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ABSTRACT In this paper, we analyze the electrostatic charge distribution on arbitrarily shaped conductor
surfaces. Following a perturbative approach, we derive an approximate analytical formulation of the problem.
We start from the known case of a conducting ellipsoid, we adopt a deformed ellipsoidal coordinate system,
and we search for the zero-order approximated solution of the problem. We also focus on arbitrary-shaped
thin foils, showing that the charge density is divergent on their borders. We then define the applicability
range of the proposed approach expressing the contour equation as the Fourier series. Finally, we present a
detailed error analysis for several polygonal contours, comparing the analytical results with those obtained
via a numerical analysis based on the Finite Element Methods (FEM).

INDEX TERMS Charge distribution, conductors, electrostatic analysis.

I. INTRODUCTION
The problem of finding the electrostatic charge distribu-
tion on a charged conductor is a fascinating problem that
many classical electrodynamics textbooks solve in several
analytical cases [1]–[3]. Still today it is attracting the atten-
tion of the researchers. In [4], [5] the authors study the
relationships between the electrostatic field near the con-
ducting surface and curvature radius of the surface itself.
In [6], [7] the authors perform a numerical analysis of
electrostatic problems. In [8], [9] the authors, respectively,
study analytically and numerically the capacitance of differ-
ent arbitrarily shaped conductors. Several practical problems
are related to the identification of the charge distribution
and possibly its optimization, on thin surface domains,
for instance, in energy harvesting and designing devices
[10], [11], semiconductors [12], photovoltaics, and optoelec-
tronics [13], [14]. In electrical accumulators, such as lithium
batteries, the study of the charge density distribution has a
crucial role in developing new techniques to reduce dendrite
growth [15], [16]. Many devices used in electrical and elec-
tronic engineering are sketched with an ideal geometrical
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shape. The knowledge of the charge distribution of a generic
geometry of the conductor can allow for a better designing
the conductor geometries and for reducing the possibility of
occurrence of electrostatic discharge [17]–[19]

A typical example is a capacitor considered as two infinite
metallic foils separated by a distance d . This idealization of
a capacitor does not take into account the intense electric
field generated near the edges of the conducting surfaces.
The problem of electrostatic forces between two finite-size
conductors of different geometries has been investigated in
several works [20]–[24]. Recently, in [25], the authors con-
sider a battery with finite-size electrodes, making the con-
jecture that the border effect can be relevant in the dendrite
formation. Being of finite size and assumed as two two-
dimensional disks, the electrodes have a not uniform charge
density taking infinite values at the border of each disk. More
generally, any device has a finite size, and the knowledge of
the charge density distribution is crucial. The proposedmodel
has been supported by experiments [26], so confirming that
the density charge distribution on the battery electrodes plays
an important role in dendrite formation. While uniformly
charged two-dimensional shapes are studied in the literature,
iso-potential surfaces with non-uniform charge distribution
are a hard task, and closed formulas for the distribution are
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known in a few cases [1]–[3]. In [27]–[30] the authors present
interesting methods based on series development. The series
method may be difficult to apply when in the solutions, there
are divergent quantities. Typically, to reproduce divergent
quantities, an increasing number of series terms is necessary.
Similar difficulties can arise in numerical approaches such
as, for example, the Finite Element Method (FEM). It is an
intrinsic limitation for a numerical simulation to reproduce
a divergence. The approach that we propose can overcome
the difficulty of dealing with divergent quantities since the
leading term, zero-order term, in thin foils, is divergent on
the foil border. In the present work, we propose a general
approach to the problem of an analytical expression of the
potential, the electrical field, and the electrical charge density
of a metallic surface with an arbitrary shape. In particular,
we will focus on thin foil surfaces.

The paper is organized as follows: In Sec. II, we will
show the analytical approach to the full problem, i.e., the
evaluation of the electric potential and the charge density on
an arbitrarily shaped conductor. In Sec. III, we will apply the
results of the previous section to thin foils. In Sec. IV, we will
show the applicability of our approach. In Sec. V, we will
perform a numerical analysis and check on the analytical
formulas for thin foils with polygonal shapes, comparing the
results with the simulations performed by the software Ansys.
In Sec. VI we will discuss the numerical results. Finally,
in Sec. VII, we will summarize the paper results.

II. ELECTRICAL POTENTIAL GENERATED BY A
CONDUCTOR SURFACE
Our goal is to find an analytical (approximate) solution of

∇
2φ = 0, φ |S= φ0 (1)

where S is the conductor surface and φ0 is the value of
the potential at the surface. Since we are considering an
arbitrary shape for the conductor surface, we need to adopt a
convenient set of coordinates, For this purpose, we consider
the coordinate system generated by the following equation [2]

r2

a2(1+ εf (θ ))2 + u
+

z2

c2 + u
= 1 (2)

where r2 = x2 + y2. It is straightforward to check that
u = 0 describes the deformed ellipsoid where its section has
an arbitrary shape given by a(1 + εf (θ )) (see the example
of Fig. 1). Keeping in mind thin foils, we may focus on the
confocal oblate spheroids coordinates, i.e., a(1+ εf (θ )) > c
so we may take the limit c → 0 and end up into the two-
dimensional thin foil case. Solving for u we have

u1,2 =
1
2

(
R2 − a(θ )2 − c2 ± w

)
(3)

where R2 = r2 + z2, a(θ ) = a(1+ εf (θ )) and

w =
[(
R2−a(θ )2−c2

)2
+4

(
z2 a(θ )2+c2 r2−c2 a(θ )2

)] 1
2

.

We can choose as third coordinate the polar angle θ . With-
out ambiguity from now on we set u = u1 and u2 = v. The
inverse relationships are

r =

√
a2(θ )2 + u

√
a2(θ )2 + v√

a2(θ )2 − c2
(4)

z =

√
c2 + u

√
c2 + v√

c2 − a(θ )2
(5)

To evaluate the laplacian of the potential in the u, v, θ
coordinates, we may use the general formula given by [31]

∇
2φ =

1
√
g
∂

∂ui

(
√
ggik

∂φ

∂ui

)
= 0, (6)

where u1 = u, u2 = v, u3 = θ , g = Det[gik ] is the
determinant of the metric tensor, gik , and gik are the inverse
matrix elements of gik . Also, according to Einstein’s summa-
tion convention, repeated suffix implies summation. To find
the metric tensor associated with these coordinates, we write
the infinitesimal distance between two points

dr =
∂r
∂u
du+

∂r
∂v
dv+

∂r
∂θ
dθ (7)

dz =
∂z
∂u
du+

∂z
∂v
dv+

∂z
∂θ
dθ (8)

ds2 = dr2 + dz2 + r2dθ2 = gikduiduk , (9)

with gik = gki, u1 = u, u2 = v, u3 = θ . Plugging Eqs. (4)
and (5) into Eqs. (7) and (8). We obtain the metric tensor
elements writing the square of the infinitesimal length of a
curve in the u, v, θ coordinates

ds2 =
u− v

4
(
a2 [1+ εf (θ )]2 + u

) (
c2 + u

)du2
+

v− u

4
(
a2 [1+ εf (θ )]2 + v

) (
c2 + v

)dv2
+

[
a2(1+ εf (θ ))2 + u

] [
a2(1+ εf (θ ))2 + v

]
a2 [1+ εf (θ )]2 − c2

dθ2

+δgikduiduk , δgik = δgki, i, k = u, v, θ, i 6= k

(10)

where for the sake of compactness, we did not explicitly write
the off-diagonal terms, δgik . From Eq. (10), we deduce the
elements of the metric tensor

guu ≡ h21 =
u− v

4
(
a(θ )2 + u

) (
c2 + u

) , (11)

gvv ≡ h22 =
v− u

4
(
a(θ )2 + v

) (
c2 + v

) , (12)

gθθ ≡ h23 =

[
a(θ )2 + u

] [
a(θ )2 + v

]
a(θ )2 − c2

, (13)

δguθ = εa(θ )af ′(θ )
(
a(θ )2 + v

)
×

[
a(θ )2

(
a(θ )2 − 2c2

)
− c2(u+ v)− uv

](
c2 − a(θ )2

)2 , (14)
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δgvθ = εa(θ )af ′(θ )
(
a(θ )2 + u

)
×

[
a(θ )2

(
a(θ )2 − 2c2

)
− c2(u+ v)− uv

](
a(θ )2 − c2

)2 . (15)

From here on, the parameter ε will be considered a per-
turbative parameter, i.e., ε � 1. To zero ε order, we seek
a solution that is a function of the coordinate u, namely
the coordinate that vanishes at the surface of the conductor.
The Laplace equation for the electric potential φ(u, v, θ) is
given by

∇
2φ =

1
√
g
∂

∂ui

(
√
ggik

∂φ0

∂ui

)
=

1
h1h2h3

∂

∂u

(
h2h3
h1

∂φ0

∂u

)
= 0. (16)

While the coordinates u, v do not have crossed terms,
guv = 0, in principle we should consider the fact that gθk 6= 0.
But the contribution of these terms and the θ derivative is of
the ε order (see Eqs. (14) and (15)). We also stress that we
cannot neglect ε in the function a(θ ) in the denominator of h1
because the variable u can take the zero value since u = 0 is
the surface of the conductor. Therefore, in the denominator,
the term containing ε cannot be neglected. Solving Eq. (16)
with the boundary condition φ → 0 for u → ∞ and
φ = constant for u = 0, we have

φ0 = A
arctan

[√
a(θ )2−c2
√
c2+u

]
arctan

[√
a(θ )2−c2

c

] (17)

and the charge density on the surface of the conductor,
to zero-order, is

σ0 = −
ε0

h1

∂

∂u
φ0

∣∣∣
u=0

=
ε0A

√
a(θ )2 − c2√

a(θ )4−r2
[
a(θ )2 − c2

]
arctan

[√
a(θ )2−c2

c

], (18)

where ε0 is the vacuum permittivity.

FIGURE 1. Ellipsoid with a section given by a(1+ εf (θ)) = 1+0.1 cos(12θ).

III. CHARGE DENSITY ON THIN FOILS
In this section, we will focus now on the case of a thin
foil with an arbitrary border. The foil’s electric potential is
obtained taking the limit c → 0 of Eq. (17). The surface
density is obtained taking the limits c → 0, u → 0 and

z→ 0 of Eq. (18). Adopting the more visualizable cylindrical
coordinate system r, θ, z, for the potential we have

φ0 = A arctan
[
a(θ )
√
u

]
= A arctan [8(r, z, θ)] , (19)

where

8(r, z, θ) =

 2 a(θ )2

R2−a(θ )2 +
√(

R2−a(θ )2
)2
+ 4 z2 a(θ )2

1
2

and R2 = r2 + z2. For the density we have

σ0 = −
ε0

h1

∂

∂u
φ0

∣∣∣
u=0
=

ε0A√
a(θ )2 − r2

. (20)

We infer that at the border of the conductor, r = a(θ ),
the density is divergent. When ε = 0 then a(θ ) =
a[+εf (θ )] = a and we recover the exact result of a disk
of radius a. As we will see in Sec. V, for ε � 1 the zero
approximation is already satisfactory.

We now evaluate the first correction to the potential, and
consequently, to the charge density. To further simplify our
calculation, we use cylindrical coordinates. We focus on
solving the Laplace equation near the surface, i.e., at z = 0,
so finding the correction to the charge density. We may write

∇
2φ = ∇2φ0 +∇

2φ1 = 0, (21)

where φ1 is of ε order. The potential φ0 satisfy the Laplace
equation in the r, z variables while the derivative respect to θ
generates a ε order term. Developing φ0 and φ1 near z = 0

φ0 ≈ const+ z
∂

∂z
φ0 |z=0= const− z

σ0

ε0
, φ1 ≈ z%(r, θ)

(22)

we have

∇
2φ1 = z

1
r2

∂2

∂θ2

σ0

ε0
. (23)

We stress that the problem is symmetric with respect to
the z coordinate, and the potential is an odd function of z.
In principle, we should also consider the term proportional to
z3 but, for the moment, we assume that it is negligible with
respect φ1. Assuming a Taylor expansion in r for the function
%(r, θ), we write

φ1 = z
∞∑
n=0

r2nyn(θ ), (24)

and plugging it into Eq. (23) we have

∞∑
n=0

4n2r2nyn(θ )+ r2n
∂2

∂θ2
yn(θ )

= A
∞∑
n=0

(
−

1
2
n

)
r2n

∂2

∂θ2
hn(θ ), (25)
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where we defined hn(θ ) ≡ a(θ )−2n−1. Solving for n = 0 we
have

y0(θ ) = A
(

1
a(θ )
−

1
a(0)

)
, (26)

while for n 6= 0 we have

yn(θ ) = A
(
−

1
2
n

)
[
− cos(2nθ )

(∫ θ

0

h′′n(u) sin(2nu)
2n

du
)

+ sin(2nθ )
(∫ θ

0

h′′n(u) cos(2nu)
2n

du
)]

(27)

where h′′(θ ) means second derivative with respect to θ and
the integration constants have been selected in such way that
yn(θ )→ 0 for ε→ 0. After long but straightforward algebra
we obtain

yn(θ ) = A
(
−

1
2
n

)
[
hn(θ )− hn(0) cos(2nθ )−

h′n(0) sin(2nθ )
2n

−2n
∫ θ

0
hn(u) sin [2n(θ − u)]du

]
. (28)

For sake of simplicity, we assume f ′(0) = 0 which, in turn,
implies h′(0) = 0. The condition f ′(0) = 0 is satisfied by all
polygons with an even number of sides. Performing the sum
we have
∞∑
n=0

r2nyn(θ ) = A

[
1√

a(θ )2 − r2
+

−Re

[
1√

a(0)2 − r2e2iθ

]
+

−Im

[∫ θ

0

r2e2i(θ−u)U (a(u)− r)[
a(u)2 − r2e2i(θ−u)

]3/2 du
]]
(29)

where U (x) is the step function. Remembering that the cor-
rection to the potential near z = 0 is φ1 = z

∑
n r

2nyn(θ ) we
obtain for the density correction

σ (1)(r, θ) = ε0 A

[
−

1√
a(θ )2 − r2

+

Re

[
1√

a(0)2 − r2e2iθ

]
+

Im

[∫ θ

0

r2e2i(θ−u)U (a(u)− r)[
a(u)2 − r2e2i(θ−u)

]3/2 du
]]

. (30)

By direct inspection of Eq. (30), we may verify that for
ε → 0 then σ (1)(r, θ) → 0. To take into account the
term proportional to z3, previously neglected, we introduce

the effective constant B, instead of the constant A multiply-
ing σ (1)(r, θ). Once the density correction has been deter-
mined, we can write for the electric potential

φ(x, y, z)

=
2

4πε0

×

∫ 2π

0

∫ a(θ )

0

σ (r, θ)√
r2−2r(x cos θ+y sin θ )+ R2

rdrdθ

=

∫ 2π

0

∫ a(θ )

0

σ (0)(r, θ)√
r2−2r(x cos θ+y sin θ )+ R2

rdrdθ

+

∫ 2π

0

∫ a(θ )

0

σ (1)(r, θ)√
r2−2r(x cos θ+y sin θ )+ R2

rdrdθ,

(31)

where R2 = x2+y2+ z2, the extra factor 2 takes into account
the contribution of the upper and lower conductor surface,
and with

σ (0)(r, θ) =
A√

a(θ )2 − r2
(32)

σ (1)(r, θ) = B

[
−

1√
a(θ )2 − r2

+ Re

[
1√

a(0)2 − r2e2iθ

]

+ Im

[∫ θ

0

r2e2i(θ−u)U (a(u)− r)[
a(u)2 − r2e2i(θ−u)

]3/2 du
]]
, (33)

where, as previously stated, the effective constant B multi-
plies σ (1)(r, θ) instead of the constant A. Also A and B have
been redefined in such a way to include the constant 2

4πε0
.

By construction, φ(x, y, z) given by Eq. (31) satisfies the
Laplace equation and ∂zφ(x, y, z) |z=0 gives the charge den-
sity at the surface of the conductor, i. e. σ (r, θ) = σ (0)(r, θ)+
σ (1)(r, θ). In Sec. V we will numerically check that φ(x, y, z),
at z = 0 and in the region r ≤ a(θ ), is, with good approxima-
tion, constant.

IV. APPLICABILITY OF THE APPROXIMATION
So far, we have not given details on the applicability of the
approximation in the presence of thin foils with arbitrary bor-
der. It is important to note that, despite a shape that visually
appears relatively far from a circular shape, what is relevant
in our calculation is the first non-constant term of a(θ ) =
a(1+ εf (θ )), i.e. εf (θ ). If ε � 1, then our approach applies.
In general, the border is described by a function where not
necessarily identifying the ε parameter is straightforward.
We can give a criterion to identify the parameter using the
Fourier series of the border. To do that, we write

a(θ ) =
∞∑
k=0

ck
exp[ikθ ]
√
2π

+

∞∑
k=1

c∗k
exp[−ikθ ]
√
2π

, (34)

where c∗k is the complex conjugate of ck . Let us define k̄
the index of the first Fourier coefficient that does not vanish.
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Then, as a first approximation, we may write a(θ ) as the sum
of the first two non-vanishing terms

a(θ ) ≈ c0

(
1+

2|c|k̄
c0

cos[k̄θ+φk̄ ]
)
, ck̄=|c|k̄ exp[iφk̄ ],

(35)

where we use the polar representation of the Fourier coef-
ficients ck̄ = |c|k̄ exp[iφk̄ ]. Our approach applies if
2|c|k̄/c0 � 1. Indeed, being ck the coefficient of a conver-
gent series, then in general we have that ck < ck̄ for k > k̄ .

To better clarify this point, let us consider the case of a
square. Its border is described by

a(θ ) = cos
(π
4

)
sec

[
θ −

π

2

⌊
4θ + π
2π

⌋]
, (36)

that represents a square of side a =
√
2. The first non-

vanishing terms are given by c0 ≈ 0.79, c4 = c∗4 ≈ −0.055
and we can write

a(θ ) ≈ c0

[
1+

2c4
c0

cos(4θ )
]
. (37)

Consequently we may set ε = 2 c4/c0 ≈ 0.14. We deduce
that a square can be considered a deformed circle, even if
the first-order perturbative approach is not accurate. We will
return to the square conductor study in the next section to
perform numerical analysis on surfaces with a polygonal
border.

V. NUMERICAL ANALYSIS
In this section, we will check our result by performing a
numerical analysis on a thin foil with a polygonal edge with
n sides. The function that describes a n-sided polygon is

a(θ ) = cos
(π
n

)
sec

[
θ −

2π
n

⌊
nθ + π
2π

⌋]
. (38)

The main goal of this section is the numerical evaluation of
the percent error defined as E = 100(φ − φS )/φS at z = 0 in
the region r ≤ a(θ ) where the potential φ takes the constant
value φS . Without loss of generality we may set φS = 1.
In order to perform the numerical analysis, the coefficients
A and B of Eqs. (32) and (33) need to be evaluated. We cal-
culate the function φ in a D-elements computational domain
(xi, yi) belonging to the polygon. We define M1(xi, yi) and
M2(xi, yi) as

M1(xi, yi)

=
1
A

∫ 2π

0

∫ a(θ )

0

σ (0)(r, θ)r√
r2−2r(x cos θ + y sin θ )+ r2i

drdθ, (39)

M2(xi, yi)

=
1
B

∫ 2π

0

∫ a(θ )

0

σ (1)(r, θ)r√
r2−2r(x cos θ + y sin θ )+ r2i

drdθ, (40)

where r2i ≡ x2i + y
2
i and A and B are determined by solving

the system
M1(x1, y1) M2(x1, y1)
M1(x2, y2) M2(x2, y2)

...
...

M1(xD, yD) M2(xD, yD)


[
A
B

]
=


1
1
...

1

 . (41)

The linear system of Eq. (41) is over-determined, and A
and B are calculated by minimizing the 2-norm N (2) given by

N (2)
=

√√√√ D∑
i=1

(AM1(xi, yi)+ BM2(xi, yi))2 − 1. (42)

To evaluate M1(xi, yi) and M2(xi, yi) we perform a numer-
ical integration by means of Matlab R© [32]–[34]. First of all,
we generate a two-dimensional numerical domain, according
to Eq. (38). Since the numerical values of the integrals defin-
ingM1 andM2 are divergent along the border of the domains,
the distribution of the couples (xi, yi) inside the polygonal
domain is crucial for the evaluation of A and B. Therefore,
we randomly selected 6×103 couples for each case to provide
a uniform point distribution and a minor bias in the A and B
estimation. Also, we adopted a minimum distance between
the points to increase the uniformity of their distribution. The
adopted number of coordinates, at whichM1 andM2 are eval-
uated, is a balance between the accuracy calculating A and
B and the computational resources availability. In Fig. 2 we
show, as example, the domain for n = 4 (i.e. square domain)
resulting from the aforementioned discretization. Being the
surface is an electrical conductor, the domain r ≤ a(θ ) is
expected to be at the same potential φ0 = 1, and, ideally,
A and B are expected to satisfy AM1(xi, yi) + BM2(xi, yi) −
1 = 0 ∀i. In the practical case, the analytical approximation
and the numerical errors, mainly due to the adopted integral
algorithm tolerance [33], [34], lead to different values from
the expected one. With the choice φS = 1, the percent error
E for each domain position is given by

FIGURE 2. Plot (a): Representation of a square domain. Plot (b):
Particular for x> 0 and y>0.

E = [AM1(xi, yi)+ BM2(xi, yi)− 1] 100. (43)

The A and B coefficients are calculated for a polygon
with n sides and n ranging in n ∈ [4, 14] and minimizing
N (2) given by Eq. (42). Average, median, maximum positive
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and negative errors based on E are further compared for all
the tested cases. Finally, we compare the analytical results
with the numerical simulation performed using the software
Ansys. More precisely, we compare the numerical simulation
with the zero-order of the perturbative approach given by

σ (0)(r, θ) =
2φS
π

ε0√
a(θ )2 − r2

, (44)

where the surface potential φS , for numerical reasons, has
been set 100 volts instead of the unit. The thickness of the
thin octagonal foil is 0.01 mm, and the radius of the circum-
scribed circumference, i.e., the distance center-vertex of the
octagon, is 1 mm. The agreement between the analytical for-
mula (44) and the numerical analysis is very good, as shown
in Figs. 3 and 4. It is worthy of stressing that, being the
charge density divergent on the octagon border, the agreement
between analytical formulation and numerical calculations
ceases to hold in the vicinity of the border.

FIGURE 3. Charge density: Blu line the analytical result given by (32 ).
Red line the numerical evaluation. We compared the results along the
line θ = 0, i.e., the x axis. For numerical reason the potential on the
surface φS has been set 100 volts. The thickness of the foil is 0.01 mm,
and the radius of the circumscribed circumference is 1 mm.

FIGURE 4. Charge density: Blu line the analytical result given by (32 ).
Red line the numerical evaluation. We compared the results along the
line θ = π/8, i.e., from the origin to the vertex of the octagon. For
numerical reason the potential on the surface φS has been set 100 volts.
The thickness of the foil is 0.01 mm, and the radius of the circumscribed
circumference is 1 mm.

VI. DISCUSSION OF THE NUMERICAL RESULTS
The potential φ resulting from the numerical integration of
Eq. (31), with the A and B coefficient obtained according
to the aforementioned method, is calculated, and the error
E derived from Eq. (43) is shown in Fig. 5 for different
geometries (φS = 1). In particular, it is shown that the value of
φ is underestimated with respect to the attended value φS = 1
in the corner region in all the cases. At the same time, the error

E practically vanishes in the center of the domain. The errorE
is significantly reducedwith the increase of the polygon sides,
as shown in Figs. 5 a-d . This behavior is expected since,
increasing n, the influence of the corners is reduced. The
domain tends to a circular shape and Eq. (19) with a(θ ) = a
gives the exact expression for potential φ(r, θ). A quantitative
analysis is performed on the maximum positive and negative
percent error E , the median and mean error along with the
numerical domain, which is shown in Fig. 6.

FIGURE 5. Representation of the percent error E in polygonal domains:
Square domain, plot (a). Pentagonal domain, plot (b). Hexagonal domain,
plot (c). Heptagonal domain, plot (d).

FIGURE 6. Numerical analysis of the different types of error as function
of the polygon sides. Plot (a): The x-axis represents the side number of
the polygons while the y-axis represents the percent error. Plot (b): The
x-axis represents the side number of the polygons while the y-axes
represent the median (on the left) and mean (on the right) error.

The error E has a descent trend as a function of n, while the
domain tends to the circular one. By comparing Figs. 5 and 6,
we observe that the largest error is located on the corner area,
where it reaches value −18% on the square domain case.
A slight overestimation of φ occurs on the side area within
a 9% range. Regarding the numerical calculations, the largest
error amount is found on the domain borders, where Eqs. (32)
and (33 ) diverge, thus introducing an underestimation of φ
during the numerical integration. The presented calculations
show an average underestimation error within 0.2% range
and a median error within 0.35% range for all the tested
cases, thus confirming the capability of the current method to
perform a satisfactory evaluation of the electrical potential φ
and the charge density σ on the chosen domains. The obtained
values of A, B, and the norm N (2) for the different domains
are shown in Tab. 1.
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TABLE 1. Evaluated values of the coefficients A, B, and N (2) for the
polygonal cases. The value of A is of the order of π−2 ≈ 0.1013.

FIGURE 7. Charge density in two different domains. In (a) and (b) the
density σ is plotted for a square domain and for the line y = 0,
respectively. In (c) and (d) the density σ is plotted for an octagonal
domain and for the line y = 0, respectively.

FIGURE 8. Figure (a): Plot of the electrical potential generated by a
conducting octagonal surface given by Eq. (31) evaluated at
z = 0.Figure (b): Plot of the electrical potential generated by a
conducting octagonal surface given by Eq. (31) evaluated at z = 0.
A point of view from above.

According to Eq. (31), at x = y = z = 0, the integral
associated to the σ (0) term takes the value Aπ2 for any border
a(θ ). The value of M1 is expected approximatively π2, and
consequently the value of A is of the order of π−2 ≈ 0.1013
as consistently shown in Tab. 1. The coefficientB decreases as
the number of sides increases, which is also expected. Indeed,
while n increases, the domain tends to a circle, reducing the
corrective term’s contribution to zero. However, it is worthy
to notice that the low contribution of theM2(xi, yi) term to the
potential φ leads to higher sensitivity in B calculation through
the solution of the over-determined system shown in Eq. (41).
Finally, Figs. 7b and 7d show the charge density behavior on

a sample line i.e. y = 0 in order to highlight its divergent
behavior on the borders.

VII. CONCLUSION
In this paper, we presented an analytical formulation of the
problem of electrostatic charge distributions on arbitrarily
shaped conductor surfaces. We derived an approximate ana-
lytical formulation via a perturbative approach consisting in
adopting a deformed ellipsoidal coordinate system. We ana-
lytically showed the intuitive result that the charge density
takes divergent values on the border of two-dimensional
conductors providing the closed analytical expression of the
quantities of interest. The approach is applicable when, devel-
oping the border equation in Fourier series, the first non-
constant border Fourier coefficient is small compared to
the constant term, regardless of the geometry of the edge.
To the zero-order, we showed that the problem is solved
by assigning to the constant A the value π−2 for all the
borders. We compared the analytical results with a numer-
ical analysis based on the Finite Element Methods (FEM).
For this purpose we analyzed several polygonal contours,
and the agreement between the two approaches, already
at the zero perturbative order, was found remarkable. This
allows us to perform an analytical treatment of the density
charge distribution on an arbitrary shaped conducting sur-
face. The presented approach can overcome the difficulty
of dealing with divergent quantities when a series approach
is used.
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