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ABSTRACT X-ray baggage inspection has been widely used for maintaining airport and transportation
security. Towards automated inspection, recent deep learning-based methods have attempted to detect
hazardous objects directly from X-ray images. Since it is challenging to collect a large number of training
images from real-world environments, most previous learning-based methods rely on image synthesis for
training data generation. However, these methods randomly combine foreground and background images,
restricting the effectiveness of synthetic images for object detection. To solve this problem, in this paper,
we propose a learning-based X-ray image synthesis method for object detection. Specifically, for each
foreground object to be synthesized, we first estimate positions difficult to detect by the object detector.
These positions and their corresponding confidence values are then used to construct a difficulty map, which
is used for sampling the target foreground position for image synthesis. The performance analysis using
various state-of-the-art object detectors shows that the proposed synthesis method can produce more useful
training data compared with the conventional random synthesis method.

INDEX TERMS Deep learning, neural network, object detection, X-ray, inspection.

I. INTRODUCTION
Baggage inspection based on X-ray screening is an essen-
tial task for reducing the risk of crime and terrorist attacks
and preventing the propagation of pests and diseases [1].
In general, the X-ray images are visually inspected by trained
human inspectors to detect dangerous objects. Although it
may take less than a second to investigate each piece of
baggage, each inspector has to check a large amount of
baggage over a long time. The possibility of human error is
thus non-negligible, even with specialized training. There-
fore, an automated X-ray baggage inspection system based
on computer vision techniques, such as feature-based detec-
tion methods [2]–[5], is needed to detect hazardous objects
robustly.

Recently, motivated by the remarkable success of con-
volutional neural networks (CNNs) in solving computer
vision problems, learning-based automated X-ray inspec-
tion methods have been proposed [6]–[9]. To ensure
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performance in such learning-based approaches, a large
dataset of X-ray images and their corresponding anno-
tations is essentially required. Several publicly available
datasets can be used for object detection in X-ray images.
Mery et al. [3] presented the GDX-ray database that con-
tains five object categories: castings, welds, baggage, natural
objects, and settings. Miao et al. [10] introduced a larger size
dataset called SIXray, which contains diverse types of haz-
ardous objects in baggage with cluttered background items.
However, the number of positive samples, i.e., images with
hazardous objects, is much less than the number of negative
samples (12,277 versus 1,050,302 samples). Although this
class imbalance may reflect the real-world application envi-
ronments, it also makes network training difficult.

To overcome such lack of training images, many recent
methods paid attention to learning from synthetic data
[8], [9], [11]–[13]. Considering that X-ray imaging can be
modeled using the absorption law that characterizes the inten-
sity distribution of X-rays through matter [14], Mery and
Katsaggelos [15] introduced a solid mathematical model for
the synthesis of threat objects to the background baggage.

135256 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8498-9650
https://orcid.org/0000-0001-9910-419X
https://orcid.org/0000-0003-0494-2372
https://orcid.org/0000-0002-0319-4467
https://orcid.org/0000-0002-4875-7091
https://orcid.org/0000-0002-5048-4141


H.-Y. Kim et al.: Learning-Based Image Synthesis for Hazardous Object Detection

Following this method, Jain et al. [11] synthesized X-ray
images during training for data augmentation and demon-
strated the effectiveness of the synthetic data using several
standard object detection models, such as YOLOv2 [16] and
Faster R-CNN [17]. Yang et al. [12] further introduced a
generative adversarial network (GAN)-based approach for
generating realistic hazardous objects. Zhu et al. [13] applied
a similar data augmentation framework to Jain’s method [11]
and demonstrated that the accuracy of the SSD model [18]
can be increased by 5.6% in terms of the mean average pre-
cision (mAP) when the model is trained using the augmented
dataset. Saavedra et al. [9] combined PGGAN [19] and the
X-ray image synthesis technique [15].

The X-ray and natural images show a clear difference when
multiple objects are overlapped with each other. As shown
in Figs. 1(a) and (b), because X-ray is penetrable, both front
and rear objects are visible in X-ray images [10]. However,
Figs. 1(c) and (d) show that the occluded regions of the rear
objects are generally not visible in natural images. Due to this
difference, the X-ray images have an advantage in that the
target object may be synthesized at any desired position, not
at a limited or random location. However, the existing X-ray
image synthesis methods that overlay foreground objects
at arbitrary locations regardless of the background content
cannot fully take advantage of synthesized images for object
detection. To this end, in this paper, we propose a novel
learning-based X-ray image synthesis method.

FIGURE 1. Sample images of (a) X-ray image and (b) its annotated
segmented image (ground-truth), and sample images of (c) natural image
and (d) its annotated segmented image (ground-truth).

In our proposed method, an object detection network is
first trained using the X-ray images synthesized with haz-
ardous objects at random positions. The hazardous objects are
then synthesized at hard-to-detect locations estimated by the
object detector during the learning process. By this simple
but effective way, we can generate hard samples that can
contribute to further boost the object detection performance.

The experimental results obtained by various detection net-
works demonstrate the superiority of the proposed synthesis
method.

The rest of this paper is organized as follows. The related
works are reviewed in Section II. The proposed method is
detailed in Section III. Experimental results are provided in
Section IV. Finally, our conclusion is given in Section V.

In summary, this paper presents two major contributions.
(i)We propose a difficulty map that represents the locations at
which the detector is difficult to find the objects without any
additional network. (ii) Using the difficulty map, we intro-
duce a data synthesis technique that produces hard-to-detect
samples to train the detector effectively.

II. RELATED WORK
Before the explanation of the proposed method, in this
section, we briefly review its related techniques including
CNN-based object detection, X-Ray computer vision algo-
rithms, X-Ray image synthesis, and data augmentation.

A. CNN-BASED OBJECT DETECTION
CNN-based methods have been very successful in the recog-
nition and localization of objects. According to the design
principle, these methods can be classified into two-stage
methods [17], [20] and single-stage methods [18], [21], [22].

The two-stage methods first identify candidate bounding
boxes using a deep network and then refine the candidates
using another sub-network. To this end, Ren et al. [17] intro-
duced the region proposal network (RPN), which performs
efficiently by sharing full-image convolutional features with a
subsequent detection network. Lin et al. [20] proposed a fea-
ture pyramid network (FPN) which combines low-resolution
and high-resolution features via top-down paths and lateral
connections. This feature pyramid contains rich semantics
from all levels and can be built from a single-scale input
image, thereby exhibiting effectiveness in terms of represen-
tational power, speed, and memory.

The single-stage methods detect objects via a single net-
work inference. As a pioneering work, YOLO [21] used a
unified detection network that predicts bounding boxes and
classifies objects at the same time from an entire image.
The computational efficiency and robustness of YOLO and
its advanced versions [16], [23] have been demonstrated
thoroughly. Liu et al. [18] designed a reduced VGG network
architecture that extracts features from multi-layers, enabling
the network to handle objects with various scales effectively.
Lin et al. [22] adopted ResNet as a basic feature extractor
and used a focal loss to address the class imbalance problem
caused by the biased foreground-background ratio.

B. X-RAY COMPUTER VISION ALGORITHMS
In the area of baggage inspection, some computer vision algo-
rithms based on a single view of a single energy have been
reported. Riffo and Mery [2] proposed automated detection
algorithm based on visual codebooks. Mery et al. [3] used
adaptive sparse representations [24] to detect objects, with
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less constrained conditions including some contrast variabil-
ity, pose, intra-class variability, size of the image and focal
distance. On the other hand, in the analysis of single dual-
energy images, Baştan et al. [4] presented a bag of visual
words (BoVW) model with several hand-crafted feature rep-
resentations. Additionally, there are somemethods based on a
single energy multi-view, using active vision [25], [26]. Sup-
port vector machine (SVM) classifiers and visual dictionaries
are proposed in dual-energy multi-views X-ray [5], [27].

Recently, several methods based on deep convolutional
neural networks have been proposed. Akçay et al. [28] sug-
gested CNN-based object classification method using trans-
fer learning in order to overcome the limited amount of
training data, and provided performance comparison among
CNN-based object detection algorithms for X-ray baggage
security imagery [6]. Gu et al. [8] proposed automatic X-ray
object detection using feature enhancement module. Saave-
dra et al. [9] introduced GAN strategy in data augmentation
for the threat object detection.

C. X-RAY IMAGE SYNTHESIS
Many studies assume that X-ray image formation obeys the
Beer-Lambert law. Based on this assumption, at image loca-
tion (x, y), the pixel intensity of the X-ray image I (x, y) is
defined as

I (x, y) = I0 exp
(
−

∫
µ(x, y, z) dz

)
, (1)

where I0 is the beam intensity, z represents the depth coor-
dinate, and µ is the effective attenuation coefficient of the
objects in the scene [29].

Based on this image formation model, Rogers et al. [30]
introduced a data synthesis technique, called TIP, which gen-
erates synthesized threat images that have no significant dif-
ferences compared with real threat images. More specifically,
they synthesize images by multiplying the foreground mask
F(x, y) and background mask B(x, y) as follows:

I (x, y) = I0F(x, y)B(x, y), (2)

where

F(x, y) = exp
(
−

∫
µF (x, y, z)dz

)
,

B(x, y) = exp
(
−

∫
µB(x, y, z)dz

)
. (3)

µF and µB represent the effective attenuation coefficients
of the foreground and background masks, respectively. It is
worth noting that whenN foregroundmasks are overlapped in
the image, F(x, y) in (2) can be replaced with

∏N
i=1 F

i(x, y),
where F i indicates the i-th foreground mask, as shown for
N = 3 in Fig. 2.

D. DATA AUGMENTATION
To increase generalization performance and attenuate over-
fitting problem simultaneously, functional solutions such as
dropout regularization [31], batch normalization [32], and

FIGURE 2. Example of the irradiation of the three different objects.

transfer learning [33] have been developed. In contrast to such
techniques, data augmentation approaches focus on training
datasets, which is the root cause of the overfitting problem.

In general, the data augmentation is conducted by
simple transformations such as horizontal flipping, color
space augmentations, and random cropping [34]. Moreno-
Barea et al. [35] proposed noise injection as an additional
data augmentation, demonstrating that adding noise to images
for nine datasets in UCI repository could help CNN learn
more robust features. Kang et al. [36] devised PatchShuffle
Regularization (PSR), which is a kernel filter that randomly
swaps pixel values in n× n sliding windows. Experiments on
different filter sizes and probabilities of shuffling the pixels at
each step, the authors demonstrated the effectiveness of PSR
by achieving a 5.66% error rate on CIFAR-10 compared with
an error rate of 6.33%. Inspired by the dropout regularization
mechanism, Zhong et al. [37] developed a random erasing
method that performs dropout in the input data space rather
than in the feature space to prevent overfitting problems
effectively.

As described above, although the data augmentation can
be applied to images in the input space, it can also be
applied to feature space. Konno and Iwazume manipulated
the modularity of neural networks after training, improving
the performance on CIFAR-100 from 66% to 73% accuracy.
Xie et al. [38] presented DisturbLabel (DL), which is an
adversarial training technique that randomly replaces labels
at each iteration. On the MNIST dataset with LeNet CNN
architecture, DL produced 0.32% error rate compared with a
baseline error rate of 0.39%.

The first GAN architecture proposed by Ian Goodfel-
low [31] is a framework for generative modeling through
adversarial training. Such a network architecture can be
applied to data augmentation tasks by generating new train-
ing data that results in better-performing classification mod-
els. Researches to apply GAN to data augmentation and
report the resulting classification performance have been
conducted in the field of biomedical image analysis [39].
Maayan et al. [40] tested the effectiveness of generating liver
lesion medical images using DCGAN. On top of classical
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FIGURE 3. The flowchart of the proposed difficulty map-based X-ray image synthesis. The intensity of box predictions is proportional to the confidence of
the prediction.

augmentations to attain 78.6% sensitivity and 88.4% speci-
ficity, the authors employed additional DCGAN-generated
samples, finally achieving the performance of 85.7% sensi-
tivity and 92.4% specificity. In the literature of X-ray security
inspection, Yang et al. [12] proposed a GAN-based data
augmentation method to generate the images of prohibited
items, and Zhu et al. [13] improved SAGAN [41] to generate
the realistic prohibited item images.

III. PROPOSED METHOD
Fig. 3 illustrates the proposed X-ray image synthesis frame-
work. In this section, we first define a difficulty map and
describe how the difficulty map is used to sample target fore-
ground positions for the generation of hard training samples.

A. DIFFICULTY MAP EXTRACTION
Regardless of the difference between single-stage and two-
stage approaches, most deep learning-based object detection
networks produce locations of objects and their correspond-
ing confidence values [18], [20], [22]. Therefore, if we feed
the background image to an object detector, we can obtain
foreground positions that can confuse the detector when eval-
uated after the image synthesis. We thus attempt to use this
degree of confusion as valuable information for determining
the target position of foreground objects.

We first feed the background image to the object detector
and obtain the box predictions with confidence estimates.
Note that the detection network outputs the position of the
box predictions, whether there is a target object in the image
or not. Let (pkx , p

k
y ) and ck denote the center position and its

corresponding confidence value of the k-th box prediction,
respectively. Given the randomly scaled foreground object we
want to synthesize, we collect the boxes with 50% or higher
intersection over union (IoU) amongmultiple box candidates.
We use these remained boxes, referred to as foreground-
shaped predictions (FSPs), and their confidence estimates to
define our difficulty map.

Let D denote the difficulty map, which is defined as
follows:

D(x, y) =
∑
k

ck · exp

(
−
(x − pkx )

2
+ (y− pky )

2

2σ 2
k

)
, (4)

where x and y represent the pixel coordinates and σk is
the standard deviation of the Gaussian function. To avoid
having difficulty values very close to zero, we set σk as the
center distance between the k-th FSP and its closest FSP.
In this manner, difficulty values slowly decay between distant
FSPs, which is advantageous for our probabilistic sampling of
foreground positions. As illustrated in Fig. 4, the difference
between the object detection process and the difficulty map
extraction process is that object detection uses box predic-
tions from higher scores and non-maximum suppression to
sort out final results, whereas difficulty map extraction uses
all box predictions from FSPs without non-maximum sup-
pression. However, the difficulty map can be obtained using
the detector network the same as that used in the detection
process. Therefore, there are no additional network and loss
functions to extract the difficulty map.

FIGURE 4. Comparison of (a) object detection process and (b) difficulty
map extraction process, using the same detector.
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FIGURE 5. (a) The background image and its difficulty maps corresponding to (b) knife, (c) shuriken, (d) razor, and (e) gun using SSD trained with the
proposed method. Each image in the top and middle rows represents the differences in the difficulty map depending on the size of the object. Each
image in the bottom row shows how the difficulty map varies depending on the different angles of the object. The difficulty maps are normalized in the
range [0], [1] and overlapped with the background image for better visualization.

FIGURE 6. Foreground image samples from the GDX-ray database.

Fig. 5 shows the difficulty maps for four foreground
objects, shown in Fig. 6, which are the results of our case
study for hazardous object detection. Note that Fig. 5 is a

difficulty map extracted using SSD as an example, and the
difficulty map differs if the detection network changes. In the
first and second rows of Figs. 5(b), (c), and (e), it can be seen
that different angles of objects with the same size produce the
changes on the difficulty map. When the objects have both
the same size and aspect ratio with different angles, consid-
erably similar difficulty maps were generated, as shown in
the first and second rows of Fig. 5(d). Moreover, the first and
last rows in Fig. 5 represent the changes of difficulty map
according to the size of the object. From the result that values
of difficulty maps for larger objects have relatively uniform
distributions, it is confirmed that the larger the foreground
object is, the easier it is to be detected by machine learning
algorithms, likewise human. Fig. 5(e) shows the difficulty
map of the razor blade, which is largely influenced by the
background due to its smaller and thinner characteristics than
other objects. Using these difficultymaps, the proposedX-ray
image synthesis is performed.

B. IMAGE SYNTHESIS USING THE DIFFICULTY MAP
After the normalization of the difficulty map D to have the
sum to be one, we obtain D, which can be treated as a prob-
ability map. We then sample the target foreground position
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FIGURE 7. Example of sampling the target foreground position and image
synthesis in the proposed method.

using D.1 Fig. 7 shows the process of sampling the target
foreground position. Note that the previous X-ray synthe-
sis [9], [11]–[13] also performs probabilistic sampling but
using the 2D uniform distribution. On the contrary, we sample
the positions where the object detector may get confused.
In other words, our method can generate hard training sam-
ples that can boost the performance of the object detector. The
proposed X-ray image synthesis is performed during training
of the object detector as online data augmentation. Therefore,
the same background image can be usedmultiple times for the
same object with different scales as well as the other objects.

Given the foreground image F and the background image
B, X-ray image synthesis can be performed as [8], [9],
[42] according to the Beer-Lambert’s law [29]. Specifically,
the synthesized X-ray image I is obtained as follows:

I (x, y) =

{
Fr (x, y)B(x, y), if (x, y) ∈ �,
B(x, y), otherwise,

(5)

where Fr denotes the randomly-scaled version of F , and� is
a set of pixels in the Fr . I , Fr , and B have normalized values
in the range [0], [1]. Because the location and class of objects
are known in the image synthesis process, the ground truth
can also be obtained to train the detector. The synthesized
image and ground truth pairs are used to learn the detection
model which extracts the difficulty maps.

IV. EXPERIMENTAL RESULTS
In this section, we present the superiority of the proposed
X-ray image synthesis method by applying it to various object
detection networks including SSD [18], RefineDet [43], PFP-
Net [44], and RFBNet [45], and comparing it with existing
random synthesis methods.

A. DATASET DESCRIPTION AND EXPERIMENTAL SETUP
Our experiments have been conducted using the GDX-ray
database [46]. The database contains not only 200 test images
for X-ray threat detection, but also 48 background images,
along with 576, 144, 200, and 100 foreground images of a
knife, shuriken, gun, and razor, respectively, that are suitable
for X-ray image synthesis. Using these images, we generated

1https://docs.python.org/3/library/random.html#random.choices

training data by synthesizing X-ray baggage images using the
existing random position synthesis method [9] and the pro-
posed difficulty map-based method, respectively. The total
number of each training data is 30k, which is equivalent to
the number of training iterations. For generating training data
using the conventional synthesis method, we followed the
authors’ procedure using the source code provided [9]. All
detection networks employed in our experiments were trained
for 24k iterations with a learning rate of 1e-4, followed
by 6k iterations with a learning rate of 1e-5. We used the
Adam optimizer [47], and the batch size was set to 8. Our
whole training process was conducted using a single NVIDIA
TITAN X GPU.

B. PERFORMANCE EVALUATION
We evaluated the object detection performance using the
average precision (AP) and mean AP (mAP). Table 1 shows
a performance comparison of the synthesis methods on
200 real-world test images of the GDX-ray database. It can
be seen that the proposed method improved the mAP scores
by 3.2%, 5.0%, 3.0%, and 5.2% for SSD, RefineDet, PFPNet,
and RFBNet, respectively.

TABLE 1. Average precision (AP) and mean average precision (mAP) on
the test set.

FIGURE 8. Non-hazardous image samples from the GDX-ray database.

To demonstrate the effectiveness of the proposed method
more clearly, the performance comparison needs to be per-
formed on more challenging images. To this end, we gen-
erated additional challenging test images by synthesizing
more foreground objects (both hazardous and non-hazardous
objects) that are largely overlapped with the existing objects
in the original test images.2 The non-hazardous foreground
object samples are illustrated in Fig. 8. The experimental

2https://github.com/hykim0/Xray_synthesis
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FIGURE 9. Examples of the real-world test results. Each colored box represents the detection result with the confidence score higher than 0.4.

TABLE 2. Average precision (AP) and mean average precision (mAP) on
the synthesized test set.

results on this synthesized dataset are shown in Table 2. Note
that the overall performance decreased due to the difficulty
of object detection in cluttered scenes. However, the pro-
posedmethod enabledmore solid and consistent performance
improvements for all tested object detection networks.

Fig. 9 shows several object detection results obtained
using the conventional and proposed synthesis methods
on the real-world test images. As shown in Figs. 9(a)
and (d), the conventional method failed in detecting small
occluded objects. On the contrary, such objects can be cor-
rectly detected by applying our synthesis method. Further-
more, the proposed method reduced false alarms as shown
in Figs. 9(b) and (c).

The results of each method on the synthesized test
images are illustrated in Fig. 10. Figs. 10(a), (b), and
(d) show that the conventional method failed in detecting
occluded objects, which can be correctly detected by apply-
ing our proposed method. Moreover, although the conven-
tional method caused false alarms by a more complicated
test set, the proposed method provided accurate detection
results.
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FIGURE 10. Examples of the test results on the synthesized test set. Each colored box represents the detection result with the confidence score higher
than 0.4.

V. CONCLUSION
A novel learning-based image synthesis method was pro-
posed to train object detection networks for X-ray secu-
rity applications. The proposed method extracts the diffi-
culty map, which is used for sampling the target foreground
position for image synthesis during the training process.
By synthesizing foreground objects at hard-to-detect loca-
tions, more challenging training samples can be generated,
yielding improved object detection performance. The exper-
imental results show that the proposed method improves the
performance of various object detection networks compared
to the previous standard of random image synthesis.
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