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ABSTRACT The early diagnosis of diabetes helps in avoiding the major risks associated with the disorder.
The proposed research involves the design of a machine learning pipeline which generates the most represen-
tative feature subset of minimal size that predicts the onset of Diabetes with highest accuracy. It employs a
novel diabetes dataset which is gender-neutral and representative enough unlike the well-known PID dataset.
The machine learning pipelines involve multiple feature engineering pipelines to generate a reduced feature
subset which is fed intomultiple heterogeneous classifiers. The feature engineering involves feature selection
as well as feature extraction. The former uses the ANOVA filter and Crow Search Optimization algorithm.
The latter employs the Singular Value Decomposition. The classification is performed on the preprocessed
dataset using a wide range of heterogeneous classifiers like Naive Bayes’, Logistic Regression, K-Nearest
Neighbor, Decision Trees, Support Vector Machine, Random Forest, AdaBoost, and GradientBoost as base
learners followed by their stacking ensemble. The performance evaluation of each machine learning pipeline
is done through Repeated Stratified K-fold Cross Validation using the metrics of accuracy, precision, recall,
F1 Score and area under Receiver Operating Characteristic curve. For each pipeline, the number of features in
the preprocessed dataset varies and the highest accuracy of 98.4% is achieved with Crow Search algorithm
through a stacking ensemble of multiple heterogeneous classifiers. A comparative analysis with a recent
related work on the same dataset shows that the proposed feature engineering pipelines with the same set of
classifiers outperform with improved accuracy using a feature set of reduced size.

INDEX TERMS Early diabetes diagnosis, machine learning, stacking ensemble, feature engineering,
dimensionality reduction, crow search algorithm, ANOVA filter, singular value decomposition.

I. INTRODUCTION
A very common chronic disorder prevalent in the modern
world is Diabetes Mellitus. It has become a serious health
issue throughout the world irrespective of geographic bound-
aries. The disorder is associatedwith the insulin hormone pro-
duced by the pancreas. It occurs in one of the following forms:
Type 1, Type 2 and Gestational diabetes [1]. Type 1 diabetes
is caused when the body’s immune system causes the destruc-
tion of beta cells of the pancreas. Consequently, the body
has deficient insulin which makes the glucose absorption in
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the bloodstream difficult. Type 2 diabetes happens when the
body fails in producing insulin or becomes insulin resistant.
This is attributed to various factors like obesity, unhealthy
lifestyle and hereditary transmission. Gestational diabetes
happens due to hormonal changes in the body during preg-
nancy. It was found that Diabetes can have its existence up
to 7 years prior to clinical diagnosis [2]. The consequences
of undetected and untreated diabetes can be quite serious
which include damage of vital organs like eyes, kidneys and
heart, foot ulcers, pancreatic beta cells destruction, weight
loss and sexual dysfunction. These complications tend to be
less severe when the period between the onset of the disease
and the initiation of the treatment is as small as possible [3].
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A global survey in 2017 [4] has revealed that 451 million
people around the world are already diagnosed with diabetes
and it is predicted to rise to 693 million by the year 2045.
Yet another study [5] shows that diabetes among people over
18 years has becomemore prevalent in second and third world
countries with a rise in the growth rate of 4.7% to 8.5%
from 1980 to 2014. Another research [2] has computed the
total annual expenses of a whopping amount of $700 million
incurred by Australian healthcare system without the early
detection of type 2 diabetes. For United States of America,
the year 2017 has incurred an expense of $327 billion [6]
for the diagnosed diabetic cases. A global statistical study [7]
has found that the year 2011 had 9% of China’s population,
8% of India’s population and 10% of Bangladesh’s popu-
lation diagnosed with diabetic related complications. Look-
ing at the statistics, it is very clear that bearing the annual
expenses for low andmiddle income countries would bemore
challenging. Hence it is very imperative that the mechanisms
for the early detection of diabetes are in place which could
improve the lifespan of the people as well as help in reducing
the nation’s expenditure towards healthcare.

The most popular diagnosis methods for diabetes are Oral
Glucose Tolerance Test and Hemoglobin A1c (HbA1c) test
recommended by most physicians upon the observation of
symptoms of the disorder. A number of practical difficul-
ties are associated with performing these tests as they are
not easily affordable by all income groups as well as time
consuming and prone to human errors by the lab technicians.
A more cost effective as well as accurate approach towards
the diagnosis of diabetes would be through machine learn-
ing(ML). In this approach, the historical clinical data related
to the patients who were diagnosed positively/negatively with
diabetes is needed. Using this data, a ML model is created
to predict whether a new patient has the risk of diabetes
by looking into the data about the symptoms. Keeping this
in mind, we employ a diabetes dataset [8] of 520 instances
with 16 attributes which include the major symptoms of the
disorder.

The main contribution of this research is to design an
optimal machine learning pipeline on a novel diabetes dataset
which maximizes the classification accuracy with mini-
mal features. The pipeline design includes data preparation
along with various feature engineering techniques to gen-
erate a reduced feature subset which is processed through
multiple heterogeneous classifiers including the Naive
Bayes’ (NB) Webb et al. [9], K-Nearest Neighbor (KNN)
by Cunningham et al. [10], Logistic Regression(LR)
Tabaei et al. [11], Decision Tree (DT) Jenhani et al. [12],
Support Vector Machine(SVM) Cortes et al. [13], Gradient
Boost, Adaboost(AB) by Kégl [14], and Random Forest (RF)
by Breiman [15]. Apart from this, a stacking ensemble com-
prising the said classifiers (except RF) as base learners and the
RF as a meta learner is also employed to assess the accuracy.
The data preparation involves one-hot encoding to transform
the categorical features into numeric ones. This is followed by
data standardization using standard scaler. The transformed

dataset is subjected to the feature engineering step which
involves the usage of feature selection and feature extraction
techniques to reduce the size of feature subset.

Extensive experiments involving different combinations
of feature engineering pipelines with each of the classifiers
along with their stacking ensemble are performed so as to
minimize the size of feature subset and maximize the clas-
sification accuracy.

The paper has been organized in the following manner:
Section II covers the literature survey. Section III covers
the dataset description, proposed predictive model and met-
rics used for performance evaluation. Section IV includes
detailed analysis of the experimental results along with the
ROC curves obtained with different predictive models
employing different classifiers with optimal feature engineer-
ing pipelines. The conclusion and future work have been
presented in section V.

II. LITERATURE SURVEY
A great deal of research has been carried out in recent times
towards accurate diagnosis of diabetes using the different
ML models upon different datasets. We categorize the exist-
ing approaches based upon the criteria of the usage of feature
selection methods. It is employed during data preprocessing
so as to perform dimensionality reduction to improve the
accuracy and reduce the feature space thereby decreasing the
storage space requirements.

A. PREDICTIVE MODELING OF DIABETES WITH NO
FEATURE SELECTION
An ensemble based approach along with wrapper based fea-
ture selection method was proposed by Li et al. [16]. wherein
a combination of SVM, Artificial Neural Network(ANN)
Reinhardt et al. [17], and NB classifiers were used for dia-
betes diagnoses. Themethodwas based uponweighted voting
by assigning the weights to each classifier according to their
history of making accurate predictions. The dataset used was
Pima Indian Diabetes (PID) dataset and the method achieved
an accuracy of 80%.

A classifier based upon Genetic Programming was pro-
posed by Pradhan et al. [18] using a simplified function pool
along with different selection methods for diabetes predic-
tion. An optimal result with a maximum accuracy of 89%was
achieved with tournament selection method.

A predictive model for diabetes prediction was developed
by Naiarun et al. [19] using various classification models
including DT, ANN, LR, and NB along with combination of
Bagging and Boosting techniques. Apart from these, RF algo-
rithm was also employed and the best classification accuracy
of 85.5% was achieved with RF. The dataset was collected
from 26 Primary Care Units in Sawanpracharak Regional
Hospital during 2012 – 2013.

Diabetes prediction using the data from Canadian Pri-
mary Care Sentinel Surveillance network was done by
Perveen et al. [20]. The method used the AB and Bagging
ensemble techniques with J48 (C4.5) Decision Tree as a base
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learner along with standalone J48 algorithm. The method
involved no data preprocessing steps and the experimental
results prove that AB ensemble method has highest perfor-
mance in comparison with bagging and J48 decision tree.

A classification method employing the Gaussian Process
Classification (GPC) by Belhouari et al. [21] using the lin-
ear, polynomial and radial basis kernel was proposed by
Maniruzzaman et al. [22] for the prediction of diabetes using
the PID dataset. The usage of Gaussian Process (GP) method
was attributed to non-linearity and inherent correlation within
the medical datasets. The performance was compared with
other methods including the Linear Discriminant Analy-
sis (LDA) by McLachlan et al. [23], Quadratic Discriminant
Analysis (QDA) by Cover [24], and NB. It was found that GP
with radial basis kernel showed the highest performance with
an accuracy of 81.5%.

Yet another predictive model for the diagnosis of diabetes
using the PID dataset was proposed by Sisodia et al. [25]
wherein no data preprocessing was employed. Three
ML classifiers including the SVM, DT, and NB were
employed and the highest accuracy of 76.3% was achieved
through the NB classifier.

Another recent research by Wang et al. [26] proposed a
diabetes prediction algorithm on the PID dataset using the
techniques for filling the missing values and reducing the
influence of class imbalance on the prediction. The former
is achieved through NB method for normalizing the data
and the latter is achieved through an Adaptive Synthetic
sampling method (ADASYN). Finally, the classification is
done through the RF classifier. The performance evaluation
is done through K-fold Cross Validation and the data prepro-
cessing does not include any feature selection techniques. The
method is compared with other classifiers including the NB,
SVM, DT and RF (with no data preprocessing). The proposed
algorithm achieved the highest accuracy of 87.1%withK = 5
in K-fold CV.

A recent research by Islam et al. [8] which dealt with
early stage diagnosis of the risk of diabetes employed a
novel dataset that comprised the data about recent diabetics
or prospective diabetics. The dataset was collected through
patients at Sylhet Diabetes Hospital in Sylhet, Bangladesh.
The ML classifiers including the NB, LR, and RF were
employed. The performance evaluation was done through
the techniques of train-test split as well as K-Fold Cross
Validation. The highest performance was achieved with
RF classifier having an accuracy of 97.4%with K-Fold Cross
validation and 99% accuracy with train-test split.

B. PREDICTIVE MODELING OF DIABETES WITH FEATURE
SELECTION
Most of the ML frameworks for diabetes prediction strive to
maximize the classification accuracy with minimal features
by discarding the irrelevant features.

A method employing the feature selection along with
ensemble technique is proposed by Dewangan et al. [27]
where an ensemble of multi-layer perceptron and Bayesian

net classifiers is used along with information gain feature
selection technique. An accuracy of 81.89% was achieved
with the reduced feature subset of 6 features out of the full
feature set of 8 features in the PID dataset.

A ML framework named as Hierarchical Multi-level
classifiers Bagging with Multi-objective optimized voting
(HM-BagMoov) involving a hierarchy of heterogeneous clas-
sifiers was proposed by Bashir et al. [28] which involved
bagging and optimized weighting. The framework employed
data preprocessing steps which included noise removal, out-
lier detection, missing value imputation and feature selection.
The F-score method is employed for feature selection to
choose the most relevant features along with a threshold.
Each feature has its F-score computed and the average of the
F-score of all features decides the threshold. All features with
F-score less than the threshold are discarded. Three layered
ensemble approach is used wherein the first layer involves
NB, Linear Regression, QDA, Instance Based Learner (IBL),
and SVM. The layer-1 output is fed into layer-2 through
weighted bagging ensemble using two classifiers of ANN and
RF. Finally, in layer-3 the final prediction is done through
multi-layer weighted bagging ensemble approach.

An attempt to improve the prediction accuracy of diabetes
diagnosis approaches through ML algorithms was done by
Vaishali et al. [29]. The PID dataset was used and the fea-
ture selection was performed through Goldberg’s Genetic
algorithm by Goldberg et al. [30] and the classification
was done through an evolutionary approach employing a
multi-objective fuzzy classifier. The working principle of
the fuzzy classifier is to achieve a maximum accuracy with
minimum rules. The outcome was a reduced feature subset
which is half the size of original feature set. The train-test split
(70%-30%) method was used for performance evaluation and
an accuracy of 83% was achieved.

A classification framework aimed to achieve highest
risk stratification accuracy for diabetes was proposed by
Maniruzzaman et al. [31] wherein the PID dataset was ini-
tially subjected to data preprocessing techniques including
the missing values and outliers replacement with median
followed by feature selection through techniques like RF,
mutual information by Peng et al. [32], LR, Analysis Of Vari-
ance(ANOVA) by Howell [33], Principal Component Anal-
ysis(PCA) by Rao [34], and Fisher discriminant ratio. This
was followed by the usage of various classifiers like LDA,
QDA, NB, GPC, SVM, ANN, AB, LR, DT, and RF. It was
found that when RF algorithm is used for feature selection
as well as classification, highest accuracy of 92.26% was
achieved.

A recent research work by Kaur et al. [35] dealt with devel-
oping ML models for the detection of diabetes using the PID
dataset through the algorithms of SVM with Linear Kernel,
SVM with Radial Basis Function kernel, KNN, ANN and
Multifactor dimensionality reduction. They also employed
the wrapper feature selection algorithm called as Boruta. The
performance evaluation of the models showed that highest
accuracy of 89% was achieved with SVM linear model.
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Another recent work by Li et al. [36] on PID dataset uses
filter based feature selection method called as Coefficient of
Variation (CV) wherein the features with low dispersion are
eliminated from the model. After the filtering of irrelevant
features, two classifiers of DT and Multilayer Perceptron are
used with 10-fold cross validation.With the size of the feature
subset reduced to 4, an accuracy of 77% was achieved with
multilayer perceptron model.

Another recent work on the early detection of Dia-
betes Mellitus was proposed in [37] wherein the accuracy
was improved through a correlation based feature selec-
tion method. The classifiers employed were NB, DT, RF
and SVM. The original feature set of 15 features was reduced
to 11 features and the highest accuracy of 82.3%was achieved
with Naive Bayes’ classifier.

A robust framework employing various data preprocessing
techniques for data cleaning and feature selection along with
the usage of various ML classifiers and their ensembles
was proposed by Hasan et al. [38]. The data preprocess-
ing involved outlier rejection, filling the missing values,
data standardization. The feature selection was done
through PCA, Independent Component Analysis (ICA) by
Hyvärinen et al. [39], and Correlation-based technique by
Han et al. [40]. The classifiers used were KNN, DT, RF,
AB, NB, and XGBoost by Chen et al. [41] and Multilayer
Perceptron (MLP). The ensemble technique uses weights
for each of the models’ predictions computed based on
Area Under Receiver Operating Characteristic (ROC) Curve
(AUC) of the ML model. The best performing ensemble with
a highest AUC of 0.95 was found to be the combination of AB
and XGBoost along with the preprocessing steps of outlier
rejection and filling of missing values.

C. LIMITATIONS OF EXISTING METHODS
All of the existing methods involve ML models that achieved
amaximum accuracy within 95% andmost of them employed
the PID diabetes dataset which is restricted to female patients
with mere 8 attributes. Hence the dataset is less represen-
tative. The two main drawbacks of the existing literature
including the lower prediction accuracy as well as limited
representativeness of the input dataset are overcome in the
proposed research as follows:

The current research work utilizes the early stage dia-
betes diagnosis dataset by Islam et al. [8] available at UCI
machine learning repository. The dataset has 520 instances
and 16 attributes which contribute to the representativeness of
the dataset. The research work achieves highest accuracywith
reduced features and classification done through a wide range
of heterogeneous classifiers applied individually and also in
the form a stacking ensemble to maximize the accuracy.

III. MATERIALS AND METHODS
In this section, we present the description of the dataset used
and the different components within the proposed predictive
model representing the terms materials and methods respec-
tively. Sections III A presents the dataset description along

with the distribution of positive and negative classes across all
attributes. Section III B presents the details of the proposed
model along with various preprocessing mechanisms and the
cross validation scheme. Finally, section III C presents the
details of the hardware platform and performance evaluation
metrics.

A. DETAILS OF THE DATASET EMPLOYED
In this research, the publicly available dataset in the UCI
repository for Early diabetes diagnosis [8] was used. It con-
sists of data related to 16 different attributes collected through
a survey regarding their physical conditions. This simple
information about the various binary valued attributes can be
used for the timely diagnosis of the onset of diabetes. The
dataset contains diabetes specific symptoms collected from
520 patients. Out of the 520 instances, 320 fall under the
category of positive cases whereas 200 fall under negative
cases. It can be observed that the dataset is not unbalanced as
the imbalance ratio is 200:320 which is 5:8. Hence the per-
formance metrics employed are precision, recall, F-Measure,
Accuracy and Area under ROC Curve as these are more
suitable for balanced classification.

The data generation was done through a direct question-
naire given to people who were diagnosed with diabetes
recently as well as people who have not yet been diagnosed
despite one or more symptoms. The process of data genera-
tion was done at Sylhet Diabetes Hospital, Bangladesh. The
description of attributes and the related statistical information
are provided below. The distribution of positive and nega-
tive classes across all the 16 attributes is shown in Fig. 1
The dataset employed in the proposed research concerns
type 2 diabetes which intends to predict the likelihood of
diabetes risk at its early stage, using different symptoms of
the patients. As type 2 diabetes is an adult-onset diabetes
and it is very common in adults with obesity, prediabetes
and weakness etc., the dataset includes data related to such
symptoms that may cause diabetes.

Each feature of the dataset contributes to a symptom linked
to the onset of diabetes. As can be seen from the attribute
description in Table 1, out of 16 features, there is 1 numeric
attribute (Age) while the remaining 15 attributes are cate-
gorical. Hence, we employed one-hot encoding to convert
the categorical attributes to numeric ones. After the one-hot
encoding, the 15 categorical features are transformed into
30 numeric features (15 × 2 = 30) since each feature can
have only two values.

The feature engineering phase employed in the current
research involves various techniques using a combination of
feature extraction and feature selection. The feature selec-
tion employs ANOVA filter and Crow Search algorithm
(CSA) [42] whereas the feature extraction employs the Sin-
gular Value Decomposition technique (SVD) [43]. The fea-
ture engineering pipelines involve various combinations of
ANOVA, CSA, and SVD techniques corresponding to each
of the experiments. The outcome of preprocessing the dataset
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FIGURE 1. Class Distribution across different attributes in the dataset.
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FIGURE 1. (Continued.) Class Distribution across different attributes in the dataset.

TABLE 1. Dataset description.

with each of the feature engineering pipelines is a reduced
feature subset.

B. PROPOSED PREDICTIVE MODEL
The proposed predictive model is illustrated through
Fig. 2 and the dataflow can be explained as follows: The
data preparation is the crucial step which involves various
data transformations and feature engineeringmethods to form
various feature engineering pipelines. The data transforma-
tions include the one-hot encoding followed by data standard-
ization through standard scaling transform. This is followed
by dimensionality reduction through feature selection and
feature extraction techniques to generate a more represen-
tative and reduced feature set. The reduced feature set is
subjected to the process of generating training, validation
and test datasets through a combination of train-test split and
repeated stratified K-fold cross validation.Multiple heteroge-
neous classifiers along with their stacking ensemble are used
for training and the best model is selected using validation
dataset. The selected best model is evaluated using the test
dataset followed by reporting of evaluation metrics.

1) ONE HOT ENCODING
Most of themachine learning algorithms require numeric data
in all the input and output variables and hence the categorical
data has to be converted to numeric one. When there is no
ordinal relationship between the categorical data, the one-hot
encoding is the most appropriate.

2) STANDARDIZATION
As the performance of a machine learning algorithm is neg-
atively affected when the attributes within the dataset have
different scales, data standardization becomes important. It is
the process of rescaling the distribution of values such that
the mean has the value zero and standard deviation has the
value 1.

In the diabetic dataset used in the current research, the age
attribute is a numerical with a skewed distribution and varying
scale as compared to remaining other attributes generated
through one-hot encoding. Hence we employ the standard
scaling transform in the data preparation.

3) FEATURE SELECTION
It is a method of decreasing the feature space by selecting
most relevant input attributes that have the strongest relation-
ship with the target attribute. Having less features not only
decreases the computational and storage cost of the predic-
tive model but also increases the performance. A number of
advantages are associatedwith reducing the size of the feature
set. For instance, the overfitting of data can be reduced since
the elimination of irrelevant features implies reduction of
noise. The accuracy of model also increases since misleading
input variables has been removed. Also, the reduction in the
size of the data implies lesser time in the construction and
training of the model.

The conventional feature selection methods used in super-
vised learning come into the three categories of filter, wrap-
per and intrinsic methods. In the current work, we employ
two different types of feature selection: filter based method
and wrapper method. The feature engineering pipelines are
built using various combinations of these methods with
optimal number of features along with SVD for feature
extraction.
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FIGURE 2. Block diagram of the proposed predictive model.

a: FILTER BASED METHOD
Filter-based methods are based upon the evaluation of
the statistical relationships between the input features and
the target variable. The input features having a strong
relationship with the target variable are selected and oth-
ers are discarded. Each feature receives a score rep-
resenting the correlation with the target variable using
which filtering is done to select the most relevant
features.

The statistical measures employed for relationship evalua-
tion are based upon whether the types of input and variables
are numerical or categorical. As the dataset employed in this
research has 31 numerical features after on-hot encoding and
the target variable is categorical, we employ the anova-f value
as a statistical measure.

b: WRAPPER METHOD
Wrapper methods use different subsets of feature set and
evaluate the performance of an ML model for each subset.
A performance evaluation score is assigned to each subset and
the one with the highest score is selected. The search for the
optimal feature subset can be methodical or stochastic. The
former approach may employ a strategy like best-first search
and the latter one may employ an algorithm like random
hill-climbing.

Specifically, the wrapper method used in the proposed
framework is a bio-inspired metaheuristic method called a
crow search method. As we know, feature selection is the pro-
cess of selecting those features which maximize the accuracy
of anMLmodel, it can be treated as an optimization problem,
especially when the feature set size is large. The optimization
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function has got to minimize the size of feature subset and
the classification error. Assuming that, there are N features,
the total number of possible subsets are 2N. The search space
size increases exponentially and it is impractical to employ
a brute-force approach using an exhaustive search. Hence,
meta-heuristics are used to reduce the exploration of search
space. In this context, a number of algorithms have been
proposed which include Particle Swarm Optimization [44]
[45], Artificial Bee Colony [46], Differential Evolution [47],
Bat algorithm [48], Moth Flame.

Optimization [49], Grey Wolf Optimizer [50], Bufferfly
optimization algorithm [51], Sine Cosine Algorithm [52]
and CSA. The CSA is a recently proposed algorithm which
has gained great attention from the research community
attributed to its simplicity, ease of implementation, efficiency,
and fewer parameters.

c: CROW SEARCH ALGORITHM
The crow search algorithm is one of the recently proposed
algorithms which is bio-inspired optimization algorithms
based upon the intelligent behavior of crowswithin their flock
during the food collection. The approach has been proved to
outperform many well-known algorithms like genetic algo-
rithm and particle swarm optimization.

In the current research, the application of CSA is done
towards optimal feature subset selection for obtaining the
highest accuracy with minimal features. The implementation
of the feature selection function utilizes the baseline ver-
sion of CSA and its enhanced version termed as Enhanced
CSA (ECSA) [53] for feature selection.

Specifically, the process starts by the initialization
sub-routine which determines the initial positions for the set
of N crows. The position of each crow at any point of time
represents a solution vector and the best solution has to be
determined based upon a fitness function.

The working of CSA resembles the behavioral traits of a
crow in tapping the food resources of its peers in the flock.
There is always an ongoing survival battle within the flock
where each crow not only attempts to safeguard its own
hideout location but tail other crows for plundering their food.
There are two situations in this scenario which can arise based
upon whether the followed-up crow is aware that it is being
followed. If it is aware, then it will misdirect the follower to a
false hideout spot. Otherwise, it becomes a victim and loses
its food since its hideout spot is revealed to the follower.

The standard CSA has the entire flock distributed across
the search space of d-dimensional decision area. The position
of each crow in search space is an array of decision variables
which has to fall within the boundary of decision area. The
algorithm works iteratively where each crow attempts to
secure its own hide-out spot and find others hide-out spots.
The position of a crow i at iteration t is represented by x ti
and the best hide-out spot so far is represented by the memory
of the crow as mti . The crow i randomly selects another ran-
dom crow j to follow. The entire process is repeated iteratively
for a predetermined number of iterations to achieve the best

possible solution. This process of crow i following other peer j
is done for all crows i such that i = 1, 2, 3 . . .N , j = 1..N
and j is not equal to i.

The update to the position of crow i depends upon the
awareness of crow j and it is represented as in (1):

x t+1i =

{
x ti + ri × fl

t
i ×

(
mtj − x

t
i

)
, ri ≥ APtj

a random position, otherwise
(1)

where fl ti is the flight length of crow i at iteration t and
awareness probability of crow j at iteration t is represented
by and ri is the random number with uniform distribution in
the range [0,1].

The update of the memory of crow i based upon its new
position is done depending upon the fitness function evalu-
ated upon the new position. If the existing memory’s fitness is
lesser than the newly discovered position, then the memory is
updated with the new position, otherwise it remains the same.
Specifically, it is given as in (2):

mt+1i =

{
x t+1i , fitness(x t+1i ) > fitness(mti )
mti , otherwise

(2)

The application of CSA to the problem of feature selection
is done as follows: Initially, the lower and upper boundaries
of the search space are chosen as l and u respectively (which
are predetermined values). Then the initial positions are com-
puted as in (3):

xi,j = l − (l − u) ∗ r i = 1. . .N, and j = 1. . . d (3)

where r ε [0.1] is a randomvalue andN is the number of crows
and d is number of features/dimensions of the decision space.
The position of each crow is binarized using the sigmoid
function as in (4):

x ti,j =

{
1, Sigma(x ti ) ≥ σ
0, otherwise

(4)

where x ti,j is the continuous-valued input vector xi at dimen-
sion j and σε [0.1] is a random value which represents the
threshold. The Sigma(k) function is logistic sigmoid function
defined as in (5):

Sigma(k) =
1

1+ e−k
(5)

The solution vector corresponds to the position of each
crow in the solution space and the number of dimensions
in the decision space corresponds to the number of features
selected within the feature subset. The best solution is eval-
uated using the fitness function which is an optimization
function to be minimized. It is a combination of classification
accuracy and the number of features selected. As it is a
minimization function, the intent is to minimize the classifi-
cation error and the number of features in the feature subset.
After binarization, each solution vector comprises a sequence
of 1 and 0s with the fixed length d. The positions with
a 1 represent the features to be included from the original
feature set to form an optimal reduced size feature subset
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to be used for classification with the fitness function. The
ML algorithm used for classification through the selected
features within the fitness function is KNN. Mathematically,
the fitness function is represented as in (6):

fitness(x ti ) = α × Err(x
t
i )+ (1− α)×

|S|
|F |

(6)

where Err(x ti ) is the classification error upon the using the
reduced feature subset S obtained by applying the solution
vector x ti upon the given feature set F of the input dataset.
|S| is the size of subset S and |F | is the size of set F , α is
a parameter in [0,1] which represents the weight given to
error and (1 − α) represents the weight given to feature set
reduction.

In our implementation, we have used α value as 0.9 to
specify that the classification accuracy is given 90% weight
and feature reduction is given 10% weight. The num-
ber of crows is fixed to 10 and the number of dimen-
sions in the decision space is 31 which is the number of
features after one-hot encoding is applied to the original
dataset.

Using, the above parameters, the algorithm comprises
fixed number of iterations, represented by tmax (which is set
to 100). In each iteration, the process of each crow following
randomly chosen other peer crow is repeated for all the crows
computing the fitness value for each crow. At the end of each
iteration, the crowwith lowest fitness (classification error and
feature subset size) is saved as the optimal solution for that
iteration. After all the iterations, the optimal solutions across
all iterations are considered and the one with lowest fitness
(classification error and feature subset size) is selected as the
best solution.

The following algorithm gives the insights about the appli-
cation of CSA in the context of feature selection:

4) FEATURE EXTRACTION
It is a method of constructing new features using the given
set of original features. It is basically a data preparation step
which creates a data transform such that low dimensional data
is created from the given higher dimension data in a way that
preserves the important relationshipswithin the data. It differs
from feature selection in that, it creates an entirely new set of
features which are incomparable with the original feature set
whereas feature selection relies upon creating a subset of the
most relevant features from the given feature set.

Since there are 15 features which are one-hot encoded
(out of a total of 16), the resultant dataset is a sparse dataset.
Hence the SVD technique from linear algebra is used to
create a projection of sparse dataset before fitting the model.
It creates a projection of a sparse dataset with reduced dimen-
sions/features using which a machine learning model can
be constructed. The projection approach to feature reduction
results in a decrease in the dimensions ensuring that structural
relationships among the variables within the given dataset are
preserved.

Crow Search Algorithm (CSA) for Feature Selection
Parameter Initialization
Tmax (maximum number of iterations) = 30
Pd (Problem dimension or number of features) = 31
N (Flock size) = 10
AP (Awareness probability) = 0.1
FL (Flight length) = 2
1. Initialize randomly positions of each crow Xi

(1,2. . . Pd) for i = 1,2, . . .N using Eq. (3) followed
by binarization through Eq. (4) and Eq. (5).

2. Initialize the memory of each crowMi (1, 2, . . . .pd)
for i = 1,2..N using the positions computed in
step 1.

3. Evaluate the position of each crow using the fitness
function given in Eq (6).

4. For t = 1: Tmax
5. For i = 1: N
6. Randomly select one crow to follow
7. Update crow’s position using Eq. (1)

followed by binarization through Eq. (4)
and Eq. (5)

8. End For
9. Check feasibility of new positions according

to problem constrains
10. Assess the updated position of the crows

through the fitness function given in Eq. (6)
11. Update the memory of crow

Mi(1, 2, . . . pd) as per its
new position using Eq. (2)

12. t = t + 1
13. End For
14. Return the best solution Mi consisting of selected

features such that fitness(Mi) = max (fitness (M1,
M2, . . .MN ))

5) REPEATED STRATIFIED K FOLD CROSS VALIDATION
Cross Validation(CV) is a technique which uses resampling
to evaluate the performance of a machine learning algorithm.
It is associated with a single parameter K that represents the
number of folds or partitions of the dataset, out of which
K−1 partitions are used for training and 1 partition is used for
testing/validation. This process is repeated for each partition
until each one of them becomes a test set. For each iteration,
the accuracy/performance estimates are stored and the final
estimate across all iterations is computed as in (7):

P =
1
k
×

k∑
i=1

Pi ±

√√√√√ k∑
i=1

(Pi − P̄)2

k − 1
(7)

where P is the final performance metric, k is the number of
folds, Pi is the performance metric for the ith fold, P̄ is the
mean of the performance metric across all folds.

Usually, the CV method is used to determine the perfor-
mance of an ML model on unseen data. This is done by
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limiting the sample size and estimating the generalized per-
formance on the data not used in training. It is more popular
than its counterpart like train/test split method since it has less
bias and generates a lower optimistic estimate of the model’s
performance.

Even though K-fold cross validation is the standard
approach used for performance evaluation of ML model,
a single iteration of the K-fold CV might result in a noisy
performance estimate since varying the splits/samples of the
dataset may generate varying results. This problem can be
overcome through Repeated StratifiedK-fold CVwherein the
CV process is repeated for a specified number of iterations
such that the generation of samples for different folds ensures
that same amount of instances with a given class label appear
across all folds.

The diabetes dataset is first split into training dataset and
test dataset using train-test split method using the split per-
centage as follows: train 80% and test 20%. The training
dataset termed as ’train_val’ is subjected to repeated stratified
K-fold as the volume of the data is relatively low. Within
’train_val’ dataset, the first 25 folds are used for training
and the remaining 5 folds are used for validation to choose
the best model by computing robust performance estimates.
Following this, the tunedmodel is used upon the test dataset to
test the selected model and report the performance estimates.

The data leakage is prevented by employing a strategy of
holding back a validation dataset for the final sanity check of
the developed models. That is done by splitting the training
dataset into train and validation sets, and store away the
validation dataset. The performance evaluation of the models
is done using the validation dataset which aids in selecting the
best model. Testing of the selected model is done using the
test dataset (different from training and validation datasets)
and the evaluation metrics are reported.

The approach is more suitable for small to moderately
sized datasets due to its computational complexity. Hence it
is the most appropriate method which can be employed with
diabetes dataset used in this paper.

6) ML MODELS AND STACKING ENSEMBLE
It is a special type of ensemble machine learning algorithm
whichworks by combining the predictions ofmultiple hetero-
geneous models working at two different hierarchical levels
on the same dataset.

Usually, for a given dataset different models may be effec-
tive in different ways. The stacking ensemble attempts to
amalgamate the predictions of typically different ML models
to achieve highest accuracy than the individual models.

Even though, there are well known approaches like bag-
ging and boosting used for creating ensembles, the stacking
ensemble has a distinct approach as it employs different
MLmodels of varying kind. It employs a single model termed
as meta model to interpret the best combination of predictions
from the base models. The stacking ensemble has an archi-
tecture comprising two levels known as level 0 and level 1.
The former involves heterogeneous ML models termed as

base learners and the latter involves a single model called as
meta learner whose role is to perform the unification of base
learners’ predictions.

The level 0 models are trained on the entire dataset and
the training of the level 1 model is based upon predictions of
level 0 models upon out-of-sample data.

In other words, the level 0 models are fed with the data not
used to train them. The predictions made by them along with
the actual outputs are used as input and output pairs respec-
tively of the training data used to fit the level 1 model. In case
of classification tasks, the outputs from the level 0 models
which act as input to level 1 model are probability values or
class labels.

The preparation of training data for the level 1/meta model
is the use of k-fold cross validation upon the base models
and the use of out-of-fold predictions as the training data
of the level 1 model. The input fields of the base models’
training data can also be incorporated within the training
data of the meta model. It helps the meta model to learn the
best way of combining the base learners. Stacking ensem-
ble is most appropriate when the prediction errors of dif-
ferent base models are not highly correlated. The selected
base learners can be quite complex as well as diverse. The
best performance is usually achieved with models which
have varying assumptions about the predictive model and
use different internal representations of data like trees and
samples. It is also possible to use other ensemble algorithms
like Random Forest, Gradient Boosting, Adaboost as the
base learners. For the meta model, it is a usual practice to
use simple linear model like logistic regression for unifying
the base learners’ predictions. But the best choice of the
meta model is often dependent upon the specific dataset
and the attributes’ statistical relationship with the target
variable.

Even though, stacking ensemble’s intent is the improve-
ment in accuracy, it might not always be possible as it is
dependent upon the specific dataset’s complexity. Another
factor which affects the performance is representational capa-
bility of training data which enables further learning by uni-
fying the predictions of base learners.

Owing to these factors, it is definitely possible that base
learners performance may be equal/greater than the stack-
ing ensemble. Under these circumstances, it is best to
employ the basemodels since they involve less computational
complexity.

In the current research work, we have employed NB,
KNN, LR, DT, SVM, Gradient Boost, AdaBoost, and
RF classifiers as base learners and the meta learner is chosen
to be RF Classifier. The selection of base learners is done
empirically through extensive experimentation owing to the
fact that a stacking ensemble requires the use of a diverse
range ofmodels that make varying assumptions about the pre-
dictive modeling task such as linear models, decision trees,
support vector machines, and other ensemble algorithms such
as random forests. Through experimentation, it was found
that random forests were giving highest accuracy compared
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TABLE 2. Time complexity of feature engineering pipelines.

TABLE 3. Time complexity of ML classifiers.

to other base learners. Based on this, random forest is used as
meta learner.

7) PSEUDOCODE OF THE PROPOSED OPTIMAL MACHINE
LEARNING PIPELINE
Notations:
PEP: Preprocessing Pipeline.
FEPList: Feature Engineering Pipeline List.
SE: Stacking Ensemble.
CLPList: Classifier Pipeline List.
FET: Feature Engineering Technique.
CLT: Classification Technique.
RSKF: RepeatedStratifiedKFold.
FEP_DEF: Definition of Feature Engineering Pipeline

structure comprising the size of reduced fea-
ture subset, highest accuracy with one of the
classifier in CLPList and the full machine
learning pipeline employed.

EXP_DEF: Definition of the individual experiment
structure comprising the size of reduced fea-
ture subset, accuracy with the chosen clas-
sifier in the CLPList and the full machine
learning pipeline employed.

Method:

Input: Diabetes Dataset
Output: Minimum feature Pipeline and Maximum accuracy
Pipeline
1. Read Input Dataset
2. Transform Categorical features to numeric ones through

One-hot Encoding
3. Input Dataset -> OneHotEncoding (Input Dataset)
4. PEP -> StandardScaler
5. FEPList <- {CSA, ANOVA, SVD, ANOVA ANOVA

(25)+CSA, SVD(13), SVD(20)+CSA, SVD(13)+CSA,
SVD(9), SVD(13)+ANOVA, ANOVA(8), SVD(8),
SVD(13)+ANOVA ANOVA(10)+CSA }

6. SE -> {BaseLearners (NB, KNN, LR, SVM, DT, RF, AB,
GB), Meta Learner(RF)}

7. CLPList -> {NB, KNN, LR, SVM, DT, RF, AB, GB,
SE }

8. DEFINITION FEP_DEF: {FeatureSubsetSize, Accuracy,
MLP}

9. DEFINITION EXP_DEF: {FeatureSubsetSize,
Accuracy, MLP}

10. DECLARE FEP: Array [1..FEPList.Length] of
FEP_DEF

11. DECLARE EXP: Array [1..FEPList.Length x
CLPList.Length] of EXP_DEF

12. i <- 1
13. k <- 1
14. For each FET in FEPList do
15. FEP(i).Accuracy <- 0
16. For each CLT in CLPList do
17. EXP(k).MLP<- (PEP, FET, CLP)
18. Train-Test-Split (Dataset)-> (Train_Val, Test)
19. RSKF(repeats=3, Folds=10, Train_Val)->

(Train(25 folds), Validation(5 folds))
20. Validation(5 folds)->MLP
21. EXP(k).Accuracy <- CrossValScore

(EXP(k). MLP, Test)
22. EXP(k).FeatureSubetSize->

FEP(i).FeatureSubsetSize
23. If (EXP(k).Accuracy > FEP(i).Accuracy) then
24. FEP(i).Accuracy->EXP(k). Accuracy
25. FEP(i).MLP-> EXP(k).MLP
26. EndIf
27. k <- k +1
28. EndFor
29. i <- i + 1
30. EndFor
31. FEP_MaxAccuracy ->Max(FEP(i).Accuracy)
32. FEP_MinFeatures ->Min(FEP(i).FeatureSubsetSize)
33. For i = 1. . . .FEPList.Length do
34. If (FEP(i).Accuracy == FEP_MaxAccuarcy) then
35. Print ‘‘Max Accu Pipeline:’’ +FEP(i). MLP
36. EndIf
37. If FEP(i).FeatureSubsetSize == FEP_MinFeatures

then
38. Print ‘‘Min Featu Pipeline:’’ + FEP(i). MLP
39. EndIf
40. EndFor

8) TIME COMPLEXITY
The computation of time complexity of the above
pseudo-code requires us to consider the time complex-
ity of the individual feature engineering pipelines and
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TABLE 4. Time complexity of ML pipelines.

the individual ML classifiers employed for classification.
Tables 2, 3, and 4 give the time complexity of the indi-
vidual feature engineering pipelines, classifiers and the
ML pipelines employing the different combinations of fea-
ture engineering pipelines and the classifiers respectively.
In tables 2, 3, and 4, the symbol n represents the number of
records in the dataset (rows) and the symbol d represents the
number of dimensions/features (columns).

For the feature engineering pipelines involving ANOVA
filter and SVD, the time complexity is given in table 2 [58].
For the Crow search algorithm employed for feature selec-
tion, the time complexity computation is as follows:

t × N × d × (n× d) = O(nd2)

where t is the number of iterations and N is the number of
crows.

For the standard classifiers, NB, KNN, LR, SVM, DT, RF,
AB, and GB the time complexity is given in table 3 [59]
and [60]. For the stacking ensemble classifier, the time com-
plexity can be computed by considering time complexities of
meta-classifier and base-classifiers as follows:

Meta-Classifier ∗ (Base-Classifier1+ Base-Classifier2 +
. . . . . .+Base-Classifiern) = RF∗(NB+KNN+LR+SVM+
DT + RF + AB + GB) = knd log n ∗

(nd + nd + nd + n3+ nd log n + knd log n +
knd log n + knd log n) = O(knd log n ∗ (n3+ nd + knd
log n)) = O(kn4d log n)
For the entire pseudo-code, computational complexity can

be obtained by considering the sum of the computational
complexities of all the pipelines as follows:

O(d3 + nd2)+ O(kn4dlogn)

9) EXECUTION TIME
The execution time of the different ML pipelines is given
in table 5.

When the feature engineering pipelines are considered
individually (without any combination), it can be observed
that the feature engineering pipeline with CS has the highest
execution time due to its inherent complexity and the number
of iterations for feature selection. SVD has the second highest
execution time followed by ANOVA filter.

TABLE 5. Execution time of ML pipelines.

C. EVALUATION METRICS
The different ML models using the various proposed data
preprocessing pipelines are implemented using the Python
Programming language through the Anaconda Distribution
running on a machine with Windows 10 Operating System
and the hardware configuration as follows: Intel(R) CoreTM
i5-3210M CPU @ 2:50GHz processor with Installed RAM:
8.00 GB. Each of the experiments are evaluated through
various performance metrics including the Precision, Recall,
F-measure and Accuracy.

Area under ROC curve is also used as a performance
evaluation metric since it has the capability of predicting
the probabilities of a tuple belonging to each target class
instead of direct class prediction. Also the ROC curve is more
suitable when the dataset has balanced classification. The
points on the ROC are obtained as follows: ROC curve is
plotted using the points obtained through false positive rate
(x-axis) versus the true positive rate (y-axis) with respect to
different candidate threshold values between 0.0 and 1.0.

IV. RESULTS AND DISCUSSION
The results of various experiments employing the different
classifiers with proposed feature engineering pipelines(FEP)
is described in multiple subsections. In section IV A (row
wise analysis of Table 6), the performance evaluation of the
each of the proposed FEPs across different classifiers is pre-
sented. The classifier resulting in highest accuracy with each
pipeline is reported (highlighted in green color). Following
this, section IV B (column wise analysis of Table 6) presents
the performance evaluation of each of the classifier with
different FEPs and reports the optimal FEP for each clas-
sifier that achieves highest accuracy with minimal features
(highlighted in orange color). Section IV C and IV D include
the performance metrics like Precision, Recall, F1 Score and
Area under ROC. In section IV C, the metrics are reported
for the stacking ensemble with different FEPs. Section IV D
presents metrics for each classifier with the its respective
optimal FEP. Section IV E presents the statistical significance
tests followed by section IV F which presents the optimal
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TABLE 6. Experimental results with different feature engineering pipelines.

ML pipelines giving the best performance and section IV
G presents the comparative analysis with the related work
employing the same dataset. Finally, section IV H presents
the limitations of the proposed method.

Table 6 shows the results of the experiments employing
the different feature engineering pipelines with the different
classifiers independently and finally a stacking ensemble
utilizing these heterogeneous classifiers.

For each of the feature engineering pipeline, we have set
a threshold for the highest classification accuracy obtained
through either any of the eight classifiers or the stacking
ensemble to be 96%. Hence, it can be observed that, for
each row in table 6, the highest accuracy across all columns
is always above 96%. The design of each of the feature
engineering pipelines intends to achieve the accuracy above
the threshold of 96% with minimized feature set size. Hence
it can be observed that the successive feature engineering
pipelines within each row strive to have a feature set size
less than or equal to their predecessors while maintaining the
highest accuracy threshold.

Also, the accuracy reported for each experiment is com-
puted using the average obtained through 20 runs attributed
to the stochastic nature of the algorithms.

A. PERFORMANCE ANALYSIS OF FEATURE ENGINEERING
PIPELINES WITH DIFFERENT CLASSIFIERS
As mentioned in section III, the design criterion for the
various feature engineering pipelines is to achieve an accu-
racy above 96% with minimal sized feature subset. As can
be seen from table 6, the stacking ensemble classifier pro-
duces an accuracy of 98.12% with full feature set sized
31 features whereas the crow search based feature selection
with a stacking ensemble produces an accuracy of 98.42%
with reduced feature set sized 19 features. Apart from this,
two other feature engineering pipelines produce an accuracy
of 98.27% through stacking ensemble. The first one involves
SVD with 13 components thereby resulting in a reduced
feature set sized 13 features and the second one involves
SVD with 20 components followed by Crow Search thereby

generating a reduced feature subset of 13 features. Yet another
feature engineering pipeline produces an accuracy of 98.2%
with a stacking ensemble using a very small sized feature
subset with just 8 features. It uses SVD with 13 components
followed by ANOVA filter with 8 components.

Hence any of the above mentioned feature engineering
pipelines can be employedwith a stacking ensemble classifier
(built using various heterogeneous base learners as shown
in Fig. 2) to achieve an accuracy above 98% with reduced
feature subset.

The classification accuracy is reported for each experiment
along with the size of the feature set employed in Table 6.
It can be observed that different models achieve highest
accuracy with varying feature engineering pipelines. The
stacking ensemble provides highest accuracy for all of the
experiments except for the one where the ANOVA filter is
applied for selecting 25 features. All the classifiers except
the Gradient Boosting (GB) has improved accuracy with one
of feature engineering pipelines. The GB classifier has the
highest accuracy of 97.17% when all the 31 features are used
for classification with no feature engineering applied.

From the second row, it can be observed that there is a
significant improvement in the accuracy for all the classifiers
when Crow Search (CS) is used for feature selection.

The CS selects an average of 19 features out of 31 features
and all the classifiers show a boost in the accuracy with
the reduced feature set. The highest boost in the accuracy
is observed for SVM wherein a substantial increase of 35%
is achieved when the CS algorithm is applied for feature
selection.

When ANOVA filter is applied for feature selection with
25 features selected out of 31, the highest accuracy of 97.56%
with the random forest classifier. In the third experiment,
the feature engineering pipeline comprised the application of
ANOVA filter for the selection of 25 features followed by
CS algorithm for further feature reduction.

The average number of features chosen by the pipeline
is 13 and the highest accuracy of 97.95% is achieved with
the stacking ensemble.
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The next experiment involves the usage of SVD technique
for feature extraction out of the original feature set of 31 fea-
tures. Compared to the earlier experiment, an extraction
of 13 features through SVD results in the highest accuracy
of 98.27% with the stacking ensemble.

Subsequent experiment has the same sized reduced fea-
ture set of 13 features but this time, the pipeline comprised
feature extraction with SVD for 20 features followed by the
CS algorithm for feature selection.

The highest accuracy of this experiment remains the same
as the earlier one. Further reduction in the feature subset
size is attempted through the next experiment ensuring that
the highest accuracy does not fall below the threshold. The
pipeline employs the SVD for feature extraction with 13 fea-
tures followed by further reduction through CS algorithm.
The feature subset size is reduced to 9 features on an average
and the highest accuracy of 97.5% is achieved through stack-
ing ensemble. We tried to analyze the performance with the
same feature subset size of 9 features as the earlier experiment
with a feature engineering pipeline involving the SVD in solo
(without using the CS in succession).

It was found that the accuracy of all the classifiers was
reduced (except the NB) compared to the previous experi-
ment with the same feature subset size. For NB classifier,
there was a considerable rise of around 2% in accuracy com-
pared to the earlier experiment.

In the following experiment, feature subset size is reduced
further while maintaining the highest accuracy threshold by
using a feature engineering pipeline with SVD for feature
extraction of 13 features followed by ANOVA filter for fea-
ture selection of 8 features. The reduced feature subset size
is 8 and the highest accuracy of 98.2% is achieved. The
performance with the same sized feature subset of 8 features
obtained through SVD is found to be considerably reducing
the accuracy across all the classifiers with an amount of
around 2%.

The last experiment intends to further reduce the feature
subset size from 8 features while maintaining the highest
accuracy threshold. The feature engineering pipeline involved
SVD for feature extraction with 13 features followed by
ANOVA filter for feature selection with 10 features followed
by CS algorithm. The resulting feature set size is 6 features
which gives the highest accuracy of 97.18%with the stacking
ensemble.

B. PERFORMANCE ANALYSIS OF CLASSIFIERS WITH
DIFFERENT FEATURE ENGINEERING PIPELINES
For each classifier, we compare the highest accuracy and
the reduced feature subset size obtained through one of
the feature engineering pipelines with the corresponding
values obtained when no feature engineering is employed
(first experiment with full feature set sized 31 features).

For the NB classifier, it can be observed that the highest
accuracy of 89.61% is achieved when the ANOVA filter
is used for feature selection with 25 features. There is no
significant impact upon accuracy upon the usage of any of the

feature engineering pipelines. The KNN classifier achieves
the highest accuracy of 94.87% with ANOVA filter for the
selection of 25 features followed by the CS algorithm result-
ing in feature subset of only 13 features. It can be observed
that there is a considerable improvement of around 6% in
accuracy when compared to the classification employing no
feature engineering. (first experiment with accuracy 89.29%).

For Logistic Regression, the highest accuracy of 92.69%
is achieved in two experiments: firstly, when no feature engi-
neering is applied with full feature subset of 31 features
and secondly when feature engineering involving SVD with
13 features and ANOVA filter with 8 features is applied.
Hence the latter approach is preferable as the highest accu-
racy is obtained with a considerably smaller feature subset
involving only 8 features. The SVM classifier has the highest
improvement on accuracy when the feature engineering is
applied. It achieves the highest accuracy of 98.33% when a
pipeline of SVD with 20 features followed by CS algorithm
is used resulting in a feature subset of 13 features. This is a
drastic increase of around 36.7% in accuracy when compared
to the classification with no feature engineering.

In the Decision tree classifier, the highest accuracy
of 96.85% is achieved with CS algorithm using a reduced
feature subset of 19 features. The rise in accuracy is 0.7%
which is not very significant compared to the accuracy with
no feature engineering. The RF classifier achieves the high-
est accuracy with CS algorithm using reduced feature sub-
set size of 19 features. Compared to the first experiment,
the rise in accuracy is just 0.4% but the reduction in feature
subset size is good from 31 features to 19 features. In the
AB classifier, the highest accuracy of 96.41% is obtainedwith
SVD generating 20 features followed by the CS algorithm
resulting in a reduced feature subset of 13 features. This is a
considerable rise in accuracy of around 4% compared to the
approach with no feature engineering.

The GB classifier is the only one which shows no improve-
ment in accuracy when any of the feature engineering
pipelines are employed. It has the highest accuracy of 97.17%
obtained with no feature engineering. Finally, the stacking
ensemble classifier, obtains the highest accuracy of 98.46%
with the CS algorithm resulting in reduced feature subset
of 19 features.

C. EVALUATION METRICS FOR STACKING ENSEMBLE
WITH DIFFERENT FEATURE ENGINEERING PIPELINES
The values for the different metrics of Precision, Recall,
and F1 score is reported for the stacking ensemble using
different FEPs in Table 7. For all the FEPs, the area under
ROC is 0.99 ± 0.01.
For the Precision metric, the highest precision of for

class 0 is achieved with CS algorithm with a value of 0.99.
For class 1, the highest precision is 0.99 with SVD generating
20 features followed by CS algorithm resulting in 13 features.

For the Recall metric, the highest value for class 0 is 0.98
which is achieved with SVD generating 20 features followed
by CS algorithm resulting in 13 features. For class 1, the
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TABLE 7. Experimental results with different feature engineering pipelines through a stacking ensemble.

TABLE 8. Performance of different classifiers with optimal feature engineering pipelines.

highest recall is 0.99 with SVD generating 13 features fol-
lowed by ANOVA filter selecting 8 features resulting in
reduced feature subset of 8 features. For the f1-score metric,
the highest value for class 0 is 0.98 and the highest value
for class 1 is 0.99 which is achieved with SVD generating
13 features followed by ANOVA filter selecting 8 features.

For class 1, the highest recall is 0.99 with SVD generating
13 features followed by ANOVA filter selecting 8 features
resulting in reduced feature subset of 8 features.

For the F1-score metric, the highest value for class 0
is 0.98 and the highest value for class 1 is 0.99 which is
achieved with svd generating 13 features followed by anova
filter selecting 8 features.

D. EVALUATION METRICS FOR DIFFERENT CLASSIFIERS
WITH OPTIMAL FEATURE ENGINEERING PIPELINES
Table 8 shows the optimal performance of the different classi-
fiers with appropriate feature engineering pipelines resulting
in a reduced feature set size. The table highlights the fact
that the accuracy with each of the classifiers is improved
when feature engineering pipeline (FEP) is used. For each
performance metric, the highest value with minimal features
is highlighted with green color. For area under ROC curve,
the highest value of 0.99 is achieved with SVM using a
FEP with SVD for feature extraction with 20 features fol-
lowed by CS generating a total of 13 features. The same

model generates the highest precision of 0.99 for class 0.
For class 1, highest precision of 0.99 is obtained with RF
classifier employing a FEP with CS generating 19 features.
It also achieves the highest recall of 0.98 with class 0. For
class 1, highest recall of 0.99 is obtained with two models:
KNN classifier with FEP of ANOVA filter generating 25 fea-
tures followed by CS resulting in a total of 13 features and
SVM classifier with FEP of SVD for extracting 20 features
followed by CS resulting in a total of 13 features. The highest
value of F1-Score for class 0 and class 1 have the values
of 0.98 and 0.99 respectively using the SVM classifier with
FEP of SVD generating 20 features followed by CS resulting
in 13 features.

Fig. 5 shows the ROC curves of each of the classifier with
FEP giving the optimal performance. It can be observed that
KNNwith 13 features, SVMwith 13 features, RFwith 19 fea-
tures, AB with 13 features, GB with 31 features and Stacking
Ensemble with 19 features gives very good performance with
area under ROC (AUC) greater than or equal to 0.98 with
reduced feature set proving the efficiency of the proposed
feature engineering pipelines.

E. STATISTICAL SIGNIFICANCE TESTS
The process of model selection involves the evaluation of
different machine learning algorithms followed by their per-
formance comparison. The model which gives the best value
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TABLE 9. Experimental results of modified paired t-test.

for the performance measure is chosen. But, the difference
in the performance metric values is not real and sometimes
attributed to statistical fluke [54]. Such a problem can be
solved through a statistical hypothesis test.

As per Thomas Dietterich, the author of the widely cited
research [55] on the comparison of classifiers through statis-
tical significance tests, theMcNemar’s test [56] is specifically
recommended when there is a separate unique test dataset
being used for evaluation rather than resampling methods like
K-Fold Cross Validation involving multiple evaluations.

Another research [57] explains that in the absence of an
independent test data and the usage of resampling techniques
like cross validation, the instability due to the training on
1-1/k subset of the dataset is directly related to the perfor-
mance uncertainty of the model which can be estimated from
repeated k-fold cross validation. This can be followed by a
paired t-test.

When K-fold cross-validation is used, each ML model can
be evaluated on the same split followed by the calculation
of a score on each split. The comparison between the scores
through a paired statistical hypothesis test like the paired
student’s t-test can be performed. But, the assumption of
having independent model evaluations is not satisfied as
the training of models is done using the same data sub-
samples/folds except when the records are chosen from the
fold having hold-out data. Hence, the paired Student’s t-Test
is optimistically biased due to the lack of independence.

The modification of the paired t-test to take into considera-
tion the lack of independence can be done using an approach
proposed by Thomas Dietterich called as 5 × 2-fold cross-
validation. The implementation of this method is provided
through MLxtend library using the paired_ttest_5 × 2cv()
function. The function accepts the data and models to gen-
erate the values of t-statistic and p-value. The p-value repre-
sents the statistical significance of the difference between the
performance measures of the two models. Its current value is
compared with a value termed as alpha which represents the
threshold significance level (usually set to 0.05). Specifically,
if the p-value is less or equal to the value of alpha, the null
hypothesis meaning the same mean performance of the mod-
els is rejected which indicates that the difference in the
performance is probably real. Otherwise, the null hypothesis
cannot be rejected and any difference in the performance is
not real and it could be attributed to statistical fluke.

Table 9 below shows the p-value obtained after apply-
ing modified t-test for each pair of classifiers involving the

FIGURE 3. ML pipeline 1 with optimal performance.

FIGURE 4. ML pipeline 2 with optimal performance.

stacking ensemble and one of the remaining classifiers. Four
feature engineering pipelines which give the highest accuracy
above 98% have been chosen. It can be observed that all the
p-values are less than the 0.05 threshold thereby resulting
in the rejection of null hypothesis and proving the better
performance of stacking ensemble in comparison with other
classifiers.

F. MACHINE LEARNING PIPLEINES WITH OPTIMAL
PERFORMANCE
After thorough experimental analysis, it was found that two
ML pipelines provide the most optimal performance with the
following characteristics:

ML Pipeline1: Feature subset size 13 and accuracy
of 98.3% as shown in Fig. 3. The feature engineering with
SVD extracts 20 most representative features out of which
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FIGURE 5. ROC curve for different classifiers with their respective optimal feature engineering pipeline.
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FIGURE 5. (Continued.) ROC curve for different classifiers with their
respective optimal feature engineering pipeline.

TABLE 10. Comparative analysis of the experimental results with the
related work using the same dataset.

feature selection is done to pick 13 most relevant features
using the CS algorithm. Hence these two successive steps in
the pipeline transform the dataset into its most representative
form such that a stacking ensemble generates a classification
accuracy of 98.3% using the reduced feature subset.

ML Pipleline2: Feature Subset size and accuracy of 98.2%
as shown in Fig. 4. The feature engineering with SVD
extracts 13 most representative features out of which feature
selection is done to pick 8 most relevant features using the
ANOVA filter.

Hence these two successive steps in the pipeline transform
the dataset into its most representative for such that a stacking
ensemble generates a classification accuracy of 98.2% using
the reduced feature subset.

G. COMPARATIVE ANALYSIS WITH RELATED WORK
The performance of the proposed ML framework is com-
pared with the ML model proposed in [8] as it employs
the same diabetic dataset. Table 10 shows the result. For
all the classifiers employed in [8], our approach employing
various feature engineering pipelines gives better accuracy
with reduced feature set size.

H. LIMITATIONS OF THE PROPOSED METHOD
Some of the limitations of the proposed ML pipelines are as
follows:

i)WhenCS is employed for feature selection, the execution
time might be relatively higher owing to the higher number

of iterations in the CS algorithm for a better classification
accuracy.

ii) Even though the usage of SVD for feature extraction
provides a significant performance boost with the current
dataset, one trade-off worth noting is the loss of feature inter-
pretability. This might be a deterrent in the medical domain
where the influence of a feature upon the machine learning
model drives the following steps.

V. CONCLUSION AND FUTURE WORK
In the current research, a novel diabetes dataset from the
UCI repository is employed rather than the benchmark
PID dataset.

As the PID dataset is restricted to female patients, the intent
of the usage new dataset was to be applicable to any gender
and work towards early diagnosis by collecting simple binary
values for different attributes representing common and rare
symptoms related to the onset of diabetes.

We design various feature engineering pipelines to reduce
the feature set size while maintaining high accuracy. The
stacking ensemble has the ability to harness the skills of
multiple heterogeneous models and generate an improved
performance. Hence the proposed work employs the stacking
ensemble for the evaluation of various feature engineering
pipelines.

The highest accuracy of 98.46% was obtained with
CS algorithm for feature selection resulting in 19 features
using a stacking ensemble model. Almost same accuracy is
also achievedwith still smaller feature set size of 13 and 8 fea-
tures with feature engineering pipelines of SVD (20) +CS
and SVD (13) +Filter (8) respectively.

The proposed ML pipeline is effective on all data samples
which can be justified as follows: The performance evaluation
metrics reported for each experiment are computed using the
average obtained through 20 runs attributed to the stochastic
nature of the algorithms. The train test split followed by
repeated stratified K-fold used for generating train, validation
and test data sets ensures that each run has a unique data
samples.

The future work involves the application of the proposed
predictive models with the feature engineering pipelines
to other higher dimensional datasets which may belong to
other/medical context for accurate diagnosis with reduced
storage and computational costs.
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