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ABSTRACT The low resolution and less feature information of small targets make it difficult to recognize
and locate, which greatly hinders the improvement of object detection accuracy. In this paper, an object
detection model (TDFP) based on CNN and transformer was established, which combines local and global
context to establish the connection between features. In the proposed transformed dynamic feature pyramid
network, a transformer module was designed to dynamically transform and fuse the multi-scale features
generated by the backbone to generate a transformed feature pyramid with richer multi-scale features and
context information. In this transformation process, gate block is used to dynamically select single-scale
transformation or cross-scale transformation to achieve an optimal style of transformation and fusion of
multi-scale features. The experimental results show that the model improves the small targets detection
accuracy based on CNN and transformer. Based on the backbone ResNeXt-101, TDFP achieves 46.2% AP
and 26.3% APS on MS COCO, and takes the amount of computation as a loss constraint to achieve a better
balance between detection accuracy and computational complexity.

INDEX TERMS Local and global context information, transformer module, transformed feature pyramid,
single-scale transformation, cross-scale transformation.

I. INTRODUCTION
In recent decades, object detection methods based on con-
volutional neural networks (CNN [1]–[4]) have made great
achievements. However, the low detection accuracy of small
targets is a difficult problem in object detection, which
hinders the further improvement of object detection accu-
racy. Therefore, the researchers proposed various solutions,
such as better multi-scale feature fusion methods [6]–[10],
richer context information [11]–[14], appropriate training
method [15], denser anchor sampling and matching strate-
gies [16]–[20]. Most of these methods depend on CNN
and the preset of anchor boxes. However, the long-distance
dependence between objects in images is very important
in visual tasks. For image data, CNN can only capture
the long-distance dependence between targets by the large
receptive field generated by repeated convolution opera-
tions [21], [22], which leads to a complex calculation.
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In recent years, it has been found that self-attention [23]
and non-local [24] operations can capture the interaction
between targets. Compared with CNN, self-attention in the
transformer can mining long-distance dependence between
targets and is not limited by the inductive bias of local
interaction, and has strong expression ability. Therefore,
the transformer is extended to various specific tasks in
computer vision, such as classification [25]–[27], object
detection [28]–[33] and segmentation task [34], [35], etc.,
and obtains global information through self-attention. But
comparedwith CNN-based two-stage detectors and one-stage
detectors, transformer-based methods have a little disad-
vantage in detection accuracy. Convolution has translation
invariance and local sensitivity, but it lacks the overall per-
ception and macro understanding of the image. The trans-
former can be used in a convolution network to learn the
global features of images. However, for high-resolution input,
the self-attention layer is more computational, so it is suitable
for smaller spatial dimension input. Therefore, it is worth fur-
ther research to optimize the network based on the advantages
of CNN and transformer.
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In this study, we use the convolution method to learn
the visual part with rich local context efficiently, and then
use the transformer method to learn global context infor-
mation. Based on CNN and transformer, a new detection
model (Transformed Dynamic Feature Pyramid, TDFP) is
proposed, whose core is a transformed dynamic feature
pyramid network. In this network, a transformer module
is designed. After the backbone generating multi-scale fea-
tures, the better multi-scale feature fusion mode is realized
by dynamically selecting the cross-scale transformation and
single-scale transformation via gate block and capturing the
local and global context information to establish the rela-
tionship between the targets. And the transformed feature
pyramid with richer multiscale features and context infor-
mation is generated to alleviate the small targets problem.
In addition, to reduce the calculation, we take the calculation
as the constraint loss to achieve the optimal balance between
the detection accuracy and the calculation.

The detection method proposed in this paper has the fol-
lowing advantages:

(1) Compared with the previous CNN-based and
transformer-based detection methods, richer multi-scale fea-
tures and context information can be obtained.

(2) Through dynamic feature transformation and fusion,
our model can get richer multi-scale features and context
information, and the detection accuracy of small targets based
on CNN and transformer has been improved greatly.

(3) The computation is used as the loss constraint to
achieve the optimal balance of detection accuracy and com-
putational complexity.

II. RELATED WORK
A. CNN-BASED DETECTORS
Two-stage detectors based on CNN, RCNN [36] and its
variants [18], [37], [38] solved the problems of traditional
detectors with hand-designed features, such as many steps,
high time complexity, window redundancy, poor detection
accuracy [39], and achieved high detection accuracy, but lack
of real-time.

YOLO [40] and its variants [41]–[43], SSD [44] and its
variants [16], [45], [46] avoid the use of RPN and real-
ize real end-to-end detection. Some networks can achieve
real-time detection while maintaining high detection accu-
racy, but the detection accuracy of most two-stage detectors
is lower than that of two-stage detectors. Scaled-YOLOv4
[41] proposed a network scaling approach that modifies not
only the depth, width, resolution but also the structure of
the network. YOLOr [42] proposed a unified network to
encode implicit knowledge and explicit knowledge together,
which can generate a unified representation to simultaneously
serve various tasks and benefit the performance of all tasks.
RetinaNet [47] proposed focal loss to solve the problem of
class imbalance to improve detection accuracy. Lu et al. [48]
proposed a novel and effective framework, MimicDet, which
has a shared backbone for one-stage and two-stage detectors,

then it branches into two heads which are well designed to
have compatible features for mimicking, to train a detector
by directly imitating two-stage functions. However, most of
the above detectors rely on manually set anchor boxes to
achieve the detection task. The setting of the anchor involves
many parameters and has complex computation. The final
performance of the model is sensitive to the anchor boxes,
so the robustness of the model is poor.

In recent years, the center-based methods [49]–[51] and
the keypoints-based methods [52]–[54] have eliminated the
use of anchors, but the detection accuracy is low. ATSS [55]
showed that the essential difference between anchor-based
detectors and anchor-free detectors is actually how to define
positive and negative training samples, and proposed an
adaptive training sample selection approach to automatically
selects positive and negative training samples according to the
statistical characteristics of the targets. which can improve the
performance of detectors.

Recently, [3] proposed SpineNet, a backbone with
scale-permuted intermediate features and cross-scale connec-
tions that was learned on an object detection task by Neu-
ral Architecture Search(NAS). The learned scale-permuted
model outperforms ResNet-50-FPN by (+2.9% AP) in the
object detection task. The efficiency can be further improved
(−10%FLOPs) by adding search options to adjust the scale
and type of each candidate feature block. Cascade RCNN-RS
[37] provided simple scaling strategies to generate a family
of models that form two Pareto curves, named RetinaNet-RS
and Cascade RCNN-RS. These simple rescaled detectors
explore the speed-accuracy trade-off between the one-stage
RetinaNet detectors and two-stage RCNN detectors. They
identified the key architectural changes, training methods and
inference methods that significantly improve object detection
and instance segmentation systems in speed and accuracy.
Zhou et al. [56] developed a probabilistic interpretation of
two-stage object detection, which motivates a number of
common empirical training practices. They presented a sim-
ple modification of standard two-stage detector training by
optimizing a lower bound to a joint probabilistic objective
over both stages. The resulting detectors are faster and more
accurate than both their one- and two-stage precursors.

B. TRANSFORMER-BASED DETECTORS
In the research of applying transformer to computer vision
tasks, Cordonnier et al. [57] proposed that the self-attention
layer can also achieve the same effect as the convolution
layer, while reducing the computational complexity, and can
replace the convolution layer. Transformer-based methods
can be divided into [57]: (1) vanilla transformer replaces
convolutional neural network to achieve visual tasks [26],
[27]. Beal et al. [61] used Vit [26] as the backbone network,
combined with a prediction head to achieve the final detec-
tion, the detection effect of large targets is good, but with
poor detection effect of small targets. Therefore, the use of
vanilla transformer still needs further research.(2) Combine
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transformer with CNN. Detr [28] for the first time com-
bines the transformer with CNN for object detection and
achieves the SOTA performance, which simplifies the detec-
tion pipeline, regards the target detection as an unordered
set prediction problem, and compulsorily realizes the unique
prediction through binary matching. However, the binary
matching between transformer decoder and Hungarian loss
is unstable, which leads to slow convergence speed and
poor detection effect of small targets. The FPT proposed by
Tong et al. [39] is to apply the idea of transformer to the trans-
formation of feature pyramid [60]. Three specially designed
transformers are used to transform any feature pyramid into
another feature pyramid of the same size but with a richer
context in a top-down and bottom-up interactive way, so as to
alleviate the small target problem.

To solve the convergence problem of Detr, deformable
Detr [30] was proposed to use a deformable attention module
instead of the original multi-head attention to focus on a
small group of key positions around the reference point.
Sun et al. [32] proposed the encoder-only version of Detr,
designed a new binary matching scheme to achieve more sta-
ble training and faster convergence, and proposed two ensem-
ble prediction models TSP-FCOS and TSP-RCNN based on
transformer, which have better performance than the original
Detr model, and greatly improved the detection accuracy and
training convergence.

For the high computational complexity of Detr,
Srinivas et al. [33] proposed an adaptive clustering trans-
former (ACT) to reduce the computational cost of pre-trained
Detr without any training process. LeCun et al. [22] only
uses global self-attention to replace the last three bottlenecks
of ResNet [1], which significantly improves the baseline in
instance segmentation and object detection, while reducing
the cost of parameters and minimizing latency.

Recently, [62] constructed a hierarchical transformer
and introduced the idea of the locality to calculate the
self-attention [23] in the non-overlapping window area,
which greatly reduced the computational complexity and
improved the detection accuracy. Yang et al. [63] presented
focal self-attention, a new mechanism that incorporates both
fine-grained local and coarse-grained global interactions.
They also proposed a new variant of Vision Transformer
models with focal self-attention, called Focal Transformer,
which achieves superior performance over the state-of-
the-art vision Transformers [27] on a range of public image
classification and object detection benchmarks. Meanwhile,
Dai et al. [64] presented a novel dynamic head framework
to unify object detection heads with attention. The proposed
approach significantly improves the representation ability of
object detection heads without any computational overhead
by coherently combining multiple self-attention mechanisms
between feature levels for scale-awareness, among spatial
locations for spatial awareness, and within output channels
for task-awareness.

C. MULTI-SCALE FEATURE FUSION
For the fusion of multi-scale features, the most direct method
is to add multi-scale features [60], [65]. FPN [60] is the first
time to propose a feature pyramid with top-down and hori-
zontal connections to solve multi-scale problems, especially
the small target problem. PANet [65] adds a bottom-up path to
FPN [6]–[8]. Different multi-scale feature fusion methods are
used to generate a better feature pyramid [6]–[8]. PFPNet [6]
constructs the feature pyramid bywidening the networkwidth
instead of increasing the network depth. AugFPN [7] consid-
ers the difference between different scale features and uses
the adaptive feature fusion method to add multiscale features
with weights. A new architecture of FPN reconfiguration [8]
is proposed, which can aggregate task-oriented features in
different spatial locations and scales.

Another method is to connect multi-scale features along
the channel direction [10], [66]. In addition, some stud-
ies [23], [24], [67] consider the information interaction within
the same scale features.

III. METHODOLOGY
A. OVERALL ARCHITECTURE
The network architecture proposed in this paper mainly
includes three parts:

(1) The backbone. The pre-trained ResNet is used as the
backbone to extract the multi-scale feature maps {a, b, c} of
the input image. The size of the input image is 800 × 1000.
The size and lower sampling rate s corresponding to {a, b, c}
are 25 × 32/32, 50 × 68 / 16 and 100 × 125/8.
(2) The Transformed dynamic feature pyramid network.
{a, b, c} are transformed into a transformed feature pyramid
with richer multi-scale features and context information to
alleviate the small target problem via the designed trans-
former module. The details are shown in sections 3.2-3.4.

(3) Head network. At the top of the transformed feature
pyramid, Fast RCNN [38], which is the head network, is used
to implement the detection task. In order to enhance the
generalization ability of the model and avoid overfitting, drop
block [68] is applied to each output feature graph. The drop
block size is 5 and the feature retention probability is 0.9.

B. TRANSFORMED DYNAMIC FEATURE
PYRAMID NETWORK
Transformed dynamic feature pyramid network is the core
part of the detection model proposed in this paper, as shown
in Figure 2. It contains three parts:

(1) The multi-scale features {a, b, c}. They are generated
by the backbone.

(2) Transformer module. It uses gate block to dynamically
change the feature transformation and fusion methods to
achieve better feature fusion.

(3) Transformed feature pyramid with local and global
information. More abundant multi-scale features and context
information are aggregated via the Transformer module.
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1) TRANSFORMER MODULE
The transformer module consists of single-scale transfor-
mation, cross-scale transformation and gate block. There is
a semantic gap between multi-scale features, so it is diffi-
cult to make a better fusion of features and establish the
relationship between them if the horizontal connection and
top-down fusion are carried out directly. At the same time,
throughmultiple down sampling, features lose the underlying
spatial location information, which is harmful to small target
detection. Therefore, the idea of transformer is applied to
the above multi-scale features, and the gate block is used to
dynamically select the transformation and fusion methods of
features, so as to capture the global context information of
multi-scale features to establish the relationship between fea-
tures and the feature pyramid with richer multi-scale feature
information. The details of the transformation are described
in Section 3.3.

To achieve better multi-scale feature fusion, gate block
is used to select whether to carry out cross-scale transfor-
mation and fusion to obtain features bt , so as to acquire
the relationship between different scale features. In order
to explain the process of transformation and fusion more
clearly, the transformation process of one layer of features
is described, taking the transformation and fusion of gener-
ated features as an example. The transformation between the
same color features is the same scale transformation, and the
transformation between different color features is the trans-
formation of different sizes. The feature maps {a1, b1, c1}
obtained by feature transformation has the same scale as
the original features {a, b, c}. If only single-scale transfor-
mation is used, the features {a1, b1, c1} with the same size
are obtained after one transformation. In order to retain the
spatial position information of the original feature, the feature
{a1, b1, c1} is connected with the feature b. If cross-scale
transformation is used, feature {a, b, c} carries out three trans-
formations respectively, and three features with the same
scale are added to get the features {a1, b1, c1}. In order to
simplify the network structure, the adding process between
the three features is omitted, and the transformed features
{a1, b1, c1} are obtained directly. Then, it is connected with
the original feature b and the feature obtained by the branch
of single scale transform in the direction of channel. Then the

FIGURE 1. Overall network architecture.

features obtained from the above connection are processed by
a convolution of 1×1. The dimension of the feature is reduced
to 256, and the transformed feature bt is obtained by adding
the feature with two times of at up sampling.
The above operations are performed on features {a, b, c}

respectively, and a top-down path is added between fea-
tures {at , bt , ct } to obtain the transformed feature pyra-
mid {at , bt , ct }. Compared with the size of input image,
the bottom-up feature size of {at , bt , ct } is 8, 16 and 32 of
down sampling rate respectively, and the feature of each layer
has the same channel number of 256.

FIGURE 2. Transformed dynamic feature pyramid network.

2) SELF-ATTENTION
Self-attention is the core idea of transformer. The input of
self-attention layer is a feature graph, and an updated feature
map is obtained for the purpose of calculating the attention
weight between each pair of features, each of which contains
information about any other location in the same image.
If each position in the feature map is a random variable,
the similarity between any two positions is calculated. The
value of each predicted pixel is enhanced or weakened
according to the similarity between each predicted pixel and
other pixels in the image. Similar pixels are used in training
and prediction, and different pixels are ignored. Self attention
layer can deal with the larger sense field than conventional
convolution, so these models can obtain the depen-
dence between the features with long-distance interval in
space.

For self-attention, it is usually in the form of scaled-
dot-product [23]. Given query matrix, key matrix and value
matrix, the correlation between the two is first calculated
by multiplying and dividing by scaling factor, and then
the weighted sum of the result and value vector is finally
output.

Attention(Q,K ,V )= soft max(QKT
/√

dk ) · V (1)

Q=WqXi,j, K = WkXa,b, V = WvXa,b

(2)

where Q,K ,V are transformer matrices. Xi,j,Xa,b represent
different input feature maps.
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C. SINGLE-SCALE TRANSFORMATION AND
CROSS-SCALE TRANSFORMATION
1) SINGLE-SCALE TRANSFORMATION
The process of single-scale transformation is shown in
Figure 3, mainly considering the relationship between pixels
in the same feature map. The multi-scale features {a, b, c}
are transformed by a single-scale transformation to get the
features {a1, b1, c1}, which is similar to the operation of
self-attention layer. The specific change process is as follows.

This section takes the single-scale transformation process
of spatial range feature map as an example (as shown in
Figure 4). Given a pixel in the feature map, we first extract
a region as the center, and the pixel position of the region is,
which is the number of pixels. After a single head attention
layer, the output of the pixel is as follows,

yi,j =
∑

a,b∈Nk (i,j)

soft max
a,b

(qTi,jka,b) · va,b (3)

where queries, keys and values are linear transformations
of position pixels and adjacent pixels, which means that a
number adjacent to the location is applied and then sum them.
When local self-attention gathers spatial information on
neighborhood similar to convolution, aggregation is accom-
plished by convex combination of value vectors with mixed
weight, and the mixed weights are parameterized by content
interaction. Repeat this calculation for each pixel to get the
updated feature map, which has the same scale as the feature
map.

In most cases, multiple attention heads are used to learn a
variety of different representations of input. The principle of
the method is to divide the pixel feature depth into groups.
As described above, the attention of each group is calculated
separately. Each head uses different transformations and then
connects the output representation to obtain the final output.

2) CROSS-SCALE TRANSFORMATION
There is a semantic gap between multi-scale features.
In order to better realize the feature interaction between
multi-scale features, cross-scale transformation is used to
calculate between two different scale features to get the trans-
formed feature map. Firstly, the features are transformed by
single-scale and cross-scale transformation respectively, and
then the two transformed feature maps of the same scale are
added to get the features. Take the cross-scale transformation
of feature as an example. Given a feature map, the output fea-
ture graph and the feature graph have the same size. Euclidean
distance is used as the similarity function to calculate the
similarity.

Feud (qi, kj) = −||qi − kj||2 (4)

where qi = fq(χbi ) and kj = fq(χaj ). χ
b
i is the ith position of

χb, χaj is the jth position of χa. qi, kj is divided into N parts,
We get the process of cross-scale transformation as follows,

Input : qi, kj, vj,N

Similarity : sni,j = Feud (qi,n, kj,n)

FIGURE 3. Single-scale transformation.

Weight : wi,j = softmax(sni,j)

Output : χ̃bi = Fmul(wi,j, vj) (5)

where vj = fv(χaj ) is the similarity score of the part χaj , and
sni,j is the feature position of the middle transformation. Fmul
is dot product When each pair has a closer distance, they will
be given a greater weight. The cross-scale transformation of
other scale features is the same.

D. GATE BLOCK
In this paper, we use gate block (as shown in Figure.5) to
dynamically change the feature transformation and fusion
methods to get better feature fusion. Single-scale transfor-
mation is a branch that must participate in the transforma-
tion, and cross-scale transformation is decided by gate block.
If both branches participate in the transformation at the same
time, the transformed features are added to generate each
layer of the transformation feature pyramid. CNNGate block
[67] is used as the gate block. CNNGate block includes an
average pooling layer, two fully connected layers, a ReLU
activation function and GumbelSoftmax [69]. The trans-
formed features {a1, b1, c1} are passed through CNNGate
block. Assume that the input features with the shape of (C,
H, W) are first compressed by the average pooling opera-
tion, and the feature dimension is reduced to 1 / 4 of the
original dimension. C,H,W are the number, height and width
of feature channels. Then, two full join layers, a nonlinear
activation function ReLU and aGumbelSoftmax function, are

FIGURE 4. An example of a local attention layer in a k = 3 spatial range.
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used to generate a one hot gate vector βl for dynamic blocks.

β il = GumbelSoftmax(αil |αl)

= exp[αil + n
i
l/τ ]

/∑
i
exp[αil + n

i
l/τ ] (6)

where, αl = gl(Fl) is the gate signal generated by the nonlin-
ear function gl(·) in Fl . β il ∈ {0, 1}. n

i
l ∼ Gumbel(0, 1) is a

random sampling of Gumbel distribution. τ is a temperature
parameter that affects the gumbelsoftmax function.

IV. EXPERIMENT
A. SETUP
1) EXPERIMENTAL HARDWARE SPECIFICATION AND
IMPLEMENTATION DETAILS
The experiment in this paper was implemented in MS COCO
2017 [70]. COCO contains 80 categories. COCO trainval35k
split (118K image) was used for training, andminimal set (5K
image) was used as the verification of this study. Standard
average precision (AP), AP50, AP75, APS, APM and APL are
used to evaluate themodel performance. Our work is based on
the Faster RCNN and ideas of Transformer, whose backbone
mainly is ResNet, in order to compare with more general
models and SOTAs(mainly the backbones are ResNet and
ResNeXt [71]), we chose ResNet and ResNeXt as the back-
bone for fair comparison. The backbones mentioned above
are pre-trained networks on ImageNet [72], and then the
whole networks were finetuned and the backbones’ param-
eters on the training set were frozen. For fair comparison,
the size of the input images is resized to 800 pixels or
1000 pixels for shorter and longer edges, respectively.

For all experiments, we use SGD optimizer to train our
models end-to-end for 12 epochs on a machine, whose CPU
is Intel i7-9700k, 32 RAM, 4 NVIDIA GeForce GTX TITAN
X GPUs with SBN [73] and the CUDA version is 10.1. The
deep learning framework is Pytorch 1.7.1. Linear warm-up
strategy for 500 iterations is leveraged at the beginning of
training. Each mini-batch contains 2 images of each GPU and
512 regions of interest (ROI) of each image, and the positive
and negative ratio is 1:3. We initialize the learning rate as
0.01 and decrease to 0.001 and 0.0001 at 8th-epoch and 11th-
epoch. The momentum is set as 0.9 and the weight decay is
0.0001. An end-to-end region proposal network (RPN) [43] is
used to generate region proposals. In order to make the model
more robust, some data enhancement methods are used, such
as geometric distortion, color jitter and so on.

2) HYPER-PARAMETERS
As for the hyper-parameters of the transformer module,
1/
√
dk in Equation 1 was set as 0.1. N in Equation 5

was set as 4 and τ in Equation 6 was a learned parame-
ter, the Gumbel-Softmax distribution can adaptively adjust
the ‘‘confidence’’ of proposed samples during the train-
ing process. We set it as 0.1 initially because it should
approach to 0 and τ > 0, at higher temperatures,
Gumbel-Softmax samples are no longer one-hot, and become
uniform as τ →∞.

We apply the DropBlock [68] to each transformed feature
map, to alleviate the over-fitting problem. Follow [59], we set
block size = 5 and keep prob = 0.9.

3) LOSS FUNCTION
To reduce the computational complexity of the model and
save resources, the loss function not only contains the
classification and regression losses, but also adds the com-
putation cost as a loss constraint [72] to achieve the optimal
balance between the detection accuracy and the amount of
calculation.

LC = ((CR − Ct arg et )/(Cmax − Cmin))2 (7)

Ct arg et = Cmin + α · (Cmax − Cmin) (8)

FIGURE 5. CNN gate block.

Cmax ,Cmin represent the computation cost of the highest
configuration and the lowest configuration respectively, and
CR represents the actual computation cost. Ct arg et is con-
trolled by super parameter α. The final loss function is as
follows,

L({pi}, {ti}) = 1/
Ncls

∑
i

Lcls(pi, p∗i )

+ 1/
Nreg

∑
i

p∗i Lreg(ti, t
∗
i )+ λLC (9)

where i is the index of an anchor in a mini-batch, and pi
is the prediction probability that the anchor i is a target.
If the anchor is positive, p∗i = 1, otherwise p∗i = 0.
The 4-dimensional vector ti representing the four angular
coordinates of the prediction box and t∗i is the coordinate
vector of the truth bounding box. Lcls is the log loss on
two categories (target and non-target). The regression loss
Lreg(ti, t∗i ) = L1(ti − t∗i ) is a smooth L1 function. This term
p∗i Lreg indicates that the regression function is only activated
at p∗i = 1. These two terms of Lcls,Lreg and LC are balanced
by the balance parameters λ.

B. COMPARISON
We compared TDFP with the most advanced object detectors
in the test of MS-COCO [70] benchmark test-dev 2017.
In these experiments, the images are randomly scaled from
640 pixels to 800 pixels in the training process, and the
number of iterations is increased to 200K. We used the
same settings and super parameters (e.g., learning rate, NMS
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threshold, etc.) obtained from FPT [39] and DyFPN [67]
for TDFP. Table 1 lists the comparison of the results of
some detectors. R50, R101, RXt50, and RXt101 indicate
ResNet50, ResNet101, ResNeXt50, and ResNeXt101.

Using resnext-101 as the backbone, the AP of TDFP
reaches 46.2% and the APS is 26.3%. In the same backbone
network, compared with Detr [28] based on Transformer,
the detection accuracy of TDFP and large targets is slightly
inferior, but the APS is 2.6%-2.9% higher than that of Detr
and UP-DETR [29]. The more obvious result is that our
method surpasses the transformed-based ViT-FRCNN [61]
6.0%-6.9%. We also found a surprising result, compared
with the two-stage detector SpineNet [3], Faster RCNN
[38], AugFPN [7], DyFPN [67] and the one-stage detector
RetinaNet [47] based on CNN, the network TDFP has large
improvement of AP, AP50, AP75, APM, APL on COCO.

C. ABLATION STUDY
The ablation studywas performed onMSCOCO2017 val set,
and the main backbone network was ResNet-50. The purpose
of this study is as follows.

1) COMPARISION OF TRANSFORMER METHODS
In this section, we evaluate the importance of Transformer
module (TS module), Single-scale transformation (SS TS)
and cross-scale transformation (CS TS). As shown in Table 2,
when the TS module is not added, the network fuses the
features through the convolution layer, and the detection
accuracy is theworst. The detection effect of transformer (TS)
module is better than that of convolution. The AP of CS TS
is 0.5% higher than that of SS TS, but the detection result of
both CS TS and SS TS is the best. The AP of small target is
2.6% higher than that of no TS module.

Therefore, the transformed features have more abundant
local and global context information to establish the relation-
ship between features, as shown in Figure 6, which shows
the visual comparison of features through convolution layer,
single-scale transformation and cross-scale transformation.
Among them, columns a, b, c, d and e are the original image,
the convolution layer, the Single-scale transformation, the
cross-scale transformation and the fusion feature maps after
the Single-scale transformation and the cross-scale transfor-
mation. As can be seen from Figure 6, compared with the
convolution layer, the self-attention layer can obtain more
abundant global context feature information. cross-scale
transformation can get more context information of multi-
scale features than Single-scale transformation and realize the
interaction between multi-scale features. Single-scale trans-
formation and cross-scale transformation are used to capture
the relationship between features with longer distance, and
they are more sensitive to the features of small targets.

2) THE NECESSITY OF COMPUTATION LOSS
The influence of CC loss (Table 3) and resource limita-
tion coefficient are studied. When CC loss is not used, the
calculation amount is the largest. Although CC loss can lead

to a small decrease in detection accuracy, it can greatly reduce
the calculation amount and achieve a better balance between
the accuracy and the calculation.

3) THE NECESSITY OF TRAINING STRATEGY
To explore the application effect of SBN [73] and DropBlock
[68] in TDFP (as shown in Table 4), both SBN andDropBlock
improve the model performance of TDFP, and their combina-
tion can achieve better results, making the bounding box AP
improved by 1.6% - 2.1%.

TABLE 1. Comparison with SOTA (%).

4) FPS AND GFLOPs
FLOPs measures model speed through theoretical calcula-
tions. FPS (frames per second) refers to the frequency of
individual images that are displayed on a video device or the
number of recorded images per second. We use torchscript
models to measure FLOPs and FPS on an Nvidia GeForce
RTX 2080 Ti GPU.

Under the same backbone ResNet-50, the comparison
between TDFP and RetinaNet [47], Fast RCNN [38],

VOLUME 9, 2021 134655



H. Liang et al.: TDFP for Small Object Detection

TABLE 2. Ablation studies of transformer module (TS module),
single-scale transformation (SS TS) and cross-scale transformation
(CS TS) (%).

TABLE 3. Ablation studies of calculated loss (CC loss).

TABLE 4. Ablation studies of SBN and DropBlock (%).

TABLE 5. Comparison of FPS and GFLOPs of different detection methods.

Detr [28] as well as recent SOTAs in FPS and GFLOPs are
reported in Table 5 (V100 represents NVIDIA TensorRT on
a V100 GPU).When GFLOPs is close, TDFPmodel achieves
the same result as Fast RCNN baseline. When the efficiency
is not significantly reduced, FPS is higher than RetinaNet,
which has lower APS, but greatly improves APL. Compared
with Detr [28] which is based on transformer and CNN, FPS
and GFLOPs are slightly inferior in terms of accuracy and
overall accuracy, but the detection accuracy of small targets
is greatly improved. And both FPS and GFLOPs are higher
than FCOS [49].

FIGURE 6. Features visualization.

FIGURE 7. Test results of COCO.

D. VISUALIZATION OF RESULTS AND DISCUSSION
In the test set of COCO, this paper selects some images which
are difficult to detect, and the detection results are shown
in Figure 7 On the whole, the detector in this paper can
correctly detect the multi-scale targets in the image, and the
detection results of small targets are also good.

Our model is to improve the detection accuracy of
small targets combined CNN with Transformer methods.
Both of them have advantages and disadvantages. The
Transformer-based method has better detection results for
large targets than small targets, while CNN is the opposite.
Our method is to use the thought of Transformer in the
process of constructing the feature pyramid. Compared with
Faster RCNN, it may not be able to obtain better features of
small targets. Compared with Detr, we proposed a better fea-
ture fusion and construct features. The rich feature pyramid
combines local and global contextual information. Therefore,
our method reached a compromise between Faster RCNN
and Detr.
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The experimental results show that the proposed model
can effectively improve the accuracy of target detection and
keep less computation. It achieves 44.4% and 46.2% AP
on ResNet-101 and ResNeXt-101, respectively. The results
surpass the previous two-stage detector Fast RCNN [38] and
one-stage detector RetinaNet [47]. Compared with Detr [28],
the overall detection accuracy in the same backbone network
is lower, but it greatly improves the small target detection
accuracy. At the same time, richer global information is ben-
eficial to the big targets. Dynamic selection of the optimal
multi-scale feature fusion method can obtain and aggregate
more abundant multi-scale features and context information,
which can better solve multi-scale problems, especially small
targets. At the same time, the amount of calculation as a
loss constraint training can reduce the amount of calculation
without causing a significant decline in accuracy. In addi-
tion, the accuracy can be improved by a certain training
strategy.

V. CONCLUSION AND FUTURE WORK
In order to mitigate the low accuracy problem of small tar-
gets due to less feature information in small targets and the
limitations of CNN, a novel detection model based on CNN
and transformer was proposed. In this model, a transformer
module was designed to combine the local context and the
global context information obtained by feature transforma-
tion. In this module, the method of dynamic multi-scale
feature transformation and fusion determined by gate block
was used to obtain optimal feature fusion and a feature
pyramid with richer multi-scale feature information and con-
text information. Through the above methods, the detection
accuracy of small targets based on CNN and transformer is
improved, and the detection results of large targets are better
than that based on CNN. In addition, the proposed detection
model takes the amount of calculation as a part of the loss
function without significantly reducing the accuracy while
reducing computation cost. However, this paper only applies
the transformer idea to two-stage detector, which has a lot of
optimization space in terms of accuracy and speed. In future
work, wewill consider combining transformer with one-stage
detector or anchor-free detector.
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