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ABSTRACT Accuracy assessment is essential in all image classification-related fields, ranging from
molecular imaging to earth observation. However, existing accuracy metrics are too sensitive to class
imbalance or lack explicit interpretations for assessing classification performance. Consequently, their scores
may be misleading when they are applied to compare classification algorithms that address different image
data sources. These limitations jeopardize the widespread application of deep learning classificationmethods
for classifying different image types.We introduce themetrics of image classification efficacy frommedicine
and pharmacology to overcome the limitations of accuracy metrics. We include a baseline classification
to derive the metrics of image classification efficacy and apply real-world and hypothetical examples to
further examine their usefulness. Image classification efficacies can be applied at the map and class levels
and for binary and multiclass classifications. The interpretability and comparability of image classification
efficacies facilitate reliable classification method evaluation across data sources. We detail the procedures
of classification efficacy assessment for image classification researchers and classifier users.

INDEX TERMS Accuracy, classification algorithms, classification assessment, image classification,
machine learning, remote sensing.

I. INTRODUCTION
Machine learning, specifically deep learning, has been
deployed in every field that involves image classification.
Deep learning has transformed the way we classify images
at any scale. At the micro scale, biomedical imaging can
benefit from deep learning for a better understanding of
irregular human body activities and early diagnosis of severe
diseases [1]–[5]; at the macro scales, Earth surface char-
acterization [6]–[8] and seven solid Earth geoscience [9]
can be strengthened by applying deep learning. The main
advantage of deep learning is that a well-trained neural net-
work facilitates automated image classification and can be
applied to many different image types. It is essential to assess
the accuracy of classification outputs with a deep learning
classification algorithm for its new applications [10], [11].
As deep-learning classification methods continue to diversify
and advance, the rigorous assessment of neural networks
becomes increasingly vital.

More than a dozen metrics have been invented for eval-
uating pattern recognition and computer vision [12], [13].
With or without modification, these metrics are extensively
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applied in image classification-related fields, from molecular
imaging to earth observation. The existing accuracy metrics
can be divided into three types:
• Type I: Accuracy metrics are directly derived from error
matrices (also known as confusionmatrices). Thesemet-
rics for positive-negative binary classification include
accuracy (or overall accuracy) at the map level and
sensitivity, specificity, positive precision, and negative
precision at the class level. Earth resource remote sens-
ing often involves multiple classes and traditionally
uses producer’s accuracy (equivalent to sensitivity and
specificity) and user’s accuracy (equivalent to positive
precision and negative precision) [14]. Although these
accuracy metrics are interpretable, they are affected
by the size distributions of classes and the values of
these accuracy metrics are not as informative as to be
expected [15]

• Type II: These accuracy metrics, which are the imme-
diate derivatives of Type I accuracy metrics, typically
include balanced accuracy (arithmetic mean of sensitiv-
ity and specificity) and F1 score (harmonic mean of pos-
itive precision and sensitivity). The balanced accuracy
may reduce class imbalance effects but blurs accuracy
interpretation whereas the F1 score may be interpretable
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but is still affected by class imbalance [17]. Similar to
machine learning applications, the F1 score has become
increasingly popular. The mean of two accuracy values
may prevent the lower accuracy value from alerting
a potential flaw in classification. For example, binary
classification output with a value of 0 for any single
accuracy metric is useless.

• Type III: This type of metrics is rooted in Statistics
and then introduced to image classifications to assess
their performance. Such metrics include the Matthews
correlation coefficient (MCC) and Cohen’s Kappa coef-
ficient (Kappa) [18]. Because they were developed in
different contexts, these metrics are not interpretable
for image classification accuracy assessment despite of
their popularity. One common misinterpretation is that
when the MCC or Kappa rate is equal to 0, the clas-
sification method is usually believed to be similar to
random guessing. Remote sensing researchers suggest
rejecting the use of Kappa for image classification accu-
racy assessment [19], [20]. Medical imaging researchers
suggest that theMCC provides a more truthful and infor-
mative result than other metrics for binary classification
assessment based on a series of studies [17], [21]–[23].

Among the three types of accuracy metrics, Type I metrics
are the most commonly employed metrics in research. If a
single accuracy value is reported in earth remote sensing,
this value is highly likely the overall accuracy [15]. The
rates of overall accuracy can be misleading. For example,
the overall accuracy is 99.5% on average for all six binary,
global burned area products [24], whereas the 16-class, global
land-cover data have an overall accuracy of only 66.9% [25].
Based on the overall accuracy values, the global burned area
classification seems much more successful than the global
land-cover classification. Although class-level accuracy met-
rics are suggested to be more meaningful to the assessment
of image classification performance or classification result
accuracy, a one-size-fits-all assessment solution is not avail-
able [26], [27]. The values of class-levelmetrics are unequally
sensitive to their proportions within the image extent. The
same amount of error affects a large class relatively less than
it affects a small class, and thus, the classification accuracy
is more favorable to a large class than to a small class
[15], [16]. As image classification is becoming more far-
reaching in research and application, its assessment requires
more generally dependable and informing measures.

Accuracy metrics are regularly utilized for accuracy
assessment of image classification, although the values of
some metric, such as the MCC and Kappa, do not strictly
indicate the accuracies. As the name suggests, the rates
of the MCC may indicate the correlation levels, whereas
Kappa may indicate extent of agreement. When the accuracy
metric values are compared between two image classifica-
tions, the classification efficacy is examined. Consequently,
the word efficacy sometimes appeared as a verbal explanation
for the effectiveness of image classification approaches in
various fields [28]–[34]. Such use of efficacy makes sense

only when different classifications use the same classification
Scheme and address images with the same area Extent and
the same data-acquisition Time (SET). In the medical fields,
efficacy is a common term, and its values are computed by
comparing the illness rates between sampled people with a
treatment and sampled people without a treatment. Following
the same concept, we generalize the evaluation of image
classification methods with efficacy, which is quantified by
referring to a standard baseline classification as a control
to mitigate the class imbalance effects. The resulting image
classification efficacy provides an alternative measure for
assessing image classification. Next, we derive its equation,
examine its robustness, and discuss its applicability.

II. METRICS OF IMAGE CLASSIFICATION EFFICACY
A. ERROR MATRIX AND TYPE I ACCURACY METRICS
An error matrix is a table that displays the number or percent-
age of cases correctly classified and those incorrectly classi-
fied (Table 1). Practically, only random samples are used to
compose an error matrix. The reference values (also known
as ground truthing) are assumed to be true and represent the
actual population.

TABLE 1. General error matrix (also known as a confusion table).

An error matrix resembles a contingency table in statistics.
Hence, we follow the notations in a contingency table. The
element nij represents the number of objects (or pixels) in
class j that are classified to class i. The map-level (or overall)
accuracy (A) is therefore

∑n
j=1 njj/n. The accuracy for each

individual class is computed by using either the reference
total or classification total. If the reference total is selected,
the accuracy with respect to class j is RAj = njj/nj(where,
nj is a simplified presentation of n•j, which is a commonly
applied to represent a reference total). If the classificaiton
total is applied, the accuracy for class j is CAj = njj/nj•.

Binary classification is conducted in many fields, and
the two classes are commonly referred to as positive for
class 1 and as negative for class 2 [12], [13]. In this case,
researchers tend to use different terminologies:

• The true positive rate, which is also referred to as sensi-
tivity in pharmacology and as recall in machine learning,
is the percentage of positive objects that are classified
correctly within the reference total of class positive.
We prefer the term sensitivity to recall and denote it by
Se = n11/n1.

• The true negative rate, which is also referred to as speci-
ficity in pharmacology, is the percentage of negative
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objects that are correctly classified within the reference
total of class negative; it is denoted by Sp = n22/n2.

• Positive precision is the number of correctly classified
positive cases over the total number of positive cases
given by the classifier; it is denoted by Pp = n11/n1•.

• Negative precision is the number of correctly classified
negative cases over the total number of negative cases
given by the classifier; it is denoted by Np = n22/n2•.

B. IMAGE CLASSIFICATION EFFICACY
In the medical field, the efficacy of a drug is defined by
comparing the drug effects on the treatment group to those
of a baseline group or the placebo group. Vaccine efficacy
(VE) [35] is defined as

VE =
ARU− ARV

ARU
(1)

where ARU is the attack rate in the unvaccinated population
and ARV is the attack rate in the vaccinated population. The
rates of ARU and ARV are usually determined with a double-
blind randomized placebo-controlled trial with persons sus-
ceptible to disease.

This approach is perfectly transferable to quantify the
effectiveness of image classification methods: a vaccine is
equivalent to a classification method; an attack rate is com-
parable to classification error; the use of vaccine corresponds
to the application of classification method; and a random-
ized placebo control is similar to a random classification as
a baseline in image classification. Considering the overall
accuracy A as an example, the map-level image classification
efficacy (MICE) is expressed as

MICE =
(1− A0)− (1− A)

1− A0
=
A− A0
1− A0

(2)

where A0 is the accuracy of a random classification as a
baseline, which will be given explicitly here.

We now give an explicit formula for A0 in a general setting
of classifying n objects into J classes. Assume that nj objects
(or pixels) belong to class j so that

∑J
j=1 nj = n. The random

classification assigns a randomly chosen object to class jwith
probability nj/n. The probability that an object in class j is
correctly classified is n2j /n

2 (Appendix). Hence, the overall
accuracy of the classification is

A0 =
J∑
j=1

(nj
n

)2
(3)

We then have

MICE =
A−

∑n
j=1

( nj
n

)2
1−

∑n
j=1

( nj
n

)2 (4)

Based on (4), the image classification efficacy is defined
as the difference between the measure and the corresponding
measure for random classification divided by one minus the
random classification measure. The MICE value reaches its
maximum of 1, if the classification is perfect (i.e., A = 1).

FIGURE 1. Changes in classification accuracy with binary class proportion
or size ratios when MICE = 0 (equation 4).

MICE = 0 when A = A0. If MICE is < 0, the classification
result should be disregarded because it is even worse than
the output of the random classification. When the MICE rate
is between 0 and 1, misclassification is reduced compared
with the random classification. We define the classification
accuracy as the minimum effective accuracy, which increases
with the ratio of class proportions for binary classification,
when the MICE = 0 (Fig. 1).

Often it is worthwhile or necessary to examine how good
the classification results are for a particular class or classes.
Based on the baseline probabilities (Appendix), we obtain
class-level image classification efficacy as

REj =
RAj −

nj
n

1− nj
n

(5)

and

CEj =
CAj −

nj
n

1− nj
n

(6)

where REj is the reference-total-based image classification
efficacy for class j and CEj is the classification-total-based
image classification efficacy for class j.

For binary classifications, we refer to the terms in phar-
macology and machine learning to name the following class-
specific, image classification efficacies as sensitivity efficacy
(SeE), specificity efficacy (SpE), positive precision efficacy
(PpE), and negative precision efficacy (NpE). Each of these
efficacies provides the assessment of classification from a dif-
ferent perspective in a way similar to sensitivity, specificity,
positive precision, and negative precision.

III. METRIC PERFORMANCE AND INTERPRETATION
A. BINARY CLASSIFICATION
We use seven classifications for image data with class-size
ratios near 9:1 to explain the unique usefulness of image
classification efficacies (Tables 2 and 3). The first three cases
show that the MCC and Kappa can be quite sensitive for a
slight change in the classification result for a minor class.
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TABLE 2. Results of six image classifications with positive and negative
classes.

TABLE 3. Comparison of map-level derivatives of seven error
matrices (table 2).

TABLE 4. Comparison of class-level derivatives of seven error
matrices (table 2).

The +/− sign of the MCC or Kappa can be flipped, or the
value can be doubled, whereasMICE values remain relatively
stable, when the number of true negatives increase by only 1.
Cases 4–6 show that the MCC and Kappa values are consid-
ered to be fair or moderate, but the MICE values indicate
that the classification is worse than or similar to random
classification. This finding suggests that the MICE exhibits
different behaviors from the MCC and Kappa.

The overall accuracy of the seven classifications ranged
from 0.78 to 0.92 (Table 3). Such levels of classification
accuracy sound reasonable for real-world image classifica-
tions but could be misleading because of the class imbalance
effects. For example, in Case 5, the overall accuracy is 0.82,
whereas the efficacy shows that it performs just as the ran-
dom classification, and therefore, has a poor performance.
When A is less than 0.82, the MICE will have a negative
value, indicating that the classification method is worse than
the random classification. The accuracy rates of the subject
classification and baseline classification experience the class
imbalance effects and the computation of the MICE assists in
mitigating the class imbalance effects.

Cases 4–6 suggest the importance of the efficacy values at
both themap level and class level. Despite the fair ormoderate
values of the MCC and Kappa in these three cases, the MICE

FIGURE 2. Responses of MICE (%) to the number of balanced classes
with the same overall accuracy rates.

FIGURE 3. Error matrices explaining the effectiveness of class
aggregation from three to two classes in terms of image classification
accuracy and efficacy.

values indicate that the overall accuracy is not acceptable,
and the sensitivity efficacy (SeE) provides an explanation.
A single negative value of these efficacies is sufficient for
rendering the classification unacceptable. Cases 2 and 3 are
not unacceptable, according to the MICE, MCC, and Kappa,
but far from satisfactory because two (SpE and PpE) of the
four class-level efficacy values are rather low.

When a classification has symmetrical errors (i.e., false
positive= false negative), Se > Sp because n1 > n2 (Case 7)
(Table 4). This finding explains the problem that the rates of
recall and selectivity tend to be related to class size. In con-
trast, SeE and SpE do not have such a problem because SeE is
always equal to SpEwhen false positive equals false negative,
which is mathematically provable.

Because the minimum effective classification accuracy is
related to class size ratios (Fig. 1), it is important to use image
classification efficacy to evaluate the performance of image
classification. For example, the minimum effective accura-
cies are 0.58 and 0.82 when the class-size ratios are 70:30 and
90:10, respectively. Therefore, an accurate rate of 0.80 is
pretty good for binary classification with a class-size ratio
of 70:30 but fails for binary classification with a class-size
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FIGURE 4. Diagram explaining the approach with image classification efficacy to evaluate the performance of image classification methods
that involve different images and/or classification schemes.

ratio 90:10. The proportion of burned area is 0.37% within
the global mapping extent and the overall accuracy is 99.5%
on average among six global burned area products [24].
In this case, the average MICE value is only 0.29, indicating
that global burned area classifications are more similar to a
random classification than to a perfect classification.

B. MULTICLASS CLASSIFICATION
It is not surprising that binary classification usually
has greater overall accuracy than multiclass classifica-
tion [24], [25], [36]. This phenomenon is the classification
scheme effect, which makes overall accuracy incomparable
between two classifications that involve different numbers
of classes [15]. With the same overall accuracy, the MICE
values increase with respect to the number of map classes
(Fig. 2). Such an increase in the MICE with the number of
map classes makes sense as it reflects the notion that it is
more difficult to classify more classes than to classify fewer
classes. This result explains another advantage of MICE to
overall accuracy. The same MICE value (0.70) is obtained
when overall accuracy = 0.85 for two classes; when overall
accuracy = 80% for three classes; and when overall accu-
racy= 75% for six classes (Fig. 2). These three classification
methods have the same effectiveness although the overall
accuracy values are different. For the global land-cover classi-
fication [25], the MICE= 0.63, although its overall accuracy
is only 0.67. Such a relatively high MICE value suggests that
the global land-cover classification is more effective than the
global burned area classifications (MICE= 0.29 on average)
despite their almost perfect overall accuracy (A = 99.5% on
average) [24].

C. EFFICACY RESPONSES TO CLASS AGGREGATION
Image classification is often performed by following a hier-
archical classification system [36], [37], which allows lower-
level classes to be aggregated into higher-level classes. Such
aggregation usually ensures that overall accuracy cannot be
reduced except when only combining classes without mis-
classification errors between them. If the misclassification
error is relatively small, the overall accuracy can increase,
but the MICE values may decrease, suggesting that such an
aggregation does not improve the classification effectiveness
(Fig. 3 left). When combining classes with substantial errors
between them, the overall accuracy and MICE values can
increase (Fig. 3 right). This kind of effective aggregation is
assumed to be the case when aggregation follows a hierarchi-
cal classification system. For example, the overall accuracies
of the 2011 US National Land Cover Database (NLCD) at
Classification Level II and Classification Level I were 82%
and 88%, respectively [37]. The corresponding MICE values
are 80% and 85%, respectively, confirming that class aggre-
gation from Level II to Level I of the NLCD is effective.

IV. USE OF IMAGE CLASSIFICATION EFFICACY
The advantage of image classification efficacy is that it can
mitigate the effects of class imbalance and classification
schemes on classification assessment and thus, emphasize the
true effectiveness of classification methods (Fig. 4). There-
fore, image classification efficacy can function as a general
metric for comparing different image classification meth-
ods with different class proportions. With rapid advance-
ments in image classification techniques, periodic reviews are
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FIGURE 5. Flowchart of classification assessment with image classification accuracy and efficacy metrics. SET stands for classification Scheme, area
extent, and data-acquisition time.

becoming increasingly important [2]–[4], [6], [8], [38], [39].
These reviews inevitably involve classification methods that
have experimented with different data sources. Compre-
hensive reviews on image classification techniques can be
strengthened by using image classification efficacies.

The metrics of image classification efficacy are particu-
larly useful for comparing classification methods and thus,
their relative differences are more important than their abso-
lute values. This does not mean that the efficacy scores
should not have a target. As previously discussed, a neg-
ative value of image classification efficacy means that the
classification is unacceptable, which is the bottom line. The
question is how high is high enough? It is understandable
if an image classification analyst considers accuracy target.
For example, Anderson [40] proposed an accuracy target
of 85% for land use land cover classification with satellite
remote sensing data. Referring to a binary classification for a
class size ratio of 75:25, which is the median of 50:50 and
100:0 ratios, the MICE equals 60%, corresponding to an
overall accuracy of 85%. Therefore, we can subjectively set
the target of the image classification efficacy scores to 60%.
We then divided the positive efficacy values into six levels:
0–0.19 indicates slight progress, 0.20–0.39 denotes moderate
progress, 0.40–0.59 represents barely satisfactory, 0.60–0.74
indicates satisfactory, 0.75–0.89 denotes extraordinary, and
0.90–0.99 represents almost perfect. By using this scale, for
example, the efficacies of USNLCDdatasets [37] are extraor-
dinary at classification levels I and II; the global land-cover
classification [25] is satisfactory; and the six global burned
area products [24] show moderate progress on average.

The introduction of image classification efficacy does not
mean complicating existing classification assessment prac-
tices. The misuse of existing classification accuracy metrics
can be avoided by employing image classification efficacy.
To better conduct image classification efficacy assessment,
we summarize the assessment procedures under different
circumstances and for different purposes (Fig. 5).

If classification methods that need to be compared are
executed with the same images and classification scheme,
their comparative assessment can be made directly with Type
I accuracymetrics. Otherwise, it will become risky to conduct
conventional accuracy assessments. In this case, the MICE
and class-level efficacy metrics should be utilized.

V. CONCLUSION
The derivation of image classification efficacies has followed
the broadly understandable vaccine efficacy. Image classi-
fication efficacy means the effectiveness of image classifi-
cation relative to random assignment. The metrics of image
classification efficacy are applicable to binary and multiclass
classification, and suitable for both class-level and map-
level efficacy assessments. More importantly, the values of
image classification efficacy mitigate the effects of class
proportions and classification schemes, and thus, are useful
for comparing classification methods that are tested with
different images. The introduction of image classification
efficacy meets the critical need to rectify the strategy for
the assessment of image classification performance as image
classification methods are becoming more diversified. The
metrics of image classification efficacy can be employed to
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assess image classifications in all the relevant fields, ranging
from molecular imaging to earth observation remote sensing.
In any case, researchers are encouraged to provide image
data, training data, and reference data when they report their
classification progress so that image classification efficacies
can be computed when needed.

APPENDIX
In this appendix, we provide proofs for (3), (5) and (6).

A. PROOF OF (3)
By definition, A0 is the probability that a randomly chosen
object is classified correctly. The addition rule of probability
implies that

A0 =
J∑
j=1

P

where,

P (object classified correctly and belonging to class j)

= P (object classified correctly | belonging to class j)

×P (object belonging to class j)

Because there are nj objects in class j and the classification
is random, the two probabilities in the right hand side of the
last equation are both nj/n. Therefore,

A0 =
J∑
j=1

(nj
n

)2
.

B. PROOFS OF (5) AND (6)
For a random classification, the probability that it classifies
correctly an object in class j is clearly nj/n. This serves as the
baseline probability. By definition of efficacy, REj and CEj
are given explicitly by (5) and (6), respectively.
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