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ABSTRACT Energy consumption has risen to be a bottleneck in wireless sensor networks. This is caused by
the challenges faced by these networks due to their tiny sensor nodes that have limited memory storage, small
battery capacity, limited processing capability, and bandwidth. Data compression has been used to reduce
energy consumption and improve network lifetime, as it reduces data size before it can be forwarded from
the sensing node to the sink node in the network. In this paper, a survey and comparison of currently available
data compression techniques in wireless sensor networks are conducted. Suitable sets of criteria are defined
to classify existing data compression algorithms. An adaptive lossless data compression algorithm (ALDC)
is analyzed through MATLAB coding and simulation from the reviewed data compression techniques.
The analysis aims to discover strategies that can be used to reduce the amount of data further before it
is transmitted. From this analysis, it was discovered that encoding residue samples, rather than raw data
samples, reduced the bitstream from 112 bits to a range of 30 to 36 bits depending on the sample block sizes.
The average length of data samples to be passed to the encoder was minimized from the original 14 bits per
symbol to 1.125 bits per symbol. This demonstrated a 0.875 code efficiency or redundancy. It resulted in an
energy saving of 67.8% to 73.2%. This work further proposes a data compression algorithm that encodes the
residue samples with fewer bits than the ALDC algorithm. The algorithm reduced the bitstream to 26 bits.
The average length of the code is equal to the entropy of the data samples, demonstrating zero redundancy
and an improved energy saving of 76.8% compared to ALDC. The proposed algorithm, therefore, shows
improved energy efficiency through data compression.
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MP3 MPEG Audio Layer 3.

MPEG  Moving Pictures Experts Group.
MSTP  Minimum Spanning Tree Projection.
NB-IoT Narrow Band Internet of Things.

QoS Quality of Service.

RIP Restricted Isometry Property.
RSS Received Signal Strength.
SNR Signal to Noise Ratio.

SR Sampling ratio.

S-LZW  LZW for Sensor Nodes.
TTL Time To Live.

WAN Wide Area Network.
WSN Wireless Sensor Network.

WSS Wireless Sensor System.

I. INTRODUCTION

Large-scale data collection for many applications can
be made possible by deploying wireless sensor net-
works (WSNs) through continuous monitoring. Healthcare
and well-being monitoring, surveillance, environmental mon-
itoring, precise and intelligent agriculture, seismic, industrial,
and structural monitoring are examples of application areas
covered in wireless sensor networks [1]-[5].

WSNs are created by combining wireless sensor nodes with
wireless networks. The sensor nodes independently organize
themselves and can randomly be deployed in large numbers
over a field of interest. They can monitor events within the
field and use radio communication to report events’ informa-
tion to a base point or sink node. Each node is housed with
a sensor, battery, processor unit, communication unit, and
memory unit. With the advent of technology development,
the sensor nodes have since been reduced in size to tiny
elements that suffer limitations in terms of memory, battery
size, bandwidth, and processing capability. Typical structures
of a wireless sensor node and a wireless sensor network are
demonstrated in Fig. 1a and 1b.

Communication in a wireless sensor network is made
possible by applying short-distance, low-power wireless
communication technologies such as Bluetooth, Zigbee,
Wireless Hart, and many others. The WSN lifetime thus
strongly depends on the lifetime of the sensor node’s battery.
Since the battery is very small, strategic management of
power in a WSN is of primary concern and needs to be applied
to ensure a prolonged network lifetime [2].

Energy consumption in a WSN is experienced during sens-
ing, processing, and communication of data. Receiving and
data transmission consumes more energy than data process-
ing. A data management structure is needed to resolve any
data conflicts that may occur during data collection from
different sensors. It is vital to minimize the loss of data during
this process. Low power sensor batteries cannot be practi-
cally replaced or re-charged since the sensors are deployed
in huge numbers and sometimes inaccessible. This raises
the need to monitor energy consumption or management
and devise strategic techniques for saving energy in WSNs.
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FIGURE 1. (a) A wireless sensor node structure. (b) A wireless sensor
network.

This paper intends to address this energy consumption issue
which threatens the WSN life span. The approach taken by
this work to address this energy consumption challenge is to
reduce the size of data before it is transmitted and to employ
efficient means of transmitting this data across the network
and eventually to its destination or sink. This can be achieved
through data compression, the application of efficient data
aggregation techniques, and efficient routing techniques.

With data aggregation, data packets are combined through
different ways of routing. This is achieved by manipulating
some extracted features and statistics of sets of data col-
lected from sensor nodes like the minimum, maximum and/or
mean and then forwarding them to the sink. For efficient
data aggregation, a routing algorithm and data compression
techniques are needed [6], [7]. An efficient data compression
algorithm should reduce the size of the data and compress
data using fewer resources. The data user characteristics must
be considered when compressing data. Irrelevant data can be
eliminated depending on the ability of the user to perceive or
use such data [8].

Data compression has proved to be an efficient energy-
saving scheme that reduces the amount of data to be sent
across a network. Fig. 2 demonstrates a data compression
technique that is formed by two algorithms, whereby one
takes a certain input A that a generated Ac can represent with
lesser bits. The other algorithm works on the compressed Ac
and produces a reconstruction algorithm B. Different struc-
tures of data and characteristics of the user can be used to
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FIGURE 2. A data compression model.

achieve data compression [8]. In Fig. 2, a 7-bit stream of data
is reduced to 5-bit data that can be easily stored or transmitted
over a communication line.

Data compression eliminates redundant data, and as a
result, less energy is required to transmit the compressed
data. Fig. 3 below illustrates the relationship between data
aggregation, data compression, and routing algorithms.

DATA
AGGREGATION
X

COMPRESSION
Y

ROUTING ALGORITH

FIGURE 3. Data compression and data aggregation - The relationship.

Data aggregation techniques are commonly experienced in
densely populated sensor networks where routing algorithms
are needed due to the multi-hop architecture of the network.
According to Fig. 3, the process of data aggregation, as illus-
trated by set X, sits on top of the routing algorithm. The
process is performed by extracting minimum, maximum, and
mean values of aggregated sensor data [8]. Data communica-
tion is, as a result, minimized. The data aggregation technique
can lead to loss of the structure of the original data, which
can be addressed by applying data compression techniques
as indicated by set Y of Fig. 3. The compression techniques
are an extension of data aggregation techniques and dis-
tribute the compression algorithm across the network. Set
Z independently performs compression at every local node
and does not need a routing protocol or a densely populated
network. The architecture of their sensor network is sparse.
Therefore, data compression algorithms can be categorized
into local data compression algorithms, data aggregation, and
distributed data compression algorithms. Fig. 4 illustrates
this classification. The breakdown of this categorization is
discussed in Section IV.

Data compression is performed in two stages of Modelling
and Coding. Modelling is the initial stage where information
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FIGURE 4. Classification of data compression techniques.

that pertains to any redundancy in the data is extracted and
described as a model. A model is referred to as static if its
parameters do not change with the changing characteristics
of the data. It is considered to be adaptive if its parameters
change with the changing characteristics of the data. In the
Coding phase, the model is compared to the data, and their
difference is encoded in binary. This difference is known
as the residual and can be represented in a sequence that is
encoded with fewer bits than the original data.

Surveys of data compression techniques in wireless sen-
sor networks have been carried out by researchers in
this field. The contributions of this research work are as
follows:

« Investigating existing data compression algorithms and
classifying them according to features that define their
application. The classes proposed are Local data com-
pressions, data aggregation, and distributed data com-
pression algorithms.

o A survey and comparison of some local data compres-
sion algorithms (ALDC, LEC, TMT, FELACS) and some
distributed data compression algorithms (DSC, DSM,
CS, IMAGE based) based on compression ratio, energy
saving, minimized transmission, processing complexity,
and net energy saving.

« Analysis and simulation of ALDC algorithm and propos-
ing a data compression algorithm that improved on
energy efficiency in ALDC. The improvement was
achieved by minimizing the number of bits used
to encode residue samples in ALDC before being
forwarded to the encoder.

The rest of the Sections are as follows: Section II of the work
presents the factors necessary to achieve data compression.
Different data compression techniques are categorized and
discussed in section III. Section IV defines some performance
measures that are used to analyze selected local data com-
pression algorithms and some distributed data compression
algorithms. The proposed algorithm is discussed in section V,
and the analysis and conclusions of the results are presented
in section VI.

Il. FACTORS TO CONSIDER IN DATA COMPRESSION

Factors that are required for data compression are based on
the various ranges of wireless sensor networks applications.
Some applications can tolerate a certain level of latency and
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or data loss, while some may not. Generally, requirements of
data compression include;

A. COMPLEXITY IN PROCESSING AND MEMORY
CAPACITY

Typical processing speeds for wireless sensor nodes range
around 4 — 8MHz with instruction memories of 128kB and
data memories of 4kB. This calls for the design of less
complex compression algorithms with limited code size. It is
desirable to design algorithms that perform most of the data
processing at the sink instead of performing compression at
individual nodes. In this case, sensors with lower processing
performance are considered more efficient in data compres-
sion [6], [8], [9]. Less complex processing algorithms save
both power and processing costs [6].

B. DATA EXCHANGE

A significant amount of energy used by sensor nodes is
consumed during data transmission and reception. Redundant
data communicated between nodes is, as a result, removed by
some compression algorithms. The algorithms are designed
to perform more processing and minimum transmission.
This increases data processing at both the transmitter and
receiver [8].

C. REDUNDANT DATA ACQUISITION

Duplicate or redundant data may occur during collection,
transmission and saving of data from overlapped sensor
regions covered by the nodes. Redundancy can be discovered
and exploited by compression algorithms. Exchange of infor-
mation between nodes is used to establish sensing schedules
with minimal rate of observation.

D. RELIABILITY
In communication, measurement and spatial redundancy can
be exploited to improve data reliability.

E. SCALABILITY
A data compression algorithm must be able to grow or scale
with the size of the network.

F. THE COMPRESSION ALONG ROUTES

Data is traditionally compressed at the source nodes and
decompressed at the sink. Data is made available at forward-
ing nodes for compression along routes to allow changes
and processing or on-route compression. Low-performance
sensor nodes can handle less complex compression while for-
warding nodes that are powered by mains handle processing
or compression that is more powerful.

G. ROBUSTNESS

Compression techniques must function adequately even at the
occurrence of a node or link failure in the network. This calls
for a trade-off between energy efficiency and robustness as
redundant deployment will be needed to tolerate the sensor
nodes and or link failures.
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Some requirements of data compression are dependent
upon the application of the wireless sensor network. Some
applications can be for tracking, while others are for
monitoring. Tracking applications include vehicle tracking,
enemy tracking in wars, animal tracking in agriculture or
wildlife management, and human tracking in-home auto-
mated applications. Requirements for practical WSN appli-
cations include:

H. SECURITY

Some wireless sensor networks applications demand a certain
level of security, creating a conflict with data compression.
Some security protocols may require encryption of sensor
data before communicating the data, and decryption of the
data only takes place at the sink. Data compression, on the
other hand, may occur at forwarding nodes to maximize
energy efficiency. Therefore, data compression algorithms
and security protocols should be designed in consideration
of one another to avoid this conflict [10].

I. REAL-TIME

Intelligent and healthcare applications are some examples of
real-time data WSN applications. They demand that compres-
sion must be done one sample at a time, limiting the com-
pression ratio. Exploiting spatial correlation is still possible,
though [8]. It is essential to know the statistical structure of
measured datasets. For tracking applications that normally
require real-time operations, the algorithm’s speed should be
taken into consideration during implementation. For monitor-
ing applications, several data types exist that can be divided
into either variance or source. Data variance can either be
smooth or non-smooth, which is suitable for entropy com-
pression algorithms and can give high compression ratios.
The data can be a single data type for every sensor node or
multiple data types. For tracking applications, more than two
sensors are joined in one module. The sensors are of the same
kind and produce similar data types. Therefore, the design for
compression algorithms for this kind of application demands
prior knowledge of the statistical nature of sensor data. On the
other hand, for monitoring applications, one node can be
joined to various types of sensors to produce diverse types
of data [5].

J. CONSCIOUSNESS OF QUALITY OF SERVICE (QoS)

The size of data at the destination and its perfect resemblance
to the original data is referred to in wireless sensor networks
as the quality of information (Qol) or QoS. It is dependent
on the WSN application and is usually not easy to maintain
because of data compression approximations and redundant
data removal [8].

IIl. CLASSIFICATION OF DATA COMPRESSION
TECHNIQUES AND RELATED WORKS

Classification of data compression techniques is based on
certain features that define the application for which they are

136875



IEEE Access

L. K. Ketshabetswe et al.: Data Compression Algorithms for WSNs: A Review and Comparison

intended to be used. This work classifies these techniques into
Local data compression, Data aggregation, and Distributed
data compression techniques, as shown in Fig. 4. This section
also presents recent research work on different algorithms
that have been developed for WSNs under the other classes
of data compression techniques. Different sub-categories that
fall under these classes are discussed under each class in the
sub-sections below.
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FIGURE 5. A tree structured data aggregation scheme.

A. DATA AGGREGATION COMPRESSION TECHNIQUES
Some applications require only a summary of data col-
lected from sensor nodes. A selected set of sensor nodes are
tasked with gathering and fusing sensed data from interme-
diate nodes. The selected aggregation nodes collect sensed
data from immediate nodes, apply aggregating techniques,
derive the minimums, maximums, and average values of the
data. The fused data, which is reduced in size, is then sent to
the sink. The original sensed data cannot be recovered from
the compressed aggregated data. Hence the data aggregation
compression technique is irrecoverable [9].

Work in [9] presented data aggregation techniques as sim-
ply applying in-network data computation for WSNs’ data
and transmission compression. This operation significantly
minimizes the volume of sensed data that is sent to the
sink. The aggregated data is, however, irrecoverable. In their
research on data aggregation strategies, authors in [11] inves-
tigated efficient means of selecting aggregation nodes to min-
imize data communication in WSNs. Authors in [8] identified
advantages of data aggregation as dependent on the range
between sources of aggregated data as opposed to the range
between the sink and the sources and the amount of the
summarized data compared to the raw or original data. This
led to consideration of the aggregation structure and discov-
ering optimal ways of fusing data as discovered by [12], [13].
The data aggregation structures are reported to determine the
performance of the protocols applied.

Four categories of data aggregation techniques are pre-
sented in this section.

1) TREE STRUCTURED DATA AGGREGATION TECHNIQUES
The wireless network is structured into a tree-like archi-
tecture, and data fusion is performed at forwarding nodes.
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The technique intends to achieve optimal joint strategies
for aggregation of data and formation of routing trees,
as illustrated by Fig. 5. In the figure, sensed or extracted data
is denoted by e_a, which is sent by every individual node a,
A forwarding or aggregation node k fuses its own sensed data
e_k with the data received from its child nodes with a function
of aggregation f(‘.’,).

Data compression algorithms that fall under this category
are:

a: ENERGY-AWARE DISTRIBUTED HEURISTIC APPROACH
(EADAT) [14]

The root of the tree, which is the sink, identifies the source
node, the intermediate nodes, the sensor node’s status and
residual energy, and the number of hops to the sink by broad-
casting a control message. Individual sensor nodes establish
a countdown timer when they receive the control message on
their first encounter. The timer is activated when the com-
munication reaches an idle state. An intermediate node with
the shortest route to the sink and shows more residual energy
is then selected as a parent node by the sensor node. When
the counting reaches zero, the control message is updated and
broadcasted to nearby nodes. To ensure that all sensor nodes
are added to the tree, the operation is performed repeatedly.
The structure of the tree is thus built, and to maintain it,
a threshold of the remaining energy is used. The remaining
energy of sensor nodes is compared with this threshold and if
it is less, a help broadcast message is sent by the sensor node
to its child nodes, and one of the child nodes trades places
with the sensor node, maintaining the tree structure.

11). Tree based Tiny Aggregation: It is an aggregation
approach that is designed particularly for low power WSNs
and monitoring applications that use TinyOs.

111). Power Efficient Data gathering and Aggregation
Protocol (PEDAP): 1t reduces the entire energy consumed
by sensor nodes by aggregating sensed data from the different
nodes using link costs to calculate minimum spanning tree as

2i j(0) = Peer. 21 + Py (r (i, )2 (D)

The energy link cost for transmission of 7 bits from nodes
i to j is denoted by a; j(n), while the level of power dissipated
by the transceiver circuit for every bit is represented by P;.
The level of power consumed by the transmitter amplifier for
every bitis Py, while 7 ;) is the range between nodes 7 and
Jj. Calculation of the spanning tree is achieved by use of Prim’s
algorithm [15], which then forward the data packets through
the tree edges to the destination node [10].

A variant of PEDAP, Power-aware PEDAP (PA-PEDAP),
considers the remaining energy of the sensor nodes.

Link costs are modified by

2% @
P

where Pi represents the normalized remaining energy of node

i relative to the initial energy. Therefore, sensor nodes that

incur higher link costs are not included in the spanning

tree and load balancing across the sensor nodes is achieved.
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Authors in [14] developed an algorithm that builds and main-
tains a data aggregation tree structure in sensor networks. It is
however less robust and requires regular querying. To reduce
the entire energy consumed by sensor nodes, work in [16]
presented an algorithm that aggregates sensed data from the
different nodes to improve network lifetime through load
balancing [9]. For low power, WSNs, and monitoring appli-
cations, [17] designed a TinyOS approach. Its variant Power-
aware PEDAP (PA-PEDAP) considered the remaining energy
of the sensor nodes. Even though PA-PEDAP outperforms
LEACH and PEGASIS, unfortunately, it operates from a cen-
tralized point and depends on the general knowledge of the
network.

2) CHAIN BASED DATA AGGREGATION TECHNIQUES

In these techniques, sensors send collected data to their neigh-
boring nodes, and a long chain is formed that connects the
sensors. All sensor nodes in the chain become aggregation
nodes, excluding those at the end of the chain. An exam-
ple of these techniques is Power Efficient Data Gathering
Protocol for Sensor Information Systems (PEGASIS). The
global knowledge of the network is assumed to be known
by every sensor node. The node that is farthest away from
the sink initiates the formation of the chain. On every cycle
of chain formation, its neighboring node, which is nearest to
the sink, is selected to succeed the sensor node in the chain.
Every sensor node receives sensed data from its neighbor
after the formation of the chain. The data is aggregated with
its own sensed data and forwarded along the chain to its
successor. The cycle is repeated until all the aggregated data
in the network reaches the sink. An approach that constructs
chains in the same manner as PEGASIS but can lower energy
consumption by reducing the range D between sensor nodes
that are adjacent in the chain inserts a fresh sensor node
into the chain at every iteration. The addition of a new node
increases the minimum amount of Y D* All sensor nodes
in Fig. 6 are aggregator nodes, except for sensor node 1 at
the end of the chain and is responsible for collecting sensed
data. of the current chain. Repetition of this operation allows
all sensor nodes to be added to the chain. A concept that illus-
trates a chain-based data aggregation scheme is illustrated
in Fig. 6.

A chain-based data aggregation technique, PEGASIS uses
chain formation that does not guarantee lower energy con-
sumption. To cater to this, authors in [18] proposed an
approach that constructs chains in the same manner as PEGA-
SIS but can lower energy consumption by reducing the range
between sensor nodes adjacent to the chain. This scheme,
however, adds complexity in time for the number of sensor
nodes used [19].

3) CLUSTER BASED DATA AGGREGATION TECHNIQUES

Sensor nodes are grouped into clusters, and cluster heads
are chosen to aggregate sensed data from sensor nodes for
each cluster, as illustrated in Fig. 7. Cluster heads then send
the aggregated data to the sink, either through single hop
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or multi-hop transmission. Low Energy Adaptive Clustering
Hierarchy (LEACH) proposed by [20] is one example of
cluster-based data aggregation techniques. It operates in a
setup phase which organizes clustering in the network, and
the steady-state phase, where the selected cluster heads han-
dle data aggregation. Another example of these techniques is
Hybrid Energy-Efficient Distributed clustering (HEED) [21]
which selects cluster heads according to the sensor nodes’
closeness to neighboring nodes and their remaining energy
added together.

Low Energy Adaptive Clustering Hierarchy (LEACH)
proposed by [20] and Hybrid Energy-Efficient Distributed
clustering (HEED) [21] are some examples of cluster-
based data aggregation techniques. Even though HEED
improves network lifetime more than LEACH does, it requires
a number of power levels at sensor nodes, which is
undesirable [8].

4) SECTOR BASED DATA AGGREGATION TECHNIQUES

These are aggregation techniques that gather more informa-
tion from the original data than what their counterparts can
gather. Authors in [22] proposed a Semantic/Spatial Corre-
lation aware Tree (SCT) technique, which is a sector-based
data aggregation technique. It considers a WSN that forms a
circle with a radius R, and the sink at the network center. The
network is divided into & rings, with similar widths of R/h.
Individual rings are subdivided into sectors of equal sizes.
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It is assumed that all sensor nodes are uniformly distributed
across the network, with each sector having almost the same
number of sensor nodes. An aggregation node is appointed
to gather and aggregate sensed data from other sensor nodes
from every sector. Individual aggregation nodes in the i tree
are connected to their parent aggregation nodes in the (i— /)
™ ring along the shortest path. This creates a tree, and then
individual aggregation nodes can forward their data to the
sink. It is assumed in this scheme that all sensor nodes are
aware of their geographical locations [9]

To satisfy the desired quality of data and to maintain
aggregation error below a set threshold, authors in [23]
and [24] proposed algorithms that maximize the volume of
data captured at the sinks at the expense of energy, delay, and
data flow constraints. On the other hand, [25] proposed an
Application Independent Data Aggregation (AIDA) scheme
that adaptively aggregates data to manage congestion and
attain reliability from one end of the network to another. The
approach, however, is too complex for sensor nodes that are
already resource-constrained.

5) QUALITY OF SERVICE (QoS) BASED AGGREGATION
TECHNIQUES

Application Independent Data Aggregation (AIDA) is a QoS
scheme that adaptively aggregates data to manage conges-
tion and attain reliability from one end of the network to
another, even under heavy traffic. These are useful to satisfy
the desired quality of data and to maintain aggregation error
below a set threshold. Some QoS algorithms maximize the
volume of data captured at the sinks at the expense of energy,
delay, and data flow constraints [23] and [24]. Authors in [26]
presented a data aggregation compression scheme that com-
bines energy awareness and QoS awareness but is restricted to
linear compression protocols. For sensor nodes that are lim-
ited in resources, this technique is computationally intensive.

B. LOCAL DATA COMPRESSION TECHNIQUES

Local data compression schemes exploit the sampled sen-
sor data’s temporal correlation and compress data locally at
each sensor node. These can either be ‘Lossless’ or ‘Lossy.
Lossless data compression techniques are used to compress
text, strings, or programs, while Lossy compression schemes
compress images, video, and audio files [2].

1) STRING-BASED (TEXT) COMPRESSION TECHNIQUES
These techniques see sensed data as a string of characters.
Data compression algorithms that can compress textual data
are then applied to the sensed data. Text compression tech-
niques fall under lossless data techniques where the accuracy
of sensed data is usually critical for some applications like
environmental monitoring, health and wellbeing monitoring,
and many others.

Several compression algorithms for text data have been
developed to support lossless compression. Work by [8] intro-
duced dictionary-based compression algorithms that com-
press different types of data. Their strategy is best suited
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where structural limitations constrain patterns that frequently
appear to a small-sized set of the entire possible patterns.
A well-known example of a lossless text data compression
algorithm that is based on the creation of dictionaries as
data is read from the input stream is Lempel-Ziv-Welch
(LZW) [27], [28], [29]. Unlike static-based schemes, these
schemes’ code length is dynamic. However, [30] and [31]
discovered that the algorithms have high memory and com-
putational requirements and alternatively introduced adapted
versions e,g Sensor-Lempel-Ziv-Welch (S-LZW) [30]. A vari-
ant of S-LZW introduced a mini cache into the dictionary,
hence S-LZW-MC(mini-cache). Utilization of the mini cache
reduces the processing time and improves the compression
ratio.

A proposal by [32] improved a version developed by [4]
named LEC, an algorithm that outperformed S-LZW and the
first kind of lossless compression. They introduced static
Huffman coding in sensor nodes. Its modification was devel-
oped by [2], which was a classical adaptive version of the
Huffman coding. Due to its processing complexity, a simple
compression algorithm that uses a median predictor and an
LEC compression table was proposed by [32]. A prediction
coding-based approach that discovered temporal correlation
found in sensed data, resulting in predictive data compres-
sion. Its modified version improved the coding efficiency by
discovering an optimal interval that allows a higher compres-
sion ratio.

To overcome the challenge of searching for the optimal
intervals that gives the desired compression ratio, a heuristic
approach was developed by [33] and is adaptively processed
at the destination node. Even though the LEC algorithm
outperforms other algorithms, its setback of not being able
to adapt to changes in sensed data was addressed by ‘Adap-
tive Lossless Data Compression algorithm (ALDC) proposed
by [2]. A fast and efficient Lossless Adaptive Compres-
sion Scheme (FELACS) [3] was also developed to address
challenges faced by most of these algorithms. Based on
Golomb-Rice coding, FELACS encodes data much faster than
static Huffman, adaptive Huffman, and Arithmetic coding
schemes.

2) IMAGE COMPRESSION TECHNIQUES

This is an approach that generally supports lossy compres-
sion and is commonly applied to video and image signals.
It transforms raw data into sets of coefficients with suitable
basis functions that can recover the destination’s original
signal. Usually, only a few samples are enough to recover the
estimated raw signal with minimal error. Image-based com-
pression takes advantage of the correlations of the statistics
of the data and the structure of the network [8]. It organizes
a WSN in a hierarchical structure and perceives sensed data
as an image that is made up of several pixels. Elements of
a matrix whose values are small pixels that create a picture
or image can be used to model the image. Vital information
can be deduced from the picture in the frequency domain
through the matrix wavelet transformation and only the vital

VOLUME 9, 2021



L. K. Ketshabetswe et al.: Data Compression Algorithms for WSNs: A Review and Comparison

IEEE Access

information of the picture can be kept. This reduces the size
of the picture to an acceptable and considerable level. Loss of
part of the sensed data may be realized during compression.
Hence the technique is referred to as lossy [9]. Spatial and
temporal summaries of the sensed data are then extracted
using wavelet transformation. The size of sensed data can
further be reduced when the spatial and temporal correlation
in the sensed data is high [9].

Image compression algorithms employ the basic com-
ponents of image coding, which are classified into first
and second-generation coding. Under the first-generation
image compression techniques, commonly known examples
are Joint Photographic Experts Group (JPEG), Embedded
Zerotree Wavelet (EZW), Set-Partitioning in Hierarchical
Trees (SPIHT) and Embedded Block Coding with Opti-
mized Truncation (EBCOT). Examples of second-generation
image compression schemes include pyramidal coding, direc-
tional decomposition-based coding, segmentation-based cod-
ing, and vector quantization.

DIMENSIONS [34] is a framework of image-based com-
pression techniques. This framework reduces the sensor
nodes’ data communication size and supports various sensed
data resolutions for querying by users through the exploita-
tion of the wavelet transformation and process of quantizing.
It organizes the network into many levels with blocks at
each level containing four blocks in a lower level. Cluster
heads are appointed at each block of the levels to gather
sensed data from their four blocks and compress the data
to capture their summarized spatial correlation. Different
resolution exists for the data that is stored at different levels.
Finer resolution is found in the data stored at lower lev-
els while coarse resolution exists at higher level storages.
This allows more detailed data queries to be made from
the cluster head at lower levels since the size of sensed
data is minimized. Taking advantage of temporal correla-
tion in the data and the knowledge deduced from the sig-
nal characteristics, individual sensor nodes reduce the size.
The DIMENSIONS framework further compresses data from
lower-level cluster heads by adopting a Huffman decoder and
a dequantization module. The main compression technique
that is used in DIMENSIONS is Discreet Wavelet Transform
(DWT). Another framework of the image-based compres-
sion is the multi-resolution compression and query (MRCQ)
framework [35]. It aims at establishing multi-resolution sum-
maries of sensed data in the network by organizing sensor
nodes in a hierarchy. Lower resolution summaries are sent to
the sink while higher resolution summaries remain in the net-
work and can be queried. MRCQ suffers less processing costs
than DIMENSIONS and can be implemented on simple sensor
platforms [9].

Authors in [36] presented a survey of image compres-
sion algorithms to discover the most suitable algorithm for
WSNs. They illustrated the basic components of image cod-
ing, which is classified into first and second-generation
coding. Results indicated that the second-generation com-
pression schemes require more complex image compressing

VOLUME 9, 2021

processes than the first-generation techniques and introduce
lossy compression. Discreet Cosine Transform (DCT) and
Discreet Wavelet Transform (DWT) are performed in the
first-generation image compression and DWT outperforms
DCT because DCT reduces the recovered image’s quality.
SPIHT stood out among all techniques as the most suitable
for WSNs regarding compression efficiency and memory
requirements. Work in [34] presented a framework that can
minimize the sensed data and regularly report to the sink by
sensor nodes. However, it may incur higher processing costs
due to executing Huffman encoding approach, 3D-DWT, and
quantization.

C. DISTRIBUTED DATA COMPRESSION TECHNIQUES
These techniques take advantage of the high spatial correla-
tion of data from fixed sensor nodes in dense networks.

1) DISTRIBUTED SOURCE CODING (DSC)

DSC falls under distributed data compression techniques.
It relieves the sensor nodes of the computational work and
assigns it to the sink. It uses the spatial correlation in the data
readings between neighboring sensors. Utilizing the Slepian-
Wolf theorem, sensed data is compressed inside the network,
confirming that encoding of two or more correlated data
streams can be independent. At the same time, its decoding
is joint at the sink at a rate that is equal to the entropy of both
streams [9]. The sensors do not transmit data with one another
but forward their correlated outputs to the sink for joint
reconstruction [8]. The processing work is handled by the
sink rather than the sensor nodes. Spatial correlation between
intermediate sensor node readings is exploited, and the sensor
nodes do not exchange information. Fig. 8 illustrates this
phenomenon where two correlated data streams A and B are
compressed using statistical knowledge of the data only and
not the real value of the sensed data.

|

DATA STREAM
A ENCODER1

SINK
DECODER

I » B~

ENCODER 2

DATA STREAM
B

FIGURE 8. DSC based on slepian wolf theorem.

Data stream A is received by Encoder / and forwarded as
a coded message to the sink. Each character of A is encoded
by Ra number of bits. In the same manner, data stream B is
transmitted to Encoder 2, and each character of B is encoded
by Rb number of bits. After receiving the coded messages,
the decoder at the sink generates predictions of the original
data streams A and B as two n vectors A® and B". For an
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admissible system, lossless data compression of A and B can
be achieved for larger values of .

Authors in [37] demonstrated how compression efficiency
can be achieved at a central point by compressing individual
sensors’ data in a distributed pattern with statistical infor-
mation from other sensors rather than with the actual sen-
sor data values. Reference [38] introduced lossy distributed
compression and presented theoretical results. Extending the
rate-distortion of the Slepian-Wolf theory, [39] provided a
characterization tool for communication that is needed to
attain a set distortion for a highly spatially correlated data
network. Authors in [40] presented practical DSC techniques
that involved centralized collecting, tracking correlated data,
and developing code. The technique demonstrated significant
power saving in several sensor modes or applications. The
localized, distributed collecting, tracking, and code develop-
ment version was introduced by [41]. Although it optimizes
allocation and transmission of rate distortion, it becomes
ineffective for small-scale neighboring nodes. It underper-
forms practically because it tends to avoid routing issues
and is considerate of static link capacity. DSC compression
techniques are limited by the need for prior knowledge of
correlations of data at each sensor. They are also non-scalable
and not robust.

2) DISTRIBUTED SOURCE MODELLING (DSM)

DSM is a distributed data compression scheme that intends to
discover a function that is compatible with a set of readings
collected from a given group of sensors. It uses parametric
and non-parametric modelling depending on whether the data
collected is treated as a random process estimated using the
mean and variance of a known observed sensed data. With
parametric modelling, less or no prior knowledge of the
nature of the sensed data is required, making the technique
to be considered robust [6]. Fig. 9 illustrates the concept of
parametric modeling.

DATA; DATA, DATA,

- - -

NODE I NODE 2 NODE n
i \\'ﬁ-\ \{\\gn_? {%/—/qn-
< /
\<\\ S /
AGGREGATOR
NODE
SINK

VARIABLE &

FIGURE 9. Parametric modelling [6].

In the figure, sensor readings data;, data, up to data,
are collected from a group of sensors and are transmitted to
the sink, which estimates a representation of incoming data
named variable . Quantities of real values are sent along
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with distortion, under constraints like noise. A quantization
process is applied and produces quantized data gnp, gno up to
qn, before transmission to the sink. The data communication
over the network can be represented as data, = 6+ No.
Here, sensed a random variable data, means data, and its
unknown expectation value is 8, while No represents noise.
An estimated value ¢+ from the sink gives the least error
between 6 and its quantized data. Quantization data compres-
sion and parametric modelling are applied to sensor nodes
and the sink, resulting in minimized transmitted data and
energy saving.

Authors in [42] presented an application of a DSM,
non-parametric estimation, which was founded on a non-
parametric kernel-based approach. In this application,
the focus was on an algorithm that trained every single
sensor node to reach a working objective that shows less
risks. The technique however suffered a heavy communica-
tion load that increased as the number of neighboring nodes
increased. Many nodes could not be trained all at the same
time. In 2010, [43] improved the rule of updating the net-
work to resolve the limitations. The communication load was
minimized from being quadratic to linear and asynchronous
updates were allowed [6].

3) COMPRESSIVE SENSING (CS)

A distributed data compression technique was proposed to
handle a larger number of samples that necessitated com-
putation of all transform coefficients despite the fact that
all, except those that exceed the initial samples, would be
discarded. This means that, for m large number of samples,
all transform coefficients ®(m) must be processed by the
encoder even though all, except F, will be discarded. This
is based on the condition that m > F. In CS, the number
of sensors required to transmit data depends on the sparsity
of the signal [30], [6] and [34] which arises due to the spa-
tiotemporal correlation between the sensor data. The nature
of computation in CS is asymmetric and hence makes it
suitable for compression of data in WSN. The theory of CS
is that if a signal can be sparsely represented on one basis,
then reconstruction of the signal using a fewer number of
projections on to a second basis showing incoherence with the
first one is possible. Instead of sampling an F-sparse signal
m times, a few N incoherent measurements are enough, so
N = P (Flogm,).

CS addresses the challenge of acquiring prior knowledge
of the precise correlation of the sensed data, which may
not always be available in many WSN applications. This is
because this technique exploits the compressibility of sensed
data without prior knowledge of the data. The theory behind
CS states that for a signal that can be compressed, the original
signal can be gathered and re-constructed with lesser samples
than required by the Nyquist rate [44]. The Nyquist theorem
states that to perfectly recover the source signal, the sampling
frequency should at least be twice the highest frequency of the
source signal. With CS, a reduction in sampling frequency
leads to a decrease in energy consumption. The sampling
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TABLE 1. A summary of comparison for local data compression techniques.

FEATURE LEC [4]. TMT [33], [49] ALDC [2] FELACS [3]
a. Compression ratio. @45 - 75% @40% 52.8-73.9% 41 -73.8%
2. Energy saved: minimized @53% @40% NA NA
transmission
3. Processing Complexity 12 instructions per saved bit 4 additions, 2 integer simple Lightweight.
multiplications, 2 shifts, 2
comparisons.
4. Net Energy Saving. @32% @36% NA More than 55%
5. Lossless. / Lossy Lossless Lossless Lossless. Lossless
6. Limitations Does not exploit spatial correlations.
7. Data Types: single/multiple Multiple Single Multiple. Multiple

The compression ratios for ALDC and FELACS scheme are much higher than that of LEC and TMT. FELACS is lightweight and saved more than 55% energy due to
its fast feature in compressing data. TMT demonstrated the lowest compression ratio and can only be applied to a single data type for every node.

frequency relies on the signal characteristics and not on the
bandwidth [18]. Suitable conditions for CS are that the sig-
nal should be compressible, as in WSN data, where source
nodes are constrained and allow simple coding, but complex
decoding is realized at the sink, which is not limited in
energy supply and processing capability [45]. A naturally
sparse signal can be reconstructed by applying a few linear
measurements. An 11-norm convex optimization problem is
solved [18].

An efficient CS scheme provides a tradeoff between the
measurement cost and the quality of data recovery. The
main challenge in CS is the computational complexity during
the reconstruction phase, particularly for real-time deploy-
ments for large scale WSNs. It must also consider the
network size and compression during the design of the
network.

Authors in [46] introduced compressed sensing theory for
aggregation of data in a multi-hop wireless sensor network.
The data gathering challenge faced by WSNs in which routing
and compression were simultaneously employed to transfer
random data projections were addressed [18], [45]. The lat-
ter demonstrated the concept with simulations of artificial
sample signals. The former used both artificial and real-
world data to quantify the compressed sensing performance.
Even though results from both authors indicated that com-
pressed sensing performed better than routing schemes, there
remained a challenge of discovering a matrix that would
make the signal sparse. DCT, Harr wavelet transformation,
and their proposed transformations were experimented with
but failed to sparsify the signal [6] To further reduce energy
consumption, authors [46] proposed an efficient data gather-
ing framework that uses sparse projections that are spatially
localized and collected energy of transform coefficients more
evenly distributed. The theory of adaptive compressed sens-
ing was introduced by [47], [48] to collect information from
the network efficiently. The approaches faced the challenge
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of having to maximize the volume of data gathered for every
energy expenditure. Using heuristic schemes, performance
simulations and field tests resolved this problem by providing
a more precise approximation of the temporal, spatial fields
for the desired energy expenditure.

Table 1 and Table 2 summarize reported performances
of reviewed data compression (Local data compression and
Distributed data compression) algorithms for comparison.
The criteria or measures used for comparison are explained
in section 4.

IV. PERFORMANCE ANALYSIS OF DATA COMPRESSION
ALGORITHMS

Local data compression algorithms are robust and universal.
They can be integrated with distributed data compression
algorithms to exploit spatial and temporal correlations inher-
ent in sensed data.

A. PERFORMANCE MEASURES
The following measures are applied to analyze the perfor-
mance of different data compression algorithms:

1) COMPRESSION RATIO

Using values reported from previous reviewed research work,
a summary of their compression ratios is presented for com-
parison.

a: ENERGY SAVED DUE TO MINIMIZED TRANSMISSION
This is a measure of the amount at which reduction of trans-
mission is affected by compression ratios of every algorithm.
Energy saving because of compression ratio is presented and
compared.

b: ENERGY CONSUMED DURING DATA COMPRESSION
This analyzes the power used when compressing data. The
complexity of compression algorithms is assessed within
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TABLE 2. A summary of comparison for distributed data compression techniques.

FEATURE DSC DSM DTC: IMAGE BASED CS
EEADSC [51] DSC-multi-rate ~ OQET/ DRHMM/VFB  DNKB KLT DWT-lifting DWT-Harr [16], [18], [47],
SN 48
[50] [52] oQPT [42][43] [14] [15] [17] [48]
[54][55]
[53][19]
Compression  ~88% NA Dependent on Optimal NA NA NA Depends on Depends on  Dependent on data
ratio. packet error SNR SNR sparsity.
Energy saved: ~88% NA Need to know YES YES YES YES YES YES YES
minimized correlation among
transmission. nodes precisely
Processing ~22% Low cost Low cost Q( Lbz) Q(N)/ low cost. Q(N) Low cost Low cost Low cost Low cost
Complexity
Net Energy ~ ~66% 50.7% YES YES YES YES YES YES YES YES
Saving
Lossless / Lossless Lossless Lossless Lossy Lossy Lossy Lossless Lossless Lossless Lossy
Lossy
Limitations Limited to  Need to Need to know Limited to Limited to Limited to Limited to Limited to Limited to Suitable
star precisely correlation among specific specific specific specific specific specific transformation is
topologies  know nodes precisely  application  application application topologies and  topologies and topologies and needed to improve
correlation needs extra needs extra needs extra sparsity for real
among inter-sensor data inter-sensor inter-sensor world data.
nodes. exchange data exchange data exchange
Data Types:  Single Single Single Single Single Single Single Single Single [18] experimented
single/multiple on suitable
multiple data
types.

its class. The number of basic coding operations in every
algorithm can be counted to compare the processing complex-
ity. The energy expended in executing these instructions can
then be presented.

¢: NET ENERGY SAVED
The difference between energy saved due to minimized
transmissions and energy used for running the algorithm.
It is a vital determinant for suitable algorithms for different
applications in WSNss.

d: SUITABLE CLASSES OF DATA COMPRESSION -
LOSSLESS/LOSSY

It analyzes and informs if an algorithm is a proper design for
its equivalent data [6].

e: DATA TYPES (SINGLE/MULTIPLE)
This criterion tells if an algorithm can be used for a single
data type for each node or multiple data types.

Communication between sensor nodes is not needed
for DSC algorithms. Energy-Efficient Adaptive Distributed
Source Coding (EEADSC) outperforms the other DSC
algorithms reported here regarding compression ratio
and net energy saving. It is however limited to star
topologies.

Compression ratios for DSM schemes, Optimizing
Quantization-based Estimation Target (OQET) and Optimiz-
ing quantization-based power target (OQPT) are reliant on
the quantized data bit length Ly, which is dictated by an
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optimization solution. For these algorithms, a processing
complexity of Q( Lb?) is needed by sensor nodes to discover
an optimal bit length. This may be too high for sensor
nodes for higher values of Ly. For Data Representation-
based Hidden Markov Model (DRHMM), Variational Fil-
tering in Binary Sensor Network (VFBSN) and Distributed
Non-Parametric Kernel-Based scheme (DNKB), a processing
complexity of only Q(N), which is lower, is needed. Although
these DSM algorithms can minimize communication data
in sensor networks, they are lossy and cannot be applied
to some WSN applications that require high accuracy in
sensed data.

Distributed Transform Coding (DTC), is common for
video and image compression. Unlike DSM, it transforms
data into coefficients, which are represented by suitable
codes. Distributed Karhunen—Loeve transform (KLT) pro-
cesses data at the sink node that is not energy constrained and
saves energy. The compression ratio and amount of energy
saving in KLT, Distributed Wavelet Transform-based lifting
(DWT-lifting) and Distributed Wavelet transform-based Harr
(DWT-Harr) depend on the signal to noise ratio (SNVR) in
the network. Still, DWT-Harr outperforms all the other algo-
rithms in compressing data.

CS data compression algorithms do not need any prior
knowledge on the data to be compressed. Algorithms that
used real-world data sets [16], [18] for their experi-
ments demonstrated poor results than those that used ideal
data, but error recovery for given energy consumption for
these schemes was lower than 0.3 and acceptable. Where
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multiple data types were used [16], better performance was
evidenced.

From the comparison made on Local data compres-
sion algorithms, a lossless local data compression algo-
rithms (ALDC) was selected for performance evaluation in
this work.

B. ANALYSIS OF AN ADAPTIVE LOSSLESS DATA
COMPRESSION ALGORITHM (ALDC) [2]

ALDC can acclimatize to fluctuations in the properties of the
source data and compress data before it can be sent. Blocks
of sampled data are compressed at a time using two coding
options that use lossless entropy compression code options
named 2 Huffiman-Table ALEC (Adaptive Lossless Entropy
Compression) and 3 Huffiman Table ALEC [2].

As illustrated in Table 3, the Huffman tables in these
code options were designed using practical wireless sen-
sor node datasets with different states of correlation. The
two code options have associated algorithms to encode
blocks of sampled data. ALDC uses a simple and effi-
cient predictive coding method to obtain sampled data tem-
poral correlations and compress environmental data such
as relative humidity, temperature, and seismic data. For
example, for a given block of temperature data samples
xi = {8202,8202,8202,8201,8202,8202,8202,8208}, each
sample can be represented by 14 bits, which is the resolution
of the analogue to digital converter (ADC) of the encoder.
To send all the 8 samples translates to /4 x 8§ = 112 bits
that will need to be sent to the encoder. The goal of the
ALDC algorithm is to reduce the number of bits that are
needed to represent each sample. Instead of sending the sam-
ple readings from the sensor nodes, the difference between
consecutive sampled data (residues) is sent, reducing the
dynamic range of source symbols. Huffman coding is then
used to encode the samples and determine how the samples
are going to be sent. The first sample of the data samples is
calculated

as xo = 2PR-1, (3)

where DR is the dynamic range of the source data, which is
the number of bits needed to encode the data samples. The
predicted sample is equal to the last measured sample and is
calculated as

X =xi-1 4

The residue res can be calculated from this sample by
subtracting the predicted sample from the current one.

res = Xx; — Xj_1. 5)

This residue is the input to the entropy encoder that uses
two ALEC code options, the Brute Force and Decision regions
coding schemes. The Brute Force coding scheme encodes
bitstreams for both code options, demanding more memory
space and hardware, showing more complex data processing.
However, the Decision regions coding scheme uses only one
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TABLE 3. (a) ALDC coding tables: Huffman table A. (b) ALDC coding
tables: Huffman table B. (c) ALDC coding tables: Huffman table C.

(@

b; h; d;

0 00 0

1 01 —1,+1

2 11 -3, -2,+2,+3

3 101 — Ty =, 4, +T

4 1001 ~15,...,-8,+8,...,+15

5 10001 —31,...,=16,+16,...,+31

6 100001 —63,..., —32,+32,...,+63

7 1000001 =127,...,-64,+64,...,+127

8 10000001 ~255,..., —128,+128,...,+255

9 1000000000 ~511,...,-256,+256,...,+511

10 10000000010 ~1023,..., ~-512,+512,..., +1023

11 10000000011 =2047,...,-1024,+1024,. .., +2047

12 10000000100 —4095,...,—2048,+2048,...,+4095

13 10000000101 —8191,..., —4096, +4096,...,+8191

14 10000000110 —16383,...,—8192, +8192,. .. ,+16383
(b)

by hy d;

0 1101111 0

1 11010 -1,+1

2 1100 -3,-2,+2,+3

3 011 Ty =4, 4, +7

4 111 —-15,...,=8,+8,...,+15

5 10 -31,...,-16,+16,...,+31

[ 00 —63,...,-32,+32,...,+63

7 010 —127,...,—64,+64,...,+127

§ L1011 =255,...,=128,+128,...,+235

9 110111011 =511,..., =256, +256,...,+511

10 110111001 -1023,...,-512,+512,...,+1023

11 1101110101 —2047,...,-1024,+1024,...,+2047

12 1101110100 —4095,..., —2048,+2048,..., +4095

13 1101110000 —~8191,..., - 4096, +4096,. .., +8191

14 11011100011 —16383,...,—-8192,+8192,...,+16383
(©

by h d;

0 1001 0

1 101 ~1,+1

2 00 ~3,-2,+2,+3

3 01 =7y =4,y +T7

4 11 ~15,...,—8,+8,...,+15

5 10001 -31,...,=16,+16,...,+31

6 100001 —63,...,—-32,+32,...,+63

7 1000001 ~127,...,—64,+64,...,+127

8 10000001 ~255,...,—128,+128,...,+255

9 1000000000 ~511,...,—256,+256,...,+511

10 10000000010 —-1023,...,-512,+512,...,+1023

11 10000000011 —2047,..., ~ 1024, +1024,. .., +2047

12 10000000100 —4095,..., 2048, +2048, .., +4095

13 10000000101 -8191,..., — 4096, +4096, ..., +8191

14 10000000110 —~16383,...,—8192, +8192,...,+16383

code option, requiring less hardware and processing power.
This option utilizes a table of decision regions that relies on
the length of the original sequence of sampled data.
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Using the Decisions region approach, residues are cal-
culated as {10,0,0,-1,1,0,0,6}. The MATLAB Pseudocode 1
below is used to writing a function called ‘Residual’, which
calculates the differences between consecutive samples.

Pseudocode 1 Residual (data, DR, xo, residue)

/ldata is the original source data.

/IDR is the dynamic range of source data.

Compute the first residue.

/Ixo is the first residue

Set residue(i) to source(i) — xo.

//Compute the residues for every length of source data.
RETURN residue.

The sum of the absolute value of the residues is

K
F=3"" lres=10+0+0+1+1+0+0+6=18
=
(6)

The length of the sequence of residues is 8 samples. For
the decision regions, the first boundary is 3K =3 x 8§ = 24,
where K denotes the number of residue samples. The second
boundary is 12K = 12 x8 = 96.

Since the sum of the residues (F = 18), F < 24 and lies in
the first boundary region, the ALEC code option that uses two
Huffman tables A and B called 2-Huffman is used to encode
the residues and a code identifier /D, ‘0’ is generated for it.
A code option identifier ‘1’ is generated for any sum that falls
outside this region and selects the 3-Huffman Table ALEC
(5). Pseudocode 2 creates a function called ‘adaptive,’ which
calculates the residues’ length, the sum of absolute values,
and generates a code option identifier.

Pseudocode 2 Adaptive(E K, ID)

//Adaptive is the function that determines the boundary for
the decision regions.

/ICompute F, the total of the absolute value of residues.
/IK denotes the residue length.

Call Residual() and calculate K.

//Determine the F region.

IFF <3K

//Set code ID for using two Huffman Tables A, B

ID — ‘0.

ELSE

IF3K < F <= 12K

//Set ID for using three Huffman tables A, B and C

ID — ‘1.

ENDIF

RETURN ID.

The ‘My_encoder’ pseudocode is used to encode residues’
samples. Pseudocode ‘Huff 2’ is used to generate the
MATLAB CODE that uses 2 Huffman Table ALEC
while ‘Huff 3’ generates the code that uses 3 Huffman
Table ALEC to encode. The encoded bitstreams are con-
catenated with the previously generated code option IDs.
The sizes of the bitstreams are compared to select the least
compressed.
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Pseudocode 3 My_encoder (residue_value, HUFF, ci) [2]

// HUFF is the Huffman table to be used for encoding.

/I bi equals residue_value group identifier and also the
number of least order bits that are required to represent that
residue_value in binary.

/I ci is the bitstream that has been encoded.

//A — B means set A to B

// hi is the codeword from the Huffman table used to encode
the residue_value.

/I 'li is the codeword that represents the position of the
residue_value in its group.

/I % illustrates concatenation

// (Index)| bi = index over bi bits as a binary number

/l compute residue_value category

IF residue_value = 0 THEN

bi— 0

ELSE

bi — log2 (|residue_value|)_

ENDIF

// get hi from HUFF

hi — HUFF [bi]

// build ci

IF bi = 0 THEN

/I no need to calculate /i here

ci — hi

ELSE

/I compute [i

li — (Index)| bi

// compute ci

ci— hixli

ENDIF

RETURN ci

TABLE 4. Output bitstream of ALDC.

Index Category/Group Binary code  Residue
Position bi representation  Sample
bi hi di
4 1001 1010 10
0 00 - 0
0 00 - 0
1 01 0 -1
1 01 1 1
0 00 - 0
0 00 - 0
3 101 110 6

C. RESULTS AND ANALYSIS OF THE ALDC ALGORITHM
The encoded bitstream is an output “0 0 1001 1010 00 00
01 0 01 1 00 00 101 1107, which has a length of 30 bits
for the given block of § data samples. The first red ‘0’ is a
code identifier ID that informs the decoder that a ALEC code
option that uses two Huffman Tables was used. The second
green ‘0’ is a table identifier /D that informs the decoder that
Huffman coding Table A in Table 3 that was used by the
ALEC code option that uses two Huffman tables to encode
the 8 samples. Table 4 below explains the rest of the numbers
in the output bitstream.
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Pseudocode 4 Huff_2 (residue_vector, tablel, table2, code)
/I My_encoder() is the My_encoder function
// code is the encoded bitstream of N residue_vector.
//A — B means set A to B

/I % denotes concatenatio

/I The block of K residue_vector is encoded using the first
Huffman Table of the 2-Huffman Table ALEC Coder
CALL My_encodeer() to encode block of K residue_vector
using Table A to RETURN cil.

ciA — cil

/I append encoded bitstream ciA to codel

codel — codel*CiA

/I encode the same block of K residue_vector using the sec-
ond Huffman Table of the 2-Huffman Table ALEC Coder
CALL My_encoder()to encode a block of K residue_vector
using Table B to Return ci2

ciB — ci2

/I append encoded bitstream ciB to code2

code2 — code2*CiB

/I compute the length of the encoded bitstream codel

// compute the length of the encoded bitstream code2

// compare length of codel and length of code2 and select
the encoded bitstream with the least compressed size

IF length codel <= length code2 THEN

/Il generate ID of Table A

ID — “0”

// concatenate codel to ID

code — IDx* codel

ELSE
/I generate ID of Table B
ID — “1”

// concatenate code2 to ID
code — ID%* code2
ENDIF

RETURN code

TABLE 5. Encoded output for different block sizes.

BLOC OUTPUT NO BITS ENER
K +BITSTREAM OF  SAVE GY
SIZE BIT D SAVIN

S G
1 '01111101000000000100011000000 36 76 67.85%
0101110

2 '00100110100000001000110000010 33 79 70.5%
1110

3 '00100110100000001001100000101 32 80 71.4%
110’

4 '1(38100110100000010001100001011 31 81 72.3%

5 '00100110100000010011000001011 31 81 72.3%
10'

6 '00100110100000010011000001011 31 81 72.3%
10"

7 '00100110100000010011000001011 31 81 72.3%
10'

8 '00100110100000010011000010111 30 82 73.2%
o

When di = 0, bi = 0 and the binary representation is not
required. The encoding procedure was repeated for different
block sizes of the length of these samples, which can be
1,2,3,4,5,6,7 and 8. The results of the output bitstream are
as tabulated on Table 5.
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Pseudocode 5 Huff 3 (residue_vector, tablel,table2,table3,
lucia_code)

/ My_encoder() is the encoding function

/l Tucia_code represents the encoded bitstream of K
residue_vector.

//A — B means set A to B

/I is the concatenation operatio

/1 block of K residue_vectors is encoded using TABLE A
CALL My_encoder() to encode a block of K
residue_vector using Table A to produce cil

ciA — cil

// append encoded bitstream ciA to code_1

code_1 — code_1*CiA

/I The same block of K residue_vector is encoded using
TABLE B

CALL to encode a block of K residue_vector using Table B
to produce ci2

ciB — ci2

/I append encoded bitstream ciB to code_2

code_2 — code 2*CiB

/I The same block of K residue_vector is encoded using
TABLE C

CALLMy_ encoder() to encode a block of K
residue_vector using Table C to produce ci3

ciC — ci3

/I append encoded bitstream ciC to code_3

code_3 — code_3*CiC

/I compute the length of the encoded bitstream code_ 1

/I compute the length of the encoded bitstream code_2

/I compute the length of the encoded bitstream code_3

// compare length of code_1, code_2, code_3 and select the
encoded bitstream with the least compressed size

IF length code_1 <= min(length code_2 && length
code_3) THEN

/1 ID to show that Table A was used

ID — <10

/lciA is appended to ID

lucia_code — ID % code_1

ELSEIF length code_2 <= min(length code_1 && length
code_3) THEN

// 1D for to show that Table B was used

ID — “11

// concatenate ciB to ID

lucia_code — ID * code_2

ELSEIF length code_3 <= min(length code_2 && length
code_1) THEN

/1 1D to tell the encoder that Table C was used

ID — “0”

// concatenate ciC to ID

lucia_code — IDx* code_3

ENDIF

RETURN lucia_code

The results show a reduction of number of bits that are to

be sent to the decoder. This translates to an energy saving of

136885



IEEE Access

L. K. Ketshabetswe et al.: Data Compression Algorithms for WSNs: A Review and Comparison

the sensor nodes that can be calculated as:

Energy Saving

Energy saved through compression Ecomp 100
x 100.

)

If it is assumed that the energy consumed by processing
is less significant than the energy consumed due to transmis-
sion, the sensor node energy saving can be approximated to
the energy saving of the transmission module, which is

Energy consumed without compression Eyucomp

Energy Saving
Average number of bits saved per sample N,

x 100.
(®)

Therefore, the energy saving for every block size is calcu-
lated, and the results are shown in Table 4. For a block size
of 8 samples,

Energy Saving = 23x 100 = 73.2%. This can be
expressed as a compression ratio (CR)

= Number of bits per sample of original data N

Compressed data

CR=(l—- ) x 100%

raw data

30
= (1= 735) x 100 =73.2%. ©

The graph illustrating the compression ratio for the
different block sizes is as shown by Fig. 10.

ALDC Compression Ratio vs Residues Block size
74 . . ! ! : :

731

72

71 F

Compression Ratio (%)

67 . . . . . .
1 2 3 4 5 6 7 8

Block Size(Residue Samples)

FIGURE 10. Compression ratio vs residues block sizes for the ALDC
algorithm.

The results indicate that more energy is saved when the
data samples are divided into bigger blocks. This confirms
that the compression performance of the ALDC algorithm
increases with the increase in the block size. It is also noted
that more energy has been saved by encoding residues, rather
than encoding the original individual readings from the sensor
nodes. Fig 11 confirms that as the number of bits decreases,
the energy-saving increases. Fig 12 demonstrates that as the
number of bits saved from the original data stream increase,
the energy-saving also increases, showing better compression
performance. This analysis, however, was based on the test
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Energy Saving vs No of bits of residues bitstream
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FIGURE 11. Number of bits for residue samples vs energy saving for ALDC
algorithm.

data provided, not from real-world data sets used in compar-
ison with test data results.

Energy Saving vs Bits Saved from original bitstream
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7
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FIGURE 12. Number of bits saved from the original ALDC bitsream vs
energy saving of bits saved from the original bitstream of the ALDC
algorithm.

A measure of the average number of binary symbols
needed to encode a source’s output is a quantity called
‘Entropy’. This is the average self-information that is associ-
ated with a random experiment. It is usually estimated based
on the assumptions made about the structure of the sequence
of data samples. An efficient lossless compression technique
encodes the output of a source using an average number of
bits that is equal to the entropy of that source. Considering
our example of incoming temperature data samples xi =
{8202,8202,8202,8201,8202,8202,8202,8208}, the informa-
tion entropy H can be calculated as

N
H=—3)  PilogPs. (10)

where P,; is the probability mass function of xi, and N is the
number of possible values of the 14 bit analogue to digital
converter Xxi.
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TABLE 6. Huffman coding using tables A, B, and C.

bi TABLE hi residues

0 1 00 0

1 1 01 1+

2 1 11 -3,-2, 42,43

3 3 01 -7, 0444, T

4 3 11 -15,..,-8,48,...+15

5 2 10 31,...,-16,+16,... 431

6 2 00 -63,...,-32+32,...,+63

7 2 010 127,...,-64.464,... +127

8 2 110110 255,128 +128,... 4255

9 2 110111011 -511,...,-256,+256,...,+511

1 2 110111001 -1023,...,-
512,+512,...+1023

11 2 1101110101 -2047,...,-
1024,+1024,... 42047

12 2 1101110100 -4095,...-
2048,+2048,...+4095

13 2 1101110000 -8191,...,-
4096,+4096,...,+8191

14 2 11011100011 -16383,...,-
8192,+8192,...,+16383

The probability

P02y = 6/8. Hgoon) = —6/8 x log2(6/8) = 0.3113.
P01y = 1/8. Hgoo1) = —1/8 x log2(1/8) = 0.375.
Pgosy = 1/8.  Hgoosy = —1/8 x log2(1/8) = 0.375.

H =3.113+40.3754-0.375 = 1.06 bits/sample. This means
that this sequence could best be encoded at 1.06 bits per sam-
ple. The average length is 0.75 x 144-0.125 x 14+40.75 x 14 =
14bits/symbol. The information entropy of the residues H
is calculated as

Hyps = — ZL Pres. 1082 Pes. (11)
The probability
Paoy = 1/8 Haoy = —1/8 x log2(1/8) = 0.375.
Py =4/8. Hg =—4/8 x log2(4/8) = 0.5.
Py =1/8 Hc_y=-1/8 x1log2(1/8) =0.375.
Pay=1/8. Hgy)=—1/8 x log2(1/8) = 0.375.
Py = 1/8. He) = —18 x log2(1/8) = 0.375.

H,s = 0.375 x 4 4+ 0.5 = 2bits/symbol.

The average length of the code / is 0.125 x 440.5 x
0+0.125 x 14-0.125 x 14-0.125 x 3 = 1.125. The difference
between entropy and the average length (2-1.125= 0.875)
is the measure of the efficiency of the code, which is the
redundancy. The decoder needs to know the process that gen-
erated the sequence of residues from the original sequence.
This process relies on the model of the sequence, which is
the assumptions made regarding the sequence structure.

V. THE PROPOSED ALGORITHM
This work introduces an algorithm that modifies the original
ALDC algorithm and save more energy than the original
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TABLE 7. Binary code representations for residue samples showing
selected Huffman tables.

Residue Index Binary TABLE
sample di Position bi  Code rep hi

10 4 11 3

0 0 - 1

0 0 - 1

-1 1 01 1

1 1 01 1

0 0 - 0

0 0 - 0

6 3 01 2

algorithm. Instead of encoding data samples using the two
code options, the algorithm uses all the three tables inter-
changeably as shown in TABLE 6. After analysis of the
performance of the original ALDC algorithm, it is realized
that all three ALDC Huffman coding tables show regions of
bi, where less bits of data were needed to encode the samples
of residues.. The new approach realizes that compression
performance can further be improved by interchangeably
implementing the three Huffman Coding tables A, B and C,
utilizing their bi regions where shorter codewords were used
to encode residue samples.

Table 7 draws relevant information from table 6 and illus-
trates the residue samples, their index position bi on suitably
selected tables, and associated binary code representation.
It can be noted from Table 6 that to encode data samples *10,
0,0-1,1,0,0, 6, only two bits are needed for each symbol.
Asinthe ALDC algorithm, when di = 0, bi = 0 and the binary
representation hi is not required.

The average length of this code is 0.125*24-0.5%2+
0.125*24-0.125*24+0.125*2, which is 2bits/symbol. The
average length is equal to the entropy of the data samples,
confirming that this lossless data compression technique is
efficient.

Modification to the ALDC algorithm is achieved by imple-
menting the ‘Huff 4’ algorithm, which uses ‘My_encoder’
pseudocode to perform the encoding process. The results of
the output bitstream produced from this improvement are as
shown in Table 8.

Pseudocode 6 Hujff 4 (residue_vector, tablel, table2, table3,
code_1)

//My_encoder() is the encode function

//code_1 is the encoded bitstream of N residue_vector.

//* illustrates concatenation

/lencode block of N residue_vector using the three Huff-

man Tables.

CALL My_encoder() with block of N residue_vector

and Tables A, B and C RETURNING cil.

ciA — cil

/I append encoded bitstream ciA to code_1

code_1 — code_1*ciA

RETURN code_1
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TABLE 8. Results of the modified encoding algorithm.

N 4 8 - 25 - 8
N = [CRSIS <]
2 OUTPUT 5 wg2 gaé; 0z=-
o) BITSREAM = S2s @mesSS m>ss
o M < < <
o @»n O Z <O < Z <5
2 @) & -~ e e
2] Z ™ B~ 2
1 0111010000001 26 10 76.78 278
0011000001110"
2 '0111010000001 26 7 76.78 212
0011000001110"
3 '0111010000001 26 6 76.78 18.75
0011000001110"
4 '0111010000001 26 5 76.78 16.13
0011000001110"
5 '0111010000001 26 5 76.78 16.13
0011000001110"
6  '0111010000001 26 5 76.78 16.13
0011000001110"
7 '0111010000001 26 5 76.78 16.13
0011000001110"
8  '0111010000001 26 4 76.78 13.33
0011000001110"
Modified ALDC Compression Ratio vs Block Size
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£
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O sl i
755 ‘ ‘ ‘ . ‘ ‘
1 2 3 4 5 6 7 8

Block Size

FIGURE 13. Compression ratio vs residues block sizes for the modified
ALDC algorithm.

Bits Saved from ALDC vs Energy Saving from ALDC
28 T T T T T Y

Energy saving from the ALDC algorith

12t . . . . . il
4 5 6 7 8 9 10
No of bits saved from the ALDC algorithm bitstream

using the proposed algorithm

FIGURE 14. Number of bits saved from the ALDC output bitstream of the
modified ALDC algorithm.

Table 8 shows that the proposed approach resulted in a
26-bit output bitstream for all block sizes of residue samples
compared to the 30 - 36 bits output bitstream of the ALDC.
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Pseudocode 7 My_Encoder (residue_value, tablel, table2,
table3, ci)

/I tablesl, table2 and table3 are the encoding Huffman
tables.

/l bi is the group number of residue_value and also the
number of least order bits that are required to encode the
residue_value.

/I ci is the output bitstream that has been encoded.

// hi is the Huffman code that represents the residue_value
group.

// li is the variable-length integer code that encodes the
index position of the residue_value in its group.

// * illustrates concatenation

/I (Index)| bi = index over bi bits as a binary number over
bi bits

//Compute residue_value

IF residue_value = 0 THEN

bi— 0

ELSEIF |residue_value| = 1

bi— 1

ELSE

bi — _log2 (| residue_value|)_

ENDIF

/I extract hi the variable length Huffman code from
TABLES

IFbi=0|bi=1 || bi=2THEN

hi — tablel [bi]

ELSEIF bi = 3 || bi = 4 THEN

hi — table3 [bi]

ELSE

hi — table2 [bi]

ENDIF

// build ci

IF bi = 0 THEN

/I'li is not needed

ci — hi

ELSEIF residue_value < 0 THEN

li — Binary

ci —> hixli

ELSE

// build i

li — (Index)| bi

// build ci

ci— hixli

ENDIF

RETURN ci

This is energy saving of 4 to 10 bits, which translates to a total
energy saving of 76.78%. The results are as plotted in Fig 13.

As the number of bits saved by modifying the ALDC algo-
rithm increases, the energy-saving also increases, showing
improvement in data compression performance as illustrated
by Figl4. The codes used for this paper can be found in [56].

VI. CONCLUSION

This research classified data compression techniques into
local data compression, data aggregation and distributed data
compression techniques. A survey and comparison of exist-
ing data compression algorithms is presented, and an ALDC
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algorithm was analyzed by simulation in MATLAB. The sim-
ulation results suggest that the Huffman tables used to encode
dataresidues can significantly compress the data before it can
be applied to the encoder. The authors’ proposed an approach

that uses all the three Huffman coding tables inter-
changeably to encode residues samples of data. The new
approach further reduced the ALDC output bitstream rang-
ing from 30 to 36 bits to a significant 26 bits. This is an
improved energy saving of 76.78%, demonstrating a sig-
nificant improvement of data compression performance to
the algorithm under analysis and review. This has satisfied
this work’s aim of discovering strategies that can be used to
reduce the amount of data before it can be transmitted. In the
future the proposed method can be extended by generating
own Huffman tables to further reduce energy consumption.
The method can be applied to compress real world data sets.
In Addition, the proposed algorithm is to be used in conjuc-
tion with routing algorithm (Termite-hill) to achieve a new
compressed routing algorithm for wireless sensor networks.
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