
Received August 25, 2021, accepted September 27, 2021, date of publication September 29, 2021, date of current version October 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3116468

Lightweight Block Cipher Security Evaluation
Based on Machine Learning Classifiers
and Active S-Boxes
TING RONG LEE1, JE SEN TEH 1, NORZIANA JAMIL 2,
JASY LIEW SUET YAN 1, AND JIAGENG CHEN3
1School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
2Department of Computing, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
3School of Computer Science, Central China Normal University, Wuhan 430079, China

Corresponding authors: Je Sen Teh (jesen_teh@usm.my) and Norziana Jamil (norziana@uniten.edu.my)

This work was supported in part by the Uniten BOLD2025 Research Grant 2019 titled ‘‘A design of machine learning approach to
cryptanalyze lightweight block ciphers,’’ and in part by the Uniten BOLD Publication Fund 2021.

ABSTRACT Machine learning has recently started to gain the attention of cryptographic researchers, notably
in block cipher cryptanalysis. Most of these machine learning-based approaches are black box attacks that
are cipher-specific. Thus, more research is required to understand the capabilities and limitations of machine
learning when being used to evaluate block cipher security. We contribute to this body of knowledge by
investigating the capability of linear and nonlinear machine learning classifiers in evaluating block cipher
security.We frame block cipher security evaluation as a classification problem,whereby themachine learning
models attempt to classify a given block cipher output as secure or insecure based on the number of active
S-boxes. We also train the machine learning models with common block cipher features such as truncated
differences, the number of rounds, and permutation pattern. Various experiments were performed on small-
scale (4-branch) generalized Feistel ciphers to identify the best performing machine learning model for
the given security evaluation problem. Results show that nonlinear machine learning models outperform
linear models, achieving a prediction accuracy of up to 93% when evaluating inputs from ciphers that
they have seen before during training. When evaluating inputs from other unseen ciphers, nonlinear models
again outperformed linear models with an accuracy of up to 71%. We then showcase the feasibility of our
approach when used to evaluate a real-world 16-branch generalized Feistel cipher, TWINE. By training the
best performing nonlinear classifiers (k-nearest neighbour and decision tree) using data from other similar
ciphers, the nonlinear classifiers achieved a 74% accuracy when evaluating differential data generated from
TWINE. In addition, the trained classifiers were capable of generalizing to a larger number of rounds than
they were trained for. Our findings showcase the feasibility of using simple machine learning classifiers as
a security evaluation tool to assess block cipher security.

INDEX TERMS Active S-boxes, block cipher, cryptanalysis, machine learning, differential cryptanalysis,
lightweight cryptography, TWINE.

I. INTRODUCTION
Block ciphers are symmetric-key encryption algorithms
that require only one secret key for both encryption and
decryption tasks. A plaintext undergoes multiple rounds
of key-dependent transformations to produce a correspond-
ing ciphertext. Block ciphers are designed using a variety
of well-studied structures such as substitution-permutation

The associate editor coordinating the review of this manuscript and

approving it for publication was Junggab Son .

networks (SPN), generalized Feistel structure (GFS) and
Addition-Rotation-XOR (ARX). Block cipher security is
usually evaluated on a trial-by-fire basis, whereby newer
ciphers will be subjected to various cryptanalytic attacks to
ascertain their security levels. Resistance against differen-
tial cryptanalysis has become one of the de facto require-
ments when it comes to block cipher security. To aid the
complex task of performing these attacks, researchers have
used searching algorithms [1], mixed-integer linear program-
ming [2] or boolean satisfiability solvers [3], [4] to identify

134052 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-7363-1466
https://orcid.org/0000-0001-7362-7507
https://orcid.org/0000-0002-6206-083X


T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

differential trails that occur with sufficiently high probability
to be used as statistical distinguishers in a key recovery attack.
However, these algorithms become more computationally
intensive as the number of rounds or block size increases,
and still require niche cryptographic knowledge to design an
accurate model of the cipher to be used as inputs.

Efforts to further ease the difficult task of cryptanalysis
has led researchers to look into the application of machine
learning. Rather than having cryptanalysts themselves design
an accurate model of the cipher, machine learning algorithms
can be trained to accurately model the cipher based on data
generated from the cipher itself. This reduces cryptanalysis to
a data-driven approach that requires minimal cryptographic
expertise. Early applications mainly consisted of training
machine learning models to emulate the behaviour of ciphers
given the assumption of a fixed secret key. In [5], a neu-
ral network was trained to encrypt data as simplified DES
(SDES). Then, the cryptanalyst would be able to extract secret
key information given sufficient plaintext-ciphertext pairs.
Reference [6] extended this concept to decrypt ciphertexts
of the full 64-bit DES without knowledge of the secret key.
A similar attempt using neural networks was used to per-
form known-plaintext attacks on DES and Triple-DES in [7],
whereby the neural networks were capable of decrypting
ciphertexts without knowledge of the secret key. However,
this approach has limited practicality as the neural networks
were trained using plaintexts and ciphertexts corresponding
to a specific key. If a different key is used, the model would
have to be retrained using a separate dataset. The concept of
emulating a cipher has been adopted for security evaluation
purposes by [8]. In their work, the strength of a cipher is
determined by how difficult it is for a neural network to learn
a cipher’s behavior.

A similar approach was used to cryptanalyze lightweight
block ciphers, FeW and PRESENT [9], [10], with limited
success. Neural networks were trained, validated and tested
using plaintexts, ciphertexts, and intermediate round data
which were all generated using the same encryption key.
Unfortunately, the trained networks were unable to learn the
behaviour of the block ciphers, achieving an accuracy of
approximately 50%. Generally, the use of machine learning
algorithms to perform a direct key recovery attack were
only successful in older, classical ciphers. For example, [11]
trained a neural network to extract the encryption keys of
the Caesar and Vigenère poly-alphabetic and substitution
ciphers. Generative adversarial networks were also used to
crack these classical ciphers in [12].

A more practical approach is the use of machine learn-
ing algorithms as cryptographic distinguishers or to distin-
guish block cipher ciphertexts from random data [13]. The
classification capabilities of machine learning algorithms
have been used to identify cryptographic algorithms from
ciphertexts [14]–[18]. Classifiers were trained using known
ciphertexts generated from a set of five commonly used cryp-
tographic algorithms. A high identification rate of 90% was
achieved if the same keywas used for both training and testing

data. Another approach compared the performance of five
different machine learning algorithms when distinguishing
encrypted traffic from unencrypted traffic [19]. They found
that the C4.5 decision tree-based classification algorithm
performed the best, achieving a detection rate of up to 97.2%.
Reference [20], a neural network was used to distinguish
between right and wrong subkey guesses, similar to how
a differential or linear distinguisher would be used for key
recovery in traditional cryptanalysis. When the neural net-
work was trained using plaintext-ciphertext pairs generated
from a wrong key guess, it will produce random outputs
that greatly differ from a cipher’s actual outputs, whereas
training using data generated from a correct key guess will
lead to outputs with fewer errors. This allows a cryptanalyst
to distinguish between right and wrong key guesses. The
approachwas tested on a hypothetical Feistel cipher as a proof
of concept. Neural networks have also been used to search
for high probability differentials for the block cipher Serpent
by modelling the search as a multi-level weighted directed
graph [21].

Reference [22] later introduced an attack on Speck32/64 by
training a deep learningmodel to distinguish between random
data and differential data generated from the cipher. The
proposed method outperformed existing differential attacks
in terms of time complexity. As the deep learning model was
only trained using plaintext and ciphertext pairs, there is a
possibility to further improve the performance of the attack by
including other block cipher features as training data. In addi-
tion, as the attack basically treats the deep learning model as
a black box, researchers are still unsure of what block cipher
features were actually learned by the deep learning model.
This was further investigated in [23] which hypothesized that
the deep learning distinguisher was actually learning more
than just differential cryptanalysis, but rather differential-
linear cryptanalysis. The effect of block cipher features on
deep learning prediction accuracy was studied in [24], which
trained deep learning models to predict the number of active
S-boxes for GFS ciphers. Other deep learning distinguish-
ers and attacks were also introduced against Simon, Speck,
as well as non-Markov ciphers such as Gimli [25], [26].

So far, most machine learning or deep learning approaches
have been cipher-specific rather than generalizable [5]–[10],
[21]–[23], [25], [26]. A cipher-specific approach is one that
would require the entire training process to be repeated
if a different cipher needs to be analyzed. In addition,
attacks that used machine or deep learning to directly per-
form key recovery did not give any advantage over random
guessing [9], [10]. Those successful machine learning-based
approaches were only applicable to a cipher with a reduced
keyspace [26], classical ciphers that are no longer in use
[11], [12] or for algorithm identification rather than secu-
rity evaluation [14]–[19]. Although there have been past
approaches that are generalizable to more ciphers [8], [20],
[24], these approaches all utilized deep neural networks
(deep learning) rather than simpler, standard machine learn-
ing models.

VOLUME 9, 2021 134053



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

A. CONTRIBUTION
In this paper, we propose a data-driven, generalizable security
evaluation method that relies on common machine learning
classifiers. The proposed machine learning-based method
evaluates block cipher security based on the number of active
S-boxes, a metric used to measure resistance against dif-
ferential or linear cryptanalysis.1 Rather than predicting or
extracting key information, we frame the security evaluation
problem as a machine learning classification task, whereby
machine learning models classify whether a given r-round
truncated differential path is secure or insecure. We investi-
gate the capability of both linear and nonlinearmachine learn-
ing classifiers in solving this security evaluation problem.
These classifiers were trained using various cipher features
that include truncated input and output differences, permuta-
tion patterns, and the number of rounds. Data was generated
using a modified Matsui’s branch-and-bound algorithm [1].
Apart from determining the most suitable machine learning
classifier and hyperparameters for the security prediction
task, we also look into how data representation can affect pre-
diction accuracy. Preliminary experiments were performed on
4-branch GFS ciphers to showcase the generalizability of the
proposed approach to an entire class of block ciphers, rather
than a specific one. An in-depth comparison of six classifiers
(linear and nonlinear) was performed.

Our findings show that nonlinear classifiers outperform
linear classifiers due to the nonlinear transforms involved
in block ciphers, achieving a prediction accuracy of up
to 93% when predicting seen cipher variants and up to
71% when predicting unseen cipher variants. We then
apply the best-performing classifiers to predict or label
data obtained from full-scale (16-branch) lightweight GFS
ciphers. We train two nonlinear classifiers (k-nearest neigh-
bour and decision tree) using data from five 16-branch GFS
ciphers. When labelling data samples from ciphers that the
models have seen before, they were able to achieve an accu-
racy of up to 97%. When assessing another GFS cipher,
TWINE which was not seen during training, the best per-
forming classifier achieved an accuracy of up to 74%. Addi-
tionally, the classifiers were also able to accurately label
data obtained from the 9th round of TWINE despite being
trained with data from round 1-8 of the five GFS ciphers.
This indicates that the trained classifier was able to gener-
alize to a larger number of rounds than it has been trained
for. Our findings and contributions can be summarized as
follows:

• A data-driven, generalizable approach to evaluate block
cipher security using simplemachine learning classifiers
rather than deep learning.

• An in-depth comparison between linear and nonlinear
machine learning classifiers performed on small-scale
(4-branch) GFS ciphers to identify the best classifiers
for the security evaluation task.

1Supplementary code for this paper is available at https://github.com/
trlee/ml-block-cipher

• An investigation into how data representation of cipher
features affects prediction performance, specifically
when block cipher features are subdivided into multiple,
smaller variables.

• Nonlinear machine learning models that achieve a clas-
sification accuracy of up to 97% for seen and 73% for
unseen full-scale (16-branch) lightweight GFS ciphers
such as TWINE. These nonlinear classifiers were also
able to generalize to a larger number of rounds.

B. OUTLINE
The rest of this paper is structured as follows: Section II
introduces preliminary information required to understand
the proposed work. Sections III and IV then provide the
detailed steps, experimental setup and results for the small-
scale (4-branch) and full-scale (16-branch) GFS experiments
respectively. Section V provides a discussion of our findings
and their significance. The paper is concluded in Section VI
which includes some future directions of this work.

II. PRELIMINARIES
A. DIFFERENTIAL CRYPTANALYSIS AND ACTIVE S-BOXES
Differential cryptanalysis observes the propagation of an
XOR difference of a pair of plaintexts (input difference)
through a cipher to produce a corresponding pair of cipher-
texts with a specific XOR difference (output difference).
We define an input difference as

1X = X ′ ⊕ X ′′ (1)

1X = [1X0,1X1, . . . ,1Xi−1], (2)

where X ′ and X ′′ are two individual plaintexts. An output
difference is similarly defined where Y ′ and Y ′′ are the cor-
responding ciphertexts. The pair, {1X ,1Y } is known as a
differential pair. For an ideal cipher, given any particular input
difference1X , the probability of any particular1Y occurring
will be exactly 1

2b where b is the block size. A successful
differential attack requires a differential, 1X → 1Y with
a probability far greater than 1

2b .
An S-box is defined to be differentially active if its input

is a non-zero difference. Rather than computing the concrete
differential probability for a given differential pair, resistance
against differential cryptanalysis can be estimated by calcu-
lating the number of active S-boxes. The estimated probabil-
ity that input differences will be mapped to output differences
can then be calculated based on the S-box’s differential distri-
bution table. The mapping of differences holds with a certain
probability, 2−p. By taking into consideration the best-case
(from the attacker’s perspective) S-box differential probabil-
ity, a block cipher is considered to be secure if 2AS×p ≥ 2b,
whereAS denotes the total number of active S-boxes. Figure 1
depicts an example of S-box activation for a 4-branch GFS
cipher, whereby the left S-box is active.

An interesting property of differential cryptanalysis that we
leverage upon in this work is the effect of round keys, rki
being negated through the use of differences. Any random key

134054 VOLUME 9, 2021



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

FIGURE 1. 1 round of a 4-branch GFS with 4-bit S-box.

can be used to generate differential pairs, thus the resulting
dataset for machine learning experiments is not catered to a
specific secret key. In addition, we are also able to generate
an exhaustive dataset by taking advantage of truncated dif-
ferentials [27]. We can truncate the input differences based
on the size of the S-box. For example, plaintext or ciphertext
differences for a b-bit block cipher with s-bit S-boxes can be
truncated to t-bit differences, where (t = b

s ). Thus, each bit
in the truncated difference denotes a non-zero difference cor-
responding to each s-bit word in the plaintext (or ciphertext)
block. An example of how a differential pair (1X ,1Y ) is
mapped to a truncated differential pair (1X̂ ,1Ŷ ) is shown
in Figure 1. However, the use of such a truncated differ-
ence would only be applicable to block ciphers that use a
word-based permutation rather than bitwise permutation.

B. MATSUI’S BRANCH-AND-BOUND
DIFFERENTIAL SEARCH
Matsui’s branch-and-bound is an algorithm used for deriving
the best differential or linear paths for differential and lin-
ear cryptanalysis. It is applicable to block ciphers that have
S-box-like tables. The algorithm goes through all possible
iterations of the differential paths, then prunes paths that
have probabilities less than Bn. Bn is defined as the best
probability the running algorithm has found so far. An initial
value has to be set for Bn and it should be as close to the actual
probability Bn as possible to eliminate more non-promising
paths earlier on. The Bn is constantly updated according to
the best probability of the paths found so far which effectively
reduces the potential search space. The process is repeated
until all the possible paths with respect to the branching rules
and bounding criteria have been enumerated.

In the proposed work, we use a variant of Matsui’s algo-
rithm as described in [1]. We further simplify the algo-
rithm as we only need the number of differentially active
S-boxes rather than the concrete differential probability

for our experiments. This greatly increases the speed
of the search, which allows us to remove all bound-
ing restrictions to generate large datasets for training and
testing purposes. The dataset generated for the current
study can be reproduced using the algorithm available at
https://github.com/jesenteh/16b-gfs-as-search.

C. GENERALIZED FEISTEL STRUCTURE
GFS is the generalization of the Feistel structure that was
first used in the block cipher Lucifer, the predecessor to DES.
It divides an input into d blocks, where d > 2. As a proof-
of-concept, our proposed work is applied to a 4-branch GFS
cipher (d = 4), similar to the one in Figure 1. We then
extend our work to full-scale 16-branch (d = 16) GFS
ciphers. By using a GFS cipher with a word-based permu-
tation, we can use truncated differences in our experiments.
A 4-branch GFS effectively represents ultralightweight block
ciphers with 16- or 32-bit blocks depending on whether 4-bit
or 8-bit S-boxes are used whereas a 16-branch GFS can
represent a lightweight 64-bit block cipher such as TWINE or
a 128-bit block cipher. Regardless of which, security analysis
based on the number of active S-boxes is usually performed
based on the highest differential probability for a given S-box.
For example, TWINE and AES S-boxes have the best differ-
ential probabilities of 2−2 and 2−6 respectively.

D. MACHINE LEARNING CLASSIFIERS AND THE
SECURITY PREDICTION TASK
The proposed work investigates the performance of linear
and nonlinear classifiers when predicting the security of
block ciphers. Essentially, the goal is to have the classifiers
learn the best hypothesis function (i.e. linear or nonlinear)
to segregate the secure and insecure classes. A machine
learning model refers to a trained classifier with specific fea-
tures, machine learning algorithm and hyperparameters. This
section describes the three linear and nonlinear classifiers
used in our experiments.

1) LINEAR CLASSIFIERS
As its name suggests, linear classifiers solve classification
tasks based on a linear combination of features. The goal
of linear classifiers is to segregate, as accurately as possi-
ble, the training data into their respective classes using a
linear function (i.e., a straight line). We utilize three linear
classifiers in our experiments: Tensorflow (TF) Linear clas-
sifier, and scikit-learn’s logistic regression and single-layer
perceptron.

Linear models predict the probability of a discrete
value/label, otherwise known as a class, given a set of inputs.
For the context of binary classification, the possible labels for
the problem will only be 0 or 1. The linear model computes
the input features with weights and bias. The weights indicate
the direction of the correlation between the input features
and the output label, whereas the bias acts as the offset in
determining the final value of the label, should its conditions
be fulfilled.

VOLUME 9, 2021 134055



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

Logistic regression models the probabilities of an obser-
vation belonging to each class using linear functions and is
generally considered more robust than regular linear clas-
sifiers. Unlike a linear function used by a linear classifier,
the logistic regression model uses what is referred to as a
sigmoid function, and maps any real value of a problem into
another value between the boundary of 0 and 1. In the case
of machine learning, sigmoid functions are typically used
for mapping the predictions of a model to probabilities. This
structure is shared by both TF’s linear classifier and scikit-
learn’s logistic regression models. Both models differ in
terms of how the data is represented and used for training.
In TF’s linear classifier, training samples are pooled from the
training dataset randomly in batches, and steps are defined by
the total number of batch sampling that has to be performed
before moving to the next epoch while scikit-learn’s logistic
regression model fits the data directly and trains its model
throughout the epochs.

Single-layer perceptron is a linear classifier based on a
threshold function

f (x) = w(x)+ b, (3)

where f (x) is the output value, x is a real-valued input vector,
w is the weight of the vector and b is the bias. When it
comes to a binary classification task, the threshold function
classifies x as either a positive or negative instance, with the
weight and vector being the primary variable in determining
the label, and bias is an additional parameter that can pos-
sibly adjust the label. All aforementioned linear classifiers
are tuned with respect to the following hyperparameters for
optimal performance:

• Stopgap: The total number of iterations that the model
needs to undergo with no improvements before stopping
the training process early.

• Epochs: The total number of passes the model has to
undergo throughout the training data batches.

2) NONLINEAR CLASSIFIERS
Not all data can be segregated naturally using a linear
function. A nonlinear classifier allows the machine learning
model to learn a nonlinear function or decision boundary to
best separate the training data into two classes. The nonlin-
ear classifiers used in this study are scikit-learn’s k-nearest
neighbors, decision tree and multi-layer perceptron.

k-nearest neighbor (KNN) is a type of instance-based
learning that classifies new data based on majority voting of
k number of training instances closest to it. Hyperparameters
that can be tuned to optimize performance include:

• NN: The value of k as explained earlier. NN refers to
the number of neighbors to be used for the k-neighbors
query.

• Distance: This is measure used to determine the distance
between two neighbors. The default Minkowski distance
is used for all experiments.

• Algo: Algorithm used to compute the nearest neighbors
for the model. Three options include KDTree, BallTree
or brute force.

• LeafS : Leaf size passed to theKDTree orBallTree, which
can affect the speed of the tree construction and query,
as well as memory required.

Decision tree classifiers are used to predict a class or
value of the target variable by learning simple decision rules
inferred from the training data. The model operates on the
basis of ‘‘branching’’ from one decision node to another
deeper down until it finally reaches its desired output. Its
parameters include:

• Split: The strategy used to choose the split on each node,
which can be either best or random.

• LeafN : Maximum number of leaf nodes.
• Sample Split: Minimum amount of samples required to
split an internal node.

Multi-layer perceptron (MLP) is a derivation of the per-
ceptronmodel as described in Section II-D1, with added func-
tions such as error functions and backpropagation to further
improve the performance of the model. The hyperparameters
that are tuned to optimize the model are as follows:

• Stopgap
• Epochs
• Activation: The function that determines the outputs of
the nodes. The default rectified linear function is used
for all experiments.

• Hidden layers: The number of hidden layers of the neu-
ral network.

• Nodes per hidden layer: The number of nodes per hidden
layer. We use a default value of 100 nodes per hidden
layer for all experiments.

III. 4-BRANCH GFS EXPERIMENTS
A. EXPERIMENTAL SETUP
All experiments were performed on a computer with an Intel
i5 2.4GHz CPU and 16GB RAM using Python 3.6.7, scikit-
learn 0.22.2 and TensorFlow 2.2. Assessing block cipher
security based on its features is a supervised learning problem
which we framed as a binary classification task (1 for secure,
0 for insecure). We limit the scope of this paper to linear and
nonlinear classifiers, where Tensorflow’s (TF) linear classi-
fier model, scikit-learn’s single-layer perceptron and logistic
regression models were selected as linear classifiers, and
KNN, decision tree andMLP were selected as nonlinear clas-
sifiers. To optimize performance, we perform hyperparameter
tuning for each classifier. We also investigate the effect of
data representation on prediction accuracy, specifically how
the permutation patterns are represented.

To investigate the feasibility of the proposed approach,
we first perform preliminary experiments on smaller-scale,
4-branch GFS ciphers before proceeding to their 16-branch
counterparts. This allows us to generate a large amount of
training/testing data within a practical amount of time for
all possible permutation patterns. Each sample in the dataset

134056 VOLUME 9, 2021



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

used to train the machine learning classifiers consists of
block cipher-related features. They are labelled as secure or
insecure depending on the number of active S-boxes asso-
ciated with the particular sample. For the target 4-branch
GFS ciphers, features include the truncated input difference
X̂ , truncated output difference Ŷ , number of rounds, r and a
word-based permutation pattern, P, X̂ , Ŷ and r are features
shared by any block cipher whereas P is commonly used in
GFS ciphers. Each training sample essentially describes a
truncated differential trail from X̂ to Ŷ for r number of rounds
that goes through a GFS cipher with P permutation pattern.
In our experiments, we use all 4! = 24 possible permutation
patterns for a 4-branch GFS. This also implies that there are
24 possible variants of the GFS cipher. Each cipher variant
can generate a large set of data samples which consists of its
truncated differential paths for a different number of rounds.

We utilize the branch-and-bound algorithm described in
Section II-B to automatically generate the dataset. The out-
put of the branch-and-bound algorithm is the number of
active S-boxes, AS which will be used alongside a security
margin threshold, α to calculate the data labels (secure - 1,
insecure - 0). If AS > rα, the input sample is considered
to be secure (labelled as 1) whereas if AS ≤ rα, the input
sample is considered to be insecure (labelled as 0). In other
words, α dictates the minimum number of active S-boxes
per round for a block cipher to be considered secure. α can
be configured based on the desired security margin that the
cryptanalyst or designer requires. We want to ensure that α is
selected to be as strict as possible, while still allowing us to
generate a balanced dataset for training purposes. α = 1 is a
loose bound, whereby a 16-bit and 32-bit cipher will require
at least 8 rounds and 16 rounds respectively to be considered
secure. On the other hand, if α = 2, a 16-bit and 32-bit
cipher will require at least 4 rounds and 8 rounds respectively
to be considered secure. Having α = 2 is too restrictive
as it requires all S-boxes to be active in every round. Thus,
to ensure that the security bound is sufficiently strict while
capable of generating a balanced dataset, we have selected
α = 1.5. Some samples from the dataset are shown in Table 1
(note that actual values of AS are not used for training).

TABLE 1. Sample Dataset where α = 1.5.

Our experiments can be divided into three main phases:
baseline setup, permutation feature representation, and
generalization. In Phase 1, a balanced dataset (50:50)
of 500000 samples are generated from all 24 variants of
the GFS cipher. Note that all examples are randomly sam-
pled from an exhaustive dataset. A single integer is used

to represent the entire permutation pattern. We denote this
method of representation as rep1. We compare the effect
of the permutation representation on model performance in
Phase 2 where rep1 is compared with rep2 which represents
the permutation as separate features (one integer to map each
truncated difference bit). As an example, the permutation
pattern shown in Figure 1 can be represented by rep1 =
{1230} or by rep2 = {1, 2, 3, 0}. For Phase 2, we use the same
500000 samples from all 24 variants of the GFS cipher but
with the permutation feature transformed into rep2. Figure 2
depicts the experimental flow for both Phase 1 and Phase 2.

FIGURE 2. Experiment 1 - Phase 1/Phase 2 flow.

The third phase depicted in Figure 3 involves generalizing
to unseen cipher variants. This phase reflects upon the capa-
bility of the trained machine learning classifiers to predict the
security level of these unseen ciphers. We define an unseen
cipher variant as a block cipher whose data was not used to
train the machine learning classifiers. Thus, predicting the
security of these unseen ciphers is analogous to predicting
the security of newly proposed ciphers. In Phase 3, we test
the classifiers’ performance on three different unseen block
ciphers denoted asBC1,BC2 andBC3. For each of these block
ciphers, we generate a dataset consisting of 80000 samples
each. The difference between these datasets is the ratio of the
number of secure to insecure samples (1:0). The ratios are
summarized as:
• BC1 - 1:3 (20000 to 60000)
• BC2 - 1:1 (40000 to 40000)
• BC3 - 3:1 (60000 to 20000)

BC1 represents an insecure block cipher design, BC2 repre-
sents a moderately secure block cipher design whereas BC3
represents a secure block cipher design. In order to generate
sufficient samples that fulfill these ratios, four block cipher
variants (or equivalently, four permutation patterns) are used,
P = {0321, 1320, 2013, 3012}. Thus, the training dataset
consists of 500000 samples generated from only 20 out of
the 24 variants of the GFS cipher. A summary of the three
main phases are as follows:
• Phase 1 - Baseline Setup - The goal of this phase
is to identify classifiers that are best suited for the

VOLUME 9, 2021 134057



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

FIGURE 3. Experiment 1 - Phase 3 flow.

prediction task. An 80:20 train-test split is performed
on the dataset. Apart from the six classifiers, we also
include a dummy classifier as a baseline model for per-
formance comparison. Intuitively, the dummy classifier
should have a prediction accuracy of 50% as it is a
randomly guessing model that does not have an advan-
tage in predicting security margins. For all classifiers,
we investigate various hyperparameter combinations to
maximize prediction performance. rep1 is used as the
permutation representation.

• Phase 2 - Permutation Feature Representation - In
this phase, we investigate the effect of rep1 and rep2
on prediction accuracy. We select the best perform-
ing linear and nonlinear models (along with the opti-
mal hyperparameter values) from Phase 1 and repeat
the train-test procedure using the dataset generated
from rep2.

• Phase 3 - Generalizability toUnseenCipher Variants
- This phase consists of three separate experiments.
In each one, we first train the machine learning clas-
sifiers using 500000 samples from the 20 seen cipher
variants. Then, we separately test the performance of
the models using the dataset from BC1, BC2 and BC3.
Unlike Phase 1, the training dataset will not contain a
single sample from these unseen cipher variants. Thus,
the test results will indicate if the classifiers are able
to generalize to ‘‘new’’ ciphers with varying levels of
security. For this experiment, the type of permutation
representation will be selected based on results obtained
in Phase 2.

Let S, TP, TN , FP, and FN represent the total number
of samples, true positives, true negatives, false positives and
false negatives respectively. The followingmetrics are used to
evaluate the performance of each classifier in which secure is
the positive class and insecure is the negative class:

• Accuracy (Acc): The sum of true positives and true
negatives divided by the total number of samples,

TP+ TN
S

. (4)

Accuracy refers to the fraction of predictions that the
model has correctly made.

• Precision (Pre): True positives divided by the sum of
true and false positives,

TP
TP+ FP

. (5)

Precision refers to the percentage of correctly classified
samples out of the total number of predictions made.
We record the precision for both positive and negative
classes as they are both equally important from the
cryptographic perspective.

• Recall (Rec): True positives divided by the sum of true
positives and false negatives,

TP
TP+ FN

. (6)

It represents the percentage of correctly classified sam-
ples out of the total number of actual samples that belong
to a particular class. Similar to precision, we record the
recall for both positive and negative classes.

• F1 score (F1): The harmonic mean of precision and
recall,

F1 = 2×
Pre× Rec
Pre+ Rec

. (7)

It is an accuracy measure that takes both precision and
recall into consideration.

We analyze the performance of the proposed models based
on accuracy and F1 score. Accuracy reflects upon how well
the models generally perform in the prediction task whereas

134058 VOLUME 9, 2021



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

the F1 scores for each of the classes provide deeper insights
into prediction bias.

B. EXPERIMENTAL RESULTS
1) BASELINE RESULTS
The prediction accuracy of the dummy classifier (50%) is
used as a baseline to determinewhichmodels have truly learnt
to perform the classification task. In general, all classifiers
outperformed the dummy classifier with nonlinear classifiers
outperforming linear ones. The majority of classifiers per-
formed well, achieving accuracy values ranging from 69%
to 93%. TF linear classifier underperformed (56% accuracy)
with a distinct bias towards predicting samples as insecure.
Although TF linear classifier and logistic regression are both
based on the same machine learning algorithm, the difference
in their data sampling methods leads to a significant differ-
ence in prediction results. As for nonlinear classifiers, deci-
sion tree and KNN have less biased predictions as compared
to MLP, which is biased towards the insecure class.

Overall, the best performing models are logistic regression
for linear classifiers, and KNN and decision tree for nonlinear
classifiers. A summary of the results is shown in Table 2 for
which the optimal hyperparameters are listed below:
• TF Linear Classifier:
Stopgap = 350
Epochs = 750

• Other linear classifiers:
Stopgap = 1000
Epochs = 1000

• MLP:
Stopgap = 1000
Epochs = 1000
HiddenLayers = 4
Neurons per hidden layer = 100

• Decision Tree Classifier:
Split = random
LeafN = unlimited
SampleSplit = 2

• KNN:
NN = 4
Algo = BallTree
LeafS = 40

TABLE 2. Baseline Setup Results.

2) PERMUTATION FEATURE REPRESENTATION
To study the impact of feature representation on prediction
accuracy, we perform experiments on the best linear clas-
sifier (single-layer perceptron) and all nonlinear classifiers.

TABLE 3. Comparison results for permutation feature representation.

The same set of optimal hyperparameter values described
in Phase 1 were used. Results in Table 3 show that only
MLP classifier has visible improvements when using rep2
rather than rep1. We conjecture that the use of rep2 improves
upon the performance MLP due to its sensitivity to feature
scaling. rep2 reduces the scale of the feature to a single
integer in the range of [1,4] (although the number of features
is increased), allowing MLP to converge faster and avoid
being stuck in a local minimum. KNN and decision tree were
able to achieve optimal performance regardless of how the
permutations were presented, while single-layer perceptron
saw a slight improvement. Based on these results, Phase 3will
rely on rep2 as it has the potential to improve the performance
of certain classifiers without having an adverse effect on the
rest.

3) GENERALIZABILITY TO UNSEEN CIPHER VARIANTS
The third phase is the most important one as it reflects upon
the practicality of the proposed approach. We expect the
classifiers to perform better when predicting unseen cipher
variants that are insecure compared to secure ones. We also
expect the classifiers to generally perform poorer at making
security predictions on unseen cipher variants as compared
to the ones that they have. As expected, all classifiers do not
perform as well as in the baseline experiments in Phase 1.
Although linear classifiers seem to be as accurate as nonlinear
classifiers, a closer inspection of the F1 scores indicate that
the predictions made by linear classifiers are highly biased.
In fact, all of the linear classifiers predict nearly every sample
as insecure, showing that linear classifiers cannot generalize
well to unseen block ciphers.

As for nonlinear classifiers, decision tree and KNN have
the most unbiased results when predicting all unseen cipher
variants but their performance is inversely proportionate to
the cipher’s security level. Generally, KNN outperforms deci-
sion tree in all scenarios: 71% vs 69% for BC1, 62% vs 58%
for BC2, and 56% vs 51% for BC3. We can conclude that the
best classifier for predicting the security of an unseen cipher
variant is KNN. A summary of the results is shown in Table 4
for which all models use the same hyperparameter settings as
in Phase 1, except for decision tree classifier (Split = best ,
LeafN = unlimited , SampleSplit = 2).

IV. 16-BRANCH GFS EXPERIMENTS
A. EXPERIMENTAL SETUP
All experiments were performed on the same computer with
an Intel i5 2.4GHz CPU and 16GB RAM using Python

VOLUME 9, 2021 134059



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

TABLE 4. Generalization Results.

3.6.7, scikit-learn 0.22.2 and TensorFlow 2.2. The compu-
tational time required to generate sufficient training data for
16-branch GFS ciphers is exponentially higher than that of
4-branch ciphers. It is also not practical to generate data for
every possible permutation pattern (16! ≈ 2 × 1013 possi-
bilities). Thus, we have selected six 16-branch GFS ciphers
for our experiments. Apart from TWINE itself, which is the
target cipher for generalization experiments, five others were
selected based on permutation patterns with optimal crypto-
graphic properties (full diffusion in 8 rounds and a minimum
of 40 AS after 20 rounds). The six permutation patterns for
the chosen GFS ciphers are shown in Table 5, with naming
conventions for the permutations taken from [28]. The same
modified branch-and-bound search is used to generate data
samples. Due to their underlying permutation patterns, these
ciphers already achieve full diffusion in 8 rounds. Thus,
we limit the number of rounds to 8 to ensure that data can be
generated in an exhaustive manner within a practical amount
of time (approximately 1-2 days for 8 rounds). Generating
the data in an exhaustive manner allows us to perform ran-
dom sampling without imposing any limits to the inputs nor
bounding criteria for the branch-and-bound search. For each
cipher, we generate 100000 samples, whereby 12500 samples
are taken from each round of the cipher. To determine if
the machine learning models are able to generalize to more
rounds than they have been trained with, we generate an
additional 100000 samples from the 9th round of TWINE.
In total, we have three datasets that can be summarized as
follows:

• GFS(1,8) - 500000 samples from round 1-8 of five GFS
ciphers (excluding TWINE)

TABLE 5. 16-branch permutation patterns.

FIGURE 4. Experiment 2 - Phase 1 flow.

• TW(1,8) - 100000 samples from round 1-8 of TWINE
• TW9 - 100000 samples from round 9 of TWINE
The format of each data sample is similar to Table 1 but

the input and output truncated differences as well as the
permutation are 16 words rather than 4. In terms of feature
representation, we found that using rep2 for both permutation
pattern and truncated differences led to better results. As the
maximum number of AS per round for a 16-branch GFS is 8,
the security margin threshold is set to half, α = 4. For our
experiments, we chose the KNN and decision tree classifiers
as they were the two best performing models based on our
findings in Section III. The experiments are divided into two
main phases:
• Phase 1 - Baseline Setup - The goal of this phase
(depicted in Figure 4) is to determine if machine learning
classifiers are able to perform security predictions for
seen 16-branch block ciphers. The GFS(1,8) dataset is
used, to which an 80:20 train-test split is performed
(400000 training samples, 100000 test samples). Hyper-
parameter tuning is performed to obtain the best per-
forming models.

• Phase 2 - Generalizability to TWINE - The goal of this
phase (depicted in Figure 5) is to determine if machine
learning models can be used for security prediction for
an actual unseen lightweight cipher, TWINE after being
trained using data from the five other GFS ciphers. The
GFS(1,8) dataset is used for training whereas TW(1,8)
dataset is used for testing. We also compare the perfor-
mance of the classifiers when performing predictions for
more rounds than they have been trained for. This is per-
formed by training the models using theGFS(1,8) dataset
and using the TW9 dataset for testing. Hyperparameter
tuning is performed again to obtain the best performing
models.

We analyze the performance of the proposed models using
the same accuracy and F1 metrics as in Section III. Addi-
tionally, we also compare the models based on the area
under the receiver operating characteristic (AUROC). As the
TW9 dataset is highly imbalanced (more secure samples as
compared to insecure samples), AUROC will provide better
performance insights.

B. EXPERIMENTAL RESULTS
1) BASELINE RESULTS
The best performing decision tree and KNNmodels achieved
an accuracy of 97% and 96% respectively. They were able to

134060 VOLUME 9, 2021



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

FIGURE 5. Experiment 2 - Phase 2 flow.

TABLE 6. Baseline Setup Results for 16-branch GFS.

perform predictions with minimal biases for both the secure
and insecure classes as shown in Table 6. These results also
indicate that the machine learning models are better at secu-
rity prediction for 16-branch GFS ciphers as compared to
4-branch ciphers. This can be attributed to the larger num-
ber of features involved during training, 49 features (Input
difference - 16, Output difference - 16, Permutation - 16,
Number of Rounds - 1) features as compared to 7 features
(Input difference - 1, Output difference - 1, Permutation - 4,
Number of Rounds - 1). Although decision tree slightly out-
performs KNN in terms of accuracy, KNN is more accurate
in predicting the secure class as depicted in the ROC curve
shown in Figure 6. The optimal hyperparameters for both
models are listed below:

• Decision Tree Classifier:
Split = best

FIGURE 6. ROC curve for 16-branch baseline experiment
(AUROCKNN = 0.989, AUROCDT = 0.969).

LeafN = unlimited
SampleSplit = 2

• KNN:
NN = 2
Algo = KDTree
LeafS = 100

2) GENERALIZABILITY TO TWINE
This phase is an important one as it reflects upon the feasibil-
ity of the proposed approach to be used in actual cryptanalytic
settings. Naturally, we expect the nonlinear classifiers to
make more accurate predictions for the five GFS ciphers that
they have already seen as compared to TWINE. The results
in Table 7 confirm this notion as both decision tree and KNN
did not perform as well as in the baseline experiments when
labelling data from TWINE. However, both models were still
able to generalize well to TWINE, with KNN and decision
tree achieving accuracy scores of 74% and 67% respectively.
The ROC curve in Figure 7 clearly depicts that KNNdiscrimi-
nates between secure and insecure classes better than decision
tree. The prediction results for TWINE in terms of both
accuracy and bias were also better than the generalization
results for the unseen 4-branch ciphers, BC1, BC2 and BC3.

TABLE 7. Generalization Results (TWINE) for 16-branch GFS (Round 1-8).

FIGURE 7. ROC curve for TWINE (Round 1-8) experiment
(AUROCKNN = 0.818, AUROCDT = 0.659).

GFS ciphers with strong permutation patterns such as
TWINE will achieve full diffusion after 8 rounds. Thus,
a dataset generated entirely from the 9th round will consist of
mostly secure samples. This is the case for the TW9 dataset,
which has 99918 secure samples but only 82 insecure sam-
ples. Due to the highly imbalanced nature of this dataset,
a comparison of accuracy scores shown in Table 8 cannot
reliably depict performance. However, the AUROC scores
still indicate that KNN greatly outperforms decision tree
(0.818 vs 0.659) in terms of correctly predicting the secure
class. The ROC curve for the 9-round TWINE generalization

VOLUME 9, 2021 134061



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

TABLE 8. Generalization Results (TWINE) for 16-branch GFS (Round 9).

FIGURE 8. ROC curve for TWINE (Round 9) experiment
(AUROCKNN = 0.934, AUROCDT = 0.781).

experiment is shown in Figure 8. We can conclude that
the best classifier for predicting the security of an unseen
16-branch cipher is KNN, even for a larger number of rounds
than it has been trained for. These results were obtained after
a second round of hyperparameter tuning which resulted in
the same hyperparameter values for decision tree but different
values for KNN (NN = 8, Algo = KDTree, LeafS = 250).

V. DISCUSSION, PRACTICAL APPLICATIONS, AND
FUTURE WORK
Overall, the experimental results showcased the feasibility of
the proposed approach whereby classifiers were able to learn
the relationship between block cipher features and security
(with respect to the number of active S-boxes). Notably,
results showed that nonlinear classifiers are better suited for
assessing the security of block ciphers as compared to linear
classifiers. Linear classifiers such as logistic regression can
still be used if security assessment is performed on seen block
cipher variants but they cannot generalize well to unseen
ones. In general, we recommend the use of nonlinear clas-
sifiers, specifically KNN as it was able to achieve a 92%
prediction accuracy for seen cipher variants. KNN was still
able to generalize to unseen cipher variants with an accuracy
of 71%, 62% and 56% for BC1, BC2 and BC3, respectively.
Contrary to intuition, the trained models (specifically deci-

sion tree and KNN) actually performed better when applied
to 16-branch GFS ciphers. We conjecture that this is a result
of the increased number of features being used for training
(7× more features as compared to the 4-branch ciphers).
Investigating the impact of specific features and the number
of features will be left to future work. Our findings indi-
cate that the prior recommendation of using KNN for the
prediction task still holds valid. KNN was able to achieve
96% accuracy when performing predictions for the five seen
GFS ciphers, and could generalize well to the unseen GFS

cipher, TWINE with an accuracy of 74%. As compared to
decision tree, KNN can better discriminate between secure
and insecure classes based on its higher AUROC scores.
In addition, KNN was able to make accurate predictions for
9 rounds of TWINE despite being trained with only round
1-8 data from the fiveGFS ciphers. This depicts the capability
of KNN to generalize to more rounds than it has been trained
for.

As the proposed approach can achieve high accuracy (up
to 96%) when predicting the security of seen cipher variants,
it can be used to aid cryptanalysts in identifying good differ-
ential pairs for cryptanalysis, filtering out insecure samples
for further investigation. Although searching algorithms or
SAT solvers can also be used for this reason, they require
niche cryptographic expertise to develop efficient models for
the differential search problem [23]. In contrast, the pro-
posed approach is a data-driven approach that only requires
access to the block cipher itself and requires only standard
machine learning models, which simplifies the cryptanalysis
task. The machine learning algorithms can perform predic-
tions near-instantaneously albeit with longer pre-processing
(training) time. This is an efficiency trade-off between the
online phase of an attack and its pre-processing phase. Apart
from that, high accuracy when predicting seen cipher variants
implies that additional cipher features such as permutation
patterns can potentially be used to improve the accuracy of
existing machine learning-based distinguishers.

The trained machine learning models can be used to
quickly assess the security margin of unseen block ciphers
or used as a tool to identify possible weaknesses early on in
the design phase of a new cipher. In practice, these unseen
block ciphers can be new designs or any other block cipher
that the model was not trained with. This capability was
depicted when the trained nonlinear classifiers were used on
TWINE, achieving a prediction accuracy of 74%. A closer
inspection of the F1 scores indicates that KNN is more likely
to classify a cipher as insecure (F1 = 0.79) rather than
secure (F1 = 0.68), and will do so more accurately. This
implies that the predictions made by the classifier are more
conservative (favouring insecure rather than secure), which
is desirable in a practical setting. Its high AUROC scores
(0.818-0.934) shows that it is also proficient at classifying
secure samples correctly. These results support the reliability
of the proposed model’s predictions. The trained models will
be useful for block cipher designers who wish to quickly
discard poor designs without having to constantly redesign
accurate models of those block ciphers to be fed into com-
putationally intensive searching algorithms or solvers. How-
ever, we note that the proposed machine learning approach
is not meant to replace these state-of-the-art cryptanalysis
techniques entirely, but is merely an additional tool that can
be used by both designers and cryptanalysts alike for security
evaluation tasks.

The proposed work is not without its limitations. As of
now, it remains to be seen if the same approach can be applied
to other block cipher structures such as SPN and ARX. For

134062 VOLUME 9, 2021



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

these structures, the use of truncated differentials may not be
feasible as these ciphers may involve bitwise permutations.
Thus, generating an exhaustive dataset for training will be
more time-consuming. Apart from that, the use of a single
threshold value α is restrictive and may not accurately reflect
the security requirements of different ciphers. With a more
dynamic or flexible threshold, the performance of the models
may be improved. The proposed approach sets a precedence
for future work which includes:

• Exploring the use of deep learning to maximize the
prediction accuracy for unseen cipher variants

• Investigating the use (and different representations) of
other features such as S-box probability or diffusion
properties of the permutation pattern to further optimize
prediction accuracy

• Prediction of differential probability or the number of
active S-boxes using regression techniques

• Improving the accuracy of existing machine learning-
based distinguishers using additional cipher features

• Training a machine learning algorithm to predict the
security of a larger block cipher using data from smaller
block ciphers with the same structure

• Predicting the security of other block cipher structures
such as SPN or ARX

VI. CONCLUSION
In this paper, we investigated the use of machine learning
classifiers for block cipher security evaluation. Rather than
being used for key recovery or as statistical distinguishers,
machine learning classifiers were trained using generic block
cipher features to predict if a block cipher is secure or inse-
cure based on the notion of active S-boxes. Thus, the pro-
posed approach is not specific to a particular block cipher
nor secret key, which is the case for the majority of existing
methods. As a proof-of-concept, we performed experiments
on 4-branch GFS ciphers. By using truncated differentials,
we were able to exhaustively generate the training and testing
datasets by using a modified version of Matsui’s branch-
and-bound algorithm. We tested our approach by using three
linear and three nonlinear classifiers. Experimental results
concluded that nonlinear classifiers were better suited for
the security prediction task, with decision tree and KNN
depicting optimal performance. When predicting seen cipher
variants, the decision tree classifier was able to achieve a
prediction accuracy of up to 93% as compared to 92% for
KNN. KNN outperformed decision tree when generalizing to
unseen cipher variants, achieving an accuracy of up to 71%
depending on the security level of the targeted cipher.We then
applied the proposed approach on 16-branch GFS ciphers,
including the lightweight block cipher, TWINE. We found
that the decision tree and KNN classifiers were adept at mak-
ing predictions for seen ciphers, achieving accuracy results
ranging between 96-97%. When generalizing to an unseen
block cipher (TWINE), KNN not only outperformed decision
tree (74% versus 67%), there were also minimal biases as

compared to predictions made for the smaller-scale ciphers.
KNN could also make accurate predictions (accuracy of 94%,
AUROC score of 0.934) for 9-round TWINE despite being
trained using data obtained from only round 1-8 of the five
GFS ciphers. These results not only depict the feasibility
of the proposed approach but also implies that the trained
models can be used in practice to aid cryptanalysis efforts
and to perform preliminary security evaluation for new block
cipher designs.

REFERENCES
[1] J. Chen, J. Teh, Z. Liu, C. Su, A. Samsudin, and Y. Xiang, ‘‘Towards accu-

rate statistical analysis of security margins: New searching strategies for
differential attacks,’’ IEEE Trans. Comput., vol. 66, no. 10, pp. 1763–1777,
Oct. 2017.

[2] N. Mouha, Q. Wang, D. Gu, and B. Preneel, ‘‘Differential and linear
cryptanalysis using mixed-integer linear programming,’’ in Information
Security and Cryptology. Berlin, Germany: Springer, 2012, pp. 57–76.

[3] R. Ankele and S. Kölbl, ‘‘Mind the gap—A closer look at the security
of block ciphers against differential cryptanalysis,’’ in Selected Areas in
Cryptography. Cham, Switzerland: Springer, 2019, pp. 163–190.

[4] L. Sun, W. Wang, and M. Wang, ‘‘Accelerating the search of differential
and linear characteristics with the SAT method,’’ IACR Trans. Symmetric
Cryptol., vol. 12, pp. 269–315, Mar. 2021.

[5] K. Alallayah, M. Amin, W. AbdElwahed, and A. Alhamamii, ‘‘Applying
neural networks for simplified data encryption standard (SDES) cipher
system cryptanalysis,’’ Int. Arab J. Inf. Technol., vol. 9, no. 2, pp. 163–169,
2012.

[6] A. Mundra, S. Mundra, J. S. Srivastava, and P. Gupta, ‘‘Optimized deep
neural network for cryptanalysis of DES,’’ J. Intell. Fuzzy Syst., vol. 38,
no. 5, pp. 5921–5931, May 2020.

[7] M. M. Alani, ‘‘Neuro-cryptanalysis of DES and triple-DES,’’ in Neural
Information Processing. Berlin, Germany: Springer, 2012, pp. 637–646.

[8] Y. Xiao, Q. Hao, and D. D. Yao, ‘‘Neural cryptanalysis: Metrics, method-
ology, and applications in CPS ciphers,’’ in Proc. IEEE Conf. Dependable
Secure Comput. (DSC), Nov. 2019, pp. 1–8.

[9] A. Jain and G. Mishra, ‘‘Analysis of lightweight block cipher FeW on the
basis of neural network,’’ inHarmony Search Nature InspiredOptimization
Algorithms. Singapore: Springer, Aug. 2018, pp. 1041–1047.

[10] G. Mishra, S. V. S. S. N. V. G. K. Murthy, and S. K. Pal, ‘‘Neural net-
work based analysis of lightweight block cipher PRESENT,’’ in Harmony
Search and Nature Inspired Optimization Algorithms. Singapore: Springer,
Aug. 2018, pp. 969–978.

[11] R. Focardi and F. L. Luccio, ‘‘Neural cryptanalysis of classical ciphers,’’
in Proc. ICTCS, 2018, pp. 104–115.

[12] A. N. Gomez, S. Huang, I. Zhang, B. M. Li, M. Osama, and
L. Kaiser, ‘‘Unsupervised cipher cracking using discrete GANs,’’ 2018,
arXiv:1801.04883. [Online]. Available: https://arxiv.org/abs/1801.04883

[13] A. Perov, ‘‘Using machine learning technologies for carrying out statistical
analysis of block ciphers,’’ in Proc. Int. Multi-Conf. Eng., Comput. Inf. Sci.
(SIBIRCON), Oct. 2019, pp. 853–856.

[14] C. Tan and Q. Ji, ‘‘An approach to identifying cryptographic algorithm
from ciphertext,’’ in Proc. 8th IEEE Int. Conf. Commun. Softw. Netw.
(ICCSN), Jun. 2016, pp. 19–23.

[15] K. V. Pradeepthi, V. Tiwari, and A. Saxena, ‘‘Machine learning approach
for analysing encrypted data,’’ in Proc. 10th Int. Conf. Adv. Comput.
(ICoAC), Dec. 2018, pp. 70–73.

[16] S. Pamidiparthi and S. Velampalli, ‘‘Cryptographic algorithm identifi-
cation using deep learning techniques,’’ in Evolution in Computational
Intelligence. Singapore: Springer, Sep. 2020, pp. 785–793.

[17] V. Tiwari, K. V. Pradeepthi, and A. Saxena, Identification of Cryptographic
Algorithms Using Clustering Techniques, K. S. Raju, A. Govardhan,
B. P. Rani, R. Sridevi, and M. R. Murty, Eds. Singapore: Springer, 2020.

[18] W. Zhang, Y. Zhao, and S. Fan, ‘‘Cryptosystem identification scheme based
on ASCII code statistics,’’ Secur. Commun. Netw., vol. 2020, pp. 1–10,
Dec. 2020.

[19] R. Alshammari and A. N. Zincir-Heywood, ‘‘Machine learning based
encrypted traffic classification: Identifying SSH and Skype,’’ inProc. IEEE
Symp. Comput. Intell. Secur. Defense Appl., Jul. 2009, pp. 1–8.

VOLUME 9, 2021 134063



T. R. Lee et al.: Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes

[20] A. M. B. Albassal and A.-M.-A. Wahdan, ‘‘Neural network based crypt-
analysis of a feistel type block cipher,’’ in Proc. Int. Conf. Electr., Electron.
Comput. Eng., Sep. 2004, pp. 231–237.

[21] A. G. Bafghi, R. Safabakhsh, and B. Sadeghiyan, ‘‘Finding the differential
characteristics of block ciphers with neural networks,’’ Inf. Sci., vol. 178,
no. 15, pp. 3118–3132, Aug. 2008.

[22] A. Gohr, ‘‘Improving attacks on round-reduced speck32/64 using deep
learning,’’ in Advances in Cryptology. Cham, Switzerland: Springer, 2019,
pp. 150–179.

[23] A. Benamira, D. Gerault, T. Peyrin, and Q. Q. Tan, ‘‘A deeper look at
machine learning-based cryptanalysis,’’ in Advances in Cryptology (Lec-
ture Notes in Computer Science). Cham, Switzerland: Springer, 2021,
pp. 805–835.

[24] M. F. Idris, J. S. Teh, J. L. S. Yan, and W.-Z. Yeoh, ‘‘A deep learning
approach for active S-box prediction of lightweight generalized feistel
block ciphers,’’ IEEE Access, vol. 9, pp. 104205–104216, 2021.

[25] A. Baksi, J. Breier, Y. Chen, and X. Dong, ‘‘Machine learning assisted dif-
ferential distinguishers for lightweight ciphers (extended version),’’ Cryp-
tol. ePrint Arch., Tech. Rep. 2020/571, Dec. 2020. [Online]. Available:
https://eprint.iacr.org/2020/571/20201202:014352

[26] J. So, ‘‘Deep learning-based cryptanalysis of lightweight block ciphers,’’
Secur. Commun. Netw., vol. 2020, pp. 1–11, Jul. 2020.

[27] L. R. Knudsen, ‘‘Truncated and higher order differentials,’’ in Fast Soft-
ware Encryption. Berlin, Germany: Springer, 1995, pp. 196–211.

[28] T. Suzaki and K. Minematsu, ‘‘Improving the generalized feistel,’’ in Fast
Software Encryption. Berlin, Germany: Springer, 2010, pp. 19–39.

TING RONG LEE received the B.Eng. degree
(Hons.) majoring in computer science from
Coventry University, INTI International College
Penang, in 2018, and theM.Sc. degree in computer
science from University Sains Malaysia, in 2021.
He is currently working as a Software Engineer
at Clarion Malaysia Sdn., Bhd. His research inter-
ests include symmetric cryptography, cryptanaly-
sis, and machine learning.

JE SEN TEH received the B.Eng. degree (Hons.)
majoring in electronics from Multimedia Univer-
sity, Malaysia, in 2011, and the M.Sc. and Ph.D.
degrees in computer science from Universiti Sains
Malaysia, in 2013 and 2017, respectively. He is
currently working as a Senior Lecturer at with
the School of Computer Sciences, Universiti Sains
Malaysia. His research interests include symmet-
ric cryptography, cryptanalysis, and chaos theory.

NORZIANA JAMIL received the Ph.D. degree in
security in computing (cryptographic hash func-
tions), in 2013. She is currently serving as an
Associate Professor at Universiti Tenaga Nasional.
Her area of specialization and interests include
cryptography, security for cyber-physical systems,
security analytics, and intelligence. She is an
alumni of Leadership in Innovation Fellowship by
the U.K. Royal Academy of Engineering, a project
leader and a consultant of various cryptography

and cyber security related research and consultancy projects, has been
actively involving in advisory for cryptography and cyber security projects,
and works with several international prominent researchers and professors.

JASY LIEW SUET YAN received the master’s
degree in information management and the Ph.D.
degree in information science and technology from
the School of Information Studies, Syracuse Uni-
versity, USA. She is currently a Senior Lecturer
with the School of Computer Sciences, Universiti
Sains Malaysia, specializing in sentiment anal-
ysis, natural language processing, and machine
learning. Her broader research interests include
text mining, computational linguistics, and deep
learning.

JIAGENG CHEN received the B.S. degree from
the School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), in 2004, and the M.S. and Ph.D. degrees
in computer science from the School of Infor-
mation Science, Japan Advanced Institute of Sci-
ence and Technology (JAIST), in 2007 and 2012,
respectively. He was working as an Assistant Pro-
fessor with the School of Information Science,
Japan Advanced Institute of Science and Tech-

nology, from 2012 to 2015. He is currently an Associate Professor with
the School of Computer Science, Central China Normal University. His
research areas include cryptography, especially in the areas of algorithms,
cryptanalysis, and secure designs.

134064 VOLUME 9, 2021


