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ABSTRACT The time-varying complex-valued Sylvester equation (TVCVSE) often appears in many fields
such as control and communication engineering. Classical recurrent neural network (RNN) models (e.g.,
gradient neural network (GNN) and zeroing neural network (ZNN)) are often used to solve such problems.
This paper proposes an adaptive coefficient and non-convex projection zeroing neural network (ACNPZNN)
model for solving TVCVSE. To enhance its adaptability as residual error decreasing as time, an adaptive
coefficient is designed based on residual error. Meanwhile, this paper breaks the convex constraint by
constructing two complex-valued non-convex projection activation functions from two different aspects.
Moreover, the global convergence of the proposed model is proved, the anti-noise performance of the
ACNPZNN model under different noises is theoretically analyzed. Finally, simulation experiments are
provided to compare the convergence performance of different models, which simultaneously verifies the
effectiveness and superiority of the proposed model.

INDEX TERMS Time-varying complex-valued Sylvester equation (TVCVSE), zeroing neural network
(ZNN), adaptive coefficient, non-convex projection.

I. INTRODUCTION
In recent years, Sylvester equation has become widely avail-
able for many research fields, such as control engineering,
image processing, and communication engineering [1]–[6],
etc. According to the previous studies, there are mainly
two types of methods for solving Sylvester equation: one
is the method of serial processing, and the other is parallel
processing. Some serial processing methods mainly belong
to numerical algorithms. For example, the Bartels-Stewart
algorithm and the Hessenberg-Schur algorithm are two effec-
tive methods to solve the static or time-invariant Sylvester
equation [7], [8]. The Bartels-Stewart algorithm can signif-

The associate editor coordinating the review of this manuscript and

approving it for publication was Shun-Feng Su .

icantly save computer time when solving the time-invariant
Sylvester equations [7], and the time complexity to complete
the calculation is O(n3). Compared with the Bartels-Stewart
algorithm, the Hessenberg-Schur method [8] simplifies the
matrix in the Sylvester equation to the Hessenberg-Schur
form, which increases the calculation speed by 30% − 70%.
Unfortunately, these numerical algorithms can only be widely
applied to the solving of time-invariant Sylvester equation,
and it is not suitable for the Sylvester equation with time-
varying parameters.

In the past two decades, the recurrent neural network
(RNN) [9]–[11] has been widely used as a parallel pro-
cessing model in sign language recognition [12]–[14],
robotics [15]–[17], Encoder-Decoder [18]–[20], etc. Gen-
erally speaking, RNN model can efficiently process the

135890 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2053-562X
https://orcid.org/0000-0001-5625-4614
https://orcid.org/0000-0002-3389-6689
https://orcid.org/0000-0001-9777-128X


J. Wu et al.: Solving TVCVSE via Adaptive Coefficient and Non-Convex Projection ZNN

sequence characteristics, especially the time sequence infor-
mation and semantic information in the data can be
mined. In particular, the gradient neural network (GNN)
model [21]–[23] and zeroing neural network (ZNN) [24]–[26]
model are constructed to deal with time-varying problems,
such as time-varying matrix inversion. The GNN model uses
the residual error as a performance indicator, sets several ini-
tial values, and performs iterative operations in the direction
of negative gradients until the residual error converges to a
reasonable range and then stops.

Nonetheless, the parameters in time-varying Sylvester
equation (TVSE) change with time. Jin et al. [27] point out
that the GNNmodel cannot effectively use the time derivative
information, which leads to the separation of the state solution
at the last moment and the state solution at the next moment.
In other words, the state solution generated by solving the
time-varying problem will generate a time lag error, and the
corresponding residual error cannot converge to zero over
time. Hence, the GNN model is not suitable for solving
TVSE. Compared with the GNN model, the ZNN model can
effectively use the time derivative of time-varying parame-
ters [28]. When time tends to infinity, the resulting residual
norm converges to zero. In paper [29], Li et al. introduce
a sign-bi-power activation to activate the ZNN model so as
to solve the TVSE in a limited time. It is worth noting that
the ZNN model activated by sign-bi-power activation here
is simulated under noise-free conditions, and the activation
function does not have noise immunity [30], [31].

On the basis of the above research, this paper extends
the application range of solving TVSE from the real-valued
domain to the complex-valued domain and proposes a
complex-valued ZNN [32] model to solve time-varying
complex-valued Sylvester equation (TVCVSE). In the
TVCVSE solution process, the residual norm will become
smaller as time increases. At the same time, the coefficients
of the traditional ZNN model are fixed values, which can-
not perfectly follow the change of residual error. Therefore,
this paper proposes adaptive coefficients [33] to construct
an adaptive coefficient and non-convex projection zeroing
neural network (ACNPZNN)model, which not only can over-
come the excessively long convergence time and convergence
accuracy of the ZNN model, but also achieve the effect of
adaptive system changes. Then, this paper applies the satu-
ration function as the activation activation of the ACNPZNN
model, and further shortens the convergence time on the basis
of the ACNPZNN model by reading the literature [34]–[36].
Furthermore, considering the convex constraint problem, this
paper uses a non-convex bound activation function to activate
the ACNPZNN model and to relax the convex constraint.
In addition, the non-convex bound activation function has
strong noise immunity under the premise of ensuring satis-
factory convergence time and convergence accuracy.

The remaining parts of this paper can be organized as
follows. In Section II, the Sylvester equation problem for-
mulation is provided, and some existing derivation processes
are introduced. The adaptive coefficients are designed to

establish the ACNPZNN model in Section III. And in addi-
tion, a method of constructing complex-valued activation
function is proposed. Section IV proves the convergence
performance of the ACNPZNN model under two activa-
tion conditions through theoretical analysis. Moreover, based
on Section IV, Section V analyzes the robustness of the
ACNPZNN model under constant noises and random noises,
respectively. Finally, Section VI gives a complex-valued
example of solving the Sylvester equation and analyzes the
state solution of the ACNPZNNmodel under multiple sets of
initial values and the convergence of the ACNPZNN model
under different noise environments through the experimental
results. The main contributions of this paper are summarized
as follows.
• A novel adaptive complex-valued zeroing neural net-
work (ACNPZNN)model is creatively proposed to solve
the TVCVSE in this paper, which can efficiently deal
with complex-valued time-varying problem and ensure
the high precision of the solution results.

• A non-convex saturated framework in the complex-
vauled domain is presented for constructing the
ACNPZNNmodel. Furthermore, this paper analyzes the
anti-noise performance of the framework under different
noise conditions and the performance comparison of
other models through theorems and proofs.

• In this paper, four sets of different initial values are set
and executed. A series of experiments show that the
simulation results basically coincide with the theoretical
analyses, which verify the superiority and feasibility of
the proposed ACNPZNN model.

II. PROBLEM FORMULATION AND RELATED WORK
In general, the form of the TVCVSE problem can be
expressed as follows:

M (t)X (t)− X (t)N (t)+ K (t) = 0, t ∈ [t0, tf ], (1)

where t denotes time, t0 and tf are the starting time and
final time, respectively; time-varying complex-valued matri-
cesM (t) ∈ Cm×m, N (t) ∈ Cn×n and K (t) ∈ Cm×n are known
coefficient matrices; X (t) ∈ Cm×n is the unknown complex-
valued time-varying matrix to be obtained. In addition, if and
only if the difference between any two eigenvalues of the
time-varying matrix M (t) and N (t) is not equal to zero at
any time t , Eq. 1 has a unique solution. Suppose that X∗(t)
represents the unique theoretical solution of the TVCVSE
problem (1), then vectorizing both sides of Eq. (1) and we
can get:

vec (M (t)X (t)− X (t)N (t)) = − vec(K (t)), (2)

where vec(·) denotes the vectorization of a matrix. According
to the defination of the vectorization operation, the conclu-
sion can be drawn that vec(E − F) = vec(E) − vec(F).
Consequently, the equation (2) can be converted into the
equation as follows:

vec (M (t)X (t))− vec(X (t)N (t)) = − vec(K (t)). (3)
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For further transition, the equation (3) can be written as

vec (M (t)X (t)In)− vec (ImX (t)N (t)) = −vec(K (t)), (4)

where In ∈ Cn×n and Im ∈ Cm×m are the identity matrices.
In the light of the property of vectorization, that vec(EXF) =
(FT
⊗ E)vec(X ) and equation (4), we have

(In ⊗M (t)− NT(t)⊗ Im)vec(X (t)) = − vec(K (t)), (5)

where T denotes the transpose of the matrix or the vector.⊗ is
the Kronecker product. The Eq. (5) above can be expressed
as the following form,

S(t)x(t) = −k(t), t ∈ [t0, tf ], (6)

where, S(t) = In ⊗ M (t) − NT(t) ⊗ Im ∈ Cmn×mn, x(t) =
vec(X (t)) ∈ Cmn×1, and k(t) = vec(K (t)) ∈ Cmn×1.

III. SOLVING MODEL CONSTRUCTION
In this section, we solve the TVCVSE (1) problem by setting
the error function, and propose the definition of adaptive
coefficients to construct the proposed ACNPZNN model.

A. THE CONSTRUCTION METHOD OF THE ACNPZNN
MODEL
In order to solve the TVCVSE (1) problem, we divide the
solving process into the following three steps.

Step 1: An error function can be constructed as

ε(t) = S(t)x(t)+ k(t). (7)

Compared with the original problem Eq. (1), the above
equation cleverly transforms the TVCVSE (1) problem into
an error function for finding the zero point problem. Deriving
Eq. (7), we can get:

ε̇(t) = Ṡ(t)x(t)+ S(t)ẋ(t)+ k̇(t). (8)

Step 2: A traditional ZNN model can be written as:

ε̇(t) = −η9(ε(t)), (9)

where η > 0 represents a constant that controls the con-
vergence speed of the error function, 9(·) represents the
complex-valued activation function.

Then, we will introduce an adaptive parameter η(ε(t)) :
Cm×n

→ C, and substituting it into equation (9), we can get
a novel solution model as follows:

ε̇(t) = −η(ε(t))9(ε(t)), (10)

where the adaptive coefficient is designed as η(ε(t)) = 10×
exp(||ε(t)||2)+ 10.
Step 3: Combine the Eq. (8) and Eq. (10) to obtain:

Ṡ(t)x(t)+ S(t)ẋ(t)+ k̇(t) = −η(ε(t))9(ε(t)). (11)

Only keep S(t)ẋ(t) on the left side of Eq. (11), move the
remain terms on the right side of the equation to get:

S(t)ẋ(t) = −η(ε(t))9(ε(t))− Ṡ(t)x(t)− k̇(t). (12)

Finally, we can get the following equation:

ẋ(t) = S−1(t)(−η(ε(t))9(ε(t))− Ṡ(t)x(t)− k̇(t)). (13)

B. CONSTRUCTION METHOD OF COMPLEX-VALUED
ACTIVATION FUNCTION
Different from the traditional real-valued activation function
design method, the complex-valued activation function needs
to consider the real and imaginary parts of the data. In fact,
there are two methods for constructing the complex-valued
activation function. The first method is to extract the real
part and the imaginary part to activate, respectively, and then
regenerate a new data. The second method is to extract the
modulus and argument of the input data to activate, respec-
tively, and then synthesize a new data.

1) TYPE-I CONPLEX-VALUED ACTIVATION FUNCTION

91(B+ iD) = ψ(B)+ iψ(D). (14)

2) TYPE-II CONPLEX-VALUED ACTIVATION FUNCTION

92(B+ iD) = ψ(3)� exp(iθ ). (15)

In the type-I activation function (14), parameter i is the
imaginary unit, and B ∈ Cm×n andD ∈ Cm×n are the real and
imaginary parts of the input data, respectively. In the type-
II activation function (15), 3 ∈ Cm×n and θ ∈ [0, 2π ]m×n

represent the modulus and argument of B+ iD, respectively.
� denotes the Hadamard product.

In addition, note that whether it is type-I activation func-
tion (14) or type-II activation function (15), they are all
complex-valued mapping functions. Meanwhile, if the acti-
vation function ψ(·) is a linear activation function, the type-I
91(·) and the type-II activation function92(·) are equivalent;
if not, the type-I activation function 91(·) and the type-II
activation function 92(·) are different.

The definition of the bound or non-convex bound activa-
tion function is as follows: Yσ (Z ) =argminG∈σ ||G − Z ||2
with 0 ∈ σ . According to the construction methods of
two complex-valued activation functions (14) (15), ε̇(t) =
−η(ε(t))9(ε(t)) can be reformulated as

ε̇(t) = −η(ε(t))(Yσ (εr (t))+ iYσ (εi(t))), (16)

ε̇(t) = −η(ε(t))Yσ (ε(t))� exp(iarg(ε(t))), (17)

where εr (t) and εi(t) represent the real and imaginary parts
of ε(t), respectively.

The following bound constraint activation function (BCAF)
and nonconvex bound activation function (NBAF) can be
used to implement the type-I activation function (14):
• Instance of the BCAF
σ = {z ∈ Rmn×1, ω− ≤ zs ≤ ω+}, of which the param-
eter ω > 0. For example,

Yσ (zs) =


ω+s , zs > ω+s ,

zs, ω−s ≤ zs ≤ ω
+
s ,

ω−s , zs < ω−s .

(18)

where zs represents the sth element of the vector z.
• Instance of the NBAF
σ = {z ∈ Rmn×1,−κ1 ≤ zs ≤ κ1 or zs = κ2 or zs = κ3}.
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Parameters κ1, κ2 and κ3 satisfy the following relation-
ships: 0 < κ1 < κ2, κ3 < −κ1 < 0. For example,

Yσ (zs) =


κ2, zs > κ1,

zs, −κ1 ≤ zs ≤ κ1,
κ3, zs < κ1,

(19)

The following is example of constructing type-II activation
function (15) with ball situation with saturation (BSWS):
• Instance of the BSWS
σ = {zs ∈ Cmn×1, ||z||2 ≤ α}, of which the parameter
α > 0. For example,

Yσ (zs) =

 zs, ||zs||2 ≤ α,
αzs
||zs||2

, ||zs||2 > α.
(20)

The above-mentioned three instances can be applied as
activation functions of the proposed ACNPZNN model (13).
Besides, in order to investigate the global convergence of the
proposed ACNPZNN model activated by the activation func-
tion (18) and (19), the following two theorems are provided
in the next section.

IV. CONVERGENCE OF ACNPZNN MODEL
The analysis and proof of the proposed ACNPZNN
model (13) activated by the nonconvex bound activation func-
tion are contained in this section. Specifically, the global
convergence of the BCAF activated ACNPZNN model (13)
and NBAF activated ACNPZNN model (13) is arranged in
Theorem 1 and Theorem 2, respectively. In order to further
analyze and investigate, the following two related theorems
are proposed.
Theorem 1: Beginning with arbitrary time-varying

smooth initial matrices M (t), N (t), and K (t), the proposed
ACNPZNN model (13) activated by the type-I activation
function 91(·) is globally convergent to the theoretical solu-
tion of the TVCVSE problem (1).

Proof: The sth subelement in ε̇(t) = −η(ε(t))Yσ1(ε(t))
can be expressed as ξ̇s(t) = −η(ξs(t))Yσ1(ξs(t)). After the
above element is activated by the type-I activation func-
tion (14), it can be expressed as the following:

ḃs(t) = −η(bs(t))ψ1 (bs(t)) , (21)

ḋs(t) = −η(ds(t))ψ1 (ds(t)) , (22)

where the parameters bs(t) and ds(t) represent the real and
imaginary parts of the ξs(t), respectively. In order to prove
the global convergence of the real part of ξs(t), the Lyapunov
function candidate is defined as

Pb(t) = b2s (t)/2. (23)

Conspicuously, Pb(t) > 0 when bs 6= 0, and Pb(t) = 0
only when bs(t) = 0. Consequently, the above function
Pb(t) is positive definite. Derivating of Lyapunov function
candidate (23):

Ṗb(t) = bs(t)ḃs(t) = −η(bs(t))bs(t)ψ1 (bs(t)) . (24)

It is apparent that Ṗb(t) < 0 when bs 6= 0, and Ṗb(t) = 0
only when bs = 0. Therefore, Ṗb(t) is negative definite.
According to the Lyapunov stability theory, bs(t) will even-
tually converges to zero. Sorting out the above derivation
process, we can easily deduce that the imaginary part ds will
globally converge to zero. Consequently, we can conclude
that the error function ε(t) (7) globally converges to zero. The
proof is thus completed.
Theorem 2: For any time-varying smoothly complex-

valued matrices M (t), N (t), and K (t), the results of the
ACNPZNN model (13) activated by the type-II activation
function (15) converge globally to the theoretical solutions
of the TVCVSE (1).

Proof: Firstly, the Lyapunov function candidate is
defined as

P2(t) =
ξs(t)ξ∗s (t)

2
, (25)

where the parameter ξ∗s (t) denotes the complex conjugate of
ξs(t). The sth elements in ε̇(t) = −η(ε(t))92(ε(t)) is defined
as ξ̇s(t) = −η(ξs(t))ψ2 (ξs(t)). Then, discuss the different
situation in detail. Firstly, in the case of ξs(t) 6= 0, P2(t)>0,
and only when ξs(t) = 0, P2(t) = 0. It is evident that P2(t) is
positive definite. Then, the derivative of P2(t) is:

Ṗ2(t) = −
η(ξs(t))

(
ψ2 (ξs(t)) ξ∗s (t)+ ξs(t)ψ2

(
ξ∗s (t)

))
2

. (26)

At this time,ψ2(·) is the same as the type-II activation func-
tion (15), and the type-II activation function (15) is rewritten
as

ψ2 (ξs(t)) = Yσ (|ξs(t)|) exp (i · arg (ξs(t))) , (27)

ψ2
(
ξ∗s (t)

)
= Yσ (|ξs(t)|) exp (−i · arg (ξs(t))) . (28)

Substituting formulas (27) and (28) into formula (26) gen-
erates

Ṗ2(t) = −η(ξs(t)) |ξs(t)|Yσ (|ξs(t)|) . (29)

Then classify and discuss the formula (29): when
Yσ (|ξs(t)|) 6= 0, Ṗ2(t) < 0. Furthermore, only when
Yσ (|ξs(t)|) = 0, Ṗ2(t) = 0. Taking into account what has
been proved, we can infer that Ṗ2(t) is negative definite. Con-
sequently, the conclusion can be drawn that ε(t) converges to
zero globally. The proof is thus completed.

V. STABILITY OF ACNPZNN MODEL UNDER TWO KINDS
OF NOISES
Two theorems are provided in this section to analyze the
robustness of the proposed ACNPZNNmodel (13) under two
kinds of noise interference, concretely, the complex-valued
constant noises and bounded random noises, respectively.

A. THE ROBUSTNESS OF THE ACNPZNN MODEL UNDER
COMPLEX-VALUED BOUNDED RANDOM NOISES
Theorem 3: Under the interference of complex-valued

bounded random noises ρ(t), the residual error ||ε(t)||2 is
generated by the proposed ACNPZNNmodel (13). When the
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time is infinite, the upper value of the residual error ||ε(t)||2 is

limited by the fixed value ‖ε(t)‖2 =
√∑mn

h=1
ϑ2

η(ε(t)) , of which
ϑ = max ‖ ρ(t)‖2.

Proof: Firstly, the proposed nonconvex bound activa-
tion function activated ACNPZNN model (13) is defined as
ε̇(t) = −η(ε(t))9(ε(t)). Select the linear activation function
9(ε(t)) = ε(t) to discuss the situation of complex-valued
bounded random noises ρ(t) interference. Hence, the evo-
lution formula of the ACNPZNN model (13) with the
complex-valued bounded random noises interfered can be
written as

ε̇(t) = −η(ε(t))ε(t)+ ρ(t). (30)

Consequently, the formula (13) is described as

ẋ(t) = S−1(t)(−η(ε(t))9(ε(t))− Ṡ(t)x(t)− k̇(t))+ ρ(t).

(31)

Based on the formula (30), the sth subsystem of the equa-
tion (30) evolves into

ξ̇s(t) = −η (ξs(t)) ξs(t)+ ρs(t). (32)

It is known that the general solution of the first-order non-
homogeneous linear differential equation dy/dx + P(x)y =
Q(x) is y = Ce−

∫
P(x)dx

+ e−
∫
P(x)dx

∫
Q(x)e

∫
P(x)dxdx.

Therefore, the general solution of the equation (32) can be
expressed as

ξs(t) = e−η(ξs(t))t
(
ξs(0)+

∫ t

0
eη(ξs(t))δρs(δ)dδ

)
. (33)

Converting equation (33) into inequality, it can be obtained
as follows:

|ξs(t)| ≤
∣∣∣e−η(ξs(t))t ∣∣∣ (ξs(0)+ ∣∣∣∣∫ t

0
eη(ξs(t))δρs(δ)dδ

∣∣∣∣) . (34)
When time t is infinite, let the maximum value in the

domain of definition be taken asϑ = max|ρ(t)|, then inequal-
ity (34) can be transformed into

|ξs(t)| ≤
∣∣∣ξs(0)e−η(ξs(t))t ∣∣∣+ ϑ

η(ε(t))
. (35)

Finally,
∣∣ξs(0)e−η(ξs(t))t ∣∣ → 0, when t → +∞. And take

the norm on both sides of the inequality, that is

lim
t→+∞

‖ξ (t)‖2 ≤
‖ϑ‖2

η(ε(t))
. (36)

In light of the definition of the adaptive coeffcients η(ε(t)),
it is clearly to draw a conclusion that lim

t→+∞
η(ε(t)) = a and

the parameter a is a constant. Therefore, when t → +∞,
the upper bound of the residual error ‖ε(t)‖2 generated by
the ACNPZNN model (13) converges to a certain value. The
proof is thus completed.

B. THE ROBUSTNESS OF THE ACNPZNN MODEL UNDER
COMPLEX-VALUED CONSTANT NOISES
Theorem 4: Defining the upper and lower bounds of

the bounded constrained activation function as v+, v−,
respectively. If the real ρr and imaginary parts ρi of the
complex-valued constant noises ρ(t) = ρ̄ satisfy the fol-
lowing conditions: when lim

t→+∞
η(ε(t)) = a makes 0 ≤

ρ̄r ≤ av+, 0 ≤ ρ̄i ≤ av+ or 0 > ρ̄r > av−, 0 >

ρ̄i > av−, the residual error ‖ε(t)‖2 of the ACNPZNN
model (13) will converge globally to a fixed value composed
of complex-valued constant noises ρ̄.

Proof: The proposed ACNPZNN model under the inter-
ference of complex-valued constant noises ρ̄ can be rewritten
as

ε̇(t) = −η(ε(t))Yσ (ε(t))+ ρ̄, (37)

the subsystem of the equation (37):
ε̇s(t) = −η(ε(t))Yσ (εs(t))+ ρ̄s. (38)

At the same time, ε̇s(t) has another way of expression:

ε̇s(t) = qs(t)+ ips(t). (39)

Furthermore, the following two equations can be obtained
as

qs(t) = −η(ε(t))Yσ (γs(t))+ ρ̄rs, (40)

ps(t) = −η(ε(t))Yσ (τs(t))+ ρ̄is, (41)

where the parameter γs(t) and τs(t) represent the real and
imaginary part of the εs(t), and the parameter ρ̄rs and ρ̄is
denote the real and imaginary part of the ρ̄s. Regarding the
above equation (40), the Lyapunov function can be designed
as

Ws(t) = γ 2
s (t)/2. (42)

Then, the time derivative ofWs(t) is calculated as

Ẇs(t) = γs(t)γ̇s(t). (43)

Together with (38), we get

Ẇs(t) = −γs(t)(η(ε(t))Yσ (γs(t))− ρ̄rs). (44)

Obviously, lim
t→+∞

η(ε(t)) = a, so the equation (44) can be

written as

lim
t→+∞

Ẇs(t) = −γs(t)(aYσ (γs(t))− ρ̄rs). (45)

Therefore, we need to discuss the value of γs(t) to deter-
mine the value of Ẇs(t). The following is a discussion of the
three cases of γs(t):

1) IN THE SUBCASE OF γs(t) < 0
• aYσ (γs(t))− ρ̄rs < 0
Based on the above conditions, it is obviously inferred
that Ẇs(t) < 0. Ws(t) is positive definite for the reason
that when γs(t) 6= 0, Ws(t) > 0, but only when γs(t) =
0,Ws(t) = 0. Therefore, it can be summarized that γs(t)
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globally converges to zero based on Lyapunov stability
theorem.

• aYσ (γs(t))− ρ̄rs = 0
Regardless of what value γs(t) takes, Ẇs(t) remains at
zero. Next, calculating equation aYσ (γs(t)) − ρ̄rs = 0,
it can be readily evolved that γs(t) = Y−1σ (ρ̄rs/a). Thus,
γs(t) is clearly a constant value.

• aYσ (γs(t))− ρ̄rs > 0
Since Ws(t) > 0 and Ẇs(t) > 0, the proposed
ACNPZNN model (13) is divergent. For this situation,
as γs(t) decrease, −aYσ (γs(t)) will gradually increase.
If the lower bound v− satisfies the condition av− ≤ ρ̄rs,
then we can get ∃t > 0, aYσ (γs(t)) = ρrs. Therefore,
the above situation can be absorded in case 2. It is
noteworthy that when aYσ (γs(t)) ≤ ρ̄rs, the residual
error is bounded by Y−1σ (ρ̄rs/a) in spite of Ẇs(t) > 0.

2) IN THE SUBCASE OF γs(t) = 0
• For this subcase, Yσ (γs(t)) = 0. And substitute it into
equation (40), qs(t) = ρ̄rs. It can readily draw the
conclusion that the value of εs(t) depends entirely on the
value of ρ̄rs. That is to say, γs(t) will be transformed into
subcase 1 or subcase 3 after this moment because it is a
transient state.

3) IN THE SUBCASE OF γs(t) > 0
• aYσ (γs(t))− ρ̄rs > 0
Under this circumstance, Ẇs(t) < 0. In view of
Ws(t) > 0, thus γs(t) globally converges to zero based on
Lyapunov stability theory. Significantly, as aYσ (γs(t))
continues to decrease, there is a situation where
aYσ (γs(t)) = ρ̄rs is satisfied at a certain moment, which
is the issue discussed in case 2 of subcase 3.

• aYσ (γs(t))− ρ̄rs = 0
In such a case, it can be converted to Ẇs(t) = 0. Con-
sidering Lyapunov stability theory, γs(t) can globally
converge to a fixed value Y−1σ (ρ̄rs/a).

• aYσ (γs(t))− ρ̄rs < 0
Out of consideration for the known conditions, it is
easy to get Ẇs(t) > 0. When ρ̄rs ≤ av+, the model
will meet condition aYσ (γs(t)) − ρ̄rs = 0 and return
to case aYσ (γs(t)) − ρ̄rs = 0, which makes become
stabilized. Therefore, the real parts of the error function
will converges to Y−1σ (ρ̄rs/a).

Similarly, the imaginary part ps(t) can also be proved to
globally converges to Y−1σ (ρ̄is/a) in the same way. Given

what has been discussed, we can come to the conclusion that,
if the real and imaginary parts of complex-valued constant
noises ρ̄s match conditions 0 ≤ ρ̄r ≤ av+ or 0 > ρ̄r >

av−, and 0 ≤ ρ̄i ≤ av+ or 0 > ρ̄i > av−, the residual
error ‖ε(t)‖2 of the ACNPZNN model (13) can converge to

a certain fixed value
√
(Y−1σ (ρ̄rs/a))2 + (Y−1σ (ρ̄is/a))2. The

proof is thus completed. �

VI. SIMULATION EXPERIMENTS AND COMPARISONS
In this section, in order to compare the robustness and con-
vergence of the ZNN model, GNN model, and the proposed
ACNPZNN model, an example of the TVCVSE (1) problem
is designed, which illustrates the performance under three
conditions: noises-free, complex-valued constant noises, and
complex-valued bounded random noises. In addition, all the
following simulation experiments are run on a computer with
an Intel Core i5-9400 CPU, 16-GB memory, and Windows
10, 64-bit operating system.

A. TIME-VARYING COMPLEX-VALUED SYLVESTER
EQUATION EXAMPLE
For the sake of simplicity, the illustrative example of
TVCVSE (1) problem can be constructed as follows:

M (t) =
[

exp(it) −iexp(−it)
−iexp(it) exp(−it)

]
,

N (t) =
[
0 0
0 0

]
,

K (t) =
[
−1 0
0 −1

]
.

At all times, the common eigenvalues of the time-varying
matricesM (t) and N (t) satisfy the special requirement of the
Eq. (1). Next, the corresponding time-varying matrices S(t),
k(t) in Eq. 6 can be listed as follows:

S(t)=


exp(it) − iexp(−it) 0 0
−iexp(it) exp(−it) 0 0

0 0 exp(it) − iexp(−it)
0 0 − iexp(it) exp(−it)

,
k(t)= [−1, 0, 0,−1]T.

At the same time, an example of constructing type-I
complex-valued activation function (14) by using

FIGURE 1. Randomly generate four sets of unequal initial values, and use the ACNPZNN model (13) constructed with the adaptive coefficients
to solve the TVCVSE example illustrated in subsection (VI-A).
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FIGURE 2. The simulation visual results of comparisons among ACNPZNN, ZNN and GNN models for solving TVCVSE under noise-free condition.
(a) The linear representation. (b) The logarithmic representation.

FIGURE 3. The experimental results of comparisons among ACNPZNN, ZNN and GNN models for solving CVTVSE under different noises.(a) The
linear representation under constant noise. (b) The logarithmic representation under constant noise.(c) The linear representation under
random noise. (d) The logarithmic representation under random noise.
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NBAF (19) is as follows:

Yσ (zs) =



3, zs > 0.5,
0.1, 0.3 > zs > 0.1,
zs, −0.1 ≤ zs ≤ 0.1,
0.1, −0.1 > zs > −0.3,
−3, zs < −0.5.

(46)

Besides, the adaptive coefficient is designed as

η(ε(t)) = 10× exp(||ε(t)||2)+ 10. (47)

In addition, four set of initial values are provided in Fig. 1.

B. PERFORMANCE COMPARISONS AMONG DIFFERENT
MODELS FOR SOLVING TVCVSE WITH NOISE-FREE
The simulation visual results of traditional ZNN, traditional
GNN, and the proposed ACNPZNN (13) models for solving
TVCVSE problem under the noise-free condition are shown
in Fig. 2. The linear and logarithmic forms of the residual
error ||ε(t)||2 of the proposed ACNPZNN model (13) are
illustrated in Fig. 2 (a) and (b), respectively. Obviously, it can
be observed that the residual error ‖ε(t)‖2 of the ACNPZNN
model (13) can globally converges to zero in noise-free
condition, and the best of these three models in terms of
convergence performance is the proposed ACNPZNN.

C. PERFORMANCE COMPARISONS AMONG DIFFERENT
MODELS FOR SOLVING TVCVSE WITH DIFFERENT NOISES
To study the robustness of ACNPZNN model (13) and other
models under different noise conditions, the real and imag-
inary parts of the complex-valued constant noise used to
solve the complex-valued Sylvester equation is set to [2]4,
and the complex-valued random noise is set to be in the
range [0.5, 2]4. The experimental results of the proposed
ACNPZNN model (13) under the constant and random noise
conditions are shown in Fig. 3.

Figure 3 (a) and (b) show the linear and logarithmic
representations of the residual error ||ε(t)||2 of traditional
ZNN model (blue dash curves), traditional GNN model (pur-
ple dotted curves), and the proposed ACNPZNN (13) (red
solid curves) model with non-convex bound activation func-
tion (46) polluted by complex-valued constant noises, respec-
tively. It is apparent that, the ACNPZNNmodel (13) achieves
better performance when perturbed by complex-valued con-
stant noises.

Figure 3 (c) and (d) demonstrate the linear and logarith-
mic representations of the residual error ||ε(t)||2 of tradi-
tional ZNNmodel (blue dash curves), traditional GNNmodel
(purple dotted curves), and the proposed ACNPZNN (13)
(red solid curves) model with non-convex bound activation
function (46) polluted by complex-valued constant noises,
respectively. The proposed ACNPZNN coincides with The-
orem 2. It is easy to see, in the case of bounded random
noise interference, the ACNPZNN model (13) still maintains
a reliable robustness.

VII. CONCLUSION
Aiming at effectively solving the TVCVSE problem, this
paper proposes a residual-based adaptive coefficient and
non-convex projection complex-valued zeroing neural net-
work (ACNPZNN) model. Compared with the constant
scale parameter of traditional ZNN model, the proposed
ACNPZNN model has achieved advanced performance in
terms of the solution accuracy and convergence rate. In addi-
tion, under various noise conditions, the performance of the
proposed ACNPZNNmodel with the non-convex bound acti-
vation function is more robust or reliable. Besides, to further
quantitatively investigate the robustness performance of the
ACNPZNN model, two corresponding theorems have been
presented. Finally, the corresponding experiments and simu-
lations have been designed to further verify the superiority of
the model. In summary, both the qualified simulation exper-
iments and theorems have verified the high global conver-
gence speed and reliability of the ACNPZNN model. In the
future, higher-dimensional matrices would be used to verify
the validity of the proposed ACNPZNN model (13) to solve
problems. In addition, new activation functions and adaptive
coefficients would be designed to optimize the model.
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