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ABSTRACT A cluster deduplication system can coordinate the work of multiple nodes, which can better
alleviate the disk index bottleneck existing in the large-scale data backup system. However, there is a problem
of isolated islands of information among nodes during data deduplication. When the servers use the query
mode to route data, a large amount of system overhead is required to ensure a high deduplication rate and
low throughput rate. At the same time, while the servers cannot obtain a higher deduplication rate if the
servers adopt the stateless routing method. Data routing strategy can greatly affect the overall performance
of the system. The concept of data frequency is proposed in this paper, and the classified routing strategy
is designed. In the metadata server, a byte-shaped Bloom filter for recording the occurrence frequency
of data blocks is maintained to record the occurrence frequency of data blocks. The values in the Bloom
filter are counted. Then the frequency of the data blocks is compared with the configured threshold value
to determine whether the data is ‘‘hot data’’. We use stateful routing to send ‘‘clod data’’ to the storage
nodes and use stateless routing to send the hot data to the storage nodes. Experimental results show that the
classifying routing algorithm based on the frequency of data can greatly reduce the overhead of the system
while guaranteeing the deduplication rate of the deduplication system as well as improve system throughput
and real-time processing capabilities. Compared with the fully stateful routing scheme, our method only
loses less than 2% of the deduplication rate, which reduces the communication query overhead by more than
25% and improves the real-time processing capability of the storage system.

INDEX TERMS Data frequency, classified routing strategy, data deduplication, load balancing.

I. INTRODUCTION
With the rapid development of Internet technology and the
advent of big data, the total amount of digital information in
the world is growing exponentially. According to the statistics
of the Internet Data Center Business (IDC), a market research
organization, as early as 2010, the total global data volume
has exceeded 1.8ZB [1]. In 2015, IDC predicted that the
annual growth rate of the global data volume would remain
at 50% in the future. By 2025, the total amount of global
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data will reach 175ZB, 22 times that of 2011. Among them,
my country’s data volume will reach 8.6ZB, accounting for
about 21% of the world’s [2]. The figure indicates that we
have to manage a larger scale of data in the future, we will
have to manage a larger scale of data. Figure 1 shows the
amount of global digital information in recent years and
expected in 2025.

Big data refers to the large scale of the data set’s capac-
ity which is difficult to store, analyze and process by the
traditional technical methods. The big data has brought new
challenges to the existing storage systems on the capac-
ity, maintainability, throughput performance, scalability, and
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FIGURE 1. The total amount of global digital information between
2010 and 2025 and expected in 2025.

reliability. For the great demand on the storage space for
big data, it is necessary to eliminate redundancy on which
saving data and optimizing the use of storage space can effec-
tively alleviate the pressure on storage capacity. The existing
technologies to eliminate redundant data mainly include data
compression [3], [36], [39], [40]–[45] and data deduplica-
tion [4], [37], [38], [46]. In the above two technologies,
data compression refers to a technology that uses fewer bits
of storage to express the original data by using encoding
methods. However, although the data compression algorithms
can effectively reduce the size of data, this technology has
relatively strict space limitations. Using data compression for
two files with the same content will still get two identical
compressed encoded files. Further complete the reduction of
stored data. The difference is that data deduplication technol-
ogy is a technology that discovers and eliminates duplicate
content in the data stream to improve data storage efficiency
and reduce data storage costs [32], [47]–[49]. This tech-
nology reduces the data storage occupancy of the system
by eliminating duplicate data in the data stream and only
retaining the data that appears for the first time.

In enterprises, it is necessary to adopt some traditional
backup technologies to improve the security of the system,
such as periodic backup and snapshot technologies. These
technologies increase the data redundancy in the storage
space and make the amount of duplicate data in the storage
system reaching more than 90% [5], [50]. These duplicate
data increase the cost of data storage and processing. The
disk-based backup system with the deduplication function
can first delete the duplicate data to achieve data compression,
thereby greatly reducing the cost of data storage. Therefore,
research on data deduplication technology is necessary.

When processing massive amounts of data, a single-node
deduplication system has limited computing power and stor-
age space. Therefore, there is a disk index bottleneck problem
in the system, which cannot meet the deduplication require-
ments of massive data. Cluster data deduplication technology
based on cloud storage systems is a new research field in
recent years [3]–[6]. This technology builds a data dedu-
plication system in the form of a cluster, which can use
multiple nodes to coordinate work simultaneously and better
alleviate large-scale disk index bottleneck problems in the
data backup system. However, when the cluster deduplication
system performs deduplication, there is a problem of islands
of information among nodes. In order to achieve complete
data deduplication, it is necessary to detect duplicate data

within the entire storage system. The entire storage system
cluster often contains hundreds or thousands of nodes, which
makes it impossible to check whether there is duplicate data
in the entire storage system. Node deduplication technology
cannot be directly applied to this environment, and further
research on deduplication technology in a distributed cluster
environment is needed.

In a cluster deduplication system, multiple nodes cooper-
ate to complete the task of deduplication and data backup.
Because of the large number of nodes, it is impossible to
detect duplicate data within the scope of the entire system.
For duplicate data detection on a node basis, there may be the
same data between different storage nodes, so there is a large
amount of duplicate data between nodes, resulting in a low
deduplication rate of the entire deduplication system. It is the
so-called information island problem between nodes. In this
regard, according to the EMC proposal, by using query-style
stateful routing, the storage node is queried to ensure that
the data to be stored is sent to the most appropriate node for
processing before routing data. However, this kind of stateful
routine has a large amount of overhead and a low throughput
rate, which affects the deduplication performance of the clus-
ter. Through our research, we found that in the process of data
deduplication, some ‘‘hot data’’ recurred more frequently,
while the other ‘‘cold data’’ recurred less frequently. Due to
many repetitions of hot data, stateless routing can also achieve
a higher deduplication rate. In contrast, stateful routing can no
longer achieve a large increase in deduplication rate but will
waste a lot of communication and query overhead. Therefore,
the routing strategy studied in this paper reduces the loss
of the deduplication rate in the cluster environment, mini-
mizes the system’s calculation and communication overhead,
and improves the throughput rate and the system’s real-time
processing capabilities.

This article mainly proposes a classification routing
scheme based on the frequency of data. Because there are
also two eight rules in the storage field, a small number of
commonly used data will appear more frequently, while most
of the less commonly used data appear more frequently low.
Therefore, this article uses statistical methods to distinguish
and process data based on the frequency of data. For cold data,
the program uses stateful routing to ensure its deduplication
rate; for hot data, the program uses stateless routing. Meth-
ods to reduce calculation and query overhead and increase
throughput, thereby improving the overall performance of the
system.

II. RELATED WORK
HYDRAstor [7] is a deduplication cluster. It uses 64KB data
blocks as the granularity, routes them to different dedupli-
cation server nodes based on a distributed hash table, and
completes deduplication within the nodes according to the
block granularity. This technology uses block granularity to
better balance the deduplication rate and data overhead and
obtain a higher throughput rate. However, it fails to detect
similar data by using the locality of the data flow in the cluster
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deduplication system. The granularity of data blocks larger
results in a relatively low deduplication rate when deduplica-
tion is performed inside the node. Based on the working prin-
ciple of the HYDRAstor architecture, researchers designed
the HydraFS [10] file system. When this file system uses
64KB data blocks as the routing granularity, the throughput
per second can reach more than 100 megabytes.

Bhagwat et al. designed an Extreme Binning technol-
ogy [8]. This technology uses the file as the basic unit in the
routing process, performs block processing on the file, uses
the SHA1 hash algorithm to calculate the fingerprint of each
block, and then selects the smallest fingerprint value among
all the block fingerprint values in the file as the file feature
are used in subsequent routing decisions. The limit binning
method mainly uses a stateless data routing mechanism based
on the similarity of files. However, when the similarity in
the data stream is not easy to detect, it will greatly affect
the deduplication rate of the system, considering the uneven
distribution of the file size, the routing mechanism cannot
achieve a good load balance between nodes. Changes in data
deduplication rate will also be affected.

In order to avoid occupying a large amount of memory
space and achieve a better data deduplication effect, Sparse
Indexing uses a part of the fingerprint index sequence to
represent the fingerprint collection of the entire data stream
by sampling. However, these two methods strongly depend
on the locality of the data flow.

The DEBAR [9] system is a distributed data de-duplication
scheme proposed based on the DDFS scheme to increase
the system capacity. Regarding the solution adopted by the
previous deduplication system, although cache prefetching
technology and bloom filters can reduce most of the block
index disk lookups, it is still inevitable that there will be some
random disk I/O overhead.

The ChunkStash scheme [17] specifically improves the hit
rate of random disk reads and writes, thereby increasing the
throughput of the system. This solution mainly adds a level
of Flash Memory between the traditional RAM and DISK,
which is equivalent to a caching mechanism. Because Flash
has a good read and writes speed, the metadata search speed
can be improved. The results show that it is better than ordi-
nary disk-based. The index deduplication system can improve
the throughput of several to several tens of times. Due to the
use of Flash Memory, algorithms and data structures that use
Flash memory and Flash memory perception are proposed in
the solution to obtain faster index queries. However, since the
random update of the Flash memory is quite low, this article
overcomes the random update of the Flash by converting
the random update of the Flash memory into an extended
operation of the Log structure.

PretecTier [14] technology and the routing scheme pro-
posed by EMC. Among them, EMC uses the principle of
data locality to propose a routing strategy based on Super-
chunk [15]. It divides the data stream into data blocks
and then assembles multiple consecutive data blocks into
superblocks. The superblock is used as the basic unit of

routing processing to maintain locality [16] and supports
the cluster deduplication system. Scalability. In the storage
node, data deduplication is performed according tomore fine-
grained data blocks to increase the data deduplication rate.
This scheme can obtain a high deduplication rate under the
premise of maintaining a balanced data distribution. How-
ever, similar to the broadcast system communication over-
head and frequent block fingerprint query, it seriously affects
the deduplication performance of the cluster [18], [19].

Due to the exponential growth of the total amount of global
digital information, single-node deduplication systems have
become increasingly unable to meet the needs of large-scale
data processing, and cluster deduplication technologies have
emerged. While the cluster deduplication system alleviates
the disk bottleneck problem, it also brings information islands
between nodes. In order to query more storage nodes and
eliminate more duplicate data, the system needs to pay a
lot of communication and query overhead, which affects the
overall performance of the system. At the same time, when
the cluster is performing data distribution, it is also necessary
to ensure load balance among storage nodes as much as possi-
ble. The above problems can be effectively solved by studying
and using appropriate data routing strategies. Therefore, the
research in this area has important theoretical significance
and application value for the development and application
of storage technology. This paper takes the twenty-eight rule
existing in the storage field as a research entry point. In order
to reduce the query communication overhead of stateful rout-
ing in the cluster deduplication system, the concept of data
frequency is introduced, and a classification routing strategy
based on data frequency is proposed. In order to alleviate the
problem of load imbalance, the classification routing strategy
is improved, and the concept of stateless admission threshold
is used to dynamically control the routing admission condi-
tions of each storage node to avoid the blind aggregation of
some high-frequency data and obtain a more uniform load-
distribution result.

III. CLASSIFICATION ROUTING STRATEGY BASED
ON DATA FREQUENCY
An efficient data routing strategy is the key to a cluster
deduplication systemwith good indicators including ensuring
a high deduplication rate, low system overhead, high through-
put, and load balancing. However, it is difficult to balance
the indicators as some conflicts occurred among them. There
are conflicts between these indicators, so they need to be
focused on. In the scheme proposed by EMC, to increase the
deduplication rate of the deduplication system, the stateful
routing used has a high cost, which affects the deduplication
performance of the cluster. Although stateless routing reduces
the cost, it cannot be guaranteed a deduplication rate. Accord-
ing to the twenty-eight rule in the storage field, the study
found that by distinguishing the frequency of data occurrence,
the part of the data that appears more frequently due to a
large number of repetitions, even if stateless routing is used,
the deduplication rate can be obtained. It is guaranteed that
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stateful routing can no longer achieve a large increase in the
deduplication rate. The continued use of stateful routing will
waste a lot of communication and query overhead. There-
fore, the statistics of the frequency of data blocks proposes
data frequency. Taking the data frequency as a parameter,
a data routing strategy in the deduplication cluster based on
frequency is designed. This solution maintains a byte bloom
filter and a frequency array that records the frequency of
data blocks in the server node, which is used to determine
whether the data is ‘‘hot data’’, and uses query-style stateful
routing for cold data Send to the deduplication node and send
the hotspot data to the deduplication node using a stateless
routing method.

A. SYSTEM STRUCTURE
The architecture of the deduplication cluster backup system
used in this article is shown in Figure 2. The system is mainly
composed of a client, a metadata server, and a cluster of
storage nodes. The client is responsible for the following
tasks including collecting user backup data, dividing the data
into blocks separately, making up the superblock, completing
the calculation of fingerprints, selecting the characteristic
fingerprints, sending the superblock and its fingerprint infor-
mation to the metadata server.

FIGURE 2. Cluster backup system architecture.

The metadata server is also a front-end processor or server
node, which is responsible for sending the data blocks of
the client to the corresponding nodes in the storage node
cluster to complete data backup. The server node maintains a
byte bloom filter. This byte bloom filter records how often
the processed data block fingerprint hits the bloom filter,
it represents the frequency of the data block. According to
this frequency, determine the routing strategy for sending
data blocks and fingerprints to different storage nodes on the
backend for backup. Server nodes are mainly used to main-
tain frequency information of data block fingerprints, load
information of storage nodes, and adopt different data routing

strategies. It does not require many computing resources. The
system can use one or more server nodes according to the
distribution of client nodes.

The storage node cluster is composed of multiple storage
nodes, that is, data servers. Each storage node is equivalent
to a data storage layer in a single deduplication system archi-
tecture and is responsible for data backup. Each storage node
maintains a Bloom Filter and it is the part of the fingerprint
caches in the memory aimed at quick finding if the fingerprint
of the data block exists. When the storage node receives
the superblock to be processed, it first divides it into small
data blocks before assembly according to fixed-length blocks
and then queries the fingerprints of these data blocks. First,
look up the fingerprint cache to see if the fingerprint exists.
If it does not exist, continue to query Bloom Filter. If the
fingerprint of the data block to be processed already exists,
it indicates that this is a duplicate data block and can be
deleted. If the fingerprint cannot be found in the Bloom Filter,
it indicates a new data block, store the data block and update
the Bloom Filter at the same time.

B. CLASSIFICATION ROUTING STRATEGY BASED
ON THE FREQUENCY
1) BYTE BLOOM FILTER
In this paper, the routing of data blocks needs to be based on
the frequency information of the data blocks. The improved
bloom filter, that is, the byte bloom filter, is used at the server
node to maintain the frequency information of the fingerprint
of the data block. Bloom filter is a data structure proposed
by Burton Howard Bloom in 1970 to store data in the form
of a bitmap, which can quickly determine a specified data
object [20], [21]. Its basic structure is shown in Figure 3,
including a bitmap with a length of m and k independent hash
functions, in which the value range of each hash function h(x)
is 1 to m.

FIGURE 3. The structure of the bloom filter.

When using a Bloom filter, first initialize all its bits to 0.
For each element x, calculate the corresponding k hash func-
tion values and use these hash functions in the Bloom filter
respectively. The bit where the value is located is assigned the
value 1. Judging whether a certain element x belongs to this
set, it is also implemented according to the k hash function
values in the Bloom filter. If the values of these bits are all 1,
then x may belong to this set; otherwise, it can be determined
that the element x does not belong to the object set.
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The byte-type Bloom filter used by the server node is a
modification of the Bloom filter, and its structure is shown
in Figure 4.

FIGURE 4. The structure of byte bloom filter.

The difference with the Bloom filter is that the data struc-
ture used by the byte Bloom filter is a Byte array instead of
the original bitmap. When describing the object collection,
the bits of this Byte array is also initialized to 0. The update
method is as follows:Whenever a block fingerprint is mapped
to the corresponding bit, we take the self-increment operation
of this bit instead of the original bloomfilter. The operation of
setting the bit to 1, in this way, the value of the bit in the array
indicates to some extent the frequency of the corresponding
data block fingerprint, as for judging whether a certain data
block fingerprint x exists, as long as the unit’s value ismapped
to it is non-zero. If all bit units corresponding to x are greater
than 0, which means that the data block fingerprint may
already exist in the object set; otherwise, it can be determined
that the data block fingerprint x does not exist. At this time,
the value on the bit is automatically incremented, and then the
data block is processed accordingly.

2) FREQUENCY ARRAY
The frequency information of the data block required in this
article can be stored by byte-type Bloom filters, and how to
use the frequency information needs to use a frequency array
to complete. The specific structure of the frequency array is
shown in Table 1.

TABLE 1. Frequency array table.

Since the byte bloom filter we use is a Byte array with
a length of 100 million, it contains 100 million byte bits,
and the maximum value that can be counted by each byte bit
without exceeding 127, the maintained frequency array is an
array of length 128. In the frequency array, the value of each
bit with a non-zero frequency is initialized to 0. The value
of the bit with a frequency of 0 is initialized to the length
of the byte bloom filter, here is 100 million, whenever the
data block fingerprint is maintained if the byte bloom filter

of the frequency information is updated, and the frequency
array is also updated at the same time. The specific update
method is as follows: When a byte bit of the byte bloom
filter performs an auto-increment operation, the value of the
byte bit changes from count to count+1, and the frequency
subscript in the frequency array is the bit of count. The
value is subtracted by one, and the value of the digit whose
frequency subscript is count+1 is added by one so that the
total value of each bit of the entire frequency array remains
100 million.

The main function of the frequency array is to provide a
threshold for distinguishing hot data from cold data. When
the frequency information corresponding to the characteristic
fingerprint information of the data block is greater than the
set threshold, the data block corresponding to the frequency
information can be determined as hot data. Accordingly,
the frequency information corresponding to the characteristic
fingerprint information of the data block is smaller than the
threshold data. The block is determined to be cold data.
The method for determining the threshold is: arrange the
frequency array from low to high frequency (the frequency
is 0 is not included) and select the top P% of the sum of the
values of each bit of the frequency array, where P follows
the route. The progress of the process changes dynamically.
Since all storage nodes are empty during the routing startup
process, stateless routing must be used for each block, and
P is approximately 100 at this time. As the routing process
deepens, P gradually decreases and finally stabilizes at about
20. When the value of P is determined, the highest frequency
included in this part of the range can be used as the threshold,
and the frequency range is the non-hot spot data range. The
corresponding part higher than this frequency range is the
hotspot data range. Since the threshold value will continue to
increase with the number of processed data blocks, it satisfies
the formula (3-1). A threshold is a threshold, ChunkNum
is the number of superblocks that have been processed,
the threshold is proportional to the number of routing data
blocks, and x is the proportional coefficient. For each data
block to be processed, read the frequency information of the
bit hit by the byte bloomfilter in which is located, and observe
which range it is in to determine whether it is hot data.

threshold =
ChunkNum

x
(3-1)

3) FEATURE FINGERPRINT SAMPLING
When performing stateful routing of data, if all the block
fingerprints of the superblock are sent to all storage nodes for
fingerprint search and matching, then the system overhead
will be huge, and it will also bring many storage nodes.
The disk I/O read and write overhead seriously affects the
efficiency of the system and causes the performance of the
deduplication system to decrease. For this problem, the cur-
rent better way to deal with this problem is to sample the
data that needs to be routed, select a set of characteristic
fingerprints as the routing standard for routing data, and send
it to each storage node, and then use the similar matching
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situation of the characteristic fingerprints to indicate this The
hit condition of the superblock determines the target node of
the superblock routing.

FIGURE 5. Selection of characteristic fingerprint set.

As shown in Figure 5, to select a representative set of char-
acteristic fingerprints, it is necessary to perform fingerprint
sampling on the data block fingerprints in the superblock.
First, the superblock is further divided into the data stream,
and a superblock containing thousands of data blocks is
subdivided into multiple continuous area blocks. We call
such area blocks Boxes. Each box contains a fixed number
of chunks. These chunks also retain the original locality in
the superblock. According to Broder’s theorem, the smallest
block fingerprint in each box is selected as the character-
istic fingerprint of the box. The characteristic fingerprints
of multiple boxes form a characteristic fingerprint set, and
this set is regarded as the characteristic fingerprint set of the
superblock. Since each element in the characteristic finger-
print set is the smallest block fingerprint of the Box to which
it belongs, the characteristic fingerprint set composed of
multiple smallest block fingerprints can represent the entire
superblock.

4) DATA ROUTING
The processing flow of the DRDF algorithm is shown
in Figures 6. First, after the client collects the user backup
data, it divides the data into blocks with a fixed-length block
method. It selects thousands of consecutive data blocks to
form a superblock, which is further subdivided into multiple
boxes. Then the fingerprint is calculated for each data block
in the Box, and the characteristic fingerprint is selected for
the Box; that is, the smallest one is selected. The smallest
block fingerprint set selected from all boxes in the superblock
is used as the fingerprint list information of the superblock,
and the superblock is sent to the server node at the same
time. At this point, the client’s data processing work is com-
pleted. Then, when the server node processes the received
data block, the DRDF algorithm first reads the characteristic
fingerprint information in the superblock fingerprint list and
selects the smallest value among the multiple characteristic
fingerprints as the representative block fingerprint of the
entire superblock. The hash function used is mapped to the
corresponding byte position of the byte bloom filter to find
whether the fingerprint exists in the byte bloom filter and

the value of the byte position, that is, the frequency of the
fingerprint value.

FIGURE 6. DRDF algorithm processing flow chart.

The byte bloom filter still has the problem of misjudgment
because the possibility of each element being misjudged is
very slight, as the number of bits of the byte bloom filter
increases, this possibility will It is further reduced, and the
occurrence of hash collisions is random, so the impact of
this misjudgment is ignored in the DRDF scheme. When
the Bloom filter uses multiple hash functions, the frequency
information of the byte bits mapped to each of the hash
functions is different, the following formula (3-2). To deter-
mine the frequency value corresponding to the representative
block fingerprint. BF.h(x) represents the frequency value of
the corresponding bit of the Bloom filter mapped to each data
block fingerprint x using the hash function h(x).The subscript
n represents the use of the nth hash function, n is generally 3 to
5, which can be calculated by the number of bits of the Bloom
filter and the control misjudgment rate.BF.hreal(x) represents
the true frequency of the fingerprint of the data block, that is,
the result of selecting multiple hash function mappings. The
smallest value among them is regarded as the true frequency
value. At the same time, the status information of the Bloom
filter and the frequency array must be updated.

BF .hreal(x)=min(BF .h1(x),BF .h2(x), . . .BF .hn(x)) (3-2)

After obtaining the fingerprint value frequency of the
representative block of the superblock, which determined
whether the data block is hot data according to the hot data
judging method in the previous section. For data blocks that
have been determined to be cold data, the server node adopts
a query-style stateful routing strategy. By sending the char-
acteristic fingerprint set of the superblock to the storage node
cluster, the node with the highest similarity to the fingerprint
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set is obtained. Then the superblock to be routed is sent
to the node for deduplication and data storage. For a data
block determined to be hot data, the server node performs a
hash modulus on its representative fingerprint. The result of
the modulus is the node serial number of the storage node.
According to the modulus result, the superblock is directly
sent to the corresponding. Storage nodes can be deduplicated
and stored by the node.

The specific algorithm pseudo-code of the classification
routing algorithm based on data frequency is as follows.

Classification Routing Algorithm Based on Data Fre-
quency(DRDF)
Input: SuperChunks, NumOfNodes, StorageNodes
Output: aimNode
1: chunkFrequency=ByteBF.get(SuperChunk);
2: thresholdFrequency=ByteBF.get(SuperChunks);
3: if chunkFrequency=thresholdFrequency then
4: minChunkID=findMininumChunkID(SuperChunks);
5: aimNode=minChunkID%numofNodes;
6: else
7: aimNode=maxHitRatioNode(SuperChunks.FeartrureChunk,

StroageNodes);
8: end if
9: return aimNode;

The SuperChunks to be processed, the number of storage
nodes and the load information of each storage node are the
input of the algorithm, and the target node is the output after
the algorithm is processed.

IV. EXPERIMENTAL EVALUATION
A. SYSTEM SIMULATION
In the system simulation experiment, several Java classes are
written to simulate the entire deduplication system cluster.
Specifically, it contains a server master node for distributing
data. The implementation class of this node is mainly used
to execute data routing algorithms. The program implements
the DRDF algorithm and the Stateful Stateless algorithm
based on the smallest block in the EMC solution. The data
routing algorithm processes the input data stream and routes
each data block to the corresponding storage node. The other
part of the system simulation experiment contains multiple
storage nodes. Each Java class simulates a node. Each Java
class implements the doQuery() and doDedup() methods,
which are responsible for querying the stored data finger-
prints and routing the node. The data to this node is dedu-
plicated. During node deduplication, the existing duplicate
data blocks are deleted, and only the data that appears for the
first time is stored. There is also a program about data block
preprocessing in the simulation experiment. This program is
mainly responsible for the preprocessing of the input data
stream, such as the fixed-length block of the file, etc. The
size of the divided data block is 4KB, and the data is divided
into 1000 pieces. Blocks are assembled into a superblock
as a unit, and a box of the superblock is composed of 100
consecutive data blocks. At the same time, the data block
preprocessing program calculates the fingerprint value for

each data block and selects the smallest block in this part of
the data block as the representative block of the superblock,
and selects the smallest block fingerprint of each Box to
form the characteristic fingerprint set of the superblock. And
then hand over the superblock to the server master node for
processing.

B. DATA SET AND EVALUATION INDEX
During the experiment, to evaluate the effect of the classifi-
cation routing algorithm based on data frequency, the exper-
iment used the source code documents of different Linux
kernel versions as the test data set. The specific content is
shown in Table 2.

TABLE 2. Data set.

The experiment uses the following evaluation indicators:
(1) Deduplication rate: When the system completes the

deduplication operation, the ratio of the deleted part to the
total part before being deleted. The calculation formula (4-1)
is as follows.

Rdr =
Rd − Ad
Rd

(4-1)

where:
Rdr—deduplication rate;
Rd—the total amount of raw data;
Ad—the total amount of data remaining after

deduplication.
(2) The running logic time of the algorithm: the time

required from the start of the routing algorithm program of
the server node to the completion of data block fingerprint
allocation and duplicate fingerprint deletion.

(3) System routing query communication overhead: the
number of times the data block fingerprints are queried from
the start to the end of the server node routing algorithm
program. Here, the number of data block fingerprints used
for the query is used as the evaluation index.

C. EXPERIMENTAL RESULTS
The experiment first uses a single-node deduplication system
to perform global deduplication, and the repetition rate of
the data set used is about 88.39%. Then tested the dedu-
plication rate of deduplication clusters in the environment
with a different number of nodes without performing fea-
ture fingerprint sampling on the superblock and compared
the classification routing algorithm based on data frequency
(DRDF), the stateful routing of EMC scheme, and Stateless
routing, and other methods use the deduplication rate when
the number of nodes in the deduplication cluster is 1, 3, 7,
15, 31, 63, and 127. Choosing these nodes is because they
are multiples of 2 minuses 1, which is good for hashing the
routing data.
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FIGURE 7. Comparison of algorithm deduplication rate.

Figure 7 shows the deduplication rate between the state-
ful EMC-stateful, stateless EMC-stateless, and DRMF [19]
algorithms based on the EMC scheme and the data frequency-
based classification routing algorithm DRDF.

Because single-node deduplication can find all duplicate
data blocks, other solutions cannot do this and can only detect
duplicate data in each storage node. For this reason, there
will be duplicate data between nodes, so the deduplication
rate of the DRDF and EMC scheme algorithms will be lower
than the actual duplication rate of the data set, that is, lower
than the deduplication rate of the single-node deduplication
system.

The data in Figure 7 shows that the deduplication rate of
the EMC scheme’s stateful routing algorithm has the highest
deduplication rate compared to other distributed dedupli-
cation systems in different cluster sizes. With the gradual
increase in nodes, the deduplication rate of DRDF andDRMF
algorithm and EMC-stateful is always close and remains
above 80%. EMC-stateful has the highest deduplication rate,
DRDF; compared with the DRMF algorithm, the deduplica-
tion rate of the former is slightly lower, but the difference does
not exceed 0.6%. To control the load and storage status of
some overloaded nodes during data routing; each superblock
cannot be sent to the storage node that maximizes the dedu-
plication effect, resulting in a decrease in the deduplication
rate. Therefore, the classified routing algorithm based on data
frequency can better route similar data to the same node and
can almost achieve the effect of a stateful routing algorithm.

Figure 8 shows the logic time comparison of the DRDF
and DRMF [19] and EMC stateful and stateless routing algo-
rithms for processing about 11million fingerprint data. EMC-
stateful has to query storage nodes every time routing data,
so it needs more time overhead. With the increase of the clus-
ter size, the number of nodes to be queried is increasing, and
the logic time of the algorithm running is basically about the
nodes. The logarithm of the number increases exponentially.
EMC-stateless uses stateless routing, so the time required is
the least. Stateless routing does not incur query costs as the
number of nodes increases; the running time of the entire
algorithm is maintained at a stable level. The DRDF algo-
rithm uses stateful routing for most non-hotspot data and only

FIGURE 8. Comparison of the algorithm running logic time.

uses stateless routing for some of the hotspot data. Hence,
the required system running time is between the two, which
is closer but slightly lower than the stateful routing algorithm.

With the increase of the number of nodes, when the DRMF
routing algorithm is used, the load data tilt rate of the system
is getting larger and larger, which means that some heavy-
loaded nodes need to process more and more data, It is easy
to cause the node or even the entire The data of the congested
system. When using the DRDF algorithm, the load data tilt
rate of the system also increases with the number of nodes,
but it is greatly improved compared to the DRMF algorithm,
which reduces the load pressure on the heavily loaded nodes
as shown in Figure 8.

The experiment further tested the deduplication rate of
the deduplication cluster in the environment with a different
number of nodes after using the DRDF algorithm to sample
the characteristic fingerprint of the superblock, and the com-
parison with that before sampling is shown in Figure 9.

FIGURE 9. Comparison of deduplication rate before and after sampling
by DRDF algorithm.

It can be seen from the figure that when the number of
nodes is small, the deduplication rate of the DRDF algo-
rithm before and after sampling is similar. As the number
of nodes increases, the DRDF algorithm only performs sim-
ilarity matching on the feature fingerprints after sampling.
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Unable to obtain the optimal matching node of the entire
superblock, resulting in a slight drop in the system’s dedu-
plication rate, maintained at a level within 0.5%.

Similarly, the experiment also tested the logic time of the
algorithm in the environment with a different number of
nodes after using the DRDF algorithm to sample the char-
acteristic fingerprint of the superblock. The comparison with
that before the sampling is shown in Figure 10.

FIGURE 10. Comparison of running logic time before and after DRDF
algorithm sampling.

Figure 10 shows that the running logic time of the DRDF
algorithm after sampling has been greatly reduced. When the
number of nodes is small, the fingerprint query time overhead
of the system itself is very small. Due to the logic running
time of the overall system algorithm Less, the reduced fin-
gerprint query time overhead as sampling is not obvious.
With the increase of the number of nodes, the logic time
of the algorithm before and after sampling of the DRDF
algorithm shows a linear increase. However, the gap between
the required running time before and after sampling is getting
bigger and bigger.

FIGURE 11. Load distribution after 31 node deduplication.

The experiment also tested the data distribution of the
cluster under different node scales. From Figure 11, we can
see that the 31-node cluster deduplication system uses the
DRMF algorithm and the DRDF algorithm to deduplicate

the fingerprints of each storage node, that is, the load dis-
tribution. It can be seen from the figure that when we use
the DRMF algorithm when the deduplication process is com-
pleted, nodes 17 and 19 are respectively distributed with the
maximum load and minimum load data; and the difference
is nearly doubled. After using the DRDF algorithm, this
difference has been reduced. It can be seen that the DRDF
algorithm can make the load distribution more even than the
DRMF algorithm, and the standard deviation of a load of each
node of the entire cluster deduplication system is smaller,
indicating that the algorithm reduces the excessive load or
excessive load after adopting the load balancing guarantee
strategy. The generation of lightly loaded nodes.

Since the running time of the algorithm is not only related
to the time it takes to query the storage node or the memory
index lookup of each storage node, but also other factors such
as the response of the storage node itself or some of the logic
of the algorithm itself, so the algorithm running logic time
is used It is not accurate enough to judge the cost between
different routing algorithms. Therefore, we use the system’s
routing query communication overhead as another indicator
to evaluate the system overhead. The specific performance is
how many data block fingerprints have been sent to the node
query operation before routing during the routing process.
The comparison is shown in Table 3.

TABLE 3. Comparison of routing query communication overhead of
different algorithms under num nodes.

In the same data set, using stateless routing does not require
querying storage nodes but directly routing to the correspond-
ing node based on the feature of fingerprint hash, so the
solution does not require query overhead. Stateful routing
uses a query method for each superblock. The number of data
block fingerprints queried is the product of the number of
superblocks, the number of data blocks in each superblock,
and the number of nodes. In contrast, the DRDF scheme only
queries data blocks with a low frequency of data concen-
tration. It uses a method of routing data blocks with a high
frequency to the storage node according to the superblock
feature fingerprint hash, so the whole process is only Among
them, 8,234 queries of storage nodes were performed. The
cost was reduced by about 25% compared with stateful rout-
ing. After sampling the characteristic fingerprints, the DRDF
algorithm only performs fingerprint query operations on the
ten characteristic fingerprints in each superblock, so the over-
head is only 1% of the pre-sampling cost.

Experimental results show that as the node size of the dedu-
plication cluster increases from 1 to 127, the DRDF algorithm
runs logic when the system’s deduplication rate is only less
than 2% lower than EMC’s stateful routing algorithm. The
time cost is slightly lower than that of the stateful routing
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algorithm. Only less than 75% of the number of superblocks
in the complete stateful routing scheme is used in the query
routing of the superblock, which also improves the through-
put rate to a certain extent. Thereby improving the real-time
processing capability of the deduplication system. Achieved
the goal of reducing system overhead without reducing the
deduplication rate too much.

V. CONCLUSION
This paper proposes a new classification routing algorithm
based on data frequency. This algorithm greatly reduces sys-
tem query and communication overhead at the expense of a
low deduplication rate and improves system throughput and
real-time processing capabilities. The experimental results
show that the DRDF algorithm based on data frequency for
routing compared to the stateful routing algorithm proposed
by the EMC scheme has a difference in the deduplication
rate within two percentages. The algorithm logic time of the
system is slightly reduced. The corresponding query commu-
nication overhead is also reduced by more than 25%, which
improves the real-time processing capability of the storage
system. As the cluster size increases, the deduplication rate
of the DRDF algorithm also tends to stabilize, indicating that
the algorithm has certain scalability. Therefore, the DRDF
algorithm is an effective data routing algorithm in a data
deduplication cluster.

In the improved classification routing scheme in this arti-
cle, a certain load balance is ensured by querying the load
status information of the storage nodes. However, the load
balancing here mainly refers to controlling the actual stor-
age of data by each storage node to be equivalent, that is,
the actual physical load. Rather than instantaneous processing
traffic load. In further research, the real-time traffic of each
node can be counted, and the storage node with larger traffic
can be diverted to the storage node with smaller traffic,
thereby improving the performance of the system.
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