines the order of the output of local-global attention,
we obtain a permutation invariant latent representation of
fixed size of the aggregated features, that can directly be
incorporated into computer vision tasks.

D. COMPLETE MODEL
To recap, Point Transformer functions as follows: Our archi-
tecture is comprised of two independent branches, SortNet for
the extraction of local features and a global feature generation
module. SortNet constitutes a novel architecture that selects
a number of input points based on a learned score from
latent features, resulting in M · K ordered feature vectors
with dimension dm. In the global feature branch, we employ
multi-scale grouping to reduce the total number of points to
N ′ while aggregating spatial information. Then, local-global
attention is used to relate both spatial signatures, producing
a permutation invariant and ordered representation of length
K ·M with reduced dimension d ′m (see Fig. 2), which can be
used for different tasks such as shape classification or part
segmentation. Additionally, we demonstrate the processing
chain of our model as a flowchart in Fig. 4.

1) SHAPE CLASSIFICATION
Assigns the point cloud to one of C object classes. For
this, we flatten the sorted output of local-global attention to
a vector of fixed size RM ·K ·d ′m and reduce the dimensions
using a row-wise feed-forward network to RC . Thus, each
output represents one class. Using a final softmax layer, class
probabilities are produced. The shape classification head is
shown in Fig. 2 a).
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TABLE 1. Here, we compare Point Transformer to related approaches that
use either set pooling or attention. We evaluate on popular benchmarks
for object classification (ModelNet) and part segmentation (ShapeNet).

2) PART SEGMENTATION
Assigns a label to each point of the input set. State-of-the-art
methods [7], [17] upsample a global feature vector obtained
from a set pooling operation using interpolation. We, how-
ever, employ an additional cross multi-head attention layer
to attend the output of ALG, i.e. the aggregated shape and
context information, to each point of the input set P . It is
important to note that we project the points in the global
feature generation branch to d ′′m dimensions and apply self
multi-head attention. The features are additionally used for
the set abstraction layer. Later, we attend the projected fea-
tures with the output of Point Transformer. Thus, we can
relate each point to the entire point cloud. The result is a
matrix of dimension RN×d ′m . Then, a row-wise feed-forward
layer reduces the dimension of each point to the C possible
classes RN×C . Again, using a final softmax layer, per-point
class probabilities are produced as shown in Fig. 2 b).

V. EXPERIMENTS
In this section, we perform two standard evaluations on Point
Transformer. We compare our results with approaches that
operate directly on 3D point sets [7], [13], [14], attention-
based approaches [17], [20], [35] and methods that use point
cloud convolutions [29]–[31], [39]. Moreover, we provide
a thoughtful analysis and visualizations of the components
of our approach. We implement our network in Pytorch [40]
where we rely on the RAdam optimizer [41] for all exper-
iments. The weights of each layer are initialized using the
popular Kaiming normal initialization method [42]. Our
implementation will be made publicly available.

A. POINT CLOUD CLASSIFICATION
We evaluate Point Transformer on the ModelNet40
dataset [10] and use the modified version by Qi et al. [7]
that provides 10.000 points sampled from the mesh of the
CADmodel, as well as the normal vectors for each point. The
dataset consists of 40 categories and it is composed of 9843
training samples and 2468 test samples. During the training
for classification, we augment the input by randomly scaling
the shape in the range of [0.8, 1.25] and randomly translating

TABLE 2. Hyperparameters of Point Transformer for the classification and
the part segmentation task.

TABLE 3. Model complexity study. Here, we compare the network size
and the inference time against related approaches.

in the range of [−0.1, 0.1]. Additionally, we apply random
dropout of the input points as proposed in [7], [13]. For the
experiments, we set N = 1024, D = 6 (xyz and normals),
dm = 512, d ′m = 64, M = 4 and K = 64. The results of the
shape classification are shown in Table 1. Point Transformer
outperforms attention-based methods (top part of Table 1)
and achieves on par accuracy when compared to state-of-
the art methods (bottom part of Table 1) with a classification
accuracy of 92.8%.

B. POINT CLOUD PART SEGMENTATION
Here, we evaluate Point Transformer on the challenging
task of point cloud part segmentation on the ShapeNet
dataset [43], which contains 13.998 train samples and 2874
test samples. The dataset is composed of objects from 16 cat-
egories with a total of 50 part labels. The goal is to predict the
class category of every point. To address this task, the network
has to learn a deep understanding of the underlying shape.
For the part segmentation, we set M = 10 and K = 16.
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TABLE 4. Hyperparameter study results on ModelNet40 for different combinations of the hyperparameters M (number of SortNets) and K (Top-K
selections).

Again, we use xyz coordinates with normal vectors (D = 6)
and N = 1024 input points. For this experiment, we follow
the setup of [13] where a one-hot encoding of the category
is concatenated to the input points as an additional feature.
We report the mean IoU (Intersection-over-Union) in Table 1.
Finally, we visualize exemplary results of the part segmenta-
tion task in Fig. 5.

C. NETWORK COMPLEXITY
We examine the network complexity of Point Transformer
and perform a comparison to related approaches. The results
of this experiment are shown in Table 3. We performed all
experiments on a Nvidia GeForce 1080Ti. Point Transformer
has about 13.5 million learnable parameters (51 MB), which
is less when compared to KPConv (15 million learnable
parameters). However, our model is about 6 times bigger
than PointNet++ and Point2Seq. This is mainly due to the
fact that the Transformer model itself has a lot of learn-
able parameters. For example, one SortNet only has about
10.000 learnable parameters which shows that SortNet can be
incorporated into any existing network architecture without
much space requirements and computational overhead, as it
only adds about 1.2 ms of inference time. In many cases,
the forward pass of multiple SortNets can additionally be
performed in parallel. Even though, Point Transformer has
more learnable parameters than, e.g, PointNet++, it still has
a faster inference time because multi-head attention blocks
are highly optimized and computation is also performed in
parallel by employing multiple attention heads. For the com-
putational complexity of the network, an upper bound can be
estimated from the most expensive operation, which in our
case is the multi-head attention mechanism. The complexity
is given by O(N 2

· dm), thus it scales quadratic with respect
to the total number of input points.

D. HYPERPARAMETER STUDY
Here, we analyze the effects of different numbers of SortNets
in our Point Transformer architecture as well as the amount
of Top-K selections on the ModelNet40 dataset [10]. The
results are shown in Table 4. Furthermore, we present the
hyperparameters that were used for the reported results for the
classification and the part segmentation task in Table 2. The
parameters follow the notation introduced in Fig. 2 and Fig. 3.
The values were found by performing a hyperparameter grid
search experiment for the classification and the part segmen-
tation, similar to Table 4. We report the set of parameters that
achieved the best overall performance. Note, that for the rFF,
each value in the parenthesis denotes one layer, where the
value represents the feature dimension for that layer.

TABLE 5. Results of network design analysis. We evaluate different
SortNet architectures to highlight that the learnable score increases the
networks performance. Additionally, we compare different sampling
methods for the global feature generation branch.

E. POINT TRANSFORMER DESIGN ANALYSIS
We conduct an ablation study to show the influence of
each Point Transformer module. Afterward, we qualitatively
examine our classification results by visualizing the learned
point set regions that contribute to the classification output.

1) ABLATION STUDY OF SortNet
We first evaluate Point Transformer using only the SortNet
module from Fig. 3 with the classification head from
Fig. 2 a). Our aim is to show that the learned scores are
based on the importance of points for the classification task.
In addition, we want to verify that SortNet selects points that
help to understand the underlying shape. Since we cannot
explicitly define which are the most important points, we rely
on the accuracy score. In detail, we train SortNet based on
three different experiments and deliberately set M = 10
and K = 12, selecting only a subset of the entire point
cloud (M · K = 120, N = 1024). In the first experiment,
we train SortNet as it is implemented in the Point Transformer
pipeline. In the second experiment, we replace the Top-K
selection process with the furthest point sampling. Finally,
we randomly select K points from the input set instead of the
learned Top-K selection. It is important to note, that the last
two experiments remove the permutation invariance property.
However, we want to show that SortNet performs better than
a random selection of points and handcrafted sampling meth-
ods. Thus, we rely on random sampling and FPS as baselines.
The results are shown in Table 5 a). With randomly sampled
points, SortNet achieves 60.1% classification accuracy.When
we apply the FPS to cover most of the underlying shape,
the accuracy increases to 74.8%, indicating spatial infor-
mation preservation. Finally, when we use learned Top-K
selection, we achieve the highest classification accuracy of
83.4%. This empirically shows that SortNet learns to focus
on important shape regions.
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FIGURE 4. Overview of the processing chain of Point Transformer. Data is shown as rectangles with the respective dimensions. Networks modules, for
example row-wise feed forward networks (rFF), are denoted by rectangles with rounded corners and additional process steps are shown as
parallelograms. Here, it is important to note that individual rFF’s with separate weights are deployed in each of the M SortNet modules.
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FIGURE 5. Additional results of the part segmentation task for different object categories. We show the prediction of Point
Transformer (top) in comparison with the ground-truth (bottom).
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FIGURE 6. Influence of input point rotations on the top-K selection process. Top-K selection (dark points), input points (light points). When
the input point cloud is rotated, SortNet still focuses on similar local regions of the underlying shape.
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FIGURE 7. Top-K selections for different chair models. Top-K selection (dark points), input points (light points). SortNet selects points from
similar local regions when applied to objects of the same category, suggesting that it is aware of the underlying shape.

FIGURE 8. Top-K selections for different table models. Top-K selection (dark points), input points (light points). SortNet selects points from
similar local regions when applied to objects of the same category, suggesting that it is aware of the underlying shape.
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FIGURE 9. Here all selected points from the local feature generation branch (right) are shown in comparison with the complete input point cloud (left).
The selected points of each SortNet are shown in the same color. It is clear that every SortNet focuses on different local regions of the object. When the
selected points are visualized together, the input point cloud is still recognizable, suggesting that in combination, all SortNets try to retain as much as
possible of the underlying shape.
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2) ABLATION STUDY GLOBAL FEATURE GENERATION
In this ablation study, we compare different sampling meth-
ods for the extraction of global features. We rely on the
complete Point Transformer pipeline as shown in Fig. 2
and replace the set abstraction (MSG) with different sam-
pling approaches. Again, we evaluate the accuracy of the
classification task. The results are presented in Table 5 b).
In the first experiment, we use the complete input point
cloud. Then, we sample N ′ = 128 points using the furthest
point sampling, which slightly improves our result by 0.4%.
When we additionally aggregate features from local regions
around the sampled points, i.e. set abstraction with multiscale
grouping (MSG) [7], the accuracy can be further increased to
92.8%. This indicates that scoring the local features against
every input point makes it harder to find important rela-
tions. Additionally, by uniformly selecting fewer points and
aggregating local features the network can concentrate on
meaningful parts of the underlying shape.

3) ROTATION ROBUSTNESS OF SortNet
In this section we evaluate the robustness of SortNet against
rotations of the input cloud. For this, we first evaluate Point
Transformer on the ModelNet40 test set and randomly rotate
the input point cloud. Even though we did not train the net-
work with rotations, we still achieve a classification accuracy
of 92.3% compared to 92.8% without rotations. We applied
the same input point rotation to PointNet++ and classifica-
tion accuracy dropped from 91.9% to 88.6%. To qualitatively
support this claim, we visualize the learned Top-K selections
of one SortNet for different rotations in Fig. 6, which shows
that SortNet still focuses on the similar local regions even
when the input point cloud is rotated.

4) VISUALIZATIONS OF LEARNED LOCAL REGIONS
Here, we show that SortNet focuses on local regions similar
to the receptive field of a CNN. For this, we visualize the
learned Top-K selections of multiple trained SortNet modules
on different models of the same object class in Fig. 7 and
Fig. 8. It is apparent, that each SortNet tries to select similar
regions even when the shape of the model is slightly different.
This, together with the results from the rotational robustness,
suggests that SortNet is aware of the underlying shape.

5) ALL TOP-K SELECTIONS
As an additional evaluation, we show all selected points of
M = 8 SortNet modules in Fig. 9 for the classification
task. We visualize points that were selected from the same
SortNet with the same color. It is apparent, that different
SortNet modules focus on different parts of the object and in
combination, still retain as much as possible of the underlying
shape.

VI. CONCLUSION AND FUTURE WORK
In this work, we proposed Point Transformer, a permuta-
tion invariant neural network that relies on the multi-head

attention mechanism and operates on irregular point clouds.
The core of Point Transformer is a novel module that receives
a latent feature representation of the input point cloud and
selects points based on a learned score. We relate local fea-
tures to the global structure of the point cloud, thus exploiting
context and inducing shape-awareness. The output of Point
Transformer is a sorted and permutation invariant feature
list that is used for shape classification and part segmenta-
tion. Finally, we show that our point selection mechanism
is based on importance for the specified task. As future
work, we want to focus on improving the efficiency of the
Transformer architecture by implementing recent advances
for self-attention, such as [44], [45].
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