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ABSTRACT Based on the rapid development of semiconductors, integrated circuits and the Internet.
3C products such as computers, tablets, mobile phones and smart TVs have become an indispensable part of
people’s lives. With the prosperity and development of the 3C product market, the demand for the quality of
display panels and related detection technologies are increasing. As the iconic network of deep learning, has
been extensively studied in the field of image recognition and defect detection. Based on the development of
CNN, this article summarizes the defect detection method of 3C products by CNN with different depths. First,
we reviewed the origin of CNN and its structural components, then introduced the upgrade and improvement
of important components, and finally introduced and compared the applications of CNN with different depths
in defect detection. Through the comparison and summary of the effect of defect detection, we analyze the
opportunities and challenges of different CNN frameworks, and exhibit the strategies for different application
scenarios.

INDEX TERMS 3C products, defect detecting, neural network, convolution network.

I. INTRODUCTION

A. BACKGROUND R :;’: S
Semiconductors, integrated circuits and network have devel- 2 / i
oped rapidly in recent years. 3C products such as computers, % e /'

mobile phones and smart TVs have become an indispensable g i /

part of people’s lives. With the expansion of the application | e /

field of 3C products and the improvement of the public’s g 1,000 4 .

requirements for product performance, mobile communica- g 900 /

tion technology has reached a new level of development in F s

theory and application [1]. According to statistics, as shown S o] ¥

in Fig. 1, the global sale of smartphones continued to grow R S A 0

from 2012 to 2016, and the trend gradually stabilized at
around 150 million from 2016 to 2019. Also, and it is pre-
dicted that the sale of it will continue to increase in 2021 [2].
The innovation of 5G technology brings new market oppor-
tunities for consumer electronics products. Digital terminal
technology with multiple functions, high integration and
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Year

FIGURE 1. Smartphone shipments and future development trends from
2012 to 2020.

large screen will be the development trend of 3C products
in the future.

With the continuous increase of 3C products outputs and
the improvement of quality requirements, product quality
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control has become a challenging task. In the surface inspec-
tion of 3C products, it is extremely difficult to inspect the
display screen and circuit board. The traditional 3C product
surface defect detection method is mainly manual, that is,
the quality of the product surface is inspected by the quality
inspectors through the eyes [3]. However, the method cannot
meet the requirements of modern industry for high-speed
and precision detection due to its strong subjectivity, large
uncertainty, and low efficiency. With the development of
the Industrial Internet of Things and artificial intelligence,
the fourth industrial revolution, Industry 4.0, is developing
rapidly [4], [5]. On the basis of advanced digitization of fac-
tories, the combination of Internet technologies and future-
oriented technology in the field of smart objects has created
a new fundamental paradigm shift in production [6]. With
the advent of Industry 4.0, the production process has been
given an intelligent cyber-physical system that can gener-
ate a large amount of streaming sensor data [7]. With the
introduction and development of “Industry 4.0”, intelligent
manufacturing, and ‘“Made in China 2025, the production
process has been endowed with an intelligent cyber-physical
system that can generate a large amount of streaming sensor
data, industrial product defect detection has also received
more and more attention [8]. Machine vision has become
more and more widely used in production lines with its real-
time, high efficiency and accuracy.

But for machine vision, to detect surface defects of reflec-
tive displays is a challenge. When the camera is placed ver-
tically on a transparent part, it may consider the reflected
light spot to be a defect. The illumination of transparent
parts is another important issue. Glare will appear when
the light is high. If the light is very low, there will be a
situation where the defect cannot be detected. Even if the
light source is sufficient, the illuminance on the glass surface
usually fluctuates [9]. In order to ensure production quality,
quality inspection must be added in many production links of
PCB [10]. Common surface defects of mobile phone screens,
such as scratches, debris and dirt, should be identified and
removed in real time during the production process. Some
sizes of the defect are significantly small (about 0.05 mm),
which complicate the defect detection [11].

B. RELATED WORKS

With the development of machine vision technology,
researchers use image processing to detect screen defects
of 3C products. Liu et al. [12] proposed an algorithm combin-
ing the line intercept as the threshold and particle swarm opti-
mization, which solved the problem of low detection accuracy
of mobile phone screen defects. Gao et al. [13] improved
the median filter algorithm and utilized the image processing
algorithm to preprocess the defective image. In addition, they
proposed an image difference algorithm based on fast image
matching for detection. Zhang et al. [14] posed an improved
differential image detection method for mobile phone
screen defects to improve detection efficiency and accuracy.
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However, the performance of pure image processing technol-
ogy cannot achieve satisfactory detection results [15].

Convolutional Neural Networks (CNN), a research hotspot
in the field of image detection and pattern recognition,
has received more and more attention from scholars [16].
Ma et al. [17] designed the CNN based on the GoogleNet net-
work, which greatly reduced the number of parameters with-
out affecting the prediction rate. Experimental results showed
that the defect detection rate of the designed CNN could
reach 99.5%. Wei et al. [18] proposed a multivariable CNN-
based defect detection method in the production process of
cover glass, touch screen and mobile phone display under
parallel light sources. Experiments verified that the method
had higher accuracy, better stability and faster speed. The
CNN architecture mainly includes weight parameter sharing
and pooling operations which is more complicated. However,
CNN is easy to train, and the learned features are translation
invariant [9].

The main content of this research is to review the surface
defect detection methods with different levels of CNN in 3C
products such as glass display screens, PCBs and TFT-LCD
screens. Then, the detection methods and the problems of var-
ious methods are summarized and discussed. First, we outline
the types of defects in 3C products and the comparison of dif-
ferent detection methods in the context of Industry 4.0. Sub-
sequently, the improved CNN structures in various scenarios
are compared, and the technical limitations and detection
performance of different methods in practical applications are
shown. This research summarized and compared noteworthy
research based on CNN in recent years to overcome the
challenges of surface defect detection in 3C products.

This literature review mainly focuses on the following
topics:

1) What are the defect types of parts in 3C products?

2) What are the main methods of defect detection in the
production line?

3) Compared with manual inspection and machine inspec-
tion, what are the advantages of machine vision?

4) What are the advantages of CNN’s application in 3C
product defect detection?

5) Summary of CNN’s in-depth development framework
and its application in 3C product defect detection.

6) What is the future development trend of CNN in the 3C
industry?

C. METHODOLOGY

In this study, published literatures were selected from
databases such as Web of Science, Scopus, CNKI, Google
Scholar and the Engineering Index, as well as publishers’
databases such as Elsevier, IEEExplore and Springer. A total
of nearly 90 related documents have been collected, and
80 documents were mainly reviewed and cited in this study.
These literatures cover the problems related to traditional
machine vision defect detection and deep learning detec-
tion methods in 3C products. Among them, Web of Sci-
ence, IEEExplore and other academic databases are rich in
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FIGURE 2. Product defect samples: (a1) - (a6) are common defects of glass
display screens, including cracks, floaters and point defects [11], [22]; (b1) - (b6)
are common defects of PCB, including circuit break, connection, projection and
crack [19], [20]; (c1) - (c6) are common defects of TFT-LCD, including dot color
difference, uneven ring and uneven gravity [21], [23].

literature with a wide range of research. As a major pro-
ducer of 3C products, China has many researchers studying
the testing of 3C products. There are also many excellent
Chinese journals and dissertations in the research results
included by CNKI, so we also chose a small number of
classic Chinese journals. Glass screen, TFT-LCD and PCB
are the main parts of 3C products, which directly affect
the quality and use of products. Therefore, when search-
ing literature, keywords related to traditional machine vision
(such as “machine vision™, ‘““visual algorithm” and “‘image
processing”’) and keywords related to deep learning (such
as ‘“deep learning”, “CNN” and “GAN”’) are used. Cate-
gories and application areas of 3C products (i.e., “‘mobile
phone screen”, “TFT-LCD”, “PCB”, “Defect detection”
and ‘““‘Defect classification”).

The current literature review covers sources including
journal articles, conference papers, dissertations and a small
number of classical Chinese journals. The publication year
is 2010-2021, because the past decade is a period of rapid
development of deep learning. During the review process,
we have summarized and analyzed the classic literatures on
related topics, because a more detailed literature review will
help scholars to the research work of this research field. How-
ever, due to the limitation of space, we reduced the description
of the literature less related to the research content. There-
fore, this paper mainly reviews most of the representative
literatures, analyzes the literatures with significant influence
in detail, and summarizes the literatures with insufficient
influence.

The selection of references for this paper is based on the
following considerations:
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1) Research published in peer-reviewed academic journals;

2) Literatures published after 2010;

3) This paper aims to use machine vision and deep learning
methods to study the field of 3C product defect detection;

4) Research on improvement method of 3C product defect
detection;

5) Research through experiments, analysis, evaluation and
modification.

Il. DETECTION OBJECTS AND METHODS

A. OBJECTS

As an important interactive component of smart mobile
devices, the display quality directly affects the operating
status of the device, so the quality of the glass panels and
screens of 3C products is very important. At the same time,
as a provider of electrical connections for all electronic com-
ponents, printed circuit boards have the advantages of small
size and high circuit reliability. Therefore, this paper focuses
on three product parts, glass display screens, TFT-LCD, and
PCB, as the main object of research. The surface defects
of 3C products are shown in Figure 2. Figs. 2 (al) - (a6) are
common defects of glass display screens. During the glass
screen production process, production defects such as cracks,
floating objects, and point defects will appear [11]. These
defects affect the overall appearance of the product and also
affect the normal use of users. Therefore, the factory attaches
great importance to the inspection of the surface quality of
smart devices. Figs. 2 (bl) - (b6) are common defects of PCB.
Due to the production environment or process problems, there
are often open circuit, connection [19], wrong hole, miscel-
laneous copper [20] and other problems in the production of
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TABLE 1. Comparison of three defect detection methods.

Detection Types of detectable defects Advantages Disadvantages
methods
Manual Cracks, floating objects, point Many types of defects The detection speed is slow, which
inspection defects, open circuits,  can be detected. consumes manpower and material
connections,  wrong  holes, resources.
miscellaneous copper, etc.
Traditional Scratches, debris, dirt and other ~ Fast detection speed Low accuracy, poor robustness, and

machine vision easy-to-find types.

Deep learning Cracks, floating objects, point
defects, open circuits,
connections,  wrong  holes,

miscellaneous copper, etc.

and high efficiency.

Fast detection speed,
good stability and high
accuracy.

high time complexity.

It needs a lot of data samples.

PCB. Figs. 2 (c1) - (c6) show that TFT-LCD often has defects
such as color difference, uneven ring, uneven gravity, etc.
during the production process [21].

B. METHODS COMPARISON
Traditional 3C product surface defect inspection methods are
mainly divided into manual inspection and machine inspec-
tion. Table 1 compared three common defect detection meth-
ods. Compared with traditional machine vision algorithms,
CNN feature extraction and classifiers can be automatically
trained end-to-end from the input image. The method over-
comes the shortcomings of traditional methods [24]. For
example, CNN can extract image features more accurately for
training, and has better robustness than traditional machine
vision algorithms. However, the 3C product defect detection
based on CNN is facing several important challenges.
Traditional machine vision has problems such as poor
detection feature extraction robustness, high time complexity,
and window redundancy [25]. But detection methods based
on deep learning can effectively improve these problems.
At the same time, the neural network is driven by big data, and
the detection effect can be improved by increasing the data
set [26]. However, it is difficult to obtain so many defective
samples on actual industrial production lines.

Ill. CNN IMPROVEMENT RESEARCH

In 1998, LeCun [27] proposed a CNN structure based on
gradient learning (the modern structure of LeNet-5), which
was successfully applied to handwritten digit recognition.
Compared with the traditional multi-layer neural network,
CNN mainly adds three basic concepts: local acceptance
domain, shared weights and pooling layers. Compared with a
fully connected neural network, the widespread use of shared
weights reduces the number of degrees of freedom parame-
ters without loss of expressive power. This allows CNN to
be trained by simple gradient descent [28]. Therefore, the
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appearance of LeNET-5 laid the foundation for the applica-
tion of CNN in the field of image recognition.

Since the AlexNet proposed by Krizhevsky et al. [29]
in 2012 won the ImageNet image classification competition,
CNN has become the core algorithm in the field of image
classification and opened a new chapter in deep learning. This
section describes the improvements of CNN key components
from three aspects: convolutional layer, pooling layer and
fully connected layer.

A. CONVOLUTIONAL LAYER

Convolutional layers are one of the most important parts
of CNN. The main function is to extract sample features
from the input image. It consists of multiple filters and is
used to calculate different feature maps. As the first layer
of CNN, the convolutional layer is the core of CNN. Most
calculations are performed in the convolutional layer. The tra-
ditional calculation method of convolution can be expressed
by Equation (1). Convolutional networks are usually stacked
alternately by convolution and pooling, and finally connected
to complete the model construction. The convolution is mul-
tiplied by the linear filter corresponding to the position of
the feature map and summed, and then nonlinear activation
is performed to obtain the feature map. Later, the researchers
conducted a more in-depth study on the convolutional layer.
Wei et al. [30] found that dilated convolution can effec-
tively integrate the surrounding environment by expanding
the receptive field size of the kernel, providing a promising
solution. By expanding the expansion ratio of a 3 x 3 kernel
from 1 to 3, the discriminating ability of the convolution
kernel can be enhanced. This proves that dilated convolution
uses class activation mapping [31] to generate location maps
at different dilation rates, which can improve the recogni-
tion ability of low-response target regions. Lin et al. pro-
posed a network in network (NIN) model [32]. The idea is
to replace the traditional convolutional layer with a multi-
layer perceptual layer, which is composed of multiple fully

VOLUME 9, 2021



W. Ming et al.: Review: Application of CNN in Defect Detection of 3C Products

IEEE Access

connected layers containing nonlinear activation functions.
For the multi-layer perception layer, the calculation formula
of feature mapping is as follows:

fijx = max (a),{x,-,j, O) (1)

here (i, j) is the pixel index in the feature map, x (i, j)
represents the input patch centered at (i, j), and k represents
the channel index of the feature map.

1 1T,
f,-,j,kl = max (a)kl Xij+ by, O)

Fis = max (7 £ + iy 0) 2)
among them, n is the number of layers of the multilayer
perceptron, and the activation function is Relu function.

In order to extract high-level features in CNN, a common
method is to perform a deeper convolution, but the problem is
that the network becomes larger consequently. GoogleNet’s
Inception module draws on the idea of NIN’s multilayer
perceptual layer, reducing parameters and extracting high-
dimensional features under the premise of ensuring the qual-
ity of the model [33]. The idea of the Inception module is to
cluster sparse matrices into denser sub-matrices to improve
computational performance.

When training a deep neural network, the input of each
layer will change with training, because the change of the
parameters of the previous layer will cause the input of this
layer to change. This phenomenon is called internal covariate
shift (ICS) [34]. Inception V2 proposes the use of batch
normalization (BN) to solve this problem, which can alleviate
ICS and speed up the training speed of deep neural networks.
After using BN, a higher learning rate can be allowed without
the risk of divergence. BN also has the effect of a slight
regularization model. On the other hand, even if the sigmoid
activation function is used after using BN, the gradient will
not disappear.

Inception V3 [35] turned 7 x 7 convolutions in GoogleNet
into a two-layer concatenation of 1 x 7 and 7 x 1. In the
same way, the 3 x 3 convolution is changed to 1 x 3 and
3 x 1. This method not only speeds up the calculation, but
also increases the nonlinearity of the network and reduces the
probability of overfitting. The method of Inception V4 [36]
was to add ResNet’s residual module on the basis of the
original inception, but the residual module of ResNet is not to
increase the accuracy by increasing the depth, but to increase
the calculation speed.

B. POOLING LAYER

Pooling layer is generally used after convolution layer. It can
simplify the information output from the convolutional layer
and reduce the dimensionality of feature mapping [37]. There
are two kinds of classic pooling operation: average pooling
and maximum pooling. As shown in Fig. 3, the maximum
pooling operation is a pooling operation that uses the max-
imum value in the data block as the output and extracts
the maximum response of the feature plane. The average
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FIGURE 3. Two kinds of pooling operations; (a) the maximum pooling
operation; (b) the average pooling operation.

pooling operation is the operation of outputting the arith-
metic average of the elements in the block as a function
and extracting the local corresponding average of the fea-
ture plane. The feature of the maximum pooling operation
is to retain the image texture features, while the feature of
the average pooling operation is to retain the overall data
features.

In addition to the common average pooling and
maximum pooling, scholars have also proposed improve-
ments in the pooling layer to improve network perfor-
mance. Krizhevsky et al. [29] proposed overlapping pooling
in the AlexNet network. Compared with the traditional no-
overlapping pooling, the use of overlapping pooling can
not only improve the prediction accuracy, but also reduce
over-fitting to a certain extent. He er al. [38] proposed a
spatial pyramid pooling method in their network, which can
convert the convolutional features of images at any scale into
the same dimension. This method not only allows CNN to
process images of any scale, but also avoids the problems
of cropping and deformation. The ROI pooling proposed by
Girshick et al. [39] in Fast R-CNN is an operation widely
used in target detection tasks using CNN, which greatly
improves the processing speed. Spatial pyramid pooling
(SPP) uses multiple pooling operations of different sizes for
the same input, and stitches the results of different scales as
the output. And ROI pooling can be regarded as a single-
scale SPP, and only one pooling operation is performed for
an input.

C. ACTIVATION FUNCTION

The activation function is a vital part of the neural network,
and it can improve the nonlinear expression ability of the
model. The activation function is divided into linear and
non-linear activation functions. Different types of activation
functions such as sigmoid, tanh, ReLu, 1ReLu, pReLu, etc.
can be used according to different situations. Among them,
the mathematical expression of the sigmoid function is:

o(x)=1/1+¢e"x) 3)
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TABLE 2. The evolution of the CNN architecture.

Models Year Depth Main findings Input size

AlexNet [29] 2012 8 Uses Dropout and ReLU 227x227%3

NIN [32] 2013 3 Add new layer, mlpconv’ 32x32x3

ZNet[46] 2014 8 Visualization idea of middle layers 224x224x3

VGG [44] 2014 16,19 Increased depth, small flter size 224x224%3

GoogLeNet [33] 2015 22 Increased depth, different flter size, concatenation 224x224%3
concept

Inception-V3 [35] 2015 48 Utilizes small fltersize, better feature 229x229%3
representation

Highway [47] 2015 19,32 Presented the multipath concept 32x32x3

Inception-V4 [36] 2016 70 Divided transform and integration concepts 229x229%3

ResNet [48] 2016 152 Robust against overftting due to symmetry 224x224%3
mapping-based skip links

WideResNet [49] 2016 28 Decreased the depth and increased the width 32x32x3

Residual attention 2017 452 Presented the attention technique 40x40x3

neural network [50]

DenseNet [51] 2017 201 Blocks of layers 224x224x3

MobileNet-v2 [52] 2018 53 Inverted residual structure 224x224x3

HRNetV2[53] 2020 - High-resolution representations 224x224x3

the range of o(x) is 0-1. When the ultimate goal of the
network is to predict probability, it can be applied to the
output layer.

The activation function of tanh is also called the hyperbolic
function. Similar to sigmoid, tanh also compresses a real
value. Unlike sigmoid, tanh has zero mean in the output range
of —1 to 1. The mathematical expression of the tanh function
is:

sinh(x) e —e™

tanh (x) = =
anh (x) cosh(x) e*+4e™*

“

Both tanh function and sigmoid function have the problem
of gradient disappearance. In order to solve the problem of
vanishing gradient, the nonlinear activation function of linear
rectification function (ReLu) solves this problem well. It is
better than the two activation functions, and it is also the most
widely used activation function today.

The mathematical expression of the ReLu function is:

f (x) = max (0, x) &)

the so-called nonlinearity means that the first derivative is
not a constant. The definition of ReLu is max (0, x), so the
derivative of ReLu is:

£ = 0 forx <0 ©)
1 forx>0

Obviously, the derivative of ReLu is not constant, so ReLu
is nonlinear. ReLu can make the output of some neurons zero,
by diluting the network and reducing the mutual dependence
of parameters, to achieve the purpose of reducing the occur-
rence of overfitting.

However, since ReLu has a gradient of 0 when the neuron is
inactive, this may cause the initially unactivated unit to never
activate. For this reason, in 2013 Maas et al. [40] proposed
leaky ReLu, which compresses the negative part instead of
mapping it to a constant zero point, so that when the neuron
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is in an inactive state, it allows a small non-zero gradient. The
mathematical function of leaky ReLu is:

f (x) = max (0.1x, x) 7

In 2015, He et al. [41] proposed parametric ReLu with
adaptive learning parameters. Its mathematical function is:

f (x) = max (ax, x) ®)

where « is a hyperparameter.

In 2017, inspired by the use of sigmoid function for gating
in LSTM and highway network, Google researchers proposed
the swish activation function [42]. Like ReLlu, the Swish
function has a lower bound. Unlike ReLu, Swish is smooth
and monotonous, and its mathematical function is:

X

oW =1 ©)
D. IMPROVEMENT OF CNN ARCHITECTURE
Scholars have begun to study the depth of CNN, and the net-
work architecture has also begun to develop in a deeper and
deeper. If there are more convolutional layers, CNN can easily
detect complex objects or patterns [43], [44]. By increasing
the depth of the CNN, the non-linearly increased objective
function can be better approximated to get better results [45].
This section reviews the improved research methods of CNN
from the aspect of network architecture.

In 1998, LeCun et al. [27] proposed the LeNet-5 architec-
ture and applied it to the recognition of handwritten digits,
laying the foundation of CNN in the field of image recog-
nition. LeNet-5 consists of two convolutional layers, two
pooling layers and two fully connected layers. Each convo-
lutional layer has a different number of 5 x 5 filters. There
are 6 and 16 filters on the first and second layers respectively.
Feature map uses the sigmoid function to activate each time
it passes through the convolutional layer, and then uses the
mean pooling operation. Since 2012, CNN has begun to rise,
and the development of CNN architecture is shown in Table 2.
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In 2012, Krizhevsky et al. [29] proposed AlexNet and used
ReLu as the activation function in the network. Successfully
to solve the problem of gradient disappearance in the deep
network, Sigmoid is used as the activation function. As shown
in Fig. 4, the architecture of AlexNet consists of 5 convo-
lutional layers and 3 fully connected layers, and the output
of each fully connected layer is 4096 neurons. The third,
fourth, and fifth convolutional layers are directly connected,
and there is no pooling layer and normalization layer in
two convolutional layers. The third convolutional layer has
384 cores of size 3 x 3 x 256, which are connected to
the standardized, merged output of the second convolutional
layer. The fourth convolutional layer has 384 cores with a
size of 3 x 3 x 192, and the fifth convolutional layer has
256 cores with a size of 3 x 3 x 192. In order to avoid model
overfitting, AlexNet uses dropout to randomly ignore some
neurons during training.

2R 9659655 27:27:256 137135384 13013584 130134256

FC1  1x124096

m el €2 o BN W
g [
el 1

—

FC2 | 1 <1-4096

FC3 111000

FIGURE 4. Simplified network structure in AlexNet.

VGGNet (Visual Geometry Group Net) [44] is a classic
convolutional neural network in 2014. Except for the addition
of a convolutional layer, VGGNet is similar to AlexNet.
VGGNet consists of 10 convolutional layers, 5 pooling layers
and 3 fully connected layers. Simonyan et al. [44] used a
very small convolution filter to achieve significant improve-
ments to the current technical configuration by increasing
the depth of the weight layer to 16-19 layers, proving that
classification tasks can increase the depth of CNN by using
a small convolution kernel to improve accuracy. The struc-
ture of VGGNet is very simple, and the entire network uses
3 x 3 size convolution kernels and 2 x 2 pooling size.
Compared with AlexNet, the simpler structure of VGGNet
has better performance.

In 2015, the Google team used the idea of a small network
to conduct research on GoogleNet, which replaced the tra-
ditional convolution operation with a point-by-point group
convolution operation, thereby improving computational effi-
ciency. The parameters of this network are 12 times less than
that of the 2012 championship team, but it is more accu-
rate. GoogleNet adopts the method of NIN to improve the
performance of the network. This method can be seen as an
additional 1 x 1 convolutional layer plus a ReLU layer. The
most important thing about NIN is dimensionality reduction,
which solves the computational bottleneck and thus solves
the problem of limited network size. In this way, the depth
and width of the network can be increased without significant
performance loss.
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In 2015, ResNet won the first place in the ImageNet
competition classification task. Deep convolutional networks
have added more possibilities to the field of image classifi-
cation [54]. Deep networks naturally integrate features and
classifiers in an end-to-end multi-layer manner, and features
can be enriched by the depth of stacked layers. However,
the number of stacked layers is not the better. Recent years,
scholars have found that too many stacked layers will cause
the problem of gradient explosion [55]. Gradient explosion
has hindered convergence from the beginning. This problem
is because deepening the network will make the optimization
of the stochastic gradient descent algorithm more difficult,
and the network parameters cannot be updated, which makes
the network training effect worse [56]. He et al. [48] proposed
a deep residual network composed of many residual network
structures, namely ResNet. The network using the residual
structure with short connection is similar to performing the
same mapping, so that the deep convolutional neural network
can obtain the front layer gradient. Then, the emergence of the
deep residual network has improved the representation ability
and learning ability.

DenseNet [51] is another deeper convolutional neural net-
work. As shown in Figure 5, like the GoogLeNet network
is composed of inception modules, the ResNet network is
composed of residual blocks, and the DenseNet network is
composed of dense blocks. Each layer gets additional input
from all previous layers, and transfers its own feature map
to all subsequent layers. Using concatenation, each layer is
receiving “collective knowledge™ from the previous layers.
It has the following advantages: (1) DenseNet has fewer
parameters than ResNet, so it is easier to calculate. (2) The
network enhances the reuse of features. (3) This network is
easier to train than other deep networks and has a certain regu-
larity effect. (4) It alleviates the common problems of gradient
disappearance and model degradation in deep networks.

Tnput Dense Block | Dense Block 2
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FIGURE 5. DenseNet network structure.

E. SUMMARY

Compared with traditional learning techniques, CNN is more
scalable because it can obtain higher accuracy by increas-
ing the number of network layers and changing the size of
the training dataset. Because the characteristics of natural
images are very complex, a large number of parameters
design and deep network models are required. At the same
time, researchers have also done research to reduce network
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TABLE 3. Comparison between different models in mobile phone glass defects.

Model Sample Number  Accuracy Advantages Disadvantages
name object of
samples
BiasFeed  ggratch, 35 98% Add bias template to improve  Less data sets, reliability needs
CNN crack sensitivity. to be improved.
(8 floors)
(58]
ScratchNet  gma]] 4600 96.35% Optimize the detection method ~ The method is not end-to-end.
(81floors)  geratches for small objects.
[59]
AECNN Inclusion 600 97% Add unsupervised learning The recognition rate of bubbles
(8floors)  and  tumor methods to reduce training and tumors is low.
[60] type defects time.

parameters, such as removing the last fully connected layer
and replacing it with global average pooling. Currently com-
monly used CNN models such as VGG Net, Google Net,
ResNet, DenseNet, etc. are designed for the Image Net data
set, and higher performance can be obtained by increasing the
number of convolutional layers.

IV. APPLICATION OF CNN

As a deep neural network model, CNN performs well in the
ImageNet challenge [28]. Since the emergence of LeNet-5,
the architecture of CNN has basically been established [56].
As shown in Fig. 6, it is the detection process of defect
detection in 3C production. After the first two steps of defect
feature extraction, the feature information is input to the
most classic shallow CNN in the last step. The architecture
has a data input layer, two convolutional calculation layers,
two pooling layers, and a fully connected layer. Limited
by the software and hardware facilities at the time, LeNet-
5 did not perform well in large-scale data set classification
tasks. Traditional CNN is also widely used in the field of
industrial product inspection, but its sensitivity is relatively
low, and it is difficult to detect small defects in 3C product
inspection.

1 Data 2 [ t feature ¢ tion
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classifier:(CNN
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FIGURE 6. 3C product automatic defect detection process.
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A. APPLICATION IN MOBILE PHONE GLASS PLATE

In the quality inspection of 3C products, defect inspection is
one of the most important links in the manufacturing process
of touch screens [57]. Ozturk et al. [58] proposed a fast
and effective glass surface defect detection and segmentation
method BiasFeed CNN through comparison with traditional
CNN experiments, which solved the problem of the trans-
parency and reflection characteristics of the glass surface.
They converted the single-value bias input of the traditional
CNN algorithm into a bias template. Adding a bias template
solves the problem of light fluctuations in the lighting system.
Compared with traditional CNN, its specificity and accuracy
are improved. Zhao et al. [59] proposed an automatic scratch
detection method (ScratchNet) that combines the LeNet-
5 structure and the VGG network convolutional layer. They
used the method of connecting two main modules in series
to optimize CNN for small target defect detection. When
using the same data for training, the accuracy of LeNet-5
was 95.97%, and the accuracy of scratchNet was 96.35%.
Jin et al. [60] proposed a multi-channel self-encoding convo-
Iutional network (AECNN) model to deal with the problem
of false detection due to small difference in feature space
in glass detection. Generally, in order to make the network
achieve better information capture ability, it is necessary to
increase the number of convolution kernels in the network,
which also makes the training time longer. Therefore, they
introduced the unsupervised convolutional autoencoder into
the convolutional neural network to reduce the training time.
In addition, to prevent the network from overfitting in defect
recognition, the end classifier was changed to a fuzzy support
vector machine. The final detection accuracy rate of this
model is increased from 92.6% to 97%.

As shown in Table 3, the detection accuracy of the above
method for mobile phone glass has been improved, and the
real-time performance of the experimental results were high,
but the number of detection samples were small.

B. APPLICATION IN PCB
With the improvement of the 3C products quality, the sur-
face defect detection of printed circuit boards (PCB) has
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TABLE 4. Comparison between different models in PCB defects.

Model Sample object  Number of Accuracy  Advantages Disadvantages
name samples
LeNet-5  Short circuit, 1920 92.86% It can handle multiple classification Limited data set affects accuracy.
(9 floors) Open circuit, tasks, but the number of data sets

(20] etc. affects accuracy.
LeNet-5 Distinguish 1480 85% The detection time of the model is The accuracy rate is less than 90% and
(O floors)  petween good shortened, but the accuracy rate needs  needs to be improved.

(62] and damaged to be improved.

samples

LeNet-5  Short circuits, 4743 96.67% The real-time performance of the The accuracy rate needs to be improved.
O floors)  poes, ete. model is high.

[63]

become an important issue. Since PCB defects are usually
intensively occurring, this detection is a multi-label classifi-
cation problem. In response to this problem, Zhang et al. [20]
proposed a multi-task CNN model, which has three blocks,
and each block include a convolutional layer, an activation
layer and a maximum pooling layer. Finally, six types of
classification were performed through the fully connected
layer. The model with 1200 data samples were trained accord-
ing to different types. According to experiments, the accu-
racy of the model reached 92.86%. The model proposed
by Zhang and Ma et al. [61] was compared in multiple cat-
egories, and the results are shown in Fig. 7. Among them,
Ma uses a defect detection method based on machine vision.
The overall accuracy of Zhang’s model is much higher than
that of Ma’s. Adibhatla et al. [62] used a large number of
images to train CNN to classify defective or intact PCBs.
The network has 60 million parameters, 500,000 neurons,
and is composed of 5 convolutional layers. The convolutional
layer is followed by the largest pooling layer, and the last is
two fully connected layers. After training, the method has
a higher accuracy rate. The overall accuracy of PCB defect
classification has reached 85%. Wang et al. [63] proposed
a precise PCB defect recognition algorithm based on CNN.
The model performs a differential operation on the reference
image to find the defect area, and batches normalize the PCB
defect images. The model chooses ReLL.u and Maxpooling as

R Short circuit
Il Oven circuit

100% - [ Spurious copper
97.3%

Sl 90%  90%

Rate

80%

70%

Ma ct al.[62]

Zhang ct aL.[20]

FIGURE 7. Comparison of PCB model detection defects.
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the activation function and down-sampling methods respec-
tively. Finally, the model used the softmax regression classi-
fier for training and optimizing CNN. Experiments showed
that the correct recognition was significantly improved, and
the detection accuracy of 10 types of PCB defects was as high
as 96.67%.

As shown in Table 4, the above detection methods can
realize multi-task classification detection aiming at the diver-
sity of PCB defects. Compared with machine vision method,
CNN method has higher accuracy, and the accuracy rate can
reach 92%-97%. However, the detection time of the above
methods is long, the real-time performance and the number
of detection datasets need to be improved.

C. APPLICATION IN TFT-LCD

Traditional image processing algorithms are prone to prob-
lems such as missed detection and misjudgment in the recog-
nition of circuit defects, He et al. [64] compared the use
of CNN in electronic circuit defect recognition in indus-
trial inspection. First, the input image was preprocessed by
histogram equalization. Second, the image features were
extracted on the 8-layer CNN structure. Finally, the softmax
classifier is used to realize the recognition and classification
of image features. After experimental verification, the model
algorithm had high accuracy, robustness and generalization
ability, meeting the needs of industrial testing. They com-
pared the method with Faster RCNN, RCNN and Deformable
Part Mode (DPM), as shown in Fig.8. It can be seen that the
accuracy of the Depth-2 is higher than that of other models.

D. SUMMARY

To sum up, compared with traditional machine vision meth-
ods, the defect detection model based on CNN improves the
accuracy, which can reach 92%-98%. Multi-task classifica-
tion can be realized, and the overall accuracy is improved,
but the detection results of some defect types need to be
improved. At present, the test object of the experiment is
relatively simple, and the training dataset of the model is
limited, which affects the accuracy of the model to a certain
extent. Data sets similar to the actual production line products
should be added. They still have great progress to make and a
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FIGURE 8. Comparison of accuracy and recall of the three algorithms
mentioned by He [64].

long way to do in the detection of small defects. The real-
time performance of detection needs to be improved. The
detection model based on shallow CNN cannot fully meet
the requirements of defect detection. In order to improve the
shortcomings of CNN detection model, scholars constantly
explore new technologies and methods.

V. APPLICATION OF DEEP CONVOLUTION

Looking back at the development of deep convolutional neu-
ral networks in the field of image recognition, we can clearly
find that the expressive power and feature extraction capa-
bilities of DNN increase with the increase of the depth of
the network increase. Compared with shallow neural net-
works, the performance of DNN is further improved [29].
Since the AlexNet proposed by Krizhevsky et al. won the
championship in the ImageNet competition, scholars have
found on the exploration of deep convolution, and it has also
been widely used in the detection of 3C products. As the
number of layers of the convolutional network increase, its
ability to extract semantic features is significantly enhanced.
However, the increase number of layers is also accompa-
nied by the problem of the gradient disappearance. After the
researchers’ exploration, it is observed that the phenomenon
of the disappearance of the gradient can be solved by the
residual network and the dense network. With the emergence
of ResNet and DenseNet, researchers began to conduct more
in-depth research in the field of defect detection.

A. APPLICATIONS ON THE PHONE SCREEN

Based on the detection of glass cover defects of smart
device, Park er al. [24] proposed a multi-channel defect
detection structure 4-DarkNet, which was based on the model
superposition in the machine learning integration method.
It combined a variety of classification or regression models.
They used DarkNet-19 as a defect classifier, with a total
of 19 convolutional layers and 5 pooling layers. They also
applied the weighted average method of the stack model to
enable the independent classifiers in the detection structure
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to perform best. Although the structure is relatively large,
it has the advantages of fast speed and high precision,
and is suitable for defect detection on the production line.
In view of the multiple types of problems on mobile phone
screens, Li ef al. [22] proposed a detection model based on
a region of interest algorithm. The model structure added
a multi-layer perceptron (MLP) and deep learning to the
ROI and deep learning algorithm. Using different deep learn-
ing models such as VGG-16, ResNet and GoogleNet to
detect with 400 sample, the results reached an accuracy
rate of more than 97%. Chen et al. [65] designed a defect
detection method based on CNN to solve the problem of
the difficult appearance detection of smartphone protective
screens in the production process. The method first divided
the sample image into 256 x 256 pixel sample images, and
then used 22 layers GoogleNet was trained and fine-tuned.
In order to make the network model less space and time
consumption, the hidden layer with more parameters was
deleted through multiple adjustments of parameters, and the
1000-dimensional vector of softmax was adjusted to a three-
class three-dimensional vector. Finally, through five experi-
ments of fine-tuning, the model has obtained good detection
results. Ma et al. [17] proposed a mobile phone surface defect
detection method. An industrial line scan camera was used
to obtain the original surface image of the mobile phone.
Through the preprocessing steps proposed in this article,
the obtained image is automatically divided into specified
sizes. The trained CNN can be combined with sliding window
technology. Experiments showed that the defect detection rate
can reach 99.5%.

Among various glass defects, the detection of dent defects
is one of the most difficult because of its small depth changes
and smooth edges. In the defect detection system based
on machine vision, the dent image has the problems of
uneven gray scale and low contrast. Wang et al. [66] pro-
posed a dent defect detection method based on deep convo-
lutional neural network for such problems. By improving the
DenseNet-121 [67] model, they designed a compact model
that can be meet the requirement in real-time production.
However, as the number of network layers increases, there is
a problem on gradient disappearance, which allows shallow
features to be discarded, resulting in unfavorable detection of
small dent defects. The fusion strategy proposed by DenseNet
can solve this type of problem well. Wang chose DenseNet as
the infrastructure, which can overcome the data dependence
problem of the DCNN model and significantly improve the
recognition accuracy. Experimental results showed that this
method can further improve the recognition accuracy of the
dent detection task with 85.42% on 70 test images. In future
work, this method can be applied to the formula against
network (GAN) to further improve the robustness. In order
to quickly and effectively detect and identify touch screen
glass defects, Zhang et al. [25] proposed a detection and
recognition method based on Mask R-CNN technology. This
method used Mask R-CNN as the basic model and used the
multi-picture stack method to obtain sample data, and then
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TABLE 5. Comparison between different models in mobile phone glass defects.

Model name ~ Sample Number  Accuracy  Advantages Disadvantages
object of
samples
4-DarkNet Scratch, 4220 99% Effective use of multiple channels ~ Accuracy has improved, but real-
(27 floors) dent, chips to measure data. time performance needs to be
[24] improved.
ROHMLP Scratches 4600 97% Optimize the detection method for ~ Real-time performance needs to be
(16 floors) small objects. improved.
[22]
GoogleNet Scratches, 9640 98% The model is more lightweight and ~ There is a difference between the
(21[2;)]0 rs) scuffings, the training speed is faster. detection target and the product
punctures, defect.
etc.
GoogLeNet  pojint 7632 99.5% Greatly reduced the number of Fewer types of detectable defects.
(21[?;]0 rs) defects and parameters.
line defects
DenseNet Scratch, 210 99.90% Simplified  model, real-time Small sample size, single type of
(15[22]0 rs) dent, etc. detection. detectable defect.
Mask R- Touch 1035 96.7% Has good robustness. Failed to obtain information such
I OCtII\Z)I:I)rs) screen glass as defect area, coordinates, etc.
[25] defects

process, label, and sample amplification. Since the dataset of
this experiment is relatively small, they tested three different
networks (VGG16Net, ResNet50+FPN, ResNet1014+FPN)
in the feature extraction stage. The experimental compari-
son showed that the backbone network detection effect of
ResNet5S0+4-FPN is better, and the accuracy rate was high and
it had good robustness compared with traditional methods.

In summary, as shown in Table 5, these detection models
based on DCNN have higher accuracy than shallow CNN
models, ranging from 96% to 99%. These models have high
real-time performance, and the ability of processing datasets
has been improved, which is also an important factor affecting
the accuracy.

B. APPLICATION IN PCB

Zhang et al. [68] proposed an improved defect detection
method for bare PCBs, using VGG-16 as the basic network
for feature extraction, which is achieved by learning deep
identification features. It reduced the high requirements for
deep learning methods for large datasets. This method first
used artificial defect data samples and expanded datasets,
then adopted a deep pre-trained CNN to learn defect features,
and finally utilized a sliding window to further locate defects.
This algorithm is helpful to establish a robust model for
multi-class recognition tasks. Cheong et al. [69] introduced
a PCB automatic component recognition system based on
CNN. In addition, the defects of PCB components were also
localized. A simple component recognition classifier based
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on CNN was developed, and the pre-trained model was used
for transfer learning. Pre-trained models, such as VGG-16,
Inception V3 and DenseNet-169, are used to study which
model is best for component recognition. The test results
showed that using transfer learning in VGG16, the best result
obtained was 99% accuracy, and the main accuracy of the
system could reach 96.54%. Volkau [70] proposed a variant
of transfer learning, which includes a combination of unsu-
pervised learning used on VGG16 and pre-trained on Ima-
geNet weight coefficients. The goal is to extract significant
semantic features from normal samples without supervision.
To demonstrate defect detection, they utilized a set of PCBs
with different defects scratches, missing gaskets, extra holes,
frayed, and damaged PCB edges. The trained model can
cluster the normal internal representation of PCB features
in the high-dimensional feature space, and locate the defect
blocks in the PCB image according to the distance from the
normal cluster. Preliminary results showed that more than
90% of defects can be detected.

As shown in Fig. 9, Xia er al. [71] combined SSIM
and MobileNet-V3 to propose a new PCB defect detec-
tor structural similarity index (SSIM-NET). Compared with
YOLO-V3, Faster-RCNN, and tiny defect detection network
(TDD-NET), SSIM-NET has higher accuracy and speed.
The method has two stages: the first step is to adopt SSIM
to detect suspicious areas; the second step is to use the
latest lightweight backbone Mobilenet-V3 to classify the
suspicious areas. After testing, the accuracy of the model
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FIGURE 9. Accuracy and speed comparison of YOLO-V3, Faster-RCNN, TDD-NET and SSIM-NET [71].

TABLE 6. Comparison between different models in PCB defects.

Model name Sample Number  Accuracy Advantages Disadvantages
object of
samples
VGG-16 Short circuit, 1920 92.86% Reduced the high requirements for Accuracy needs to be improved.
(16[21;]0 rs) Open circuit, deep learning methods in large
etc. datasets.
VGG-16 25 kinds of 1480 99% Localize the defects of PCB Fewer types of defects detected and
(l6[gg]0rs) defects such components. small data set.
as short
circuit  and
open circuit
VGGl6 Scratches, 4743 96.67% Can be positioned according to defect  Not suitable for defects with subtle
(16[1718]0rs) abrasions, characteristics changes in texture.
breakages,
etc.
SSIM-net Short circuit, 9640 98% The model is more lightweight with  Need to add more defect types.
(22[171;]0 rs) Open circuit, fast speed.
etc.
TDD-Net Tiny defect 2508 98.9% Adapt to the detection of small defects. ~ Post-processing methods need to be
(10 1[7ﬂ£°rs) detection improved.

reached 97.06% and the speed of 60fps, achieving real-time
detection and high precision in the test set. Ding et al. [72]
proposed TDD-NET in which online hard case mining was
used throughout the training phase to improve the quality
of recommendations from the region of interest and thus
make more effective use of data information. In order to
reduce redundancy, non-maximum suppression was adopted
in the proposed regions according to the classification score.
TDD-NET integrated the multi-scale feature fusion strat-
egy to obtain strong features in structure and enhance the
ability to detect minor defects, with an average accuracy
of 98.90%. To sum up, as shown in Table 6, these models not
only improve the accuracy, but also reduce the requirements
for large data sets, because the feature extraction ability of the
models has been improved.
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C. APPLICATION IN TFT-LCD

Aiming at the defects of TFT-LCD circuit, He et al. [73]
proposed an improved Faster R-CNN algorithm to detect
defects. They adopted different convolution kernel sizes and
network layer depths to test the detection performance of the
model. After testing, the 16-layer neural network structure
had achieved good detection results, further improving the
accuracy and practicality of the neural network in the field of
automatic detection. Kim er al. [74] used VGGnet to detect
TFT-LCD defects and set the first convolutional layer of
VGGnet into two spaces. In addition, instead of using a 2 x 2
maximum pooling layer on the last pooling layer, a global
average pooling layer is used, that is, the elements of each
channel are averaged. After they slightly adjusted VGGnet,
the model reduced the number of parameters and learning
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TABLE 7. Comparison of different models in TFT-LCD defects.

Modelname  Sample object Number Accuracy Advantages Disadvantages
of
samples
Depth-2 Breakpoints, 169800 94.6% High real-time. Accuracy should be
16floors  preakages, improved.
[70] foreign objects,
scratches
Depth-3 Breakpoints, 169800 93.7% High real-time. Accuracy should be
24floors  pregkages, improved.
(70] foreign objects,
scratches
VGG net Breakpoints, 2880 86.13% Reduced learning  The data set is too small, the
16 floors breakages, parameters and learning  accuracy should be
[74] foreign objects, time. improved.

scratches

time. As shown in Table 7, these models have improved
data processing capabilities, real-time performance has been
improved, and can be adapted to the detection of production
line defects.

D. SUMMARY

To sum up, the aforementioned deep convolutional network
model is widely used in industrial manufacturing and image
classification and can achieve good performance. At present,
the commonly used CNN architectures for defect detection
are GoogleNet and VGGNet. According to researchers’ stud-
ies, the nonlinearity of the network increases as the depth
increase, and at the same time it is closer to the objective
function to obtain a better feature representation. However,
as the depth increases, the system structure becomes com-
plicated and cumbersome, and the real-time performance is
also weakened. Therefore, how to solve the problem of the
cumbersome system structure is also worthy of attention.
Scholars use the residual structure of the residual network
to establish models and conduct experiments, which proves
that the residual network is also feasible for defect detec-
tion in the 3C industry [48]. Compared with the ordinary
network, the residual network introduces one or more jump
connections, which can make the information of the previous
residual block flow into the next residual block unimpeded.
This improves the information flow and avoids the problem of
gradient disappearance and degradation caused by excessive
network depth.

VI. THE APPLICATION OF GAN IN 3C INDUSTRY

The idea of confronting network comes from the two-person
zero-sum game in game theory, which is equivalent to the
two-party game of minimization and maximization [75]. The
deep learning model is driven by big data, and the training
effect depends on the sample size, and the training effect is
proportional to the sample size [76]. However, it is not easy to
obtain a large number of defective samples from an industrial
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production line [77]. As shown in Fig. 10, scholars can gen-
erate random defect samples through GAN. Li et al. [78]
introduced another CNN called deep convolutional gener-
ative adversarial networks (DCGAN). Through training on
various image data sets, they proved that it was powerful
candidate for unsupervised learning. DCGAN is an exten-
sion of GAN, with convolutional network as discriminator
and deconvolution as generator. It can automatically extract
and fuse defect features, expand defect samples. Therefore,
scholars began to use GAN to generate data sets to expand
the number of samples.

Based on the method of Yuan [79], Lv et al. [80] designed
a display glass defect detection model suitable for small
sample learning. They designed DCGAN, which introduced
residual module to improve the extraction capability of fea-
ture extraction network. The system automatically extracts
and merges the defect features from the sample images, and
expands and generates the defect samples. Then, based on
the expanded defect sample data set, the detection model of
FAST R-CNN is improved and trained. After the comparison
between the original model and the model experiment with
DCGAN added, in order to evaluate the test results, “over-
detection rate” (ODR), “missed detection rate” (MDR) and
“Accuracy” of the data samples were compared and eval-
uated, as shown in Fig. 11. Finally, the improved detection
model obtained better detection results, and solved the prob-
lem that the number of defective samples in the industry was
small and deep learning required a large number of samples.
The experimental results proved the effectiveness and fea-
sibility of combining DCGAN and Fast R-CNN for display
defect detection. Lu er al. [56] proposed a mobile phone
display TFT-LCD surface defect detection model based on
small sample learning. In response to the shortage of negative
samples on the actual automated production line, Lu used
the collected small samples and the DCGAN network model
to generate new negative sample data. The algorithm uses
DCGAN to target a large amount of newly generated data,
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FIGURE 10. Principle and detection process of generating display defect samples through GAN.
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FIGURE 11. Comparison of Lv's model and Faster-RCNN-based detection model.

which makes up for the lack of training data and makes the
distribution of training data more reasonable. By sending
the generated samples into the model trained by migration
learning, the secondary intensive training is performed to
obtain better image defect characteristics.

In summary, unsupervised learning can extract patterns and
structures from raw data without additional information. The
introduction of GAN, a defect detection species, solves the
problem of lack of actual defect samples. There has also
been a major breakthrough in detection accuracy, which can
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reach 99.23%. But while introducing GAN, the real-time
performance of the model is not very ideal, therefore the
real-time performance of the model needs to be improved.

VIl. DISCUSSION

With the rapid development of information technology, smart
3C products have become necessities in people’s lives. In the
automated production of 3C products, the quality of each
component of the product must be ensured. At present, defect
detection based on machine vision is the mainstream method.
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TABLE 8. Comparison of the advantages and disadvantages of different detection methods.

Detection subject Typical methods

Avantages

Disadvantages

Manual inspection Manual visual inspection

Traditional machine Simple image processing

vision technology

Shallow CNN LeNet-5 etc.

Deep CNN AlexNet, ResNet, etc.
Combine GAN DCGAN

Fast detection speed.

Simple structure, low
hardware requirements.
Strong ability to extract data
and high accuracy.

Reduce the difficulty of

- Consuming human resources,
human eyes are easy to fatigue.
Robustness is poor, accuracy rate is
not enough.

Insufficient accuracy and limited
ability to obtain data.

High hardware requirements, and
there is a risk of disappearing
gradient.

GAN model is easy to collapse.

obtaining training samples.

Based on the introduction of the development history of
CNN, this article combines several representative algorithm
improvement models to provide an overview of multiple
defect detection methods using CNN. Neural network can
solve almost all detection and classification problems, and
it is a commonly used image processing technology. CNN’s
ability to use spatial patterns is particularly conducive to the
value of very high spatial resolution data. More and more
visualization techniques will not only help explain, but also
help learn from these models to improve the efficiency of
defect detection in industrial production. In these researches,
VGG16 and GoogleNet are the two most commonly used
architectures. However, most of them have specific limita-
tions and rely heavily on the size of the data set, image
processing and texture. Solving the problem of lack of data
sets is still a difficult problem for many researchers. More-
over, the large-scale neural network used for deep learning
requires a lot of computing resources, which also leads to
the inevitable large computing cost. For the application of
different types of CNN frameworks, the summary is shown
in Table 8:

(1) Many studies have shown that CNN is superior to sim-
ple machine learning methods [60], [62], [63]. The traditional
shallow CNN has the advantages of less time consumption,
light and simple network structure, and low hardware require-
ments. The classic LeNet-5 is often used as the representative
architecture of the shallow CNN. Although the LeNet-5 net-
work has been rarely used in research, it has laid a foundation
for the development of subsequent convolutional networks.
In short, in terms of 3C defect detection, shallow CNN is more
robust than traditional machine vision. The convolutional
layer can accurately extract image features and improve the
accuracy of detection. The small space complexity enables
shallow CNN to adapt to the real-time requirements of the
production line. However, the ability of shallow CNN to
obtain data in the network training process is limited, which
directly affects the accuracy of the training model. In future
research, scholars should focus on improving the detection
capabilities of some small defects.

(2) In the development of depth and adaptability of dif-
ferent structures, the learning ability of CNN has been sig-
nificantly improved [24], [65], [71]. Deep CNN benefited
from the increase in network depth, and its accuracy and
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precision have been improved. According to the summary
of this article, in the study of 3C defect detection, the most
commonly used architectures are VGGNet, GoogleNet and
ResNet. As the network depth increases, the system structure
becomes complicated and cumbersome, and the requirements
for hardware are also higher. It also requires a large number
of data samples to improve the precision and accuracy of
the system. However, the residual network is composed of
multiple shallow networks. It does not fundamentally solve
the problem of vanishing gradients, but avoids vanishing
gradients. Because shallow networks do not have the prob-
lem of vanishing gradients during training, ResNet uses this
point to avoid vanishing gradients. In summary, the detection
effect of deep CNN is higher than that of shallow CNN, but
as the depth increases, the data parameters that need to be
processed increase, and the real-time performance required
by the production line is not easy to achieve.

(3) GAN has many advantages in defect detection, for
example, it can generate real images or videos; its addition
can reduce the direct data required. At the same time, GAN
also has many limitations. For example, GAN makes the
system need more time to train the data; different types of data
are required to continuously check the results and training
data (whether it is used correctly), and the model is prone to
collapse. Therefore, the future research direction of DCGAN
must be to solve model collapse, non-convergence and train-
ing difficulties. DCGAN replaces the multilayer perceptron
in the original GAN with a convolutional neural network
in the generator and discriminator feature extraction layer.
When the sample data is limited, DCGAN can improve the
detection accuracy by extracting and fusing features. It effec-
tively solves the limitation of low detection accuracy of the
detection system when the sample is insufficient. At present,
GAN is a strong competitor in unsupervised learning technol-
ogy, and DCGAN will become the trend and main technology
in the field of detection in the future.

VIIl. OUTLOOK

The proposal of Industrial Manufacturing 4.0 indicates that
information technology and intelligent manufacturing will be
the core development direction. Research shows that, in the
continuous development and improvement, the application of
CNN in the detection field has achieved good development,
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showing the superiority of feature extraction and classifi-
cation detection. For example, the shortcomings of manual
inspection of products have been greatly improved, and the
manual inspection of products has been improved. The prod-
uct qualification rate is high and the production quality is
guaranteed. As an algorithm that has attracted attention from
scholars since its emergence, CNN has solved to certain
extent problems that could not be solved or solved difficult
problems before, and greatly improved the efficiency and
accuracy in the detection field.

(1) In the research of scholars, various improvement strate-
gies have improved the performance of CNN to a certain
extent, but there are still shortcomings. For example, the prob-
lem of gradient explosion has not been solved. For the prob-
lem of complex multi-level network structure, there are also
problems such as difficulty in obtaining training samples and
long training time.

(2) In addition to methods based on increasing the depth
of convolution, CNN’s block-based architecture also encour-
ages learning in a modular manner, thereby making the
architecture simpler and easier to understand. The concept
of a block as a structural unit will continue to exist and
further improve the performance of CNN. So, the specific and
localization of 3C detection objects is expected to be better
developed.

(3) Deep learning requires a large number of training
samples. However, the samples generated by DCGAN sum-
marized in this article still need to be manually labeled,
which is time-consuming and labor-intensive. In recent years,
supervised learning algorithms have developed rapidly, but it
is still unsupervised learning algorithms that really determine
the degree of intelligent development. Future research should
focus on how to enable machines to automatically learn defect
features under unsupervised learning.

(4) Finally, existing defect detection methods are gener-
ally carried out on two-dimensional picture samples. Future
research can be improved and upgraded on the original basis
to realize detection on three-dimensional model, which will
enrich and improve the theory and application of CNN. After
the application of 3C product testing, the system can directly
perform testing on the basis of product parts, which will
reduce more inspection time.
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