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ABSTRACT Social media platforms such as Twitter, Facebook, and Flicker, and the evolution of digital
image capturing devices have resulted in the generation of amassive number of images. Thus, we experienced
an exponential growth in digital image repositories in the last decade. Content-based image retrieval (CBIR)
has been extensively employed to reduce the dependency on textual annotations for image searching. Effec-
tive feature descriptor is mandatory to retrieve the most relevant images from the repository. Additionally,
CBIR methods often experience the semantic gap problem, which must also be addressed. In this paper,
we propose a novel texture descriptor, Directional Magnitude Local Hexadecimal Patterns (DMLHP), based
on the texture orientation and magnitude to retrieve the most relevant images. The objective of the proposed
feature descriptor is to examine the relationship between the neighboring pixels and their adjacent neighbors
based on texture orientation and magnitude. Our DMLHP texture descriptor is capable of capturing the
texture and semantic information of the images effectively with the same visual content. Furthermore,
the proposed method employs a learning-based approach to lessen the semantic gap problem and to improve
the understanding of the contents of query images to retrieve the most relevant images. The presented
descriptor provides remarkable results by achieving the average retrieval precision (ARP) of 66%, 92%, 83%,
average retrieval recall (ARR) of 66%, 92%, 83%, average retrieval specificity (ARS) of 99%, 99%, 76%,
and average retrieval accuracy (ARA) of 98%, 99%, 85% on the AT&T, MIT Vistex, and Brodatz Texture
image repositories, respectively. Our experiments reveal that the proposed DMLHP descriptor achieves far
better performance, i.e., 95% on AT&T, 92% on BT, and 99% on MIT Vistex, when used with a learning-
based approach over a non-learning-based approach (similarity measure). Experimental results show that the
proposed texture descriptor outperforms state-of-the-art descriptors such as LNIP, LTriDP, LNDP, LDGP,
LEPSEG, and CSLBP for CBIR.

INDEX TERMS Content-based image retrieval, orientation-based pattern, magnitude-based pattern,
similarity-based approach, learning-based approach.

I. INTRODUCTION
The tremendous evolution of digital cameras and the Internet
has resulted in the generation of a massive amount of

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

multimedia content over the last couple of decades. Addition-
ally, social media platforms also amplified this huge collec-
tion of images and videos in cyberspace. Effective storage
and retrieval of the multimedia content is challenging [1]
due to huge multimedia repositories, semantic understanding
of media in the presence of complex backgrounds, and the
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FIGURE 1. Related visual textural appearance of two sample images
belonging to MIT Vistex image repository.

semantic gap between computers and humans. Therefore,
there is a need to develop more effective image retrieval
systems that are robust to the above-mentioned limitations.
Text-based image retrieval (TBIR) is commonly employed
for retrieval where the search is based on automatic and
manual annotation of images. TBIR-based techniques use
similar image text to search and retrieve relevant images from
the repositories. It has been observed that the description of
the texture images using the text becomes difficult at times
because different users employ distinct keywords for anno-
tation. This reveals the limitation of text descriptors being
subjective, which results in low retrieval accuracy. Addition-
ally, it is difficult to express the entire visual contents of an
image in words, so, TBIR may produce irrelevant results.
To overcome the limitations of TBIR systems, researchers
introduced the concept of a content-based image retrieval
system. CBIR addresses the limitation of TBIR, as CBIR
does not need manual annotation to retrieve visually similar
images [2]. A CBIR system is based on the visual contents
of the images described in the low-level features, that is,
texture, shape, color, and spatial locations to build the feature
repository. CBIR gives more prominent attention to the local
and global information such as the color, texture, and shape
of an image. In the CBIR system, the image is provided as an
input query instead of feeding the textual query.

We have witnessed a tremendous evolution in CBIR
systems over the years to solve many retrieval issues in
large repositories. However, some open issues in the image
retrieval domain must still be addressed. Working on the
semantic gap for image repositories of large sizes is still
a challenging problem. The semantic gap refers to the
limitation of low-level feature representation of images in
describing the actual visual perception of the image, that is,
human semantics. Visual similarity belonging to two different
semantic categories reduces the performance of the CBIR
system because images that have no semantic relation are
retrieved. Fig. 1 represents two sample images from the
MIT Vistex image repository, which are similar in terms
of visual perception and image semantics. The degree of
similarity in terms of visual content among these images are
the same due to low-level features, that is, color, shape, and
texture as well as high-level image semantics. Actually, these

FIGURE 2. Close visual and semantic appearance between two different
semantic categories of MIT Vistex image repository.

two images belong to different semantic classes where the
first image belongs to the ‘‘Food’’ class, whereas, the sec-
ond image belongs to the ‘‘Fabric’’ class. The CBIR system
may retrieve irrelevant images due to common visual contents
like color, shape, and texture. Similarly, we can observe
from Fig. 2 that the similar-looking image ‘‘GroundWater-
City’’ is returned against the inquiry image ‘‘Clouds’’. These
images seem to be semantically related due to the presence
of common visual contents such as the sky and water, but
they actually belong to two different semantic groups. These
images describe the semantic gap issue between low-level
feature representations and high-level user semantics.

Existing local texture descriptors such as local binary
patterns (LBP), local ternary patterns (LTP), and others com-
pute limited directional information and ignore the magni-
tude information. The retrieval performance of these texture
descriptors can be further enhanced by capturing more direc-
tional and higher-magnitude information from the neigh-
boring pixels. This observation motivated us to develop
a novel texture descriptor by considering the aforemen-
tioned limitations of existing texture descriptors. The pro-
posed DMLHP feature descriptor is capable of effectively
capturing the characteristics of an image based on texture
orientation and magnitude. The texture orientation-based pat-
tern (TOBP) encodes more detailed discriminative informa-
tion in sixteen directions of the neighborhood region, using
first-order derivatives. The amount of intensity variation is
computed at 0◦, 45◦, 90◦, and 135◦ directions to illustrate
maximum changes by, using a texture magnitude-based pat-
tern, (TMBP). To represent the image features, the two pat-
terns are formulated (i.e., texture orientation is extracted from
TOBP, and magnitude information is extracted from TMBP).
Each image is represented as a fusion of texture orientation
and magnitude patterns. The histograms are obtained by con-
catenating both patterns, and the classifier is trained using the
proposed features. The learning-based approach is required to
bridge the semantic gap problem in CBIR systems. The pro-
posed descriptor is also used with a learning-based approach
to enhance the CBIR accuracy. The results show that the
proposed texture descriptor achieves high retrieval and clas-
sification performance in both the traditional (similarity) as
well as the learning approaches.
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The major contributions of this work are as follows:
1) We propose a novel texture descriptor that is robust to

noise, color, pose variations, and a variety of natural
and artificial regular textures.

2) We present an effective features fusion of texture orien-
tation and texture magnitude to extract more discrimi-
native information from the input image.

3) Our method addresses the issue of the semantic gap
between high-level semantics and local features.

The upcoming sections of the article are outlined as follows:
In Section II, we provided a comprehensive overview of exist-
ing state-of-the-art CBIR systems. The detailed procedure of
the proposed texture descriptor is described in Section III.
In Section IV, we present the performance evaluation of the
proposed CBIR method in detail. Finally, Section V con-
cludes the proposed work.

II. RELATED WORK
This section provides a critical investigation of existing state-
of-the-art CBIR techniques. Effective image representation is
required for accurate and highly relevant image retrieval. For
this purpose, researchers have proposed different local and
global descriptors over the last few decades. Although global
descriptors are more computationally efficient than the local
descriptors, they are unable to perform well under certain
conditions, e.g., scaling, rotation, and viewpoint changing.
On the other hand, local features are more robust under
the above-mentioned limitations, and are better able to cap-
ture the complex texture information in the images [3].
Local descriptors have recently received considerable atten-
tion in the community of image retrieval because of their
robustness to illumination changes, noise, and variations in
pose. Different local feature descriptors like BRISK [4],
SURF [5], SIFT [6], and HOG [7] were used for effective
feature extraction. SIFT has been widely employed as a
local feature descriptor because of its invariance to scale,
rotation, transition in lighting, and 3D camera perspective
properties. Various drawbacks are associatedwith the original
SIFT descriptor such as high computational cost and slow
processing. SURF improves the computational efficiency of
features computation as compared to SIFT. SURF performs
well on blur and rotated images, but does not perform well
when illumination or viewpoint change. The enhanced SURF
keypoint descriptor was introduced in [8], which combined
the color information to improve the accuracy of keypoint-
based descriptors. HOG [7] is an effective feature descriptor
used for object detection. The HOG descriptor finds the edges
and shape of an object in a localized portion. Therefore,
it is invariant against the photometric and local geometric
variations.

Many extensions were made for conventional local binary
pattern descriptors such as multichannel adder and decoder
local binary pattern (MadLBP), modified local binary pattern,
multiscale local binary pattern, pyramid local binary pattern,
and local derivative radial pattern (LDRP). The dimensional-
ity of the conventional patterns is increased by concatenating

the LBP histograms derived from each channel. MaLBP and
MdLBP were introduced in [9] to obtain the LBP’s cross-
channel co-occurrence details. However, the traditional LBP
dimensionality issue is reduced by using the multi-channel
decoded-based LBP fusion scheme. Mamta et al. [10] pre-
sented a variation of the local binary pattern that reduced
the execution time by considering only four local neighbors
information. In [11], LBP is used as a texture descriptor
to extract surface textures of multi-object images in face
recognition applications; since the majority of the approaches
employed a fixed scale LBP that was not effective to extract
the structural features. Manish et al. [12] used the LBP to
extract texture features and decomposed the LBP image
into multiple scales through DWT. Some of the multi-scale
LBP methods consider only boundary pixels while ignoring
the inner block information. Prashant et al. [13] introduced
multi-scale LBP, which efficiently extracts dominant features
at multiple blocks of 3×3, 5×5, and 7×7 windows. In [14],
the conventional LBP is extended to the spatial pyramid
domain to improve computational efficiency. In [15], LDRP
used multi-level encoding in various directions to overcome
the problem of information loss of existing local patterns.
Cevik et al. [49] introduced a directional local gradient-
based descriptor (DLGBD) for face recognition. DLGBD
calculated the relationship of the reference pixel with its
neighboring pixels based on ternary encoding (9 states) by
considering both predecessor and successor pixels. More-
over, this approach examined the relationship of neighboring
pixels with their adjacent neighbors by utilizing the mean
information of the successor and predecessor adjacent neigh-
bors. However, this descriptor is unable to extract spatial
structure information in various directions. To overcome the
problem of missing information, this descriptor can be further
improved by considering texture orientation, texture mag-
nitude, and edge orientation-based information in different
directions.

As we experience an extensive range of colors and tex-
tures in natural images, feature descriptors must effectively
capture such rich information of colors and textures. In [16],
color histogram features, texture discrete wavelet transform
features, and edge histogram (EH) features were combined to
create a new CBIR system. Li et al. [17] introduced neighbor
intensity co-occurrences local ternary pattern (NI-CLTP) for
image representation. The Gabor filters were integrated with
NI-CLTP to extract the texture details at different scales and
directions. By integrating the different cross channel com-
binations of HSV, Megha et al. [18] implemented a multi-
channel local ternary pattern to capture texture-chromatic
characteristics. In [19], color features were used in combi-
nation with a local directional pattern for CBIR. Feature nor-
malization was performed before integrating the histograms
of color and LDP features. In [50], Rehan et al. fused the color
and texture features where CM was employed to extract the
color features, whereas Gabor wavelet and discrete wavelet
transforms were used to extract the texture data. Moreover,
color and edge directivity descriptor (CEDD) was employed
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to improve the feature representation. To overcome the chal-
lenge of extracting features from the most visible objects,
Rehan et al. [51] presented a CBIR method to extract the
texture and color features of the most salient objects. Texture
features were extracted through bandelet transform and fused
with the color histogram features in the HSV domain to
improve the feature space capability. SVMwas used to deter-
mine the semantic association.

In CBIR, several descriptors have been introduced to
combine the benefits of the local visual contents of the
images. To integrate color spatial structure information of
an image with local visual contents, low-level local features
were used with the color features in [20]. Low-level salient
visual features were extracted using the accelerated segment
test feature descriptor. Then color features were extracted
and segmented using the L*a*b* color space model. The
fusion of these features performed well compared to the
existing CBIR methods. Vibhav et al. [21] extracted color
and shape features, using the color moments (CM) and invari-
ant moments (IM) respectively. The feature fusion of color
and shape gives significant precision in comparison to the
previous CBIR frameworks. Prashant et al. [22] used a local
ternary wavelet gradient pattern to capture shape and texture
characteristics in images at various resolutions. Since the
descriptor computes the features at different image scales,
this feature extraction process makes it computationally more
expensive. The existing descriptors such as structure ele-
ment histogram (SEH) and color difference histogram (CDH)
integrated the texture with color features and have certain
limitations. SEH was not rotation invariant, and thus did not
employ the idea of symmetry with the center pixel, whereas
CDH’s scale and rotation invariance properties are affected
by the usage of strongly correlated adjacent data. The rotation
and scale-invariant hybrid descriptor [52] (RSHD) was intro-
duced to address the issues associated with both descriptors
by incorporating the rotation invariant structure elements.
RSHD fused the texture and color features. To accurately
describe an image, the fusion of all local visual features
has both advantages and drawbacks. However, the aforemen-
tioned integrated low-level local visual features are greatly
improved in terms of high-level semantic meanings, but are
computationally complex in terms of retrieval time due to the
large dimension of the feature vector.

Color-based descriptors are unable to achieve reasonable
accuracy for images, where multiple objects have similar
colors [20]. Shape features often fail to extract more infor-
mation in the presence of noise, occultation, and non-rigid
deformations. As a result, images captured from a single
point of view are sensitive to it. The content of many real-
world objects, such as clouds, trees, valley, food, and fabric,
can be better described using texture. As a result, texture
plays an important role in describing high-level semantics
for feature extraction. Many texture-based descriptors have
been introduced in the CBIR domain. Bhavana et al. [23]
presented a computationally efficient descriptor called the

dual cross pattern. A local DCP sampling was done in eight
directions to extract each pixel information twice. DCP has
improved the grouping approach by joint Shannon entropy to
reduce information loss. Ranjit et al. [24] presented a fused
feature descriptor by integrating the threshold local binary
AND pattern and local adjacent neighborhood average dif-
ference pattern for CBIR. This method provides higher accu-
racy over other local features-based methods (e.g. SURF,
SIFT, LBP); however, this also comes with increased features
computation cost. Satya et al. [25] implemented a local mean
differential excitation pattern (LMDeP) to extract features
from the images of noisy texture. The LMDeP descriptor
encoded the correlation between center pixels and their neigh-
bors through differential excitation, rather than a gray level
difference. The contourlet tetra pattern was introduced in [26]
for efficient image retrieval. This descriptor employed the
contourlet transform to determine the direction instead of
using spatial first-order derivatives to evaluate the direc-
tion. The contourlet transform used the laplacian pyramid
and directional filter bank to decompose an image in multi-
directional scales. Faiq et al. [27] introduced an amended
LTP version called the extended local ternary pattern for
CBIR. This descriptor presented an automatic threshold cal-
culation mechanism for ternary code generation as compared
to a static threshold used in LTP. Existing patterns such as
CSLBP and CSLTP encoded a restricted number of pixels,
which makes them unable to work effectively in an uncon-
strained environment. The feature lengths of these descrip-
tors, on the other hand, are a main source of concern. In [53],
the center symmetric quadruple pattern (CSQP) has been
introduced to address these drawbacks by encoding the pixels
in a large neighborhood in diagonally opposite quadruple
space. CSQP generated an 8-bit pattern from 16 pixels in
the immediate vicinity. CSQP has a clear advantage in terms
of computational complexity. The primary issue associated
with the existing intensity order-based descriptors such as
local intensity order pattern (LIOP) and soft ordinal spatial
intensity distribution (soft OSID) is to increase the size of
the descriptor with a little increase in the neighboring pixels.
Shiv et al. [54] introduced intensity order-based interleaved
local descriptor (IOLD), which is based on the division of
N neighbors into k interleaved sets has proven to substan-
tially achieve low time complexity while maintaining rea-
sonable performance under noisy conditions. The internal
spatial structural knowledge of an image is represented by
texture features, which are more descriptive of high-level
image semantic observations than color features. However,
existing texture descriptors have certain limitations such as
they are sensitive to noise, are less efficient, fail to capture
finer variations and have smooth image regions that must be
addressed to achieve better retrieval performance [24].

All the above-mentioned methods employed the tradi-
tional similarity matching-based approach (Euclidian dis-
tance, Manhattan distance, L2, and Canberra distance) to
perform the retrieval task. Existing methods also employed
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the learning-based approaches for CBIR. Gajanan et al. [28]
presented a directional magnitude local triplet pattern to
effectively extract both the orientation and structural micro-
scopic details. This feature descriptor improves the retrieval
performance using similarity distance measure as well as
the Artificial neural networks learning approach. In [29],
a feature descriptor consisting of SIFT, LBP, LDP, LTP, and
HOG was proposed to better extract the patch-level infor-
mation from the images. The performance of the patch-
based descriptor was also evaluated with classifiers, which
include Support vector machine (SVM) and Random forest.
Chandani et al. [30] integrated the SIFT and Gabor descrip-
tors. The method applied both the learning as well as
non-learning-based approaches. Experimental results indi-
cate better performance when these features were used with
the SVM. Dakshata et al. [31] employed the region-based
descriptor based on Zernike-’s and Hu’s seven-moments with
the SVM classifier for CBIR. According to the experimental
results, Hu’s seven moments seem to do best in almost all
classes of the CT database in terms of accuracy. In [32],
EH features were used in combination with color auto-
correlogram, color moment, and Gabor wavelet transforms
to train the SVM for classification.

Deep learning-based convolutional neural networks
(CNNs) have recently succeeded impressively in computer
vision and image processing applications. Different types of
deep neural networks have been suggested for image retrieval
and classification tasks, such as compact root bilinear- con-
volutional neural network (CRB-CNN) [36], deep belief
network (DBN) [37] method, ensembles CNN [38], Alex
Net CNN [39], 1D grey-level co-occurrence matrix (GLCM)-
CNN [41], deep belief network (DBN) and stacked autoen-
coder (SAID). Ahmad et. al [36] presented a bilinear
CNN-based architecture that utilizes a pre-trained CNN
network (VGG-m or VGG-16) to maintain high discrim-
inative image representations at a compact scale. This
significantly improves the retrieval efficiency in terms of
extraction and search time. Furthermore, various distance
measures (Euclidean, Manhattan, and City block) indicate
the highest retrieval accuracy. In [37], the DBN method
was introduced for learning effective image representations.
Hamreras et al. [38] introduced ensembles of CNNs for the
CBIR task. In comparison to individual CNNs, it was demon-
strated in [38] that using CNN ensembles is very effective
in producing a strong image representation. Shah et al. [39]
suggested a CNN-based deep learning algorithm for fea-
ture extraction to improve the CBIR retrieval performance.
Benco et al. [41] presented 1DGLCMwith 25 layers of CNN.
In [42], the image retrieval problem was examined using two
deep learning approaches: DBN & SAID.

The common issues associated with the above approaches
further inspired the researchers to progressively investigate
CBIR and design more robust feature descriptors to improve
the retrieval accuracy. In CBIR, texture-based descriptors
have been actively explored over the years to effectively

capture the discriminative information from the images.
The proposed DMLHP texture descriptor is an effort in
this direction to capture maximum discriminative infor-
mation from the images via orientation and magnitude
patterns.

III. PROPOSED METHODOLOGY
This section provides a detailed discussion of the proposed
CBIR method that presents a novel directional magnitude
local hexadecimal pattern descriptor. The flow of the pro-
posed method is illustrated in Fig. 3. The proposed method
initially applies image resizing as a prepossessing step to pre-
pare the images for further processing. Afterward, we employ
the novel DMLHP descriptor to extract the features of each
image in the training and testing sets. In the next step, his-
tograms of the texture orientation and magnitude patterns are
computed and fused together to generate the feature vector.
Next, we train the classifier using this feature vector. After
training the classifier, we apply the same procedure to the
selected query image. Finally, we compute the similarity
between the feature values of the query image and the images
store in the repository.

A. DIRECTIONAL MAGNITUDE LOCAL HEXADECIMAL
PATTERN FEATURE DESCRIPTOR
Over the last few years, we have observed various local
patterns such as LBP, MLBP, LDP, and ELTP, designed for
CBIR. Existing local texture patterns have certain limitations
such as sensitivity to noise and lighting conditions, failure
to capture finer variations, multiple objects, and complex
background problems. All these limitations motivated us to
propose a novel directional magnitude local hexadecimal
pattern (DMLHP) descriptor. The framework of the proposed
feature descriptor, based on the texture orientation and tex-
ture magnitude, is shown in Fig. 4. The TOBP effectively
extracts more discriminative information from the images,
as our pattern computes 16 aspects of directional information
based on the horizontal, diagonal, and vertical derivatives.
Furthermore, we compute the TMBP using horizontal, diag-
onal, and vertical derivatives that capture more detailed edge
information from the images. Moreover, we employed the
proposed descriptor with learning methods to enhance the
classification performance of CBIR.

For a given image I (x, y), we compute the 1st order
derivatives at the grayscale value of the surrounding pix-
els along 0◦, 45◦, 90◦, and 135◦ directions defined as
I1α (gs)|α=0◦,45◦,90◦,135◦ . The 1st order derivative at the
grayscale value of the center pixel along 0◦, 45◦, 90◦, and
135◦ directions are computed as:

I10◦ (gc) = I (gh)− I (gc) (1)

I145◦ (gc) = I (gd )− I (gc) (2)

I190◦ (gc) = I (gv)− I (gc) (3)

I1135◦ (gc) = I (gdb)− I (gc) (4)
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FIGURE 3. Block diagram of the proposed work with similarity-based and learning-based approaches.

where gh, gd , gv, and gdb denote the horizontal, diagonal,
vertical, and diagonal-back neighborhoods direction of the
center pixel, respectively. Based on the 1st order derivative
values of center pixel, the direction of the center pixel is
computed using (5), as shown at the bottom of the page.

These are 16 possible directional values of the center
pixel, and the image is transformed into 16 distinct values
i.e., directions. Let I1dir .(gs)|s=1...,8 denote the direction of
3 × 3 neighborhoods such as eight surrounding neighbors,
for which directions can be calculated in the same manner.

I1dir .(gc) =



1, I10◦ (gc) ≥ 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) ≥ 0

2, I10◦ (gc) ≥ 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) < 0

3, I10◦ (gc) ≥ 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) < 0 and I1135◦ (gc) ≥ 0

4, I10◦ (gc) ≥ 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) < 0 and I1135◦ (gc) < 0

5, I10◦ (gc) ≥ 0 and I145◦ (gc) < 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) ≥ 0

6, I10◦ (gc) ≥ 0 and I145◦ (gc) < 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) < 0

7, I10◦ (gc) ≥ 0 and I145◦ (gc) < 0 and I190◦ (gc) < 0 and I1135◦ (gc) ≥ 0

8, I10◦ (gc) ≥ 0 and I145◦ (gc) < 0 and I190◦ (gc) < 0 and I1135◦ (gc) < 0

9, I10◦ (gc) < 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) ≥ 0

10, I10◦ (gc) < 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) < 0

11, I10◦ (gc) < 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) < 0 and I1135◦ (gc) ≥ 0

12, I10◦ (gc) < 0 and I145◦ (gc) ≥ 0 and I190◦ (gc) < 0 and I1135◦ (gc) < 0

13, I10◦ (gc) < 0 and I145◦ (gc) < 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) ≥ 0

14, I10◦ (gc) < 0 and I145◦ (gc) < 0 and I190◦ (gc) ≥ 0 and I1135◦ (gc) < 0

15, I10◦ (gc) < 0 and I145◦ (gc) < 0 and I190◦ (gc) < 0 and I1135◦ (gc) ≥ 0

16, I10◦ (gc) < 0 and I145◦ (gc) < 0 and I190◦ (gc) < 0 and I1135◦ (gc) < 0

(5)
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FIGURE 4. Framework of the proposed feature descriptor based on the texture orientation and texture magnitude.

The 2nd order derivative of the center pixel is defined as:

TOBP2 = {T1(I1dir .(gc), I
1
dir .(g1)),

T1(I1dir .(gc), I
1
dir .(g2)),

. . . .,T1(I1dir .(gc), I
1
dir .(gs))}|s=8 (6)

(I1dir .(gc), I
1
dir .(gs))

=

{
0, (I1dir .(gc) = I1dir .(gs))
I1dir .(gs), otherwise

(7)

Finally, we obtained an 8-bit texture orientation-based pat-
tern for each pixel by comparing the (n − 1)th order deriva-
tives of center pixel direction with all the eight surrounding
neighbors’ direction, using (7) and (7). Then the orientation
pattern is separated into 15 binary patterns. Similarly, for the
nth order texture orientation-based pattern, the (n−1)th order
derivatives in horizontal, diagonal, vertical, and diagonal-
back directions, denoted as In−1α (gs)|α=0◦,45◦,90◦,135◦ , is com-
puted as:

TOBPn = {T1(I
n−1
dir . (gc), I

n−1
dir . (g1)),

T1(I
n−1
dir . (gc), I

n−1
dir . (g2)),

. . . .,T1(I
n−1
dir . (gc), I

n−1
dir . (gs))}|s=8 (8)

An example of the TOBP calculation procedure for a center
pixel highlighted with yellow color and surrounding neigh-
bors highlighted with red color are presented in Fig. 5. The
direction of the center pixel and each surrounding neighbor
are calculated using (5). We have discussed in Fig. 5 that
if the direction of the center pixel is the same as that of

surrounding neighbors, assign 0 to the corresponding bit of
TOBP according to (7), and if the direction of the center
pixel is different from that of the surrounding neighbors,
retain the corresponding bit of TOBPwith the direction of the
surrounding neighbors using (7). In Fig. 6, for center pixel 5,
let the direction of the center pixel I1dir .(gc) obtained using (5)
be 14. The direction of the first neighboring pixel is 15, which
is different than the direction of the center pixel, so the first bit
of TOBP is retained with the same neighboring pixel value,
which is 15 based on (7). Similarly, for the second neighbor-
hood pixel 3, the calculated direction is 11, which is again
different than the center pixel direction. Hence, the second
bit of TOBP is coded with 11. For the third neighborhood
pixel 6, the direction is 14, which is the same as the direction
of the center pixel; thus, the pattern is coded with 0 according
to (7). Furthermore, the remaining neighborhood directions
are different from that of the center pixel, and thus, the other
bits of TOBP are coded with 2 3 8 16 and 5 respectively. The
resultant 8-bit TOBP is 15 11 0 2 3 8 16 5. Afterward, an
8-valued orientation code for each direction is separated into
15 binary patterns based on the direction of the central pixel.

In the illustrated example shown in Fig. 6, the direction
of the central pixel I1dir .(gc) obtained using (5) is 14, then
2nd order TOBP is divided into 15 binary patterns, and calcu-
lated as follows:

TOBP2|direction=1,2,3,4,5,6,7,8,9,10,11,12,13,15,16

=

s∑
s=1

2(s−1) × T2(TOBP2(gc))|direction=α (9)
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FIGURE 5. Calculation of texture orientation-based pattern values for the center pixel direction ‘14’ based on the direction of surrounding neighbors.
The yellow line represents the center pixel direction, while the red line represents the direction of surrounding neighbors.

where function T2 is defined as:

T2(TOBP2(gc))|direction=α =
{
1, TOBP2(gc) = α
0, otherwise

(10)

and α ε {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16}.
For the direction of center pixel, which is 14 in our case,

the formation of binary patterns for the other 15 directions,
i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, and 16, can be
seen in Fig. 7. As our 8-bit TOBP value is 15 11 0 2 3 8 16 5,
the binary patterns are generated based on this TOBP value.
The first binary pattern is obtained by retaining 1, where the
bit of TOBP value is 1 and 0 is placed for the remaining bits.
As TOBP do not contain any value of 1, the binary pattern
is 0 0 0 0 0 0 0 0. The second binary pattern 0 0 0 1 0 0
0 0 is obtained by keeping 1 where the TOBP value is 2 and
the remaining bits are coded with 0. Similarly, the remaining
thirteen binary patterns 0 0 0 0 1 0 0 0, 0 0 0 0 0 0 0 0, 0 0 0
0 0 0 0 1, 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0, 0 0 0 0 0 1 0 0, 0 0
0 0 0 0 0 0, 0 0 0 0 0 0 0 0, 0 1 0 0 0 0 0 0, 0 0 0 0 0 0 0 0, 0
0 0 0 0 0 0 0, 1 0 0 0 0 0 0 0, and 0 0 0 0 0 0 1 0 are formed

separately for texture orientation-based pattern values 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 15, and 16, respectively. In the
same way, the other 15 orientation patterns are generated for
the remaining directions of the center pixels, that is, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 and 16. Based on the 8-bit
orientation code, each direction is transformed into 15 binary
patterns as per (9). In this way, we calculated a total of
240 (16× 15) binary patterns.

Although for every binary pattern, the sign information
is more important, the magnitude information also plays
a significant role, which is ignored in the binary pattern.
However, the magnitude information effectively captures the
edge and gradient structure over other texture descriptors
such as LBP. The idea of LBP guided us to introduce a novel
magnitude pattern for image retrieval. Since compact texture
information lies along the horizontal, diagonal, and vertical
directions, the main aim of the proposed pattern is to examine
the relationship of neighboring pixels with their adjacent
neighbors by utilizing the magnitude information in hori-
zontal, diagonal, vertical, and diagonal-back directions. The
241st TMBP is computed from the magnitude of horizontal,
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FIGURE 6. Example showing the calculation of texture orientation-based patterns and the texture Magnitude-based Pattern. For the TOBP,
the bit is coded with the direction of surrounding neighbors when the center pixel and surrounding neighbors having different directions,
or else ‘0’. The red box represents the center pixel ‘5’ with its adjacent neighbors 4, 3, 6, 4 in 0◦, 45◦, 90◦, and 135◦ directions, respectively,
while the blue box represents the eight surrounding neighbors, i.e., 4, 3, 6, 4, 5, 6, 7, 2, of the center pixel with their adjacent neighbors in 0◦,
45◦, 90◦, and 135◦ directions. To compute the TMBP, a value of 1 is assigned when the magnitude of the surrounding neighborhood is greater
than the center pixel; otherwise, 0 is assigned.

diagonal, vertical, and diagonal-back 1st order derivatives
using the (12).

M1
I (gS )

=

√
(I10◦ (gs))

2 + (I145◦ (gs))
2 + (I190◦ (gs))

2 + (I1135◦ (gs))
2

(11)

TMBP =
s∑

s=1

2(s−1) × T3(M1
I (gS )−M

1
I (gc))|s=8 (12)

T3(x) =
{
1, x >= 0
0, otherwise

(13)

Here T3 is a function, where x is calculated based on the
difference between the magnitude of surrounding neighbors
and the magnitude of a center pixel as can be seen in (12), that
is, x = M1

I (gS )−M
1
I (gc). The magnitude of the center pixel

M1
I (gc) is 2.6, which is calculated by using (12). Similarly,

the magnitudes of the surrounding neighbors M1
I (gS ) are

calculated. For the 1st neighborhood pixel 4, the magnitude
is 5.4, which is greater than the magnitude of the center
pixel. Hence, the first bit of TMBP is coded with 1. More-
over, the magnitude of the second neighbor is 5.8, which is
again greater than the magnitude of the center pixel. Hence,
we assign the value of 1 to the corresponding bit of TMBP.
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FIGURE 7. Binary pattern generation with blue rows represent the non-occurring pattern values (1, 4, 6, 7, 9, 10, 12, 13) while green rows represent the
occurring pattern values (2, 3, 5, 8, 11, 15, 16).

For the third and fourth neighbors, TMBP is codedwith 1. For
the fifth neighbor 5, the magnitude is 1.4, which is less than
the magnitude of the center pixel. So, in this case, the mag-
nitude pattern is coded with 0. Based on the neighboring
magnitude, other bits are coded with 1 1 1. The resultant
TMBP is 1 1 1 1 0 1 1 1.

After extracting the local image pattern LIP (TOBP and
241st TMBP) of each pixel (j, k), we obtain the histogram
of TOBP and TMBP, using (14). The final feature descriptor
is formed by concatenating the two histograms of our TOBP
and TMBP patterns, which are Hist TOBP and Hist TMBP as
shown in (16).

Hs(l) =
1

M × N

M∑
j=1

N∑
k=1

T4(LIP(j, k), l) (14)

where lε [0, s(s− 1)+ 2] is the maximum LIP pattern value,
M × N represents the size of input image, x = LIP(j, k),
y = l, and function T4 is defined as:

T4(x, y) =
{
1, x = y
0, otherwise

(15)

HistDMLHP =
[
HistTOBP ‖ HistTMBP

]
(16)

The algorithm of the proposed work is described below:

B. IMAGE CLASSIFICATION
Ensemble classifiers have demonstrated their effective-
ness for various classification tasks in computer vision.

We employed the proposed descriptor to train the Ensem-
ble subspace discriminant (ESD) for classification. Later,
we performed the testing on the unseen images of the repos-
itory. Next, we used the proposed descriptor to extract the
features of the query image selected by the user, and the
trained classifier determined the category of the query image.
We employed the ESD classifier for the proposed method,
as we obtained the best results on ESD when used with our
novel features. Another benefit of subspace discriminant-
based ensemble methods is their ability to handle large image
repositories because they are fast, accurate and easy to inter-
pret. In our case, ESD took a reasonable computational time
as it has a prediction speed of 40 observations per second.

The range of evaluation parameters for the Ensemble sub-
space discriminant classifier in our work is as follows: the
number of learners – range [10,500], learning rate – range
[0.001,1], and the subspace dimension – range [1, 319]. In our
experiment, we explored different hyper-parameter values to
enhance the classification performance of different classi-
fiers, namely ESD, SVM, KNN, and XGBoost. We trained
these classifiers on different hyper-parameters (mentioned
below) and reported the results on those parameters, where
we achieved the best results. We tuned the following param-
eters for ESD and set the learning rate = 0.1, the number
of learners = 30, and the subspace dimension = 160, as we
achieved optimal results in these settings. For SVM, we set
the kernel function = Gaussian and kernel scale = 18 with
one vs all multiclass method, whereas for KNN, we set the
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Algorithm 1 Proposed Algorithm
Input: Image Repository C= I1, I2, . . . , In, Query

Image X
Output: Classification Output, Retrieved Images S=

S1, S2, S3, . . . , Sn
1 prepossessing
2 for TOBP do
3 I1α (gs)|α=0◦,45◦,90◦,135◦ ; // First-order

derivative
4 I1dir .(gs)|s=1,...,8 ; // Pixels orientation
5 if Direction 1: then
6 [TOBP_1] ; // 8-bit texture

orientation-based pattern
7 [TOBP_1_k] , k = {2, 3, 4, ..16} ;

// Separate into 15 binary
patterns

8 end
9 else if Direction 2: then
10 [TOBP_2] ; // 8-bit texture

orientation-based pattern
11 [TOBP_2_k] , k = {1, 3, 4, ..16} ;

// Separate into 15 binary
patterns

12 end
13 else if Direction 16: then
14 [TOBP_16] ; // 8-bit texture

orientation-based pattern
15 [TOBP_16_k] , k = {1, 2, 3, ..15} ;

// Separate into 15 binary
patterns

16 end
17 HistTOBP ; // Histograms of

orientation patterns
18 end
19 for TMBP do
20 M1

I (gs)|s=1,...,8 ; // Pixels magnitude
21 [TMBP] ; // 8-bit texture

magnitude-based pattern
22 HistTMBP ; // Histograms of magnitude

patterns
23 end
24 HistDMLHP =

[
HistTOBP ‖ HistTMBP

]
;

// Histogram concatenation
25 Xi ε Rn ; // Construct feature space
26 D(Q, IR) ; // Query image comparison
27 {S1, S2, . . . ., Sn} ; // Retrieval output
28 Image classification methods
29 Classification output

method = weighted KNN, number of neighbors = 1, and
distance metric= Euclidean. With regard to XGBoost, we set
the maximum depth = 30, maximum round = 500, and
evaluation metric = mlogloss.

C. IMAGE MATCHING
In case of the CBIR approach, our goal is to retrieve the
top k most similar images against a query image based on
the distance. We employed the weighted Manhattan distance
(Weighted L1 norm) for this purpose due to its ability to yield
robust results. Moreover, the weighted Manhattan distance
outperforms other similarity measures, such as Euclidean,
Minkowski, and chi-square, on higher-dimensional data [40].
Thus, the image matching function can be expressed as

DM (p, q) = min
n∑
i=1

∣∣∣∣ pi − qi
1+ pi + qi

∣∣∣∣ (17)

Here pi and qi represent the feature vectors of the images
present in the repository and target image, respectively,
whereas DM (p, q) is the image retrieval function of CBIR
that retrieves the most visually similar images based on most
to least similarity.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section provides a discussion on different experiments
conducted to evaluate the performance of our method.
We evaluated our method on three standard image reposi-
tories, that is, AT&T [33], Brodatz Texture (BT) [34], and
MIT Vistex [35]. All of these comparative methods such
as LNIP [43], LTriDP [44], LNDP [45], LDGP [46], LEP-
SEG [47], and CSLBP [48] have also used AT&T, Brodatz
Texture, and MIT Vistex open datasets with the same exper-
imental setup used for our proposed approach. The details
of these image repositories and evaluation metrics are also
provided in this section.

A. PERFORMANCE EVALUATION PARAMETERS
The performance of the proposed descriptor is evalu-
ated using the Average retrieval precision (ARP), Average
retrieval recall (ARR), Average retrieval specificity (ARS),
andAverage retrieval accuracy (ARA). Precision is defined as
the ratio of the total number of relevant images retrieved to the
total number of images retrieved. We computed the precision
as follows:

Pi =
IR
IT

(18)

where IR and IT represent the number of relevant images
retrieved and the total number of retrieved images, respec-
tively in response to the inquiry image represented by i.
The recall is another evaluation parameter that denotes the

ratio of the total number of relevant images retrieved to the
total number of relevant images in the repository.

Ri =
IR
IC

(19)

Here, IR is the number of relevant images retrieved,
and IC is the total number of images in each cate-
gory of the repository in response to the inquiry image
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TABLE 1. Details of image repositories.

FIGURE 8. Image samples from different image repositories.

represented by i.

Ck =
1
IC

IC∑
i=1

Pi (20)

ARP =
1
TC

TC∑
k=1

Ck (21)

Here, Ck represents the precision of the k th category of
the image repository, and TC represents the total number of
categories present in the image repository. Similarly, ARR is

calculated by using (23).

Gk =
1
IC

IC∑
i=1

Ri (22)

ARR =
1
TC

TC∑
k=1

Gk (23)

In (22) and (23), Gk represents the recall of k th category of
the image repository.
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TABLE 2. Average retrieval rate with recent CBIR techniques using NT values of 10, 25, 16 on AT&T, Brodatz Texture, and MIT Vistex Image repositories,
respectively.

FIGURE 9. Average retrieval precision of DMLHP on different values of NT
with state-of-the-art methods on the AT&T image repository.

Specificity is the ratio of a total number of correctly labeled
negative images to the total number of negative images, and
the specificity is computed by the following equations:

SK =
ITN

ITN + IFP
(24)

ARS =
1
TC

TC∑
k=1

SK (25)

Here, Sk represents the specificity of the k th category of the
image repository, Tc is the total number of categories present
in the image repository, ITN is the number of non-matched
images that are correctly identified, and IFP is the number of
non-matched images that are not correctly identified.

Accuracy is another evaluation parameter that is
calculated as

AK =
ITP + ITN

ITP + ITN + IFP + IFN
(26)

ARA =
1
TC

TC∑
k=1

AK (27)

FIGURE 10. Average retrieval recall of DMLHP on different values of NT
with state-of-the-art methods on the AT&T image repository.

Here, AK represents the accuracy of the k th category of the
image repository, ITP is the number of matched images that
are correctly identified, and IFN is the number of matched
images that are not correctly identified.

B. DESCRIPTION OF THE IMAGE REPOSITORIES
To evaluate the performance of any CBIR method, it must be
tested on a diverse and challenging image repository. For this
purpose, we selected three standard image repositories having
a wide range of image themes. Moreover, these repositories
are diverse in terms of pose variations, noise, occlusions,
and a variety of natural and artificial regular textures. Most
commonly-used natural scene and rich textural image repos-
itories such as MIT Vistex, BT, and AT&T face image repos-
itories are used for image retrieval tasks. Every experiment
is repeated multiple times and average retrieval precision,
recall, specificity, and accuracy values are reported. We split
each image repository into an 80-20 training-testing ratio
for experimentation. The division of image repositories is
shown in Table 1. Some samples of each category of image
repository are shown in Fig. 8.
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FIGURE 11. Sample image is selected, and the top 10 relevant images are retrieved from the AT&T image repository.

C. PERFORMANCE ANALYSIS ON THE AT&T
IMAGE REPOSITORY
The AT&T image repository consists of 400 images parti-
tioned into 40 different categories, and each category consists
of 10 images having a resolution of 92 × 112. Some sample
images from 40 categories of the AT&T image repository are
depicted in Fig. 8(a). We performed two different experimen-
tal analysis, that is, similarity matching-based approach and
the learning-based approach.

For the similarity matching-based approach, we randomly
select an inquiry image from each category of the image
repository to measure the retrieval accuracy of the proposed
descriptor. The proposed texture features (TOBP + TMBP)
are extracted for a given inquiry image and compared with
the feature values of the images stored in the image repos-
itory based on the similarity index, i.e., weighted Manhat-
tan distance. For this image repository, the number of top
matches (NT) is retrieved in a group of 1, 2, 3, . . . , 10 images.
The proposed descriptor gives a retrieval accuracy of 66%
ARR, using weighted Manhattan distance. For the learning-
based approach, the set of 320 random images from theAT&T
image repository is selected for training, and the remaining
80 images are used for testing. To measure the robustness
of the proposed descriptor, we evaluated the CBIR results,
using our features with the ESD classifier. We obtained a
high average precision rate of 95%. These results signify the
effectiveness of this learning-based approach for CBIR.

1) PERFORMANCE COMPARISON AGAINST DIFFERENT
STATE-OF-THE-ART DESCRIPTORS
To show the robustness of the proposed descriptor, a com-
parative analysis of the proposed descriptor against existing
state-of-the-art descriptors is provided in terms of ARP and
ARR in Figs. 9 and 10, respectively. From these results on the
AT&T image repository, we can conclude that the ARP and
ARR are inversely related by varying the value of NT. As the
value of NT is increased, the ARR is also increased because
of the high true-positive rate while the ARP is decreased due
to the high false-positive rate. However, the proposed texture
descriptor gives an ARR of 66% on a maximum value of NT,
that is, 10, which is outstanding as compared to recent CBIR
texture-based descriptors. TheARR indicates that ourmethod
yields better image retrieval performance over LNIP by 9%,
LTriDP by 12%, LNDP by 13%, LDGP by 21%, LEPSEG by
30%, and CSLBP by 23% as shown in Table 2.
We also tested the robustness of the proposed method

for the face recognition task. For this purpose, we designed
an experiment to compare the performance of the proposed
method against the existing state-of-the-art DLGBD descrip-
tor [49] for facial recognition on the face image repository,
AT&T, which is diverse in terms of variations in pose, face
angles, gender, and race. Moreover, this image repository
also includes the face images of people with and without
glasses. For this experiment, we used 80% of the images from
the AT&T image repository for training and the remaining
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TABLE 3. Comparison of the proposed descriptor with the similarity approach and classification approach.

FIGURE 12. Average precision performance assessment based on DMLHP
on different values of NT with other state-of-the-art methods on the
Brodatz Texture image repository.

20% of the images for testing. For training purpose, we used
8 images from each category (i.e., 40 × 8 = 320 images
in total), whereas for testing, we used 2 images from each
category (i.e., 40× 2= 80 images in total). For classification,
we employed the ESD classifier and tuned the following
parameters: learning rate, number of learners, and subspace
dimension. We selected the learning rate of 0.1, number of
learners of 30, and the subspace dimension of 160 after exten-
sive experimentation as we obtained the best results on these
parameter settings. By using this experimentation protocol,
we evaluated the performance of the proposed DMLHP and
the DLGBDmethod. The proposed method achieves the clas-
sification accuracy of 95% while the DLGBD method [49]
obtains an accuracy of 82.5%. The results of this experiment
reveal that the proposed method provides superior detection
performance by achieving 12.5% higher accuracy over the
DLGBD method. We can conclude from this experiment that
the proposed DMLHP descriptor is also capable of effectively
representing the facial images to achieve remarkable perfor-
mance for facial recognition.

2) PERFORMANCE COMPARISON AGAINST
DIFFERENT CLASSIFIERS
To evaluate the effectiveness of the ESD classifier with the
proposed descriptor for CBIR, we compared the performance
of ESD against conventional classifiers, including SVM,

FIGURE 13. Average recall performance assessment based on DMLHP on
different values of NT with other state-of-the-art methods on the Brodatz
Texture image repository.

k-nearest neighbors (KNN), and Extreme gradient boosting
(XGBoost). The results of this comparative analysis in terms
of average precision, average recall, average specificity, and
average accuracy rate are provided in Table 3. From the
results shown in Table 3, we can conclude that the ESD
classifier outperforms all the classifiers and achieved the
highest average precision value of 95%, the highest average
recall value of 96%, the highest average specificity value
of 99%, and the highest average accuracy value of 95%. SVM
performs second best by achieving an average precision,
recall, specificity, and accuracy rate of 86%, 87%, 99%, and
86%, respectively, while KNN achieves an average precision,
recall, specificity, and accuracy rate of 85%, 86%, 99%, and
85%, respectively. XGBoost performs the worst and achieved
81% average precision, 79% average recall, 99% average
specificity, and 81% average accuracy rate. A sample process
is shown in Fig. 11, where the query image is taken from the
11th category, and all the retrieved images are relevant to that
query image.

D. PERFORMANCE ANALYSIS ON THE BRODATZ
TEXTURE IMAGE REPOSITORY
The Brodatz texture image repository is a combination
of 112 grayscale textures with a resolution of 640 × 640.
Each category (D_1, . . . . . . ,D_112) is divided into
25 non-overlapping sub-images. Thus, the BT image
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FIGURE 14. Sample images are selected from D_16 and D_21 category, and the top 10 relevant images are retrieved from the Brodatz Texture image
repository.
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FIGURE 15. Average retrieval precision with a varying number of NT for
the MIT Vistex image repository.

repository contains 2800 images in the form of 112 textural
categories and each category contains 25 images with a
resolution of 128 × 128. Few sample images from the BT
image repository are depicted in Fig. 8(b).

For the similarity-based approach, the retrieval perfor-
mance of our descriptor is evaluated by randomly select-
ing images from each category. Therefore, 25 images are
retrieved initially followed by increasing the retrieved images
in a group of 5. Thus, an overall 70 images are retrieved in
this process. Hence, the proposed descriptor achieves high
retrieval accuracy of 83% using weighted Manhattan dis-
tance. As a learning-based approach, a set of 2240 images
are used to train the classifier, and a test set of 560 images
are used for the evaluation of the proposed descriptor using
the ESD classifier. We obtained the average precision rate
of 92% that indicates the superior performance of the pro-
posed descriptor for classification.

1) PERFORMANCE COMPARISON AGAINST DIFFERENT
STATE-OF-THE-ART DESCRIPTORS

A performance comparison of the proposed descriptor based
on texture orientation and magnitude in terms of ARP and
ARR with other state-of-the-art methods on BT image repos-
itory is shown in Figs. 12 and 13, respectively. When com-
paring our proposed descriptor with the recent texture-based
descriptors, we can see that the retrieval accuracy of the pro-
posed texture descriptor is significantly higher than those of
LNIP, LTriDP, LNDP, LDGP, LEPSEG, and CSLBP descrip-
tors by up to 4%, 7%, 8%, 19%, 20%, and 30%, respectively,
as shown in Table 2. These results signify the effectiveness of
our descriptor over comparative descriptors for CBIR on the
Brodatz Texture image repository.

FIGURE 16. Average retrieval recall with a varying number of NT for the
MIT Vistex image repository.

2) PERFORMANCE COMPARISON AGAINST
DIFFERENT CLASSIFIERS
Due to the high impact of classifiers on the semantic gap
problem, we performed a comparative analysis using differ-
ent classifiers with the proposed descriptor. Apart from the
ESD classifier, we employed the SVM, KNN, and XGBoost-
based classifiers for this experiment. The results of the pro-
posed method are compared against the SVM, KNN, and
XGBoost classifiers. From the results presented in Table 3,
we can observe that the ESD classifier achieved the best
results when used with the proposed descriptor. More specif-
ically, we achieved an average precision of 92%, an aver-
age recall of 94%, an average specificity of 99%, and an
average accuracy of 92%. SVM performed second best and
achieved an average precision of 87%, an average recall
of 90%, an average specificity of 99%, and an average accu-
racy of 87%. KNN achieved an average precision of 85%,
an average recall of 87%, an average specificity of 99%,
and an average accuracy of 85%. The proposed descrip-
tor with the XGBoost classifier performed the lowest by
achieving an average precision, recall, specificity, and accu-
racy of 89%, 88%, 99%, and 89% respectively, as shown
in Table 3.

In Figs. 14 and (b), the single image shown in the first
row is the query image, while the remaining 10 images are
the retrieved images in response to the query image. It can
be seen from Fig. 14 that the retrieval results for categories
D_16 and also for D_21 are quite effective. The smoothness
of the sample images may look similar in terms of the spatial
arrangement of colors or intensities; despite this resemblance,
the proposed texture descriptor can recognize the texture of
images accurately with the same visual appearance.
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FIGURE 17. Retrieved images show a reduction of the semantic gap in response to the inquiry image taken from the semantic category ‘‘Clouds’’ of the
MIT VisTex image repository.

E. PERFORMANCE ANALYSIS ON THE MIT VISTEX
IMAGE REPOSITORY
The third image repository, MIT Vistex contains 30 visual
texture categories of some natural scenes, including
MtValley, ValleyWater, GrassLand, GroundWaterCity, and
GrassPlantsSky, with a resolution of 512 × 512. It also
contains some random categories, e.g., clouds, food, fabric,
and buildings. Each category is divided into 16 sub-images
with a resolution of 128× 128, so there are a total of 30 cat-
egories with 16 images in each category. Sample images are
presented in Fig. 8(c). For retrieval purposes, the images
are retrieved in a group of 16, 32, 48, . . . , 96. For this
experiment, we randomly selected the inquiry images from
each category of the MIT Vistex image repository, and we
achieved an ARR of 92% on an NT value of 16, using a
similarity matching-based approach. For the learning-based
approach, we split the image repository into a training set
of 360 images and a testing set of 120 images. We observed
a significant performance improvement over the similarity
matching-based approach. More specifically, we obtained an
average precision rate of 99%, which indicates a clear winner
between these two approaches.

1) PERFORMANCE COMPARISON AGAINST DIFFERENT
STATE-OF-THE-ART DESCRIPTORS
To evaluate the retrieval capabilities of the proposed descrip-
tor, Figs. 15 and 16 present graphical plots of the proposed
descriptor with comparative CBIR descriptors in terms of

ARP and ARR on different values of NT, i.e., from the top
16 to 96 images. From the results (Table 2), we can easily
observe that the proposed texture descriptor outperforms the
comparative CBIR descriptors in terms of ARR. Our descrip-
tor achieves better retrieval performance over LNIP by 2%,
LTriDP by 6%, LNDP by 7%, LDGP by 12%, LEPSEG by
14%, and CSLBP by 19%.

2) PERFORMANCE COMPARISON AGAINST
DIFFERENT CLASSIFIERS
We performed the same comparative analysis experiment on
different classifiers with the proposed descriptor for the MIT
Vistex repository. The average precision, recall, specificity,
and accuracy rate comparison is illustrated in Table 3. The
proposed (DMLHP) feature descriptor achieves the best aver-
age precision, average recall, average specificity, and average
accuracy rates with the ESD, i.e., 99%, 98%, 99%, and 98%,
respectively. SVM performs second best and achieves the
average precision rate, average recall rate, average specificity
rate, and average accuracy rate of 98%, 98%, 99%, and
98%, which is approximately similar to the ESD. Similarly,
the average precision, recall, specificity, and accuracy rates
for the KNN classifier are 92%, 94%, 99%, and 92%,
respectively, while the XGBoost classifier gives an average
precision of 85%, an average recall of 86%, an average
specificity of 99%, and an average accuracy rate of 85%.
Similar to earlier experiments, XGBoost performs the worst
for CBIR.
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TABLE 4. Classification performance against state-of-the-art deep learning methods in terms of average precision rate, average recall rate, average
specificity rate, and average accuracy rate on the MIT Vistex image repository.

TABLE 5. Average time complexity analysis of the proposed and comparative descriptors.

Moreover, we evaluate the accuracy of each semantic
class of the MIT Vistex image repository, and we observe
that ESD gets a 100% precision ratio on all the categories
that are semantically more enriched because of their over-
lapped background, color, and texture, while ESD obtains
a 60% precision rate on just one category (WheresWaldo).
Similarly, ESD achieves a 100% recall ratio onmore complex
and semantically enriched categories (Clouds, ValleyWater,
GraoundWaterCity, Grass, Leaves, etc.), while the recall ratio
is 75% and 80% on just two categories, i.e., GrassPlantsSky
and MtValley, respectively. Moreover, our method achieves
100% specificity on all categories except on WheresWaldo,
where we obtained 98% specificity. Additionally, the accu-
racy ratio is 100% on almost all the categories except for
three: GrassPlantsSky, MtValley, and WheresWaldo. The
accuracy ratio on these categories is 99%, 99%, and 98%,
respectively. However, the average precision (99%), average
recall (98%), average specificity (99%), and average accu-
racy (98%) rate of the ESD classifier on the MIT Vistex
image repository are high compared to those of other selected
classifiers such as SVM, KNN, and XGBoost. To show the
semantic robustness of the proposed descriptor, the results of
the top 16 image retrievals, by taking the target image from
the semantic category ‘‘Clouds’’ of the MIT Vistex image
repository, are shown in Fig. 17. From the visual samples
shown in Fig. 17, all the retrieved images belong to the same
query class of Clouds, which clearly shows that the proposed
descriptor provides accurate results. The most related image
class, GroundWaterCity, may be retrieved as the retrieval out-
put because both classes of images (Clouds and GroundWa-
terCity) are related due to common visual properties such as
texture and color, and image semantics such as sky and water.

However, both images belong to two different classes. These
results demonstrate that our proposed descriptor is capable of
retrieving the images of a relevant class even in the presence
of images belonging to other semantically similar classes
such as Clouds and GroundWaterCity class. Thus, we can
argue that the proposed descriptor successfully addresses the
issue of the semantic gap in CBIR.

F. PERFORMANCE COMPARISON AGAINST
STATE-OF-THE-ART DEEP LEARNING METHODS
The objective of this experiment is to compare the perfor-
mance of the proposed method against state-of-the-art deep
learning methods. For this purpose, we compared the per-
formance of our method (DMLHP - ESD) against the deep
learning systems, i.e., DBN & SAID [42], and CNN [41] on
the MIT Vistex image repository, and the results are reported
in Table 4. From these results, we can observe that the CNN
model [41] achieves the lowest accuracy of 95.28%, whereas
the proposed method performs best and obtain the highest
accuracy of 98%. This comparative analysis illustrates the
effectiveness of the proposed method over deep learning
models for CBIR.

G. TIME COMPLEXITY ANALYSIS
The objective of this experiment is to compare the compu-
tational cost of the proposed method over state-of-the-art
CBIR methods based on feature descriptors. The response
time of the CBIR system can be determined by the time it
takes to extract the features and retrieve the images. For this
purpose, we calculated the average computational complexity
from two perspectives: average features computation time
and average retrieval time. We have computed these times for
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the proposed and baseline models, and the results are shown
in Table 5. We calculated the average features extraction time
of random query images for all the three image repositories
individually such as 33.8 seconds for AT&T, 31.29 seconds
for Brodatz Texture, and 29.9 seconds for MIT Vistex.
Similarly, we computed the average retrieval time of AT&T,
Brodatz texture, and MIT Vistex for the retrieval of 10, 25,
and 16 images against multiple query images, i.e., 2.1 seconds
for AT&T, 2.21 seconds for Brodatz texture, and 2.7 seconds
for MIT Vistex. Then we have taken the average of these
query features extraction times, i.e., 31.66 seconds, and
retrieval times, i.e., 2.33 seconds, and reported the results of
the proposed and comparative methods in Table 5. For fair
performance comparison, we ensured to compute the average
features computation time and average retrieval time of the
same query images for all of the comparative feature descrip-
tors. From this time complexity analysis, we can observe that
the CSLBP descriptor achieves the lowest time for both the
features computation and retrieval, whereas LTriDP achieves
the highest time for both the features extraction and retrieval.
The proposed (DMLHP) descriptor achieves 4th place in
terms of efficiency among the seven descriptors used in this
experiment. It is worth mentioning that the feature dimen-
sions of the CSLBP, LDGP, and LTrP descriptors are 16,
64, and 80, respectively, while the proposed descriptor has
a feature dimension of 320. Although our descriptor has
large dimension and requires numerous spatial computations
to obtain the gradient directions, LDGP and LTrP are just
0.03 and 0.04 seconds faster than our proposed descriptor.
This negligible difference in the computational cost of the
proposed descriptor over the LDGP and LTrP descriptors
is compensated with our method yielding the best aver-
age retrieval rate performance. Moreover, the extraction and
retrieval time of the proposed descriptor is less than those of
the LEPSEG, LTriDP, and LNIP descriptors. This time com-
plexity comparative analysis demonstrates that the proposed
system achieves high efficiency as well as effectiveness for
the CBIR task.

It is to be noted that all the experiments in our implemen-
tation were executed on MATLAB R2018a version, running
on the computer system with the following specifications:
Intel(R) Core (TM) i3-8130U CPU @2.21 GHz processor
and 8 GB RAM. The features computation and retrieval time
of the proposed method can be further improved by using
a high-performance GPU. Our method has the potential to
become more suitable for real-time CBIR applications.

V. CONCLUSION
This paper has presented a novel local texture descriptor that
captures the internal structure of an image, based on tex-
ture orientation and magnitude, for effective image retrieval.
The proposed approach uses 16 directions to represent the
visual contents of the image in a robust way due to the
formation of orientation and magnitude patterns. Addition-
ally, we employed a learning-based approach to reduce the
semantic gap problem. The performance of the proposed

descriptor is measured on three standard image repositories
that are diverse in terms of pose variations, noise, occlusions,
and a variety of natural and artificial regular textures. The
experimental results signify the effectiveness of the proposed
CBIR system. To measure the retrieval performance of the
proposed descriptor, we compared our method with relevant
state-of-the-art descriptors. The experimental results indicate
the superiority of the proposed method over comparative
approaches for image retrieval. Moreover, we have compared
the results of both the similarity matching-based approach
and the learning-based approach. The comparative results
show that the classification-based approach outperforms the
conventional similarity matching-based approach by a clear
margin, i.e., AT&T 30%, BT 11%, and MIT Vistex 7%.
These results demonstrate the effectiveness of the proposed
descriptor with a classification-based approach. As compared
to some existing feature descriptors, the proposed feature
descriptor takes more time to extract a feature vector. There-
fore, there is room to improve the computational efficiency of
our method. In the future, we plan to enhance the efficiency of
the proposedmethod. Additionally, we will also explore other
similarity metric techniques to improve the retrieval results.
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