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ABSTRACT This paper studies the problem of event-triggered control for a class of networked distributed
parameter systems with Markov jump parameters. To reduce the number of packages transmitted over the
communication network, an adaptive event-triggered mechanism is introduced. The Galerkin method is
employed to obtain the nonlinear ordinary differential equation systems, which can accurately describe
the dynamics of the dominant modes of the considered distributed parameter systems. The systems are
subsequently parameterized by a multilayer neural network with one-hidden layer and zero bias terms,
and the linear ordinary differential equation systems are derived. Then, Lyapunov approach is used to
analyze stability of the considered systems, and by employing the strong law of large numbers and Gronwall
inequality technique, almost surely exponential stability condition is derived. Moreover, a linear sampled-
data-based controller is designed to stabilize the closed-loop systems. Finally, a practical example is shown
to demonstrate the effectiveness of the achieved theoretical results.

INDEX TERMS Distributed parameter systems, Markov jump parameters, Galerkin method, neural model,
adaptive event-triggered networked control, almost surely exponential stability.

I. INTRODUCTION
Distributed parameter systems (DPSs) have been listed as
one of the most popular subjects due to their effective and
successful modeling of chemical reactor processes, transport-
reaction processes and curing oven [1]. Recent years, signifi-
cant efforts have been devoted into different control problems
for DPSs, such as approximation [2], estimation [3], consen-
sus [4], optimization [5].

In view of the complicated system structure and non-
linear terms of the most practical engineering DPSs, the
conventional control approach is invalid. In this context,
Christofides [6] introduced Galerkin method for nonlin-
ear DPSs to derive low dimensional approximation system.
Based on the method proposed by [6], Wu and Li [7] devel-
oped Takagi-Sugeno fuzzy control approach to design a fuzzy
observer-based controller for nonlinear DPSs. These meth-
ods are proposed for DPSs with nonlinear functions com-
pletely known, while few approaches are available for DPSs
with unknown nonlinearities. Considering the applicability
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of neural network (NN) control design for systems with
unknown nonlinearities [8], Wu and Li [9] solved the guar-
anteed cost control problem for DPSs with unknown nonlin-
earities by using Galerkin method and NN technique. This is
one motivation of our study.

It is well known that sampling is an inevitable part in
working out the control signals. The traditional sampling data
transmitting scheme is periodical which may be beneficial to
analysis and design. Nevertheless, this may lead to unneces-
sary waste of computation and communication resources. To
overcome this drawback, the event-triggered control scheme
is proposed to manage the information data release only
when the given condition is triggered, in other words, only
necessary data will be transmitted [10]. The event-triggered
control problem of finite dimensional systems were studied
widely [11]–[16], [34]–[37], while Yao and El-Farra [17]
recently investigated event-triggered control problem for
DPSs as the first attempt. Based on mobile sensor and actu-
ator, Jiang et al. [18] considered event-driven observer-based
control problem for DPSs by employing operator semigroup
method. Moreover, Selivanov and Fridman [19] discussed
distributed event-triggered network control problem for DPSs
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by using Lyapunov control method. Whereas, the afore-
mentioned event-triggered control methods are available
for the system with fixed topology structure. To solve the
event-triggered control problem of the system with ran-
dom switching structure, Zhang et al. [20] studied finite-
time event-triggered H∞ boundedness for nonlinear system
with Markov switching parameters by using discontinuous
Lyapunov control method. Very recently, Shen et al. [21]
proposed an event-triggered scheme based controller for the
system with Markov switching parameters.

The threshold of the trigger condition plays the crucial role
in the event-triggered control issue. Different value of the
threshold may produce unsatisfactory data releasing perfor-
mance, for example, when the threshold selected as zero, then
the data releasing scheme becomes time-triggered. Moreover,
the pre-set threshold may be not suitable for varying complex
structure of systems. Therefore, it is necessary to develop an
adaptive event-triggered law to adapt such changing condi-
tion. Recently, Ran et al. [36] and Liu et al. [37] proposed
event-triggered communication scheme to analyze problems
of both dissipative control and finite-time filtering of interval
type-2 fuzzy systems, respectively. However, there are few
references published on adaptive event-triggered control for
DPSs with Markov jump parameters. This is another motiva-
tion of this paper.

To compensate for the above discussion, the adaptive
event-triggered networked control of distributed parameter
systems with Markov jump parameters is discussed in this
paper. An adaptive event-triggered mechanism is introduced
to reduce the number of the package transmission in the
networked system. Based on the spatial operator, the dis-
tributed parameter systems can be divided into a slow finite
dimensional system and a fast infinite dimensional system.
The Galerkin method is employed to obtain the ordinary
differential equation systems, which can accurately describe
the dynamics of the dominant (slow) modes of the considered
systems. Subsequently, a multilayer neural network with one-
hidden layer and zero bias terms is used to parameterize the
resulting nonlinear systems, and the linear systems can be
derived. Then, a new Lyapunov functional is established for
the stability of the linear Markov jump systems. To deal with
the influence of Markov jump, some efforts have been made
recently, for example, the weak infinitesimal generator tech-
nology is employed in [28]–[32]. Different from the above
methods, this paper employs the strong law of large numbers
and Gronwall inequality technology to prove most surely
exponential stability of the closed-loop system. Furthermore,
a linear adaptive event-triggered networked feedback con-
troller is derived to stabilize the distributed parameter sys-
tems. Finally, a practical example is shown to demonstrate
the validity of the achieved theoretical results. In this paper,
the main contributions are listed as follows: (1) An event-
triggered communication scheme with an adaptive event-
triggered threshold is proposed for the distributed parameter
systems, which performs better than conventional event-
triggered communication scheme with a constant threshold.

(2) To reduce the conservation, a Wirtinger’s inequality-
dependent Lyapunov functional is constructed to analyze the
stability problem for the closed-loop finite-dimensional slow
system. (3) Different from the traditional stochastic analysis
approach, such as infinitesimal generator, this paper employs
the strong law of large numbers and inequality techniques to
obtain almost surely exponentially stable criteria.

Notations: The notation used here is fairly standard except
where otherwise stated.

II. PRELIMINARIES
Set {σ (t), t ≥ 0} be a Markov chain with right continuity on
the probability space. The form process σ (t) is time homo-
geneous and takes values on a finite state space (denoted by
S = {1, 2, · · · , `}) with stationary distribution. For i, j ∈ S,
the transition probability from mode σ (t) = i to mode
σ (t) = j is given as following

Prob{σ (t + h) = j | σ (t) = i} =

{
pijh+ o(h), i 6= j,
1+ piih+ o(h), i = j,

where h ≥ 0 (h is a small time interval if t stands for time) and
limh→0

o(h)
h = 0; for i 6= j, pij ≥ 0 stands for the transition

rate from mode σ (t) = i at time t to mode σ (t) = j at
time t + h; else, pii = −

∑
j∈S, j 6=i pij. The transition rate

matrix of Markov process σ (t) is denoted by P = [pij].
Definite the stationary probability distribution of the ith mode
πi = Prob{σ (t) = i} and π = [π1, π2, · · · , πn]′.
Consider the following DPSs in one spatial dimension with

a state-space description of the form

∂w(x, t)
∂t

= Aσ1
∂w(x, t)
∂x

+ Aσ2
∂2w(x, t)
∂x2

+g(w(x, t))+ Aσ3 f (w(x, t))u(t), (1)

subject to the boundary conditions
B1w(x, t)+ C1

∂w
∂x

(x, t) = a1,

B2w(x, t)+ C2
∂w
∂x

(x, t) = a2,
(2)

and the initial condition

w(x, 0) = w0(x), (3)

where [w1(x, t), w2(x, t), · · · , wn(x, t)]′ is the vector of
state variables and denoted by w(x, t);

[
x, x

]
⊂ R is
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the domain of definition of the process; x ∈
[
x, x

]
is the spatial coordinate; t ≥ 0 is the time; u(t) is
the manipulated input vector; ∂w(x,t)

∂x and ∂2w(x,t)
∂x2

are the
first- and second-order spatial derivatives of w(x, t), respec-
tively; g(w(x, t)) is an unknown nonlinear vector function
satisfying g(0) = 0 and locally Lipschitz continuous;
f (w(x, t)) = [f1(w(x, t)), f2(w(x, t)), · · · , fn(w(x, t))]′ is
a known smooth vector function of w(x, t), where each
fi(w(x, t)) (i = 1, 2, · · · , p) describes how the control
action ui(t) is distributed in interval

[
x, x

]
; Aσl = Al(σ (t))

for l = 1, 2, 3, and Ail are known constant matrices i ∈ S; B1,
B2, C1 and C2 are constant matrices; a1 and a2 are column
vectors; and w0(x) is the given initial condition.
Remark 1: Due to the spatially distributed nature and the

existence of unknown nonlinearities in parabolic DPS (1)-(3),
it is difficult to design a state feedback controller for the
system. Motivated by this, in the following study, Galerkin
method is developed to reduce the model (1)-(3) to an ODE
system in low dimension with unknown nonlinearities; and a
NN is applied to approximate the unknown nonlinearities in
the ODE system.

A. A LOW DIMENSIONAL APPROXIMATION MODEL
LetH stands for a Hilbert space of one-dimensional functions
defined on

[
x, x

]
that satisfy the boundary conditions shown

in (2), with inner product and norm

< y1, y2 > =
∫ x

x
< y1(x), y2(x) >RN dx,

||y1||2 =
√
< y1, y1 >,

in which y1, y2 are two elements ofH and< ·, · >RN denotes
the standard inner product in RN . Define D as the spatial
operator in H in the form

Dw = Aσ1
∂w
∂x
+ Aσ2

∂2w
∂x2

,

w ∈ D(D) .=
{
w ∈ H, B1w(x, t)+ C1

∂w
∂x

(x, t) = a1,

B2w(x, t)+ C2
∂w
∂x

(x, t) = a2

}
.

For the eigenvalue problem, define Dvj(x) = λjvj(x)
(j = 1, 2, · · · , ∞), in which λj represents j-th eigenvalue
and vj(x) represents the corresponding eigenfunction. For
simplicity, the eigenfunctions vj(x) (j = 1, 2, · · · , ∞) are
considered orthonormalized.
Assumption 1: a) Re{λ1} ≥ Re{λ2} ≥ · · ·Re{λj} ≥ · · · ,

in which Re{λj} represents the real part of λj; b) ζ (D)
can be rewritten as ζ (D) = ζ1(D) + ζ2(D), in which
ζ1(D) consists of the first n finite eigenvalues, i.e., ζ1(D) =
{λ1, λ2, · · · , λn}, and

|Re{λ1}|
|Re{λn}|

= O(1); c) Re{λn+1} < 0

and |Re{λ1}|
|Re{λn+1}|

= O(ε), in which ε .= |Re{λ1}|
|Re{λn+1}|

< 1 is a small
positive number.

According to [6], [9], [24] and Assumption 1, Galerkin
method can be applied to the system (1)-(3) to obtain an

approximate nonlinear ODE system with finite dimension.
Here, assume w(x, t) ∈ R be the one dimensional state
variable. First, by the separation of time and spatial variables
[9], [24], a nonlinear ODE system can be given as follows

ẇs(t) = Aσs ws(t)+ gs(ws(t),wf (t))+ A
σ
usu(t),

ẇf (t) = Aσf wf (t)+ gf (ws(t),wf (t))+ A
σ
fsu(t),

ws(0) = ws,0, wf (0) = wf ,0,

(4)

in which

ws(t) = [w1(t), w2(t), · · · , wn(t)]′ ∈ Rn,

wf (t) = [wn+1(t), wn+2(t), · · · , w∞(t)]′ ∈ R∞,
Aσs = diag {λ1, λ2, · · · , λn} ,

Aσf = diag {λn+1, λn+2, · · · , λ∞} ,

gs(ws(t),wf (t)) = < φs(x), g(w) >,

gf (ws(t),wf (t)) = < φf (x), g(w) >,

Aσus = < φs(x), Aσ3 >,

Aσuf = < φf (x), Aσ3 >,

ws,0 = < φs(x), w0(x) >,

wf ,0 = < φf (x), w0(x) >,

φs(x) = [φ1(x), φ2(x), · · · , φn(x)]′ ,

φf (x) = [φn+1(x), φn+2(x), · · · , φ∞(x)]′ .

Thus, a finite dimensional slow system in the following
form can be obtained by neglecting the fast modes{

ẇs(t) = Aσs ws(t)+ gs(ws(t), wf (t))+ A
σ
usu(t),

ws(0) = ws,0.
(5)

B. NEURAL APPROXIMATION OF UNKNOWN NONLINEAR
LOW DIMENSIONAL ODE SYSTEM
In this paper, the following task is to analyze the related
properties of the finite dimensional slow system (5), which is
equivalent to derive the properties of the system (4). However,
the study cannot be processing effectively due to the unknown
nonlinear vector function gs(ws(t), 0). To deal with the non-
linear function, multilayer neural networks (MNNs) with one
or more hidden layers are applied in this paper to approx-
imate the continuous nonlinear function gs(ws(t), 0). In the
following, the unknown nonlinear vector function gs(ws(t), 0)
in (5) will be parameterized by an multilayer neural
network (MNN).

Consider an MNN with one hidden layer and zero bias
terms which is described in matrix-vector notation as

gnn(ws(t), M1, M2) = M2µ(M1ws(t)), (6)

in which gnn(ws(t), M1, M2) ∈ Rn denotes the output
of the network, M1 ∈ Rn1×n2 and M2 ∈ Rn×n1 repre-
sent the first-to-second layer interconnection weight matrix
and the second-to-third layer interconnection weight matrix,
respectively. n1 denotes the number of hidden neurons. µ(·) :
Rn1 → Rn1 is the activation function vector of the network
and defined by

µ(`) .=
[
µ1(`1) µ2(`2) · · · µn1 (`n1 )

]′
, (7)
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in which ` =
[
`1 `2 · · · `n1

]′
∈ Rn1 , µi(·) (i =

1, 2, · · · , n1) represents the activation function of the
i-th hidden neuron. Without loss of generality, assume
that µi(·) satisfies the following conditions for all i =
1, 2, · · · , n1.
Assumption 2: a) µi(·) is differentiable; b) µi(0) = 0

and µi(`i) ∈ [−qi, qi], qi > 0, ∀`i ∈ R.
In this section, consider the following bipolar sigmoid

function which is symmetric with respect to the origin and
satisfies Assumption 2

µi(`i) =
qi[1− exp(−`i/di)]
1+ exp(−`i/di)

, (8)

in which qi > 0 and di > 0 are parameters of the func-
tion. In the following, to train the NN (7) to approximate
gs(ws(t), 0). Similar to the backpropagation procedure, all
connecting weights are supposed to be determined via a
learning rule for MNNs.

According to the approximation theorem for MNNs
in [25], if δ > 0 is given accurately, there must exist ideal
matrices M∗1 and M∗2 defined as

(M∗1 , M
∗

2 )
.
= arg min

(M1, M2)

{
max
ws∈D
||gs(ws, 0)

−gs(ws,M1,M2)||}

such that

max
ws∈D
||gs(ws, 0)− gs(ws,M1,M2)|| ≤ δ||ws||, (9)

where D is a compact subset of Rn.
Here, the state vector w(x, t) of the system (1) is assumed

completely available as an output. Then, ws(t) can be derived
immediately by employing the modal analyzer [26]. More
specifically, if w(x, t) ∈ R is one-dimensional, then the
j-th element of ws(t) can be obtained

wj(t) =< w(x, t), φj(x) > . (10)

The minimum and maximum values of µ̇i(`i)
.
=

dµi(`i)
d`i

are
respectively denoted by

ξi,min
.
= min

`i
µ̇i(`i) ξi,max

.
= max

`i
µ̇i(`i), i ∈ H. (11)

Further, we have

µi(`i)/`i ∈
[
ξi,min, ξi,max

]
, (12)

which implies that for any `i, the following condition is
satisfied[

µi(`i)− ξi,min`i
] [
ξi,max`i − µi(`i)

]
≥ 0, i ∈ H. (13)

In view of the function (8), it is obvious that ξi,min = 0 and
ξi,max =

qi
2di

(i ∈ H).
Let `(t) = M∗1ws(t). Based on the approximating NN

gnn(ws,M∗1 ,M
∗

2 ), the slow system (5) can be obtained as
follows

ẇs(t) = Aσs ws(t)+M
∗

2µ(`(t))+ e(ws(t))+ A
σ
usu(t), (14)

in which e(ws(t)) = gs(ws(t), 0)−M∗2µ(`(t)) is the approxi-
mation error of the network.

C. ADAPTIVE EVENT-TRIGGERED COMMUNICATION
SCHEME
To save the network bandwidth and reduce the number of
package transmission, an adaptive event-triggered mecha-
nism is introduced in Fig. 1. It is used to determine whether
the newly sampled state will be sent out to the controller
or not, which compensates the disadvantages of traditional
periodic sampling method. In view of the adaptive event-
triggeredmechanism (AETC), the data only transmittedwhen
the triggering condition is violated, where the condition is
depending on both the states at the latest releasing instant
and the current sampling instant. Generally, the following
assumptions are necessary for Fig. 1: the sensors are clock
driven; the controller and the actuator are event driven; the
ZOH is used to hold the control signal before the new data
arrived at the actuator; and in every control period, the data is
transmitted over the network by a single packet.

FIGURE 1. Distributed parameter model feedback controller.

In view of the neural model (14), the modal feedback
control law with the following form is considered for the
DPS (1) - (3)

u(t) = Kws(rkh), t ∈ [rkh+ τk , rk+1h+ τk+1), (15)

where K ∈ Rp×n stands for the control gain matrix and will
be determined later; rk (k = 1, 2, 3, · · · ) are some integers
such that {r1, r2, r3, · · · } ⊂ {0, 1, 2, · · · }; h is a sampling
period; rkh is the k-th releasing instant of the system; τk is
a transmission delay at the k-th releasing instant; and [rkh+
τk , rk+1h+ τk+1) is the hold interval of zero order hold.
In this paper, the following event-triggered scheme is

considered

rk+1h = rkh+min
j∈N

{
jh | e(rjh)′P0e(rjh)

−ρ(rkh)ws(rkh)′P0ws(rkh) > 0
}
, (16)

where e(t) = x(rkh)−x(rkh+ jh) and P0 is a positive definite
matrix to be designed and ρ(rkh) is an adaptive parameter
which satisfies

ρ(rkh) =



1, if ws(rkh) = 0,
0, if ws(rk−1h)′ws(rk−1h)
−ws(rkh)′ws(rkh) ≤ 0 and ws(rkh) 6= 0,
2
π
atan(

ws(rk−1h)′ws(rk−1h)
ws(rkh)′ws(rkh)

), otherwise,

(17)

with atan(·) being the arctangent function.
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Based on the proposed transmission scheme (16), the sam-
pled data is not transmitted over the communication network
unless the threshold condition is satisfied. The following
cases given in [10] are now considered:

1) If rkh + h + τ ≥ rk+1h + τk+1, where τ = max{τk},
the delay function τ (t) is denoted by τ (t) = t − rkh,
t ∈ [rkh + τk , rk+1h + τk+1). It is clear that τk ≤
τ (t) ≤ (rk+1 − rk )h+ τk+1 ≤ h+ τ .

2) If rkh + h + τ < rk+1h + τk+1, there exists a positive
constant dM such that rkh+dMh+τ < rk+1h+τk+1 ≤
rkh + dMh + h + τ and ws(rkh) and ws(rkh + jh)
satisfy the proposed transmission scheme (16) with j =
1, 2, · · · , dM − 1. Define

�0 = [rkh+ τk , rkh+ h+ τ ),
�j = [rkh+ jh+ τ , rkh+ jh+ h+ τ ),
�dM = [rkh+ dMh+ τ , rk+1h+ τk+1).

(18)

Then, the interval [rkh+ τk , rk+1h+ τk+1) = ∪
dM
j=0�j,

which means that

τ (t) =


t − rkh, t ∈ �0,

t − rkh− jh, t ∈ �j, j = 1, · · · , dM − 1,
t − rkh− dMh, t ∈ �dM .

Therefore, for t ∈ [rkh+ τk , rk+1h+ τk+1) one has

0 ≤ τk ≤ τ (t) ≤ h+ τ
.
= τM . (19)

In Case 1, e(t) = 0 for t ∈ [rkh+ τk , rk+1h+ τk+1).

In Case 2, one has e(t) =


0, t ∈ �0,

ew(rkh+ jh), t ∈ �j,

ew(rkh+ dMh), t ∈ �dM .
where ew(rkh+jh) = ws(rkh)−ws(rkh+jh), ew(rkh+dMh) =
ws(rkh)− ws(rkh+ dMh).
Then, for t ∈ [tkh+τk , tk+1h+τk+1), the event-triggered

condition (16) can be redescribed as

e(t)′P0e(t)− ρ(t − τ (t))ws(t − τ (t))′P0ws(t − τ (t)) > 0.

(20)

Combining (14) and (15), the closed-loop neural system in
the following form can be derived

ẇs(t) = Aσs ws(t)+M
∗

2µ(`(t))+ e(ws(t))

+AσusKws(t − τ (t))+ A
σ
usKe(t). (21)

Without loss of generality, we suppose that k0, k1, · · · ,
kNt ∈ [tkh+τk , tk+1h+τk+1) stand for the jumping moment
ofMarkovmodes; the independent and identically distributed
random variables 1tkj = tkj − tkj−1 satisfy E{1tkj} = 1̃ and
E{1t2kj <∞}, where {tkj} forms a renewal process; the topol-
ogy switching and switching time are independent; on each
finite time interval, switching occurs for only finite timeswith
probability 1 which excludes the possibility of infinitely fast
switching and ensures the existence and uniqueness of the
standard solution of (21).

III. MAIN RESULTS
In this section, we will state and prove our main results.
Theorem 1: Consider the slow system (5) and the DPS

(1) - (3). Given τM , if there exist positive definite matrices
P0, P1 and P2, such that the matrix inequality∑

iσ∈S
πiσMiσ < 0 (22)

holds, in which

Miσ =


M11 P1M∗2 P1 M14 M15 M16
∗ −2G1 0 (P1M∗2 )

′ (P1M∗2 )
′ M26

∗ ∗ −G2 P1 P1 M36
∗ ∗ ∗ M44 M45 M46
∗ ∗ ∗ ∗ M55 M56
∗ ∗ ∗ ∗ ∗ −τ 2MP2

 ;

M11 = (P1Aiσs )
′
+ P1Aiσs −

π2

4
P2

−2(4minM∗1 )
′G1(4maxM∗1 )+ δ

2G2;

M14 = (P1Aiσs )
′
+ P1Aiσs ;

M15 = (P1Aiσs )
′
+ P1Aiσs +

π2

4
P2;

M16 = τ
2
M (P2Aiσs )

′
;M26 = τ

2
M (P2M∗2 )

′
;M36 = τ

2
MP2;

M44 = (P1AiσusK )′ + P1AiσusK − P0;

M45 = (P1AiσusK )′ + P1AiσusK ;

M46 = τ
2
M (P2AiσusK )′;M56 = τ

2
M (P2AiσusK )′;

M55 = (P1AiσusK )′ + P1AiσusK + P0 −
π2

4
P2.

Then, the closed-loop system (21) is almost surely expo-
nentially stable.

Proof: First, choose a Lyapunov functional candidate
for the system (16) as

V (ws(t)) = V1(ws(t))+ V2(ws(t)), (23)

where

V1(ws(t)) = [ws(t)+ e(t)+ ws(t − τ (t))]′ P1
× [ws(t)+ e(t)+ ws(t − τ (t))] ,

V2(ws(t)) = τ 2M

∫ t

t−τ (t)
ẇs(y)′P2ẇs(y)dy

−
π2

4

∫ t

t−τ (t)
[ws(y)− ws(t − τ (t))]′ P2

× [ws(y)− ws(t − τ (t))] dy,

where P1 and P2 are positive definite matrices with appro-
priate dimensional. Based on the developed Wirtinger-type
inequality proposed in Lemma 3.1 [27], V2(ws(t)) is positive
definite with P2 > 0, then Lyapunov functional V (ws(t)) is
positive definite.

The derivative of V (ws(t)) along the solution ws(t) of the
system (21) is denoted by V̇ (ws(t)). Consider t ∈ [tkh+ τk ,
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tk+1h+ τk+1), then one has

V̇1(ws(t)) = 2
[
Aσs ws(t)+M

∗

2µ(`(t))

+e(ws(t))+ AσusKe(t)+ A
σ
usKws(t − τ (t))

]′ P1
× [ws(t)+ e(t)+ ws(t − τ (t))] . (24)

V̇2(ws(t)) = τ 2M ẇs(t)
′P2ẇs(t)−

π2

4
[ws(t)

−ws(t − τ (t))]′P2 [ws(t)− ws(t − τ (t))]. (25)

According to (9), (13) and (14), it is derived for any positive
diagonal matrices G1 and G2

[µ(`(t))−4minM1ws(t)]T G1 [4maxM1ws(t)

−µ(`(t))] ≥ 0;

δ2ws(t)TG2ws(t)− e(ws(t))TG2e(ws(t)) ≥ 0. (26)

In view of the event-triggered condition (16), the sampled
data are not transmitted over the communication networks for
t ∈ [tkh+ τk , tk+1h+ τk+1) because the threshold condition
is unsatisfied, that is, the following condition

0 ≤ ρ(t − τ (t))ws(t − τ (t))′P0ws(t − τ (t))− e(t)′P0e(t)

≤ −e(t)′P0e(t)+ ws(t − τ (t))′P0ws(t − τ (t)). (27)

Thus, from (24) to (27), we can get

V̇ (ws(t)) ≤ ψ(t)′Mσ (t)ψ(t), (28)

where

ψ(t) =
[
ws(t)′ µ(`(t))′ e(ws(t))′ e(t)′ ws(t − τ (t)))′

]′
.

Define ϕ(t) =
[
ws(t)′ e(t)′ ws(t − τ (t))′

]′. One has

ϕ(t) = Uψ(t), where U =

I 0 0 0 0
0 0 0 I 0
0 0 0 0 I

.
In view of (23), one obtains

V (ws(t)) ≥ V1(ws(t)) = ψ(t)′Ûψ(t), (29)

where

Û =


P1 0 0 P1 P1
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ P1 P1
∗ ∗ ∗ ∗ P1

 .
It is easily derived that at t ∈ [tkh+ τk , tk+1h+ τk+1),

V (ws(t)) = V (ws(tkh+ τk ))

+

∫ t

tkh+τk
ψ(y)′Mσyψ(y)dy. (30)

Substituting (30) into (29), one has

ψ(t)′Ûψ(t) ≤ V (ws(tkh+ τk ))

+

∫ t

tkh+τk
ψ(y)′Mσyψ(y)dy, (31)

which implies that there exists an arbitrary positive scalar %
such that

ψ(t)′Ûψ(t)+
∫ t

tkh+τk
%χt (y)ψ(y)′ψ(y)dy

≤ V (ws(tkh+ τk ))+
∫ t

tkh+τk
ψ(y)′Mσ (y)ψ(y)dy

+

∫ t

tkh+τk
%χt (y)ψ(y)′ψ(y)dy

≤ V (ws(tkh+ τk ))+
∫ t

tkh+τk
ψ(y)′Mσ (y)ψ(y)dy

+

∫ t

tkh+τk
%ψ(y)′ψ(y)dy

= V (ws(tkh+ τk ))+
∫ t

tkh+τk
ψ(y)′Û%ψ(y)dy, (32)

where χb(t) =

{
0, t 6= b
1, t = b

is an indicative function for

t ∈ [a, b]; Û%((σ (t))) =Mσ (t) + %I .
Based on the above (32), there exists a positive scalar λ

(e.g., the minimum of eigenvalues of the matrix Û + %I can
be chosen as λ) such that

ψ(t)′ψ(t) ≤
1
λ
V (ws(tkh+ τk ))

+
1
λ

∫ t

tkh+τk
ψ(y)′Û%((σ (y)))ψ(y)dy. (33)

Set T is an orthogonal matrix and T ′T = I such that
T ′Û%((σ (t)))T = diag{λ1(σ (t)), λ2(σ (t)), · · · , λn(σ (t))}.
Set φ(t) = T ′ψ(t). Then, one has

φ(t)′φ(t)

≤
1
λ
V (ws(tkh+ τk ))+

1
λ

∫ t

tkh+τk
φ(y)′diag{

λ1(σ (y)), λ2(σ (y)), · · · , λn(σ (y))}φ(y)dy, (34)

which implies that for j = 1, 2, · · · , n,

φj(t)2 ≤
1
nλ
V (ws(tkh+ τk ))+

∫ t

tkh+τk

λj(σ (y))
λ

φj(y)2dy.

(35)

By employing the Gronwall inequality, it is derived that

φj(t)2 ≤
1
nλ
V (ws(tkh+ τk ))exp

{∫ t

tkh+τk

λj(σ (t))
λ

dy
}
.

(36)

According to Theorem 7.3 in [33], one has

lim
t→∞

Nt
t − (tkh+ τk )

=
1

1̃
. (37)
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It is clear that kNtt = 1 as kNt→t . And one has

1
t − (tkh+ τk )

∫ t

tkh+τk

λj(σ (y))
λ

dy

= lim
kNt→t,
t→∞

Nt
t − (tkh+ τk )

1
Nt

Nt∑
j=1

∫ kj

kj−1

λj(σ (y))
λ

dy

+ lim
kNt→t,
t→∞

1
t − (tkh+ τk )

∫ t

kNt

λj(σ (y))
λ

dy

= lim
kNt→t,
t→∞

1

1̃

1
Nt

Nt∑
j=1

∫ kj

kj−1

λj(σ (y))
λ

dy. (38)

By employing the strong law of large numbers for
Markovian, one has that

lim
kNt→t,
t→∞

1

1̃

1
Nt

Nt∑
j=1

∫ kj

kj−1

λj(σ (y))
λ

dy

= lim
kNt→t,
t→∞

1

1̃

1
Nt

Eπ
{
λj(σ (t))
λ

}
E{1tkj}

=

∑
iσ∈S

πiσ
λj(iσ )
λ

(39)

holds almost surely.
According to the above analysis, (36) is equivalent to

φj(t)2 ≤
1
nλ
V (ws(tkh+ τk ))

×exp


∫ t

tkh+τk

∑
iσ∈S

πiσ
λj(iσ )
λ

dy

 (40)

with probability 1.
In view of (21), if

∑
iσ∈S πiσ

λj(iσ )
λ

< 0 hold for j =
1, 2, · · · , n, that is,∑

iσ∈S
πiσ Û%((iσ )) < 0 (41)

holds, then φ(t)′φ(t) is almost sure exponential conver-
gence to zero. Based on the inequality φ(t), xs(t)′xs(t) ≤
ψ(t)′ψ(t) = φ(t)′φ(t). Furthermore, it is easily obtained that
xs(t)′xs(t) is almost sure exponential convergence to zero,
whichmeans that the closed-loop system (21) is almost surely
exponentially stable.

Since % > 0 is arbitrary, it can be arbitrarily close to zero.
Then, the condition (41) can be described as∑

iσ∈S
πiσMiσ < 0. (42)

Now, this proof is completed. � �
Remark 2: In view of the condition (22), one has that

controller gain K is not directly derived fromP1A
iσ
usK because

Aiσus in the term X = P1
∑

iσ∈S πiσA
iσ
usK is not invertible,

usually, it is full column rank. In order to solve this diffi-
culty, define N

∑
iσ∈S πiσA

iσ
us = X and M

∑
iσ∈S πiσA

iσ
us =∑

iσ∈S πiσA
iσ
usP1. then, one hasM ∑

iσ∈S
πiσA

iσ
us −

∑
iσ∈S

πiσA
iσ
usP1

′

×

M ∑
iσ∈S

πiσA
iσ
us −

∑
iσ∈S

πiσA
iσ
usP1

 = 0,

which implies that there exists an arbitrarily positive scalar
γ such that[

γ I
(
M
∑

iσ∈S πiσA
iσ
us −

∑
iσ∈S πiσA

iσ
usP1

)′
∗ I

]
> 0

holds. Due to full column rank of
∑

iσ∈S πiσA
iσ
us, it is therefore

clear that there exists an invertible matrix M such that the
above LMI holds.
In order to easily design the controller gain K , according

to the analysis in Remark 2, we give the following theorem.
Theorem 2: Consider the slow system (5) and the

DPS (1) - (3). Given τM , if there exist positive definite
matrices P0, P1, and P2 such that the matrix inequality∑

iσ∈S
πiσ M̂iσ < 0 (43)

and

P2 − 2P1 < 0 (44)

hold, where

M̂iσ =



M11 P1M∗2 P1 M14 M15 M̂16
∗ −2G1 0 M̂24 M̂24 τ 2MM̂24
∗ ∗ −G2 P1 P1 τ 2MP1
∗ ∗ ∗ M̂44 M̂45 τ 2MX ′
∗ ∗ ∗ ∗ M̂55 τ 2MX ′
∗ ∗ ∗ ∗ ∗ M̂66

 ;

M̂16 = τ
2
M (P1Aiσs )

′
; M̂24 = (P1M∗2 )

′
;

M̂44 = X ′ + X − P0; M̂45 = X ′ + X ;

M̂55 = X ′ + X + P0 −
π2

4
P2; M̂66 = τ

2
M (P2 − 2P1).

Then, the closed-loop system (21) is almost surely expo-
nentially stable.
Further, according to Remark 2, the controller gain is

derived that

K = M−1N . (45)

Proof: Let us start with pre- and post-multiplying both
sides ofMiσ given in (22) with the following matrices

diag
{
I I I I I P1P

−1
2

}
,

diag
{
I I I I I P−12 P1

}
, (46)
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respectively. Then, one has∑
iσ∈S

πiσMiσ < 0, (47)

in which

Miσ =


M11 P1M∗2 P1 M14 M15 M̂16
∗ −2G1 0 M̂24 M̂24 τ 2MM̂24
∗ ∗ −G2 P1 P1 τ 2MP1
∗ ∗ ∗ M44 M45 M46
∗ ∗ ∗ ∗ M55 M46
∗ ∗ ∗ ∗ ∗ M66

 ;

M11 = (P1Aiσs )
′
+ P1Aiσs −

π2

4
P2

−2(4minM∗1 )
′G1(4maxM∗1 )+ δ

2G2;

M14 = (P1Aiσs )
′
+ P1Aiσs ;

M15 = (P1Aiσs )
′
+ P1Aiσs +

π2

4
P2;

M44 = (P1AiσusK )′ + P1AiσusK − P0;

M45 = (P1AiσusK )′ + P1AiσusK ;

M46 = τ
2
M (P1AiσusK )′;

M55 = (P1AiσusK )′ + P1AiσusK + P0 −
π2

4
P2;

M66 = −τ
2
MP1P

−1
2 P1.

In view of the above condition, the controller gain matrix
K cannot be directly derived by Miσ because P1P

−1
2 P1 is

nonlinear term. Thanks to (P1 − P2)P
−1
2 (P1 − P2) > 0, it

is easily derived that

P1P
−1
2 P1 > 2P1 − P2. (48)

2P1 − P2 is used to replace P1P
−1
2 P1, then, the proof is

completed. �
�

Remark 3: In this paper, the relaxed stability condition is
derived based on free weight matrices, which implies that
there are a large number of calculations if the chosen free
weight matrices are with large dimensions.

IV. APPLICATION TO A CATALYTIC ROD
In this section, to demonstrate the effectiveness of the
achieved results, the control problem of the temperature pro-
file of a catalytic rod [6] will be studied by employing the pro-
posed design method. Consider a long, thin rod in a furnace,
and the DPS with the following form is assumed to represent
the spatio-temporal evolution of the rod temperature

∂w(x, t)
∂t

= Aσ2
∂2w(x, t)
∂x2

+

[
50
(
exp(

−4
1+ w(x, t)

)− exp(−4)
)
− 2w(x, t)

]
+Aσ3 (f1(x)u1(t)+ f2(x)u2(t)) , (49)

which is subject to the Dirichlet boundary conditions

w(0, t) = 0, w(π, t) = 0, (50)

wherew(x, t) is the temperature in the reactor; u1(t) and u2(t)
are the manipulated inputs. We consider that every state of
the Markov chain{σ (t), t ≥ 0} is same, that is, both Aσ2 and
Aσ3 are constants and take Aσ2 = 1, Aσ3 = 2. It was verified by
Christofides in [6] that the operating steady state w(x, t) = 0
is an unstable one. The actuator distribution functions are
taken to be f1(x) =

√
2
π
sin(x) and f2(x) =

√
2
π
cos(x). By

Galerkin method, the following 2-D ODE system is derived

ẇs(t) =
[
−1 0
0 −4

]
ws(t)+

[
gs1(ws(t), 0)
gs2(ws(t), 0)

]
+

[
2 0

0
16
3π

][
u1(t)
u2(t)

]
, (51)

where

ws(t) =
[
ws1(t) ws2(t)

]′
,

gs1(ws(t), 0) = −2ws1(t)+ g3(ws(t)),

g3(ws(t)) = 50
∫ π

0
φ1(s)[−exp(−4)

+exp(−
4

1+ ws1(t)φ1(s)+ ws2(t)φ2(s)
)]ds,

gs2(ws(t), 0) = −2ws2(t)+ g4(ws(t)),

g4(ws(t)) = 50
∫ π

0
φ2(s)[−exp(−4)

+exp(−
4

1+ ws1(t)φ1(s)+ ws2(t)φ2(s)
)]ds.

Furthermore, we adopt the NN (10) with 12 hidden neurons

to approximate the nonlinear function vector
[
gs1(ws(t), 0)
gs2(ws(t), 0)

]
.

To train the network, several different values ofw1 andw2 are
selected from [0.01, 1] at intervals of 0.01 and [0.005, 0.5] at
intervals of 0.005, respectively. After 860 epochs, the weight
matrices respectively converge to M∗1 and (M∗2 )

′ as follows:

2.8233 1.0179
−0.9784 4.7651
−0.6783 4.3396
4.9217 2.1880
3.2167 0.3723
3.8538 −2.0794
2.9649 −2.9006
3.6666 −3.1006
−3.4923 −3.3663
−3.8808 2.8746
3.4125 −3.4461
−3.2918 −2.9350



,



−0.4523 −0.4316
0.8151 0.4514
0.8696 1.3484
−0.0427 −0.0532
−0.3278 −0.4010
−0.3609 −0.4906
0.5065 −0.4211
−0.2057 −0.7495
−0.0278 −0.0326
1.0362 −0.2083
−0.1232 −0.0492
0.0677 0.0658



.

Consider now the initial value of the system (49) shown as
follows

w(x, 0) = 0.05
√
2/πsin(x)+ 0.6

√
2/πsin(2x).
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FIGURE 2. The spatio-temporal evolution of the rod temperature of the
system (49) without input control.

It is easy to obtain ws(0) = [0.05, 0.6]′. Under the
conditions u1(t) = 0 and u2(t) = 0, the spatio-temporal
evolution of the rod temperature of the system (49) without
input control is shown in Fig. 2. It is clear that the trajectory
of the rod temperature of the system (49) does not converge
to zero.

By employing the Matlab LMI toolbox, one obtains the
following parameters based on Theorem 2:

P0 =
[
3.6714 −0.7937
−0.7937 3.6714

]
,

K =
[
−0.7387 0.1169
−0.0552 −0.1314

]
.

Simulations: In this simulation, we consider cycle sam-
pling style for the adaptive event-triggered communication
scheme. Pick up the sampling time interval tk − tk−1 =
0.1 and the initial ρ(0) = 0.8. Simulation results of the
system (49) are shown in Figs. 3-8. In Fig. 3, it shows that the
state responses of both ws1 and ws2 of the slow system (51)
with the obtained controller gain. It is easy to see that bothws1
and ws2 of the slow system (51) converge to zero under the
adaptive event-triggered control scheme. Actual trajectory of
the adaptive control law ρ(t) is shown in Fig. 4. It is clear to
find that the value of the adaptive control law ρ(t) converges
to a constant when the slow system (51) reaches stability.
The adaptive event-triggered responses of both ws1 and ws2
of the slow system (51) are shown in Figs. 5-6, respectively.
In Fig. 5, the state value ws1 of the slow system at the each
event-triggered instant rkh is shown. In Fig. 6, the state value
ws2 of the slow system at the each event-triggered instant rkh
is shown. It is obvious that the statesws1 andws2 of the slow
system go to zero as the control time goes to 8. In Fig. 7, actual
trajectory of the adaptive event-triggered control input u(t) is
given. One can get that the adaptive event-triggered control
input u(t) converges to zero as the slow system (51) reaches
stability. From Figs. 3-7, the event-triggered control scheme
is effective for the slow system (51). In order to illustrate
the effectiveness of the event-triggered control scheme for
the system (49) with boundary conditions (50), the profile
of evolution of rod temperature is given in Fig. 8. It is clear
that rod temperature goes to zero as the control time goes
to 8, which implies that the proposed control approach in this

FIGURE 3. Actual trajectories of the states both ws1 and ws2 of the slow
system (51).

FIGURE 4. Actual trajectory of the variable ρ(t).

FIGURE 5. Actual trajectory of the state ws1(t).

FIGURE 6. Actual trajectory of the state ws2(t).

paper is effective. The simulation results show that the result-
ing guaranteed cost controller can regulate the temperature
profile at the desired steady state w(x, t) = 0 under the cost
function (17) is satisfied.
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FIGURE 7. Actual trajectory of the adaptive event-triggered control
input u(t).

FIGURE 8. Profile of evolution of rod temperature system (49) with the
adaptive event-triggered controller.

V. CONCLUSION
In this paper, the problem of adaptive event-triggered net-
worked control is investigated for a class of distributed
parameter systems with Markov jump parameters. A pro-
posed adaptive event-triggered control scheme is used to
reduce theworkload of the network. And theGalerkinmethod
is employed for the distributed parameter systems to derive
ordinary differential equation (ODE) systems, which accu-
rately describe the dynamics of the dominant (slow) modes of
the considered systems. The resulting nonlinear ODE systems
are subsequently parameterized by a multilayer neural net-
workwith one-hidden layer and zero bias terms. Furthermore,
based on the novel Lyapunov functional and the nontrivial
stochastic analysis approach, the stability condition of the
systems is derived. Finally, a linear adaptive event-triggered
networked feedback controller is designed to stabilize the
closed-loop distributed parameter systems.

Notice that the significant stability analysis can be
extended to the problem of boundary control. Few techniques
were presented to analyze boundary control of distributed
parameter systems. Motivated by this, future work will focus
on boundary control to keep almost sure stability of the
systems with packet losses.
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