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ABSTRACT A key step in medical image-based diagnosis is image segmentation. A common use case for
medical image segmentation is the identification of single structures of an elliptical shape. Most organs like
the heart and kidneys fall into this category, as well as skin lesions, polyps, and other types of abnormalities.
Neural networks have dramatically improved medical image segmentation results, but still require large
amounts of training data and long training times to converge. In this paper, we propose a general way to
improve neural network segmentation performance and data efficiency on medical imaging segmentation
tasks where the goal is to segment a single roughly elliptically distributed object. We propose training a neural
network on polar transformations of the original dataset, such that the polar origin for the transformation
is the center point of the object. This results in a reduction of dimensionality as well as a separation of
segmentation and localization tasks, allowing the network to more easily converge. Additionally, we propose
two different approaches to obtaining an optimal polar origin: (1) estimation via a segmentation trained
on non-polar images and (2) estimation via a model trained to predict the optimal origin. We evaluate our
method on the tasks of liver, polyp, skin lesion, and epicardial adipose tissue segmentation. We show that our
method produces state-of-the-art results for lesion, liver, and polyp segmentation and performs better than
most common neural network architectures for biomedical image segmentation. Additionally, when used
as a pre-processing step, our method generally improves data efficiency across datasets and neural network
architectures.

INDEX TERMS Convolutional neural network, medical image processing, medical image segmentation,

semantic segmentation.

I. INTRODUCTION

Image segmentation is the task of delineating diagnostically
important anatomical structures on medical images. Segmen-
tation is a necessary step in most computer-aided diagnosis
use cases, and a pre-processing step for many other medical
tasks like disease risk estimation, classification, etc. A com-
mon use case for medical segmentation is identifying single
structures with a roughly elliptical shape or distribution, like
most organs, skin lesions, polyps, cardiac adipose tissues, and
similar structures and abnormalities.

Neural networks have achieved state-of-the-art results in
many medical image segmentation tasks, however, they often
require large amounts of annotated training images, which
are time-consuming and costly to obtain. In this paper, we
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propose a general way to improve neural network segmen-
tation data efficiency and performance on medical imaging
segmentation tasks where the goal is to segment roughly
elliptically distributed objects.

We propose and explore ways to train neural networks for
biomedical image segmentation on polar transformations of
images. The polar transformation transforms an image from
Cartesian coordinates into a new coordinate system where the
two axes are the rotation around an origin and radius from
that origin. When the regions to be segmented are elliptical
in shape or distribution, this transformation results in a reduc-
tion of dimensionality, allowing convergence in fewer epochs
and good performance even in models with a low number of
parameters.

Experimentally, we observed that selecting a correct
polar origin is one of the key parameters that deter-
mine segmentation performance. Therefore, we propose two
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different approaches of selecting an optimal polar origin:
(1) estimation via a segmentation neural network trained on
non-polar images and (2) estimation via a neural network
trained to predict heatmaps. Our method is evaluated on
the tasks of polyp segmentation, liver segmentation, skin
lesion segmentation, and epicardial adipose tissue (EAT)
segmentation. The proposed methods can be used as a pre-
processing step for existing neural network architectures,
so we evaluate the methods using common neural net-
work architectures for medical image segmentation including
U-Net [1], U-Net++ [2] with a ResNet [3] encoder, and
DeepLabV3+ [4] with a ResNet [3] encoder.

Evaluation of our approach as a pre-processing step
shows that it improves segmentation performance across
different datasets and neural network architectures while
making the networks more robust to small dataset sam-
ple sizes. All used code for this paper is available at
github.com/marinbenc/medical-polar-training.

A. RELATED WORK

1) COMBINING POLAR COORDINATES AND NEURAL
NETWORKS

Several image segmentation methods were proposed that uti-
lize polar coordinates. Liu et al. [S] proposed an approach
they call Cartesian-polar dual-domain network (DDNet) to
perform optic disc and cup segmentation in retinal fundus
images. The neural network contains two encoding branches,
one for a Cartesian input image and another for the polar
transformation of the same input image. The predictions are
fused into a single feature vector which is then decoded into a
final segmentation. Salehinejad ef al. [6] used the polar trans-
formation as a way to augment training data by transforming
each input image into multiple polar images at various polar
origins, thus increasing the number of training data. Kim et al.
(2020) [7] proposed a convolutional neural network layer for
images in polar coordinates to achieve rotational invariance.
Their cylindrical convolution layer uses cylindrically sliding
windows to perform a convolution. Kim et al. [8] proposed
a user-guided segmentation method where an expert selects
the point used as the polar origin. The transformed image is
then segmented using a convolutional neural network (CNN).
Esteves et al. [9] proposed a polar transformer network for
image classification. Note that “transformer network” here
refers to spatial transformer networks [10] and not attention-
based networks commonly called transformers. The network
consist of a polar origin predictor and a neural network that
predicts a heatmap. The centroid of the heatmap is then used
as the origin for a polar transformation of the input image.
The polar image is classified using a CNN. This approach is
most similar to our proposed method, however, their approach
focuses on image classification, not segmentation. Addition-
ally, our approach differs in the ways the ground truth data
is prepared, the used neural network architectures, as well as
other details.
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2) BIOMEDICAL IMAGE SEGMENTATION

One of the most used neural network architectures for
biomedical image segmentation is U-Net [1], an encoder-
decoder based architecture where intermediate feature maps
of the encoder are concatenated with the appropriate feature
maps of the decoder, allowing the network to simultaneously
learn context and precise localization. Multiple modifications
of the U-Net architectures were proposed. Zhou et al. [2]
proposed a nested U-Net architecture called U-Net++-, where
the encoder and decoder are connected via dense convolu-
tional blocks instead of simple concatenation. Jha et al. [11]
proposed an architecture called Double-U-Net based on two
U-Nets stacked together, where the first one uses a VGG
encoder pre-trained on the ImageNet dataset. The output of
the first U-Net is used as input, together with the input image,
for the second U-Net. Additionally, the output of the first
U-Net is concatenated together with the output of the second
U-Net to produce the final segmentation. They achieve state-
of-the-art results for lesion segmentation. Azad et al. [12]
proposed a U-Net-based architecture where the decoder was
modified by adding bi-directional convolutional LSTM and
squeeze-and-excitation layers [13]. Tomar et al. [14] pro-
posed a general network for medical image segmentation, val-
idated on seven biomedical image datasets. Their method uses
an encoder-decoder architecture with squeeze-and-excitation
residual blocks and recurrent learning. The model’s output
at each epoch is stored and used as an input to the next
epoch, iteratively improving the output while reducing train-
ing time. Ibtehaz and Rahman [15] proposed MultiResUNet,
an improvement of U-Net wherein U-Net’s convolutional
blocks are replaced with blocks that use differently-sized
convolutional kernels in parallel. Additionally, they added
convolutional blocks to U-Net’s skip connections.

There are various proposed approaches for polyp seg-
mentation from colonoscopy images that use deep learning.
Fan et al. [16] proposed a parallel reverse attention net-
work for polyp segmentation. Their method works by first
using a parallel partial decoder which decodes feature input
maps into a global semantic map of the image. This map is
then refined by a series of recurrent reverse attention layers.
Fang et al. [17] used a network with one encoder and two
mutually constrained decoders, one for predicting areas and
another for predicting boundaries. The network then aggre-
gates the features. The authors train the network using a
boundary-sensitive loss function. Huang et al. [18] proposed
an encoder-decoder neural network which uses a HarDNet-
based [19] encoder and a cascaded partial decoder, with three
branches are connected to the encoder, and their features are
densely aggregated to produce the final output. Each branch
uses proposed neural network layers called receptive field
blocks.

For liver segmentation, Valanarasu et al. [20] proposed
KiU-Net. Their network consists of two branches. The first
branch is an overcomplete convolutional network where the
input image is projected into a higher-dimensional space,
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forcing the network to learn fine details and accurate edges.
The other branch is a regular U-Net network. The two
branches are then fused to produce a final segmentation.

For EAT segmentation, Zhang er al. [21] proposed an
approach using two successive U-Net networks. The first
network performs a segmentation of the pericardium, a pro-
tective layer of connective tissue that encloses EAT. The
output segmentation is refined using morphological operators
and then used as a mask for the input to the second U-Net,
which is trained to segment EAT for the pericardium region.
Commandeur et al. [22] proposed training two convolutional
neural networks. The first network determines the heart limits
and segments adipose tissues. The output of the first network
isused to sample the input to the second neural network which
delineates the pericardium. They also use a polar transforma-
tion to transform the input of the second network.

While there are proposed methods which combine the
polar transformation with neural networks, most of them
solve classification tasks. Some medical image segmentation
methods use the polar transformation as a preprocessing step,
however the way they obtain the origin of the polar transfor-
mation is usually based on heuristics. To our knowledge there
is currently no work that explores using the polar transforma-
tion with a dynamic polar origin as a preprocessing step for
semantic segmentation in a variety of medical image datasets.

Il. METHODOLOGY

All of the proposed methods rely on training a neural network
model to segment polar images. To train on polar images,
the input images need to be transformed using a polar origin
which is near the center of the segmented object. The correct
origin is not known ahead of time, so a prerequisite for pre-
dictions on polar images is a method to determine the correct
polar origin. We propose and evaluate two different methods
for automatically obtaining the polar origin: (1) estimation
via a segmentation trained on non-polar images and (2) train-
ing a center-point predictor which predicts heatmaps from
input images. This section describes these methods, as well
methods to train the final segmentation model on the polar
images.

A. POLAR TRANSFORMATIONS AND RATIONALE

Images are most commonly viewed in Cartesian coordinates,
where the pixels are arranged along the x- and y-axes. The
polar coordinate system has two axes: (1) the radial coordi-
nate p, which is the distance of a point from the origin of the
polar transformation; and (2) the angular coordinate ¢, which
is the angle between the point and the reference direction.
In other words, the x-axis of the polar image represents the
distance from an origin, while the y-axis represents the rota-
tion around the origin. This makes polar coordinates invariant
to rotation.

Our intuition is that polar transformations can be especially
beneficial to segmenting images where an elliptical border
must be found on the image. Consider a contrived example
of predicting a circular decision boundary on a single-channel
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image with a linear model. A circular decision boundary must
be modeled by a function of at least four dimensions. When
transformed to polar coordinates, a perfect circle in Cartesian
coordinates becomes a straight line, as shown in Fig. 1. This
linear decision boundary can be modeled with a simpler linear
function in two dimensions. The image in polar coordinates
would require a less complex model to predict a border. It is
possible that, even for more complex examples, the polar
transform of an image of a roughly elliptical object reduces
the required segmentation model complexity, as shown visu-
ally in Fig. 2. Furthermore, by transforming an image to polar
coordinates using a polar origin that is the center of the object,
we fix the location and standardize border distances in each
training example. The model can then learn the distance of
the border from the origin at each angle around the origin,
without having to learn to localize the object.

Cartesian Polar
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FIGURE 1. An example of a polar transformation.

Polar

Carte_sian

FIGURE 2. An example image and label from the lesion dataset and their
corresponding polar transformation.

To obtain a polar transformation, the angle and magni-
tude of each pixel (x, y) of the original image are calculated
using (1):

magnitude(x, y) = {/x% +y2,
180
angle(x,y) = atan2(y, x) - — D
T
where atan?2 is the 2-argument arctangent function.
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Given a polar origin (cy, ¢y) of a Cartesian image I (x, y) of
resolution H x W, we obtain each point (p, ¢) of the polar
transformation I'(p, ¢) using (2).

= B gl )
p= 3 -anglex — vy — o
w

¢ = - magnitude(x — cy,y —c¢y) (2)

V(W /2)? + (H/2)?

B. TRAINING A NETWORK ON POLAR IMAGES

In each of our approaches, the final segmentation is done
using a neural network trained on polar transformations of the
input images. In the rest of this paper, we refer to this network
as the polar network. In all of the described approaches,
the polar transformation is not part of the network architec-
ture itself, but happens as a preprocessing step for the polar
network. To transform each input image, the polar origin is
determined as the center of mass of the ground truth label
for that image. The center of mass of an image /(x,y) is
calculated by first calculating the spatial image moments
matrix M, where the entry of the matrix at row i and column
Jj is calculated using (3).

My =Y I(x,y)-x"-y 3)
X,y

The center of mass (cy, c¢y) of the image can then be calcu-
lated using (4).

cx = Mio/Moo
¢y = Mo1/Moo 4

Finally, to increase the model’s robustness to suboptimal
center point predictions, we augment the calculated center for
training images [9]. Each training image has a 30% chance of
varying the center’s x and y coordinates by a random value
in the range (—S - 0.05, S - 0.05), where S is the smallest
resolution of the image, i.e. S = min(width, height).

C. CENTERPOINT PREDICTION

Once the polar network is trained, inference can be done by
transforming an input image to polar coordinates. The polar
network requires choosing a center that is close to the center
of mass of the segmented object. Because a future input image
is unlabeled, the correct center needs to be inferred from the
image. We propose two ways to accomplish this, described in
this section.

1) TRAINING THE SAME NEURAL NETWORK ON CARTESIAN
AND POLAR IMAGES

Our first approach is training the same neural network on
cartesian and polar images. A summary of this approach
is presented in Fig. 3. With this approach, the inference is
done by first feeding the original Cartesian input images
into a neural network used for segmentation. We refer to
this network as the Cartesian network. For an input image,
the polar origin is calculated as the center of mass of the
Cartesian network’s prediction for that input image, using (4).
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This polar origin is used to transform the original input
image to polar coordinates, and the transformed image is
fed to the polar network. The output of the polar network is
transformed back to Cartesian coordinates to obtain a final
segmentation. We assume identical architectures for both
the Cartesian and polar networks. This makes applying this
framework to existing architectures very straightforward, as it
does not require designing new neural network architectures
or specific hyperparameter optimization, and allows for using
transfer learning to initialize the networks.

2) TRAINING A CENTERPOINT PREDICTOR

In the second approach for determining the optimal polar
origin, we train a model specifically tasked with predicting
the correct polar origin for each input image, which is then
used to transform the input image. The approach is shown in
Fig. 4. We do this by training a neural network based on the
stacked hourglass architecture [23] first used for human pose
estimation. Instead of training a regressor network to predict
key points in an image, the stacked hourglass architecture
uses a series of stacked encoder-decoder networks, where the
output of each stack is a heatmap centered on the key point
to be predicted. The output of each stack is fed as input into
the next stack, allowing successive refinement of the heatmap
prediction. During training, the loss of each stack’s output is
averaged to produce the final loss, allowing deep supervision.
The final prediction heatmap is the output of the last stack in
the network. To predict the center point, we use 8 stacked
hourglass blocks, which we empirically determined as the
value providing the best results. The network receives images
in Cartesian coordinates and predicts a heatmap of the image.

The ground truth heatmaps were generated by calculating
the center of mass of each ground truth label image using (4).
We then create the heatmap as an image with a 2D gaussian
with the mean on the center of mass on the image and a
standard deviation of 8 pixels for all datasets except the liver,
and 16 for the liver. Example heatmaps are shown in Fig. 5.
The optimal value for the standard deviation was determined
empirically on the validation datasets. We found that the
optimal value of the standard deviation is proportional to the
size of the object.

Additionally, during training, we use augmentation to
increase the number of training inputs. In particular, during
training each input example the following random augmenta-
tions are applied:

o A 50% chance of a horizontal flip.

o A 30% chance of a random combination of shifting up
to 6.5% of the image dimensions, scaling up to 10% and
rotating up to 45°.

o A 30% chance for a grid distortion, details of which are
described in [24].

The center-point predictor outputs 8 separate heatmaps [23].
We calculate the predicted center as the coordinates of the
pixel with the largest intensity in the heatmap predicted by
the final layer of the model. This predicted center is then used
to transform the input image to polar coordinates, and the
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FIGURE 3. A diagram of the approach of predicting polar origins from a Cartesian network. The first network performs an initial segmentation,
which is then used to extract a polar origin for the polar transformation. The method does not rely on any specific neural network architecture.
The Polar and Cartesian network can be any neural network which takes an input image and produces a binary segmentation mask as output.
The red point shows the extracted polar origin. The Polar network is trained on polar image transformations. The polar transformation is not part
of the network itself, but happens as a preprocessing step for the Polar network.
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FIGURE 4. A diagram of the approach of using a centerpoint prediction network. The first network can be any neural network which predicts a

heatmap from an input image, which is then used to extract polar origin, shown as a red point. The Polar network can be any semantic
segmentation neural network which produces a binary mask output from an input image. The Polar network is trained on polar image
transformations. The polar transformation is not part of the network itself, but happens as a preprocessing step for the Polar network.

Input

Heatmap Heatmap

Heatmap

FIGURE 5. Examples of heatmaps generated from the ground truth data.
The heatmap is a gaussian centered on the center of mass of the
ground-truth label, shown as a blue point on the input images.

Heatmap

transformed image is fed into the polar network to perform the
segmentation. Finally, the segmentation label is transformed
back to Cartesian coordinates.

lIl. EXPERIMENTS

To validate the generality of our approach, we trained a
variety of neural network architectures on multiple medi-
cal imaging datasets. In particular, we trained three differ-
ent neural network architectures: U-Net [1], U-Net++ [2]
with a ResNet encoder and DeepLabV3+ [4] with a ResNet
encoder. Notably, each dataset we use presents a problem
wherein almost all examples a single roughly elliptical object
needs to be segmented. For each dataset and network archi-
tecture combination, we train a Cartesian and polar network,
and we then perform four different experiments:
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1) testing the Cartesian network using Cartesian images

2) testing the polar network using the ground-truth polar
origin

3) testing the polar network using polar origins obtained
from predictions of the Cartesian network, as outlined
in II-C1

4) testing the polar network using polar origins from the
center-point predictor, as outlined in II-C2.

A. DATASETS DESCRIPTION

We used four different datasets to train the network. In this
section, we give an overview of each used dataset and how
it was preprocessed. Note that for training the center-point
predictor, the input images were resized to a resolution of
256 x 256, while the generated heatmaps were resized to
64 x 64 pixels. Otherwise, all preprocessing steps described
here are applied to the center-point model datasets as well.
Each dataset was normalized and zero-centered to better
facilitate network convergence.

1) POLYP DATASET

The CVC-ClinicDB dataset [25] contains 612 RGB
colonoscopy images with the resolution 288 x 384 with
labeled polyps from MICCAI 2015. We normalize each
image to a range of [—0.5, 0.5]. We use the original image
resolution to train all networks except the centerpoint net-
work. As is used in [11], we use an 80%, 10% and 10%
split for training, validation and testing datasets, respectively.
An example of the dataset is shown in Fig. 6(a).

2) LIVER DATASET
The second dataset we use is the LiTS dataset [26] from the
Liver Tumor Segmentation Challenge from MICCAI 2017.
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Ground Truth

(a) Polyp dataset
Ground Truth

(c) Liver dataset

Ground Truth

(b) Lesion dataset

Ground Truth

(d) EAT dataset

FIGURE 6. Example input images and ground-truth labels for each dataset used in our experiments.

The dataset contains 131 CT scans of patients with hepatocel-
lular carcinoma, with the liver as well as tumor lesions labeled
by experts. In our experiments, we disregard the lesion seg-
mentation labels and treat the dataset as a binary liver seg-
mentation problem. In addition, we removed all slices that did
not contain a ground-truth liver segmentation label, resulting
in a dataset of roughly 15,000 slices. Each axial slice is
thresholded to a Hounsfield scale range of [0, 200] HU that
contains the liver. Next, the slices are normalized to a [0, 1]
range and zero-centered by subtracting the global intensity of
all training slices (0.1). We then proceed to train the networks
on each axial slice separately. We use 101 scans for training,
15 scans for validation, and the remaining 15 scans for testing.
Example liver segmentation images are shown in Fig. 6(c).

3) LESION DATASET

The third dataset we use is the ISIC 2018 Lesion Boundary
Segmentation dataset [27], [28] which contains 2,694 der-
matoscopy images of skin lesions with expert labels of the
lesions from various anatomic sites and several different insti-
tutions. We resize each image to a resolution of 384 x 512
and use a training, validation and test split of 80%, 10% and
10%, respectively. This is consistent with [11]. Additionally,
we normalize each image to arange of [—0.5, 0.5]. An exam-
ple of a lesion input image and its corresponding label is
shown in Fig. 6(b).

4) EAT DATASET
Finally, we also train on a dataset of labeled EAT regions
from 20 patients’ cardiac CT scans from the Cardiac Fat
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Database [29]. The dataset has three classes labeled: the
pericardium, EAT, and pericardial adipose tissue. We dis-
regard all original labels except EAT and treat the dataset
as a binary EAT segmentation dataset. The dataset is first
split into training (10 patients), validation (5 patients), and
test (5 patients) datasets. In the original dataset, each slice is
thresholded to the adipose tissue range of [—200, —30] HU
and registered so that anatomical structures have the same
locations. In addition to these original pre-processing steps,
we normalize each slice to a [0, 1] range and zero-center the
dataset by subtracting a global mean intensity of the training
set (0.1). We then train on each CT slice separately. An input
image of the EAT dataset and its corresponding label is shown
in Fig. 6(d).

B. IMPLEMENTATION DETAILS

We use the OpenCV linear polar transformation implementa-
tion. Each model is implemented and trained using PyTorch
1.7.1 on an NVIDIA GeForce RTX 3080 GPU. For all
networks, we use the Adam optimizer with a learning rate
of 1073. A batch size of 8 was used for all networks except
the center-point model, where a batch size of 6 was used for
the lesion and liver datasets, and 8 for all remaining datasets.
We trained all models up to a maximum of 200 epochs and
used checkpoints after each epoch to store the model with the
best validation loss. We modify the Dice coefficient to act as
a loss function as shown in (5).

XN Y|+ A

DSClpgys=1— ——m—F——
loss |X|+|Y|+k

&)

VOLUME 9, 2021



M. Bencevi¢ et al.: Training on Polar Image Transformations Improves Biomedical Image Segmentation

IEEE Access

TABLE 1. Results of our proposed approaches for polyp segmentation on
the CVC-ClinicDB dataset [25] for three different neural network
architectures. The cartesian network is the network trained on Cart

TABLE 3. Results of our proposed approaches for liver segmentation on
the LiTS dataset [26] for three different neural network architectures. The

4,

images. “GT centers” refers to obtaining a polar origin from the
ground-truth labels and segmentation using the polar network. “Cartesian
centers” refers to predicting the polar origins from the Cartesian network
and then performing segmentation using the polar network. “Model
centers” refers to using the center-point predictor to obtain polar origins.

cartesian network is the network trained on Cartesian images. “GT
centers” refers to obtaining a polar origin from the ground-truth labels
and segmentation using the polar network. “Cartesian centers” refers to
predicting the polar origins from the Cartesian network and then
performing segmentation using the polar network. “Model centers” refers
to using the center-point predictor to obtain polar origins.

Segm. net.  Method DSC mloU Prec. Rec. Segm. net.  Method DSC mloU Prec. Rec.
Cartesian 0.8315 0.7604  0.8513  0.8334 Cartesian 0.8976  0.8505 0.8997  0.9201
2 GT centers 0.9484 09141 09563  0.9442 2 GT centers 0.9553  0.9227 0.9595 0.9569
5 Cart. centers 0.8973  0.8571 0.8996  0.8998 =) Cart. centers 0.9302 0.8985 0.9279  0.9429
Model centers  0.9374  0.8977  0.9488  0.9368 Model centers 09125  0.8828  0.9108  0.9219
I Cartesian 0.8356  0.7636  0.9004  0.8256 I Cartesian 0.8908 0.8463  0.8936  0.9085
E GT centers 0.9557 0.9260 09583  0.9554 E GT centers 0.9548  0.9215 0.9492  0.9661
::J Cart. centers 0.9063  0.8685  0.9243  0.9027 ::3 Cart. centers 0.9219 0.8898 09119 0.9428
é Model centers  0.9332  0.8924  0.9477  0.9321 E Model centers  0.9109  0.8795  0.9009  0.9306
& Cartesian 0.8706  0.8013  0.8857  0.8876 & Cartesian 0.8868 0.8341 0.8995 0.8959
% GT centers 0.9593  0.9296 09576  0.9682 % GT centers 09518 09171 0.9547 0.9550
é Cart. centers 0.9212 0.8823 09179 0.9397 é Cart. centers 0.9253 0.8932 0.9244 0.9361
A Model centers  0.9338  0.8967  0.9436  0.9347 A Model centers  0.9092  0.8783  0.9075 0.9199

TABLE 2. Results of our proposed approaches for lesion segmentation on
the ISIC 2018 Lesion Boundary Segmentation dataset [27], [28] for three
different neural network architectures. The cartesian network is the
network trained on Cartesian images. “GT centers” refers to obtaining a
polar origin from the ground-truth labels and segmentation using the
polar network. “Cartesian centers” refers to predicting the polar origins
from the Cartesian network and then performing segmentation using the
polar network. “Model centers” refers to using the center-point predictor
to obtain polar origins.

Segm. net.  Method DSC mloU Prec. Rec.
Cartesian 0.8256  0.7393  0.8407 0.8712
g GT centers 0.9320 0.8824  0.9261  0.9541
=) Cart. centers 0.8836  0.8317 0.8746  0.9492
Model centers  0.9224  0.8699  0.9165  0.9494
i Cartesian 0.8664 07925 0.8728  0.9122
Z GT centers 0.9439  0.9014 0.9418 0.9584
? Cart. centers 09125 0.8653 0.9075  0.9540
& Model centers  0.9253  0.8743  0.9253  0.9464
& Cartesian 0.8717  0.7984  0.8807  0.9068
% GT centers 0.9459  0.9059 0.9418  0.9632
:];_} Cart. centers 09162 0.8686 0.9097  0.9536
A Model centers  0.9235  0.8721 09125 0.9570

where X and Y are the input and predicted images, respec-
tively, and X is a smoothing parameter set to 1 in our exper-
iments. This loss function is used to train all models except
the center-point model.

The centerpoint model outputs eight heatmaps [23]. We
use a loss function that is the mean of the mean squared
errors between each of the heatmaps and the ground truth
heatmap. The code used for all experiments is available at
github.com/marinbenc/medical-polar-training.
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TABLE 4. Results of our proposed approaches for EAT segmentation on
the Cardiac Fat database [29] for three different neural network
architectures. The cartesian network is the network trained on Cartesian
images. “GT centers” refers to obtaining a polar origin from the
ground-truth labels and segmentation using the polar network. “Cartesian
centers” refers to predicting the polar origins from the Cartesian network
and then performing segmentation using the polar network. “Model
centers” refers to using the center-point predictor to obtain polar origins.

Segm. net.  Method DSC mloU Prec. Rec.
Cartesian 0.7544 05812  0.7190  0.6949
2 GT centers 0.8088  0.6607 0.7986  0.7675
=) Cart. centers 0.7835  0.6227  0.7455  0.7208
Model centers  0.7840  0.6252  0.7451  0.7302
1 Cartesian 0.3410  0.1743  0.2700  0.3294
> GT centers 0.8030  0.6827  0.7939  0.8043
= Cart. centers 0.5466  0.3980 0.5286  0.5066
& Model centers  0.7740  0.6140  0.7156  0.7453
& Cartesian 0.6380 0.4246  0.5665  0.5940
% GT centers 0.6952 05123  0.6519  0.6779
:c} Cart. centers 0.6696 04716 0.5988  0.6454
A Model centers  0.6720  0.4779  0.6070  0.6488

IV. RESULTS

We evaluate segmentation performance along with four key
metrics: the Dice coefficient (DSC), the median intersection-
over-union score (mloU), precision, and accuracy. Precision
and accuracy are both calculated pixel-wise. The results of
training the different approaches presented in III are shown
in Table 1 for polyp segmentation, Table 2 for lesion seg-
mentation, Table 3 for liver segmentation and Table 4 for
EAT segmentation. In all cases, training on polar coordinates
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FIGURE 7. The training and validation Dice coefficient (DSC) of the polar and Cartesian U-Net models during training.

TABLE 5. A comparison between our method (approach with best
results) and the state of the art on the same datasets.

Dataset  Method DSC mloU Prec. Rec.
o PraNet [16] 0.8990  0.8490 - -
= FANet [14] - 0.8937  0.9401  0.9339
A Our method 0.9374 0.8977 0.9488  0.9368
- DeepLabV3+[4]  0.8717 0.7984  0.8807  0.9068
% DoubleU-Net [11]  0.8962 0.8212  0.9459  0.8780
~ Our method 0.9253  0.8743 09253  0.9464
. U-Net[1] 0.8976  0.8505 0.8997  0.9201
E KiU-Net3D [20]  0.9423  0.8946 - -
Our method 09302 0.8985 09279  0.9429
U-Net. [1] 0.7544 05812  0.7190  0.6949
E Zhangetal. [21] 09119 08425 - ;
Our method 0.7840  0.6252 0.7451  0.7302

TABLE 6. Ablation study of our approach for the polyp dataset.

Method DSC Difference
Cartesian 0.8315 -
Polar (Cartesian origins) 0.8918 +0.0603
Polar (Centerpoint predictor) 0.9094 +0.0176
+ centerpoint augmentation 0.9288 +0.0194
+ polar network training augmentation ~ 0.9374 +0.0086

improves the segmentation in all metrics when compared to
training the same model on Cartesian coordinates. As is to be
expected, testing the polar network on images transformed
using the ground truth polar origins produces the best results.
A close second is predicting the polar origin from the center-
point predictor. Predicting polar origins from the Cartesian
model leads to less accurate polar origins, and the results
are worse, however, they are still better than using only the
Cartesian model.

We also compare our methods to other state-of-the-art
methods that use the same datasets, shown in Table 5.
We achieve state-of-the-art results for the polyp and liver
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FIGURE 8. The relationship between mean squared errors of the centers
used for the polar transformation and segmentation performance of the
polar network on the lesion dataset. The mean squared errors are
calculated compared to the ground-truth centers.
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FIGURE 9. The best Dice coefficient by epoch 50 for models trained on
subsets of the lesion training dataset.

datasets. Additionally, we achieve state-of-the-art liver seg-
mentation when compared to other per-slice methods, and
nearly state-of-the-art results when compared to 3D-based
methods. For EAT segmentation, our approach outperforms
standard medical image segmentation networks but does not
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FIGURE 10. A random sampling of inverse polar transformed predictions from the polar network with the polar origins predicted from the centerpoint
predictor for various datasets. The prediction is shown in green and overlaid on top of the original input image. EAT predictions (d) are cropped and

zoomed to better show the predictions.

achieve state-of-the-art performance due to segmenting EAT
directly and not first segmenting the pericardium.

A training graph for a polar and Cartesian U-Net-based
network is shown in Fig. 7.

Additionally, we evaluate the accuracy of the different
ways of obtaining the polar origin. This accuracy is compared
with segmentation performance in Fig. 8.

We also train several models with both polar and Carte-
sian coordinates on subsets of the training dataset. Namely,
we trained models on 25%, 50%, 75%, and 100% of the lesion
training dataset for 50 epochs. The results of this training
are shown in Fig. 9. The polar network is much more data
efficient and achieves better results than the cartesian network
even with only 25% of the data.

V. DISCUSSION

We obtain state-of-the-art results for polyp and lesion seg-
mentation by training common biomedical image segmenta-
tion models.

In the liver dataset, we achieve state-of-the-art results when
compared to other 2D methods, but 3D methods achieve the
same or slightly better results [20]. The liver dataset is by
far the largest dataset we evaluated. As such, improvements
gained from encoding localization information and reducing
dimensionality might not be as large as in smaller datasets,
since the network has enough data to learn these complex
structures. The EAT dataset is one where the task is not to find
a single object, but instead, segment multiple smaller pockets
of tissue around the heart. This task is more challenging for
common models like U-Net and requires a more complex
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approach [21]. It is possible that combining these existing
approaches, namely segmenting the pericardium first, with
training on polar coordinates would lead to an improvement
in the state of the art.

We also show that training on polar images leads to a
significant improvement in segmentation performance when
compared to training on Cartesian images for the same net-
work architecture. Additionally, as shown in Fig. 7, the polar
network portions of our approach converge in much fewer
epochs than the Cartesian networks. This is in part due
to the location information being encoded in the image
itself via the polar origin, and in part due to a possible
data dimensionality reduction, allowing the network to more
easily optimize the loss function. The polar networks are
also more robust to low dataset sample size. This is espe-
cially important in biomedical image segmentation where the
availability of large labeled datasets is often very limited.
Training curves for all of our experiments are included at
github.com/marinbenc/medical-polar-training.

Predicting the center point from the Cartesian model, while
still an improvement over the plain Cartesian network, leads
to worse results than those obtained by the center point pre-
dictor model. We conclude that segmentation is highly depen-
dent on choosing the correct polar origin. This dependency
is somewhat loosened by adding polar origin augmentation
when training the polar network.

Fig. 10 shows a random sampling of predictions from
the polar network using the center point predictor for polar
origins. Qualitatively, we conclude that the network achieves
very good segmentation results, leading to a very high overlap
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with the target object. The network successfully segments
both small and elliptical as well as large and unevenly shaped
polyps. On the lesion images, the network predicts a smooth
border when sometimes the actual border of the lesion is
rough, as shown in the left-most example on Fig. 10(b),
however, the network still does a good job of delineating
a lesion border even when the color of the lesion is very
similar to the surrounding skin. The network successfully
predicts a liver border both when the liver is very large and
very small on the image, showing good scale invariance, but
sometimes under segments the liver when multiple connected
components are needed. On the EAT dataset, the network
successfully learns to segment EAT despite its highly dis-
continuous and sparse distribution. However, the network
sometimes under segments EAT.

Finally, we also perform an ablation study shown in
Table 6. Training on the polar coordinates with the polar
origins predicted from the cartesian network yields the largest
performance improvement. Predicting the polar origin from
the center point predictor as well as adding center point
augmentation to the predictor play a roughly equally impor-
tant role in the performance. Lastly, a small performance
improvement is further achieved by using data augmentation
when training the polar network.

A potential improvement of our method is to train a single
neural network that combines the center-point predictor and
the segmentation network and is trained end-to-end. In our
approach, polar origins are always optimized towards the
center of mass of the segmented object. Training an end-
to-end network would allow the polar origins to be optimized
for that specific segmentation task. Additionally, the center
points could be obtained manually from experts, creating a
user-guided segmentation approach similar to [8]. The center
points could also be obtained by a more basic segmentation
approach like thresholding or other traditional image pro-
cessing method, leading to a possible reduction in the num-
ber of required neural network parameters to achieve good
segmentation. Furthermore, in our experiments, we found
that the segmentation is dependent on choosing the correct
standard deviation of the generated heatmaps for training the
center point predictor. An improvement to our method could
be made by developing a method to automatically estimate
the standard deviation from the training or validation data
without needing to first train the center point predictor.

VI. CONCLUSION

We explored training neural networks for biomedical
image segmentation on polar transformations on images.
We hypothesized that polar transformations would reduce
the dimensionality of the input images, and allow the net-
work to separately learn localization and fine segmentation
of an object. We showed that training time improves when
training on polar images for tasks where a single object
which is roughly elliptical in shape or distribution needs to
be segmented. Additionally, we show that training on polar
images achieves state-of-the-art results on small datasets, and
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achieves near state-of-the-art results on larger datasets using
generic low-parameter-count models like U-Net. We also
noted that choosing the correct polar origin is essential
for improving performance on polar images. Therefore, we
proposed two different ways of obtaining the polar origin
automatically from unlabeled input images. We trained a
center-point predictor which predicts a heatmap to produce a
polar origin, and showed that its performance is better than
predicting the origin from a segmentation network trained
on Cartesian images. We noted that sometimes our method
under segments in examples where multiple objects need to
be segmented.

While our approach already produces state-of-the-art
results in some cases, our results could be further improved.
Our approach can be used as a pre-processing step for existing
and future semantic segmentation methods that use neural
networks to provide additional segmentation improvement.
Therefore, it is possible that our approach could be used in a
variety of different biomedical and non-medical segmentation
applications.
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