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ABSTRACT For the uncertain linear systems described by the linear parameter varying (LPV) model,
a parameter-dependent open-loop model predictive control (MPC) is proposed. The controller applies a tree
trajectory to generate the vertices of uncertainty state predictions. Based on the state prediction tree, the future
free control moves are parameter-dependent, whose vertices correspond to those of state predictions. The cost
function penalizes the deviations of all the vertices of state/input from their steady-state target values. It is
shown that the offset-free property is achieved by this method. A simulation example is given to demonstrate
effectiveness of the approach.

INDEX TERMS Model predictive control, linear parameter varying model, heuristic algorithm.

I. INTRODUCTION
Model predictive control (MPC) has been widely applied
as a representative advanced process control (APC) algo-
rithm in industrial circle since 1978 [1]. Nowadays, MPC
expands to both theoretical and industrial fields to obtain
insightful results (e.g., referring to [2]–[10] for several good
algorithms). The main feature of MPC is its ability to han-
dle physical constraints and multiple variables in a system-
atic manner (i.e., pose into an receding-horizon optimization
problem). At each control interval, MPC optimizes a cost
function associated with the future state/output/input predic-
tions based on an explicit model of the system satisfying
some physical constraints, then yields a sequence of control
moves. However, only the first control move among this
sequence is implemented, and the refreshed optimization is
performed at the next control interval. Since the future predic-
tions for state/output/input are needed from the systemmodel,
the accuracy of this model is crucial for the future prediction,
which as a result, can influence the control performance.

An efficient system model should be representative for a
wide class of systems. In MPC studies, there is a widely
accepted systemmodel called linear parameter varying (LPV)
model. LPV model can include the dynamics of both nonlin-
ear and uncertain systems by the utilizing the dynamic vector
for a family of linear models [11]. Usually, thanks to the
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convexity property of the LPVmodel, applying LPVmodel in
MPC can yield the convex optimization which can be solved
very efficiently using the current optimizationmethod such as
interior point method. Another advantage for LPV model is
the local linearity for each sub-linear model, which allows for
the application of powerful linear design tools. MPC for LPV
models, with guaranteed recursive feasibility (of optimization
problem) and stability, has been referred to as the synthesis
approach. Usually, a synthesis approach is designed based the
state-or output-feedback laws (see e.g., [12]–[16]). Some free
perturbation items have been added to the state-feedback law
in order to enlarge regions of attraction [17]. The class of lin-
early parameter-dependent Lyapunov functions are proposed
for MPC of LPV model in [18], which gives rise to less con-
servative stability conditions than those arising from classical
quadratic Lyapunov functions in e.g. [19]. In [20], the authors
presented a class of nonlinearly parameterized Lyapunov
functions instrumental to the achievement of more efficient
relaxed stability conditions. In [21], an efficient algorithm
is given which constructs the maximal admissible set for
LPVs. Considering the high-speed control for constrained
LPV models, some explicit MPCs have been developed [22],
[23]. MPC for LPV models with bounded parameter varia-
tions have been investigated in [24]–[26]. In [27], the output
feedback MPC is proposed for LPV models based on the
quasi-min-max algorithm. In [28], the authors considered the
robustMPC for LPVmodels, where the scheduling parameter
of LPV model is known online (advantageous for feedback).
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Although there are excellent theoretical results in pursuing
the synthesis approaches ofMPC, they have not been reported
for wide applications in real industrial systems. Instead,
the widely applied MPC is the heuristic approach without
guaranteeing the stability and recursive feasibility. For prac-
tical applications, one of the major drawbacks with synthesis
MPC is its high computational burden, as compared with
the heuristic one. Another disadvantage of MPC synthesis
approach is its conservativeness since a min-max optimiza-
tion is usually formulated which take into account all possible
realization of the system model. Hence, the linear model is
typically addressed for heuristic MPC. However, this can be
risky for an intrinsic uncertain systems. This paper aims at
LPVmodel, with consideration of state and input constraints,
and adopts a parameter-dependent open-loop MPC scheme
based on the heuristic MPC. The proposed controller uses a
tree trajectory to forecast the vertices of future state predic-
tions, which is inspired by [29]. The optimization problem is
properly formulated as a classic quadratic programming (QP)
with the cost function involving all vertices of state predic-
tions, input predictions and steady-state targets. By solving
this QP, it yields the vertex control moves. By applying the
scheme, the computational burden is less than the synthesis
MPC and the offset-free control is achieved.
Notation: Rn is the n-dimensional Euclidean space, and

Rm×n them×n-dimensional real matrix space. For anymatrix
A, AT denotes its transpose. For the variable x, x(i|k) denotes
the value at the future time k + i, predicted at k . The symbol
? implies that the element can be deduced from the symmetry
of the matrix. A variable with ∗ as superscript indicates
that it is the optimal solution of the optimization problem.
For the column vectors x and y, [x; y] = [xT , yT ]T . The
time-dependence of MPC decision variables is often omitted
for simplicity.

II. PROBLEM STATEMENT
Consider the discrete-time LPV model, i.e.,

x(k + 1) = A(k)x(k)+ B(k)u(k),

y(k) = Cx(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rm are measurable state and input,
respectively. We assume that [A(k)|B(k)] ∈ �, for all k ≥ 0,
where

� = Co {[A1 |B1 ], [A2 |B2 ], . . . , [AL |BL] }

i.e., there exist l time-varying nonnegative combining param-
eter ωl(k), l ∈ {1, . . . ,L} such that

L∑
l=1

ωl(k) = 1, [A(k) |B(k) ] =
L∑
l=1

ωl(k) [Al |Bl ] , (2)

where [Al |Bl ] are known vertices of the polytope.
The input and state constraints are

u(k) ∈ U = {u ∈ Rm
∣∣− u ≤ u ≤ ū},

x(k + 1) ∈ X = {x ∈ Rn
∣∣− ψ ≤ 9x ≤ ψ̄}, (3)

where u := [u1, u2, . . . , um], ū := [ū1, ū2, . . . , ūm]; ψ :=
[ψ

1
, ψ

2
, . . . , ψ

q
]; ψ̄ := [ψ̄1, ψ̄2, . . . , ψ̄q]; ui > 0, ūi > 0,

i = 1 . . .m; ψ
j
> 0, ψ̄j > 0, j = 1 . . . q; 9 ∈ Rq×n.

In practice, (1) is short for

∇x(k + 1) = A(k)∇x(k)+ B(k)∇u(k). (4)

Namely, (1) neglects the symbol ∇ in (4), where ∇x =
x− xeq and ∇u = u−ueq. xeq and ueq denote the steady-state
operating points (equilibrium) of the system.

The system is said to be at steady state at time T if

xss = x(k) = x(k + 1), ∀ k ≥ T

uss = u(k) = u(k + 1), ∀ k ≥ T

yss = y(k) = y(k + 1), ∀ k ≥ T (5)

where yss, uss and xss are the steady-state targets (setpoints)
of y, u and x, respectively. Since there is no uncertainty in
matrix C , we have, at the steady state,

yss = Cxss (6)

III. THE OPEN-LOOP CONTROL PROBLEM
In this section, in order to effectively counteract the
time-varying uncertainty, an effective method is designed
which calculates the vertex control moves for all corners of
the uncertainty evolution.

Define the vertex control moves

πu =
{
u(0|k), ul0 (1|k), . . . , ulN−2...l0 (N − 1|k)

}
,

lj = 1 . . . L, j = 0 . . .N − 2,

where N is the control horizon. Note that the future control
moves are based on the vertices of the uncertain polytope.
With the increase of N , the number of vertices are increased
dramatically. Then, the corresponding vertex state predictions
are

x l0 (1|k)=Al0x(k)+ Bl0u(0|k),

x li...l0 (i+ 1|k)=Alix
li−1...l0 (i|k)+ Bliu

li−1...l0 (i|k),

i=1 . . .N−1, lj=1 . . . L, j=0 . . .N−1,

where πx =
{
x l0 (1|k), x l1l0 (2|k), . . . , x lN−1...l1l0 (N |k)

}
are

vertex state predictions.
The true control move u(i|k) for i > 0 is defined by

u(i|k) =
L∑

l0...li−1=1

((
i−1∏
h=0

ωlh (k + h)

)
uli−1...l0 (i|k)

)
,

L∑
l0...li−1=1

(
i−1∏
h=0

ωlh (k + h)

)
= 1,

i = 1 . . .N − 1 (7)

where u(i|k) is parameter-dependent, i.e., each u(i|k) is a con-
vex combination through the parameters ωlh (k + h). Accord-
ing to (1) and (7), the future state predictions are found as

x(1|k) = A(k)x(0|k)+ B(k)u(0|k)
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=

L∑
l0=1

ωl0 (k)
[
Al0x(k)+ Bl0u(0|k)

]
=

L∑
l0=1

ωl0 (k)x
l0 (1|k)

x(2|k) = A(k + 1)x(1|k)+ B(k + 1)u(1|k)

=

L∑
l1=1

ωl1 (k + 1)
[
Al1x(1|k)+ Bl1u(1|k)

]

=

L∑
l1=1

ωl1 (k + 1)
[
Al1

L∑
l0=1

ωl0 (k)x
l0 (1|k)

+Bl1

L∑
l0=1

ωl0 (k)u
l0 (1|k)

]

=

L∑
l1=1

L∑
l0=1

ωl1 (k + 1)ωl0 (k)x
l1l0 (2|k)

...

Apparently, x(i|k) belongs to polytope, i.e., (8)–(10), as
shown at the bottom of the page.

Note that since the parameters w(k) is completely
unknown, so the accurate value of state is unknown. Hence,
we utilize the vertex state predictions for MPC controller
design, where the accurate value of state is allowed to vary
in the polytope.

We define the following positive definite quadratic func-
tion with respect to vertices πx and πu as (10). In (10),
Q1,l0 ,R0,Q2,l1,l0 ,R1,l0 . . .QN ,lN−1...l1l0 ,RN−1,lN−2...l1l0 are
nonnegative weighing matrices. It is unnecessary that the
steady-state targets are always equal to the equilibrium.

The objective of the control problem is to find the control
actions that, once implemented, drive all branches (vertices)
in the tree trajectory to converge to xss and uss. Accordingly,
let vertices πx and πu be the decision variables. The opti-
mization problem at each control interval k is formulated as
a QP problem

min
πu,πx

ĴN0 (k),

s.t. (9), (11b), (11c) (11a)

− u ≤ u(0|k) ≤ ū, − u ≤ uli−1...l1l0 (i|k) ≤ ū,

i = 1 . . .N − 1, li−1 = 1 . . . L (11b)

−


ψ

ψ

...

ψ

 ≤ 9̃


x l0 (1|k)
x l1l0 (2|k)

...

x lN−1···l1l0 (N |k)

 ≤

ψ̄

ψ̄
...

ψ̄

 .
lj = 1 . . . L, j = 0 . . .N − 1 (11c)

After the optimization problem is solved, only u(0|k) is
implemented on the plant. Each diagonal block of 9̃ is9. The
approach based on the optimization problem (11) is called the
open-loop model predictive heuristic control (MPHC).


x(1|k)
x(2|k)
...

x(N |k)

 =
L∑

l0...lN−1=1


N−1∏
h=0

ωlh (k + h)


x l0 (1|k)
x l1l0 (2|k)

...

x lN−1···l1l0 (N |k)


 ,

L∑
l0...li−1=1

(
i−1∏
h=0

ωlh (k + h)

)
= 1, i = 1 . . .N ,

(8)
x l0 (1|k)
x l1l0 (2|k)

...

x lN−1···l1l0 (N |k)

 =


Al0
Al1Al0
...∏N−1

i=0 AlN−1−i

 x(k)

+


Bl0 0 · · · 0

Al1Bl0 Bl1
. . .

...
...

...
. . . 0∏N−2

i=0 AlN−1−iBl0
∏N−3

i=0 AlN−1−iBl1 · · · BlN−1




u(0|k)
ul0 (1|k)
...

ulN−2···l1l0 (N − 1|k)

 , (9)

ĴN0 (k) =
L∑

l0=1

‖Cx l0 (1|k)− yss‖2Q1,l0
+ ‖u(0|k)− uss‖2R0

+

L∑
l1=1

L∑
l0=1

‖Cx l1l0 (2|k)− yss‖2Q2,l1,l0

+

L∑
l0=1

‖ul0 (1|k)− uss‖2R1,l0
+ · · · +

L∑
lN−1=1

. . .

L∑
l1=1

L∑
l0=1

‖Cx lN−1...l1l0 (N |k)− yss‖2QN ,lN−1 ...l1l0

+

L∑
lN−2=1

. . .

L∑
l1=1

L∑
l0=1

‖ulN−2...l1l0 (N − 1|k)− uss‖2RN−1,lN−2 ...l1l0
(10)
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Remark 1: Vertex control moves, vertex state predictions
and the cost function as ĴN0 (k) are found in [29]. This
open-loop MPHC has some features, i.e., i) the computation
load is less than the synthesis MPC; ii) stability of the system
cannot be proved theoretically; iii) suppose that weighing
matrices Q• and R• are positive definite, when yss 6= 0 and
uss 6= 0, it is not easy to achieve ĴN0 (∞) = 0, i.e., there
may exist the offset. This is because usually, Cx li−1...l1l0 (N −
1|k) = yss 6= 0 cannot hold for all i = 1, 2, . . . ,N and
li−1 . . . l1l0 even if the closed-loop system is stable.

IV. AN IMPROVED OPEN-LOOP MPHC
Since we cannot give deterministic [A(k)|B(k)], usually, yss
and uss do not always satisfy the following equations:{

xss = Assxss + Bssuss
yss = Cxss

(12)

However, there is an exception, i.e., when k → ∞,
[A(k)|B(k)] can converge to the fixed [Ass|Bss]. In this
case, yss and uss in the optimization problem (11a) must
satisfy (12).

In general, in order to achieve offset-free control, we can
assume that xss and uss satisfy the steady-state nonlinear
equation

g(xss + xeq, uss + ueq) = 0, (13)

where g(·) is assumed to be Lipschitz continuous and differ-
entiable with respect to x and u in X × U, with g(0, 0) = 0.
When we obtain xss and uss from (13), we calculate (14), as
shown at the bottom of the page.

Then, the cost function ĴN0 (k) is replaced by ĴN0 (k), as
shown at the bottom of the page.

The optimization problem (11) is updated to

min
πu,πx

J̃N0 (k), (15a)

s.t. (9), (11b), (11c) (15b)

Remark 2: In [29], if ĴN0 (k) is utilized, the offset-free con-
trol is achieved because xss and uss are obtained by a special
procedure. Otherwise the proof of Theorem 5.2 in [29] must
take advantage of the cost function J̃N0 (k) in this paper.
The open-loop MPHC algorithm is summarized as follows.

Algorithm 1.
Off-line Stage:
i) Find appropriate weighing matrices Q1,l0 ,Q2,l1,l0 , . . . ,

QN ,lN−1...l1l0 , R0,R1,l0 , . . . ,RN−1,lN−2...l1l0 .
ii) Find the steady-state equations g(·) according to a given

nonlinear system. Calculate the steady-state xss and uss
in (13).

iii) Calculate x l0ss, x
l1l0
ss , . . . , x

lN−1...l1l0
ss , ul0ss, u

l1l0
ss , . . . ,

ulN−1...l1l0ss according to (14).

On-line Stage:
i) Solve optimization problem (15) and obtain optimal

control sequence π∗u and predictive state sequence π∗x .
ii) Implement u∗(0|k) into the plant.
iii) Set k = k + 1, go to i).

V. NUMERICAL EXAMPLE
A nonlinear model of a continuous stirred tank reac-
tor (CSTR) is adopted in this simulation (see Figure 1). With
constant volume, the CSTR for an exothermic, irreversible
reaction A→ B is described by

ĊA(t) =
q
V
(CAf − CA(t))− k0 exp

(
−
E/R
T (t)

)
CA(t),

Ṫ (t) =
q
V
(Tf − T (t))+

(−1H )
ρCp

k0 exp
(
−
E/R
T (t)

)
CA(t)

+
UA

VρCp
(Tc(t)− T (t)), (16)

where CA is the concentration of material A in the reactor,
T the reactor temperature, Tc the coolant stream temperature.
V and UA denote the volume of the reactor and the rate of


x l0ss
x l1l0ss
...

x lN−1···l1l0ss

 =


Al0
Al1Al0
...∏N−1

i=0 AlN−1−i

 xss +


Bl0 0 · · · 0

Al1Bl0 Bl1
. . .

...
...

...
. . . 0∏N−2

i=0 AlN−1−iBl0
∏N−3

i=0 AlN−1−iBl1 · · · BlN−1



uss
uss
...

uss

 . (14)

J̃N0 (k) =
L∑

l0=1

‖x l0 (1|k)− x l0ss‖
2
Q1,l0
+ ‖u(0|k)− uss‖2R0

+

L∑
l1=1

L∑
l0=1

‖x l1l0 (2|k)− x l1l0ss ‖
2
Q2,l1,l0

+

L∑
l0=1

‖ul0 (1|k)− uss‖2R1,l0
+ · · · +

L∑
lN−1=1

. . .

L∑
l1=1

L∑
l0=1

‖x lN−1...l1l0 (N |k)− x lN−1...l1l0ss ‖
2
QN ,lN−1 ...l1l0

+

L∑
lN−2=1

. . .

L∑
l1=1

L∑
l0=1

‖ulN−2...l1l0 (N − 1|k)− uss‖2RN−1,lN−2 ...l1l0
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FIGURE 1. Continuous stirred-tank reactorsR.

heat input, respectively. k0, E , and 1H denote the preex-
ponential constant, the activation energy, and the enthalpy
of the reaction, respectively. Cp and ρ stand for the heat
capacity and density of the fluid in the reactor, respectively.
The objective is to regulate T by manipulating Tc satisfying
328 K ≤ Tc ≤ 348 K.

Denote the non-zero equilibrium as {Ceq
A ,T

eq,T eq
c }.

Choose Ceq
A = 0.5 mol/l, T eq

= 350 K, T eq
c = 338 K,

340 K ≤ T ≤ 360 K, 0 ≤ CA ≤ 1 mol/l, q = 100 l/min,
CAf = 0.9 mol/l, Tf = 350 K, V = 100 l, ρ = 1000 g/l,

Cp = 0.239 J/(g K), 1H = −2.5 × 104 J/mol, E/R =
8750 K, k0 = 3.456× 1010 min−1, UA = 5× 104 J/(min K).

Define x =
[
CA − C

eq
A , T − T

eq
]T , u = Tc − T eq

c .
Denote the bounds on u and x as u ≤ u ≤ ū (−10 ≤ u ≤ 10),
x1 ≤ x1 ≤ x̄1 (−0.5 ≤ x1 ≤ 0.5), and x2 ≤ x2 ≤ x̄2 (−10 ≤
x2 ≤ 10).

Define

ϕ1(x2) = k0 exp
(
−

E/R
x2 + T eq

)
,

ϕ2(x2) = k0

[
exp

(
−

E/R
x2 + T eq

)
− exp

(
−
E/R
T eq

)]
Ceq
A

1
x2
,

ϕ01 = [ϕ1(x2)+ ϕ1(x̄2)]/2,

ϕ02 = [ϕ2(x2)+ ϕ2(x̄2)]/2, g1(x2) = ϕ1(x2)− ϕ01 ,

g2(x2) = ϕ2(x2)− ϕ02 ,

h1 =
1
2
g1(x2)− g1(x2)
g1(x̄2)− g1(x2)

, h2 =
1
2
g1(x̄2)− g1(x2)
g1(x̄2)− g1(x2)

,

h3 =
1
2
g2(x2)− g2(x2)
g2(x̄2)− g2(x2)

, h4 =
1
2
g2(x̄2)− g2(x2)
g2(x̄2)− g2(x2)

.

Then (16) can be exactly represented by

x(t) = Ã(t)x(t)+ B̃(t)u(t),

Ã(t) =
4∑
l=1

ωl(t)Ãl, B̃(t) =
4∑
l=1

ωl(t)B̃l, (17)

where Ã1–Ã4 and B̃1, as shown at the bottom of the page.
By discretizing the continuous system (17) with sampling

period Ts = 0.05min, we obtain the discrete-time LPV
model, i.e.,

A1 =
[
0.8837 − 0.0011
6.9390 0.9645

]
, A2=

[
0.9568 − 0.0011
−0.70853 0.96459

]
,

Ã1 =


−

q
V
− ϕ01 − 2g1(x̄2) − ϕ02

(−1H )
ρCp

ϕ01 + 2
(−1H )
ρCp

g1(x̄2) −
q
V
−

UA
VρCp

+
(−1H )
ρCp

ϕ02

 ,

Ã2 =


−

q
V
− ϕ01 − 2g1(x2) − ϕ02

(−1H )
ρCp

ϕ01 + 2
(−1H )
ρCp

g1(x2) −
q
V
−

UA
VρCp

+
(−1H )
ρCp

ϕ02

 ,

Ã3 =


−

q
V
− ϕ01 − ϕ02 − 2g2(x̄2)

(−1H )
ρCp

ϕ01 −
q
V
−

UA
VρCp

+
(−1H )
ρCp

ϕ02 + 2
(−1H )
ρCp

g2(x̄2)

 ,

Ã4 =


−

q
V
− ϕ01 − ϕ02 − 2g2(x2)

(−1H )
ρCp

ϕ01 −
q
V
−

UA
VρCp

+
(−1H )
ρCp

ϕ02 + 2
(−1H )
ρCp

g2(x2)

 ,
B̃1 = B̃2 = B̃3 = B̃4 =

 0
UA

VρCp


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FIGURE 2. State responses.

FIGURE 3. Control input.

TABLE 1. Computational time.

A3 =
[
0.9202 − 0.0018
3.1152 1.0368

]
, A4=

[
0.9202 − 0.0005
3.1152 0.8922

]
,

B1 = B2 = B3 = B4 =
[

0
0.1046

]
.

Base on (16), letting ĊA = 0 and Ṫ = 0, we obtain
the steady-state model g(xss, uss) of (16). Choose the input
steady-state setpoint T ssc = 330, and find Css

A ,T
ss satisfy-

ing (13), i.e., Css
A = 0.693,T ss = 343.465. Thus, we have

xss = [0.135;−9.982], uss = −8. Choose the initial state
x(0) = [0.3; 3], N = 5.

To illustrate the effectiveness of the proposed approach,
we take the synthesis MPC in [30] which also uses the tree
trajectory approach for comparison. The simulation results
are shown in Figures 2 and 3. From the figures we find
that the values of the input and state finally converge to
the steady-state setpoints, while the deviations between the
actual steady-state values and the steady-state setpoints are
zero. This reveals that the offset-free property is achieved.

However, since [30] needs to guarantee the stability and
considers all possible realization of the system model in
the robust worst-case manner, optimization inevitably suffers
from high computational burden (see Table 1).

VI. CONCLUSION
In this paper, a parameter-dependent open-loop MPC for
LPV model is investigated. The controller utilizes a tree
trajectory to predict the vertices of future state predictions.
Based on these predictions, the optimization problem is trans-
formed into a QP involving all vertices of state predictions,
input predictions and steady-state targets. Under this scheme,
the offset-free control is achieved with a low computational
burden.

REFERENCES
[1] J. Richalet, A. Rault, J. L. Testud, and J. Papon, ‘‘Model predictive heuristic

control: Applications to industrial processes,’’ Automatica, vol. 14, no. 5,
pp. 413–428, 1978.

[2] D. Q. Mayne, ‘‘Model predictive control: Recent developments and future
promise,’’ Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[3] P. D. Christofides, R. Scattolini, D. M. de la Peña, and J. Liu,
‘‘Distributed model predictive control: A tutorial review and future
research directions,’’ Comput. Chem. Eng., vol. 51, pp. 21–41, Apr. 2013.

[4] M. Ellis, H. Durand, and P. D. Christofides, ‘‘A tutorial review of economic
model predictive control methods,’’ J. Process Control, vol. 24, no. 8,
pp. 1156–1178, Aug. 2014.

[5] R. Scattolini, ‘‘Architectures for distributed and hierarchical model predic-
tive control—A review,’’ J. Process Control, vol. 19, no. 5, pp. 723–731,
May 2009.

[6] H. Li and W. Yan, ‘‘Receding horizon control based consensus scheme
in general linear multi-agent systems,’’ Automatica, vol. 56, pp. 12–18,
Jun. 2015.

[7] J. Zhao, Y. Zhu, and R. Patwardhan, ‘‘Identification of k-step-ahead pre-
diction error model and MPC control,’’ J. Process Control, vol. 24, no. 1,
pp. 48–56, Jan. 2014.

[8] M.-C. Fan, Z. Chen, and H.-T. Zhang, ‘‘Semi-global consensus of nonlin-
ear second-ordermulti-agent systemswithmeasurement output feedback,’’
IEEE Trans. Autom. Control, vol. 59, no. 8, pp. 2222–2227, Aug. 2014.

[9] X. J. Liu, D. Jiang, and K. Y. Lee, ‘‘Quasi-min-max fuzzy MPC of UTSG
water level based on off-line invariant set,’’ IEEE Trans. Nucl. Sci., vol. 62,
no. 5, pp. 2266–2272, Oct. 2015.

[10] Y. Zheng, S. Li, and H. Qiu, ‘‘Distributed model predictive control for
large-scale systems,’’ IEEE Trans. Control Syst. Technol., vol. 21, no. 3,
pp. 991–998, 2013.

[11] J. Belikov, U. Kotta, and M. Tonso, ‘‘Comparison of LPV and nonlinear
system theory: A realization problem,’’ Syst. & Control Lett., vol. 64, no. 1,
pp. 72–78, 2014.

[12] D.-F. He, H. Huang, and Q.-X. Chen, ‘‘Quasi-min–max MPC for
constrained nonlinear systems with guaranteed input-to-state stability,’’
J. Franklin Inst., vol. 351, no. 6, pp. 3405–3423, Jun. 2014.

[13] T. Zou and S. Li, ‘‘Stabilization via extended nonquadratic bound-
edness for constrained nonlinear systems in Takagi–Sugeno’s form,’’
J. Franklin Inst., vol. 348, no. 10, pp. 2849–2862, Dec. 2011.

[14] W. Yang, G. Feng, and T. Zhang, ‘‘Robust model predictive control for
discrete-time takagi-sugeno fuzzy systems with structured uncertainties
and persistent disturbances,’’ IEEE Trans. Fuzzy Syst., vol. 22, no. 5,
pp. 1213–1228, Oct. 2014.

[15] Y. Zou, J. Lam,Y.Niu, andD. Li, ‘‘Constrained predictive control synthesis
for quantized systems with Markovian data loss,’’ Automatica, vol. 55,
pp. 217–225, Apr. 2015.

[16] J. Hu and B. Ding, ‘‘An efficient offline implementation for output feed-
back min-max MPC,’’ Int. J. Robust Nonlinear Control, vol. 29, no. 2,
pp. 492–506, Jan. 2019.

[17] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, ‘‘Efficient robust
predictive control,’’ IEEE Trans. Autom. Control, vol. 45, no. 8,
pp. 1454–1549, Aug. 2000.

VOLUME 9, 2021 135369



X. Zan et al.: Heuristic Parameter-Dependent Open-Loop MPC

[18] W. J. Mao, ‘‘Robust stabilization of uncertain time-varying discrete sys-
tems and comments on an improved approach for constrained robust model
predictive control,’’ Automatica, vol. 39, no. 6, pp. 1109–1112, 2003.

[19] Y. Lu and Y. Arkun, ‘‘Quasi-min-max MPC algorithms for LPV systems,’’
Automatica, vol. 36, no. 4, pp. 527–540, 2000.

[20] E. Garone and A. Casavola, ‘‘Receding horizon control strategies for
constrained LPV systems based on a class of nonlinearly parameter-
ized Lyapunov functions,’’ IEEE Trans. Autom. Control, vol. 3, no. 1,
pp. 2354–2360, Sep. 2012.

[21] B. Pluymers, J. Rossiter, and B. Moor, ‘‘The efficient computation of
polyhedral invariant sets for linear systems with polytopic uncertainty,’’
in Proc. Amer. Control Conf., 2005, pp. 804–809.

[22] T. Besselmann, J. Löfberg, and M. Morari, ‘‘Explicit MPC for LPV sys-
tems: Stability and optimality,’’ IEEE Trans. Autom. Control, vol. 3, no. 1,
pp. 2322–2332, Sep. 2012.

[23] J. Zhang and X. Xiu, ‘‘K-d tree based approach for point location problem
in explicit model predictive control,’’ J. Franklin Inst., vol. 355, no. 13,
pp. 5431–5451, 2018.

[24] P. Park and S. C. Jeong, ‘‘Constrained RHC for LPV systems with bounded
rates of parameter variations,’’ Automatica, vol. 40, no. 5, pp. 865–872,
2004.

[25] D. Li andY. Xi, ‘‘The feedback robustMPC for LPV systemswith bounded
rates of parameter changes,’’ IEEE Trans. Autom. Control, vol. 55, no. 2,
pp. 503–507, Feb. 2010.

[26] P. Zheng, D. Li, Y. Xi, and J. Zhang, ‘‘Improved model prediction and
RMPC design for LPV systems with bounded parameter changes,’’ Auto-
matica, vol. 49, no. 12, pp. 3695–3699, 2013.

[27] J. H. Park, T. H. Kim, and T. Sugie, ‘‘Output feedback model predictive
control for LPV systems based on quasi-min-max algorithm,’’ Automatica,
vol. 47, no. 9, pp. 2052–2058, 2011.

[28] S. Yu, C. Böhm, H. Chen, and F. Allgöwer, ‘‘Model predictive control of
constrained LPV systems,’’ Int. J. Control, vol. 85, no. 6, pp. 671–683,
2012.

[29] Y. J. Wang and J. B. Rawlings, ‘‘A new robust model predictive control
method I: Theory and computation,’’ J. Process Control, vol. 14, no. 3,
pp. 231–247, Apr. 2004.

[30] B. Ding, ‘‘Properties of parameter-dependent open-loopMPC for uncertain
systems with polytopic description,’’ Asian J. Control, vol. 12, no. 1,
pp. 58–70, 2010.

XIN ZAN was born in Heilongjiang, China.
He received the M.S. and Ph.D. degrees
from Xi’an Jiaotong University, Xi’an, China,
in 2001 and 2011, respectively. From July 2013 to
August 2014, he was as a Visiting Scholar
at the CE-CERT Laboratory, University of
Riverside, CA, USA. Since September 2002,
he has been a Lecture with Xi’an Jiaotong Univer-
sity. His research interests include predictive con-
trol, robotics navigation and control, and computer
vision.

LU JIN received the B.S. degree from Anyang
Normal University, Henan, China, in 2020. She
is currently pursuing the M.S. degree in con-
trol engineering with the School of Automation,
Chongqing University of Posts and Telecommu-
nications. Her main research interest includes
multi-energy flow systems.

JUN WANG (Member, IEEE) was born in
Hubei, China. He received the Ph.D. degree
from Xi’an Jiaotong University, Xi’an, China,
in 2020. He is currently a Lecturer with the
College of Automation, Chongqing University of
Posts and Telecommunications, Chongqing. His
main research interests include model predictive
control, cyber-physical systems, and multi-energy
flow systems.

135370 VOLUME 9, 2021


