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ABSTRACT Due to the increase in the number of patients who died as a result of the SARS-CoV-2 virus
around the world, researchers are working tirelessly to find technological solutions to help doctors in their
daily work. Fast and accurate Artificial Intelligence (Al) techniques are needed to assist doctors in their
decisions to predict the severity and mortality risk of a patient. Early prediction of patient severity would
help in saving hospital resources and decrease the continual death of patients by providing early medication
actions. Currently, X-ray images are used as early symptoms in detecting COVID-19 patients. Therefore,
in this research, a prediction model has been built to predict different levels of severity risks for the COVID-19
patient based on X-ray images by applying machine learning techniques. To build the proposed model,
CheXNet deep pre-trained model and hybrid handcrafted techniques were applied to extract features, two
different methods: Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE) were
integrated to select the most important features, and then, six machine learning techniques were applied. For
handcrafted features, the experiments proved that merging the features that have been selected by PCA
and RFE together (PCA + RFE) achieved the best results with all classifiers compared with using all
features or using the features selected by PCA or RFE individually. The XGBoost classifier achieved the best
performance with the merged (PCA + RFE) features, where it accomplished 97% accuracy, 98% precision,
95% recall, 96% f1-score and 100% roc-auc. Also, SVM carried out the same results with some minor
differences, but overall it was a good performance where it accomplished 97% accuracy, 96% precision,
95% recall, 95% f1-score and 99% roc-auc. On the other hand, for pre-trained CheXNet features, Extra Tree
and SVM classifiers with RFE achieved 99.6% for all measures.

INDEX TERMS Chest X-rays, COVID-19, deep learning, handcrafted techniques, machine learning,

mortality prediction, severity prediction.

I. INTRODUCTION

Predicting the severity risk of any disease at an early stage is a
crucial task and has many effects, like reducing the mortality
rate, consuming hospital resources, and supporting doctors in
their decision making.

In the current critical period, during the spread of coron-
avirus around the world and the increasing number of patients
and deaths, the number of COVID-19 patients reached nearly
230 million while the number of deaths was 4.7 million
around the world till now during writing this research,
according to statistics from Johns Hopkins University [1].
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The United States is the head of the countries, followed by
Brazil, India, France, Russia, Italy, and many other countries.
The reasons behind this growth in numbers are the high preva-
lence of COVID-19, late diagnosis, and lack of resources in
many hospitals to absorb this pandemic. Therefore, predicting
the severity risk of COVID-19 patients is a critical task and
has many positive outcomes, such as providing the required
health care for each patient according to his severity, good
consumption of hospital resources that give the highest pri-
ority to the high-risk patient, and assisting doctors in making
their decisions that will lead to improvement in the patient’s
treatment.

Three main resources that could be used to detect
COVID-19: X-ray images, computed tomography (CT) and
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reverse transcription-polymerase chain reaction (RT-PCR).
The best type is RT-PCR, but it is very expensive, not avail-
able in all hospitals and takes a lot of time to get the results.
Therefore, many doctors depend on chest radiological imag-
ing such as X-rays and CT for early diagnosis and treatment
of this disease [2]. CT is a very sensitive tool, but its results
can be observed after a long time according to the onset of
symptoms, where normal CT takes from zero to two days to
see its findings [3], so CT is difficult to use in monitoring
patients periodically. Chest-X ray (CXR) radiography is less
sensitive than CT and RT-PCR, but it is one of the most com-
monly used and accessible methods for rapid examination
of lung conditions. X-ray findings are observed in a short
time and it is not an expensive technique, so it can be used
periodically to monitor the patient’s status.

Feature extraction is a big challenge, especially when the
dataset size is small. The features of an image are quanti-
tative data values or pixel intensities that hold meaningful
information about pixels of an image in terms of local and/or
global variations. It is the process of locating a feature vector
representation of input images, and effectively isolating the
most critical variables relevant to the aim of the intended
application. Currently, two main approaches are used for
feature extraction in X-ray images, namely non-handcrafted
(deep learning) and handcrafted feature extraction.

The deep learning technique extracts local features from
images as much as possible, but it is more suitable for large
datasets. Most of the published research that has relied on
chest X-ray images in its work so far focuses either on
the diagnosis the disease itself or the distinction between
COVID-19 and other types of pneumonia, as in [4]-[9].
These studies depended on the Convolutional Neural Net-
work (CNN) techniques and different pre-trained models like
ResNet, DenseNet, CheXNet, Xception, VGG, and others.
In [10], the authors used X-ray images to detect specific
severity scores of COVID-19 as a regression problem with
a pre-trained deep learning model called DenseNet where
X-ray images were scored retrospectively by experts in terms
of the extent of lung involvement, which is called geo-
graphic extent score (range 0-8), as well as the degree of
opacity, which is named lung opacity score (range 0-6),
and mean absolute error (MAE) was calculated to evaluate
the model. Unfortunately, sometimes deep learning models
may suffer from over-fitting problems [11], cause high bias
because they extract unknown and abstract features [12],
and need high-dimensional datasets to obtain higher perfor-
mance. To overcome such problems, some researchers used
pre-trained transfer learning models to take advantage of the
potential of deep learning techniques.

On the other hand, the handcrafted techniques manu-
ally extract more known or meaningful features designed
for a specific problem. The important advantages of this
approach are that it does not require a large dataset as well
as the extraction of more related features. Examples of these
papers are [13]-[16], in which the authors built a detection
model to identify COVID-19 disease from other types of
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pneumonia based on X-ray images and used a combination
of handcrafted methods to extract the features, then applied a
machine learning algorithm for the detection task, where the
results are promising.

Selecting the most effective image features is an important
step that has a significant impact on the quality and perfor-
mance of the prediction model. It aims to remove all noise,
redundant, and interrelated features. Finally, only the most
informative features will be retained. The outcome of this step
will come back to the high performance of classifiers because
the number of features has become smaller and more infor-
mative. There are a lot of methods for feature selection, such
as Filter-based [17], Forward Selection, Backward Elimina-
tion, Recursive Feature Elimination (RFE), Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA)
[18], [19], and optimization techniques [20]-[22]. Some of
these techniques were utilized for selecting features from
X-ray images [23], [24] for Covid-19 detection.

X-ray images have important characteristics where they are
used as the initial step for disease detection and to monitor
the patient’s condition in both the hospital and ICU. For this
reason, they are used in most of the current research work
to detect and diagnose diseases, but, to our knowledge, not
used in any research work for severity prediction. Therefore,
in this study, a prediction model has been built to predict
different types of severity risks of a patient based on a public
dataset of X-ray images [25]. The proposed model can predict
early the dangers of death and severity risks of the patient
to determine the resources required to deal with the patient’s
condition. It may predict whether the patient will need to enter
the Intensive Care Unit (ICU) or not, as well as report his
death. The model is designed to predict different levels of
patient severity using handcrafted and pre-trained CheXNet
techniques to extract the features of images. Then, merge the
features produced by Principal Component Analysis (PCA)
and Recursive Feature Elimination (RFE). Finally, classical
and ensemble machine learning algorithms are applied.

The paper is organized as follows, Section II presents
the material and methods of the proposed framework. Then,
Section III demonstrates the experimental setup details
and Section IV shows the results and discussion. After that,
Section V reveals the limitations of the proposed study.
Finally, Section VI concludes the study.

Il. MATERIALS AND METHODS

The details of the proposed framework for COVID-19 sever-
ity level prediction are presented in this section. First,
the overall architecture of the framework is described, then
the applied methodology for predicting the severity level is
discussed.

A. THE PROPOSED ARCHITECTURE

The proposed framework consists of four main phases,
as shown in Fig. 1. Firstly, the input X-ray dataset is passed to
data pre-processing to resize and normalize the images. Then,
different feature extraction methods are applied to extract
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the features. After that, feature selection techniques are exe-
cuted to select the most important features in the images, and
finally, different machine learning classifiers are applied to
build the models.

B. PROPOSED METHODOLOGY
The main phases of the proposed framework are briefly
described in this section.

1) PHASE-1 (DATA PREPROCESSING)

The data pre-processing phase aims at preparing the data
to be used in the prediction model. Usually, data are messy
and come from different sources with different sizes and
resolutions. So, this phase is crucial for cleaning up and
normalizing the data to reduce the complexity and increase
the accuracy of the prediction model. Different types of
transformations could be executed according to the dataset
like, re-sizing, rotating, shifting, normalizing, and so on.
The four steps of preprocessing are sequentially executed
on the dataset as described in Fig. 1. Firstly, transform the
image to grayscale to better display diagnostically important
information and optimize the radiographic information con-
tent [26]. Secondly, for handcrafted features, resize the image
to 512 x 512 dimension as recommended by [16], [27], [28]
to guarantee that the image retains the most informative infor-
mation about the patient’s severity level. Otherwise, being
smaller than 512 x 512 may lead to a loss in information
related to the same assigned class of the whole image. For
deep features, resize images to 224 x 224 to be suitable for
the required input for the CheXNet pre-trained model. Third,
normalizing the image by min-max technique to rescale the
image pixels in the range of 0-1, then applying Adaptive
Histogram Equalization (AHE) to enhance the image contrast
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and improve the medical image. Fig. 2 shows examples of
X-ray images before and after the data preprocessing phase.

FIGURE 2. (a), (b), and (c) are examples of images before applying the
preprocessing methods, while (a*), (b*), and (c*) are examples of images
after applying the preprocessing methods.

2) PHASE-2 (FEATURE EXTRACTION)

In this study, due to the small size of the used dataset
and the motivating results of using the handcrafted tech-
niques and pre-trained models for extracting features from
medical images in other published papers [8], [9], [13], [14],
[29]-[31], so the features would be extracted using two dif-
ferent techniques: the pre-trained CheXNet deep model and
a set of handcrafted descriptors.

CheXNet Deep Features:

CheXNet [32] is a 121-layer convolutional neural network
based on the DenseNet architecture [33]. It trained over
100000 frontal view chest X-ray images for 14 pneumonia
diseases. The performance of CheXNet was compared with
four academic radiologists who annotated a test set and is said
to exceed average radiologist performance in detection. The
summary design of the used pre-trained CheXNet model is
outlined in Fig. 3. It consists of five convolution blocks and
a max-pooling layer to extract features from X-ray images.
The model generates 9216 features used by the proposed
prediction model.

Handcrafted Features:

The features are extracted in the spatial and frequency
domains as described in Fig. 1. The spatial domain deals with
the original matrix of the image. Three methods were exe-
cuted to extract features in this domain: texture features of the
original image, Gray-Level Co-Occurrence Matrix (GLCM),
and Gray Level Difference Matrix (GLDM).

1) Texture features of the original image: 14 features
are computed (Area, Mean, Std, Skewness, Kurtosis,
Energy, Entropy, Max, Min, Mean Deviation, Median,
Range, Root Mean Square (RMS), and Uniformity)
from the original matrix of the image.
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blockl_pool (MaxPooling2D) (None, 112, 112, &4) o
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re 1u 1 (RelLU) (None, 7, 7, 512) o]
feature_layer (MaxPooling2D)} (None, 3, 3, 512) s}

FIGURE 3. The summary design of CheXNet model.

2) Gray-Level Co-Occurrence Matrix (GLCM): accord-
ing to this model, co-Occurrence matrices were built in
four directions (e.g., 0°, 45°, 90° and 135°), therefore
the cartesian product of the 14 texture features in four
different directions is applied and yields 56 features.

3) Gray Level Difference Matrix (GLDM): the same steps
of GLCM were executed, but the difference matrices
were built in the four directions, and then, another
56 features were extracted.

The frequency-domain deals with the rate of pixel value
change in a spatial matrix domain. Two transforms were
applied for feature extraction: Fast Fourier Transform (FFT)
and Wavelet transform.

1) Fast Fourier Transform (FFT) is a technique for trans-
forming digital images into a series of sine and
cosine waves with different frequencies and ampli-
tudes. The transformed content varies according to
the different frequency ranges, where the higher fre-
quency ranges have more significant texture compo-
nents. Then, the same texture features mentioned above
are extracted from the transformed image.

2) Wavelet transform is a technique for transforming
images into time and frequency representations. Practi-
cally, it uses low-pass and high-pass filters for the high
and low scales to decompose each picture into four
components: approximation (Irp), horizontal (Irp),
vertical (Igr), and diagonal (Igy) coefficients. After
that, the 14 texture features were extracted from the
transformed coefficients.

Finally, all the texture features that were extracted by the
mentioned methods are combined to form the image features.
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3) PHASE-3 (FEATURE SELECTION)

Two different methods are used for selecting the most sig-
nificant features: Principal Component Analysis (PCA) and
Recursive Feature Elimination (RFE). They are fast, popular
in many domains, have fewer parameters, simple implemen-
tation, and require low computations. Principal Component
Analysis (PCA) is an orthogonal transformation that converts
a group of possibly correlated features into a smaller number
of interrelated features called principal components [34]. The
objective of PCA is to reduce the dimensionality of the dataset
while retaining most of the original variability in the data. Itis
done by projecting the original dataset into the reduced space
of PCA using the eigenvectors of the correlation/covariance
matrix. The resulting projected data are linear combinations
of the original data describing most of the variance in the
data where the first component contains the largest amount of
data variance. After that, each subsequent component has the
remaining data variability as possible. Algorithm 1 presents
the steps of PCA for reducing dimensionality.

Algorithm 1 PCA for Dimentiality Reduction
Input: Image features, the number of features.
Output: The most principal components
1: Standardize data by Z scored to transform all variables to
be in the same scale;

ey

2: Compute the covariance matrix (A) of the standardized
data for each two variables X and Y;

Y X — )Y —y)
n—1 )

cov(X,Y) = (2)

3: Calculate the eigenvectors (v) and eigenvalues (1) of the
covariance matrix and store the eigenvalues in a descend-
ing order;

P(A — AD) = 0. A3)

where I is the identity matrix.

4: Sort the eigenvectors according to their decreasing order
of eigenvalues;

5: Choose k eigenvectors with the largest eigenvalues;

6: Transform the data from the original dimensions to the
reduced ones (k) represented by the principal compo-
nents;

7: return the most k principal components.

Recursive Feature Elimination (RFE) [35] is a backward
wrapper feature selection algorithm that uses a machine
learning classifier to select the optimal features. The classifier
is used as an objective function and RFE tries to find the
most effective features that increase the classification result.
The process of RFE for feature selection works as presented
in Algorithm 2:
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Algorithm 2 RFE for Feature Selection
Input: Image features, the number of features N, supervised
classifier.
Output: The best selected features.
1: while (n! = N) do
2. Fit the classifier with all features;
3:  Rank features according to its importance for the
model results;
Remove the weakest feature;
5. if the desired number of features are reached,
stop.
else,
g0 to step 2;
6: end while
: return the best selected features.

2

4) PHASE-4 (PREDICTION MODELS)

To build a robust predictive model, different machine learning
classifiers were compared. Six classifiers: K Nearest Neigh-
bors (KNN), Random Forest (RF), Extra Tree (ET), Bagging,
eXtreme Gradient Boosting (XGBoost), and Support vector
machine (SVM) were used.

K Nearest Neighbors (KNN) is a supervised algorithm
developed by Thomas Cover [36] for classification and
regression problems. It uses a feature similarity method to
predict the label of a new given point, which further means
that the new test point will be classified according to the
majority vote of the nearest K neighbours in the training
set, where K is the number of neighbours. It is characterized
as simple, easy-to-implement, depending on only a single
parameter (K), and effective classifiers.

Bootstrap aggregating, also known as (Bagging), is one of
the simplest ensemble-based techniques that was developed
by Breiman [37]. It is used for variance reduction for those
algorithms that have high variance, like decision tree classi-
fiers. It is designed to make decision trees more robust and
to achieve better performance. The idea behind the bagging
classifier is to gather the predictions of several “weak learn-
ers” to form a ““strong learner”” with a more accurate output.
Here, each decision tree refers to a ““weak learner’’, whereas
a combination of these trees together is a “strong learner™.
It uses the bootstrap concept to generate new training sets
from the original dataset with replacements, where the gen-
erated dataset is called the Bootstrapped dataset. The size of
the bootstrapped dataset is typically the same or smaller than
the size of the original dataset. The steps of the classifier are
as following:

1) Sample many new random training sets from the origi-
nal dataset with replacements (Bootstrapped datasets);

2) Build a decision tree classifier for each created boot-
strapped dataset;

3) Feed the original dataset into each of the previously
built classifiers and keep track of the determined
classification;
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4) Use the determined classification to select the final

decision by majority voting.

The Random Forest (RF) is an ensemble classifier and an
improved version of the original bagging classifier. The forest
consists of many decision trees and the final classification
result is determined by aggregating all classification results
of these composed trees and taking the majority vote of clas-
sification results from them [38]. It differs from the bagging
algorithm by using a learning algorithm that selects a random
subset of the features at each split in the growing phase.
The reason for doing this is to make all the decision trees
different because each tree uses a random different subset of
data.

Extra Tree (ET) is a supervised ensemble classifier pro-
posed by Geurts et al. [39]. It is also based on a set of
decision trees, uses majority voting for the final decision
on classification problems, and randomly selects a subset of
features when choosing the partition of each node like RF.
The difference between ET and any other ensemble algo-
rithm is that it contains a bias/variance analysis where it uses
the whole original samples rather than bootstrapped samples
that will reduce the bias. On the other hand, the selection
of cut points to split nodes in the tree is random, which
will reduce the variance. The performance is similar to
other ensemble classifiers, but ET can be computationally
faster [40].

EXtreme Gradient Boosting (XGBoost) is an ensemble
supervised classifier [40]. It is a scalable machine learning
system for gradient tree boosting. XGBoost builds one tree
at a time in a forward manner; each new tree is created and
added to the ensemble model to correct the errors made by
the previous ones sequentially until no further improvements
can be made; and then, the trees added together to predict the
final result. It is named gradient boosting because it uses the
gradient descent algorithm to decrease the loss when adding
new trees. It differs from RF, where RF builds each tree
independently, while XGBoost adds each one sequentially.
Also, RF combines the results of the trees at the end of the
process by voting for the majority result, whereas XGBoost
combines the results along the way. The most important
advantage of this classifier is that it uses a more regular-
ized model formalization to reduce over-fitting and enhance
performance.

Support vector machine (SVM) is a supervised machine
learning algorithm proposed by Cortes and Vapnik [41]. The
objective of SVM is to find the optimal decision boundary
with a maximum margin hyperplane between the different
classes of samples. To achieve that, SVM needs to convert
the space of the input data from a low-dimensional space into
a higher-dimensional space to separate datasets into different
samples with the optimal boundary. This conversion is imple-
mented by a technique called a kernel. The kernel converts
non-separable problems into separable problems by adding
more dimensions to data. The commonly used kernel methods
include Radial basis kernel, Polynomial kernel, and Linear
kernel.
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Ill. EXPERIMENTAL SETUP

In this section, all the details of the used dataset, feature selec-
tion techniques, machine learning classifiers, and evaluation
metrics are described.

A. DATASET
A public-available dataset developed by Cohen JP [25]
has been used. The dataset contains data about COVID-19
patients and other pneumonia patients. It includes informa-
tion about the patient like patient-id, age, X-ray image, type
of disease, survival or not, and went-ICU or not. The cohort
of the paper was built by first excluding all patients less
than 18 years old; selecting only the confirmed COVID-19
patients that had a positive RT-PCR test: 40% female and
60% male patients; and then, using the variables that rep-
resent patient status, such as survival or not, as well as
went-ICU to classify the patients. The aforementioned vari-
ables are used to label the severity of patients. Actually, two
main variables are used to identify the severity level, namely
survival and went-ICU variables. The classification of the
severity is done according to the following rules:

« if survival is false, it is called high severity;

o if survival and went-ICU are true, it is termed moderate

severity;
o if survival is true and went-ICU is false, it is named low
severity.

These classification rules include mortality patients with a
high severity class, patients who need to enter ICU as a
moderate severity class, and patients with stable conditions
who do not need to enter ICU as a low severity class, where
the size of the cohort is 127 images. The splitting of the
dataset is done by an 80/20 percentage for train/test sets and
grouped by the patient-id to ensure that all X-ray images
relating to each patient are distributed to only one (train/test)
set.

B. FEATURE SELECTION METHODS

1) PRINCIPAL COMPONENT ANALYSIS (PCA)

The aforementioned PCA steps were applied to the original
data. Fig. 4 shows the variance ratio of different components
for handcrafted and it is noted that 24 components represent
95% of the variance of the original data, so the number of
selected principal components is 24 for handcrafted features.
On the other hand, the variance ratio of CheXNet components
is 103 components, which represents 95% of the variance of
the original features.

2) RECURSIVE FEATURE ELIMINATION (RFE)

There are two types of hyperparameters required: the number
of features to be selected and the algorithm to be used as an
objective function in the feature selection process. Various
algorithms have been tried, like gradient boosting, logistic
regression, decision tree, random forest, and perceptron with
different numbers of features. Every outcome of selected
features by these experiments has been tested on the used
machine learning classifiers in this study. Due to the large
number of results, only the best hyper-parameter selection
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FIGURE 4. The number of PCA components for the handcrafted features.

values are mentioned here, where the best estimator algorithm
is perceptron and the optimal number of features is 28 for
handcrafted and 100 for CheXNet deep features that per-
formed well with the classifiers.

C. MACHINE LEARNING CLASSIFIERS

For the hyper-parameters of the used classifiers, the grid
search algorithm and a try and error approach were applied
to find out the best values for them. Table. 1 reports the
hyper-parameter values of the used classifiers.

TABLE 1. Hyper-parameters of each classifier.

Classifier Parameters
KNN n_neighbors=10.
RF n_ estimators=100; max_ depth=6;
max_ features=0.2.
n_ estimators=100; learning_rate=0.3;
XGboost objective=multi:softprob; subsample=0.5.
Bagging n_ estimators=100; base_estimator=DecisionTree;
max_ features=0.2; max_samples=0.9.
ET n_ estimators=100; max_ features=0.2;
min_samples_split=15.
SVM kernel=rbf; C=3; gamma=0.1.

D. EVALUATION METRICS

In order to evaluate the performance of the models, vari-
ous scores were measured to ensure the results, like accu-
racy, macro-avg of sensitivity/recall, precision, f1 scores, and
AUROC. The variable C refers to the number of classes and
i € C indicates to a specific class. TP, TN, FP, and FN stand
for True Positive, True Negative, False Positive, and False
Negative, respectively.

o The precision score measures the ratio of correctly
predicted positive observations to the total predicted
positive observations by (4).

. TP;
Precision; = ——. 4
TP; 4+ FP;

« Recall/Sensitivity calculates the ratio of correctly pre-
dicted positive observations to all observations in a true
class using (5).

TP;

Recall; = ———. )
TP; + TN;
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o Fl-score is the weighted average between Precision and
Recall calculations and is computed by (6). It can be
documented that this score is more useful than accuracy
because it takes into account false positive and false
negative measurements.

FI-S 2(Recall; x Precision;) ©)
-Score; = .
! Recall; + Precision;

o Accuracy simply calculates the ratio of correctly pre-
dicted observations to the total observations, as in (7).
TP + TN
TP + TN + FP + FN'
o To evaluate the general performance of different clas-

sifiers, the Macro-avg score has been chosen and com-
puted as (8) for averaging calculation by classes.

Accuracy =

)

> _;measure; ®)
Cc

o The Area Under the Receiver Operating Characteristics
(AUROC) is computed. It is an important performance
measurement for classification problems. It computes
the capability of the model to distinguish between the
different classes, which means that the model with a
higher AUC value can predict the class sample as its
actual value.

It is important to mention that all these measurements
were computed for all different classifiers in all performed
experiments.

Macro-avg(measure) =

IV. EXPERIMENTAL RESULTS & DISCUSSION
It is worth mentioning that many experiments have been exe-
cuted and, due to the large number of results, only the main
experiments are presented here. The paper experiments were
implemented in the Python programming language using the
sklearn package with its libraries for reporting the results
like classification report, confusion matrix, roc curve, and
AUC. All experiments were performed on the dataset men-
tioned in section III-A. Firstly, the preprocessing steps and the
feature extraction techniques mentioned in II-B1 and II-B2
were applied. Then, the feature selection step is performed in
different ways, as follows:

1) All extracted features were used (No feature selection

methods were used).

2) PCA is applied to the extracted features.

3) RFE is applied to the extracted features.

4) The features that were selected by PCA and RFE are

combined together (PCA + RFE).

Finally, the machine learning classifiers mentioned in
part III-C were executed. The experimental results are pre-
sented in the following tables have meaningful column
names: the “All”” column means using all extracted features;
the “PCA” and “RFE” columns denote the results of the
selected features by PCA and RFE techniques individually;
and the “(PCA 4+ RFE)” column shows the results of the
combined features of PCA and RFE techniques together.
This section is divided into two subsections where the
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first one is related to the experiments over the handcrafted
extracted features and the second one displays the results of
the experiments over CheXNet extracted features by applying
the used classifiers.

A. EXPERIMENTS OVER HANDCRAFTED FEATURES
Table. 2 contains the number of the used handcrafted features
in each experiment.

TABLE 2. The number of the used handcrafted features.

Experiment name | Number of features
All 252
PCA 24
RFE 28
PCA + RFE 52

The results in Tables. 3, 4, 5, 6, 7, and 8 demonstrate
that using the combined features of PCA and RFE over the
handcrafted extracted features achieved the best results on all
scores: accuracy, precision, recall, F1-score, and Roc-AUC
with all classifiers compared with using all extracted features,
PCA features, or RFE features alone. Also, the findings
in Tables. 3 and 8 show that using the selected features by
PCA was better than using the selected features by RFE with
KNN and SVM classifiers respectively. It is appeared that
RFE surpassed PCA with the Bagging classifier as described
in Table 6, while in the remaining results there were no
big differences between using PCA or RFE with ensemble
classifiers like Random Forest, XGBoost, and Extra Tree as
presented in Tables. 4, 5, and 7 respectively. The compared
results in Fig. 5 show that SVM and XGBoost achieved
the best accuracy (97%) by using the merged features
(PCA + RFE) compared with other classifiers.

TABLE 3. Results of the KNN classifier over the handcrafted features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.86 | 0.90 | 0.86 0.93
Precision | 0.87 | 0.90 | 0.87 0.93

Recall 0.81 | 0.86 | 0.81 0.90
Fl-score | 0.83 | 0.87 | 0.82 0.90

The confusion matrices of SVM and XGBoost classifiers
are described in Figs. 6 and 7 to show the details related to
the values of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN) for each classifier.
Also, The Roc-AUC results of the same classifiers are perfect
for the different classes as presented in Figs. 8 and 9.

B. EXPERIMENTS OVER CheXNet DEEP FEATURES
The details about the number of used CheXNet features for
each experiment are described in Table. 9.

For CheXNet deep features, the results in
Tables. 10, 11, 12, 13, 14, and 15 demonstrate that RFE has
achieved the best results with all classifiers compared with
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TABLE 4. Results of the random forest classifier over the handcrafted
features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.83 | 0.86 | 0.86 0.90
Precision | 0.81 | 0.88 | 0.88 0.90

Recall 0.79 | 0.81 | 0.81 0.86
Fl-score | 0.80 | 0.82 | 0.82 0.87

TABLE 5. Results of the XGBoost classifier over the handcrafted features.

Score No selection | PCA | RFE | PCA + RFE
Accuracy 0.86 0.90 | 0.90 0.97
Precision 0.85 0.88 | 0.91 0.98

Recall 0.86 091 | 0.86 0.95
Fl-score 0.85 0.89 | 0.88 0.96

TABLE 6. Results of the bagging classifier over the handcrafted features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.79 | 0.76 | 0.83 0.93
Precision | 0.82 | 0.79 | 0.81 0.93

Recall 0.74 | 0.67 | 0.79 0.90
Fl-score | 0.76 | 0.69 | 0.79 0.90

TABLE 7. Results of the ET classifier over the handcrafted features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.86 | 0.90 | 0.90 0.93
Precision | 0.88 | 0.90 | 0.91 0.93

Recall 0.83 | 0.86 | 0.86 0.90
Fl-score | 0.83 | 0.87 | 0.86 0.90

TABLE 8. Results of the SVM classifier over the handcrafted features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.90 | 0.93 | 0.90 0.97
Precision | 0.90 | 0.93 | 0.90 0.96

Recall 0.88 | 0.90 | 0.86 0.95
Fl-score | 0.87 | 0.90 | 0.87 0.95

AllL PCA, or hybrid features (PCA + RFE) features. The RFE
selected the optimal features from CheXNet deep features
and gained nearly 99.6% for all measures with Extra Tree
and SVM classifiers where their confusion matrix results,
as in Figs. 10 and 11, display the perfect values of TP, TN,
FP, and FN.

Finally, we can conclude that the feature extraction and
selection steps are the most important steps and have the
most effective effect on the results of the prediction model.
Also, choosing the method of feature selection should be
related to the type of the extracted features, as in the
aforementioned results, where RFE has accomplished per-
fect results with the pre-trained CheXNet extracted fea-
tures, whereas the combined techniques (RFE 4+ PCA) have
achieved promising results with the handcrafted features.
Overall, these results prove that utilizing machine learning
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FIGURE 5. The accuracy of the used classifiers by different experiments
over the handcrafted features.
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FIGURE 6. Conflusion matrix of the SVM classifier over the merged
handcrafted features (PCA + RFE).
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FIGURE 7. Conflusion matrix of the XGBoost classifier over the merged
handcrafted features (PCA + RFE).

techniques in the COVID-19 pandemic would improve the
healthcare system all over the world. This paper follows most
of the proposed recommendations in [12], like implementa-
tion replicability, where the source code has been uploaded
on GitHub at https://github.com/safynaz/Cov-Sev,. The data
pre-processing methods and the techniques for every step
in the prediction model have been explained in sufficient
detail as described in Section II. Also, the demographics of
the used dataset did not include any pediatric images, but
patients less than 18 years old were excluded, where most of
the used cohort started at 20 years old and were 40% female
and 60% male. The paper used two different techniques for
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ROC Results of SVM to Multi-class

TABLE 11. Results of the random forest classifier over the CheXNet

features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.86 | 0.69 | 0.93 0.90
Precision | 0.90 | 0.80 | 0.96 0.94

Recall 0.81 | 0.62 | 0.90 0.86
Fl-score | 0.81 | 0.60 | 0.92 0.88

TABLE 12. Results of the XGBoost classifier over the CheXNet features.

10 - /,
L] ’I’
- -
084, R
-
e -
u 0.6 -
=] ’1'
I
& e
w 04 s
= -
= ®  macro-average ROC curve (area = 0.99)
0.2 ’,’ ROC curve of class Low (area = 0.97)
P ROC curve of class Moderate (area = 1.00)
,.p’ === ROC curve of class High (area = 0.98)
0.0

0.0

02

0.4

0.6

0.8

False Positive Rate

FIGURE 8. Roc curve of the SVM classifier over the merged handcrafted
features (PCA + RFE).
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FIGURE 9. Roc curve of the XGBoost classifier over the merged
handcrafted features (PCA + RFE).

TABLE 9. Number of the used CheXNet features.

Experiment name | Number of features
All 9216
PCA 103
RFE 100
PCA + RFE 203

TABLE 10. Results of the KNN classifier over the CheXNet features.

Score No selection | PCA | RFE | PCA + RFE
Accuracy 0.66 0.72 | 0.97 0.93
Precision 0.61 0.80 | 0.96 0.96

Recall 0.55 0.67 | 0.95 0.90
Fl-score 0.54 0.69 | 0.95 0.92

TABLE 13. Results of the bagging classifier over the CheXNet features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.69 | 0.83 | 0.97 0.93
Precision | 0.82 | 0.86 | 0.96 0.96

Recall 0.60 | 0.79 | 0.95 0.90
Fl-score | 0.59 | 0.80 | 0.95 0.92

TABLE 14. Results of the ET classifier over the CheXNet features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.66 | 0.86 | 99.6 0.97
Precision | 0.87 | 0.88 | 99.6 0.98

Recall 0.52 | 0.83 | 99.5 0.95
Fl-score | 0.53 | 0.84 | 99.3 0.96

TABLE 15. Results of the SVM classifier over the CheXNet features.

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.66 | 0.69 | 99.6 0.69
Precision | 0.73 | 0.77 | 99.7 0.77

Recall 0.57 | 0.62 | 99.5 0.62
Fl-score | 0.58 | 0.63 | 99.4 0.63

Score All | PCA | RFE | PCA + RFE
Accuracy | 0.59 | 0.59 | 0.97 0.66
Precision | 0.56 | 0.58 | 0.98 0.63

Recall 0.56 | 0.58 | 0.95 0.65
Fl-score | 0.56 | 0.58 | 0.96 0.64

feature extraction: handcrafted and deep learning techniques,
not deep learning only like in some studies, which may
cause high bias and overfitting. The most interesting thing
is that the results have not been compared with the RT-PCR
tests as the ground truth because some papers doubt that the
RT-PCR test may be negative but the patient has COVID-
19 whereas the paper results are compared with the ground
truth of what happened with COVID-19 patients in the three
levels of severity, whether patients would enter ICU, die
or not.
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V. LIMITATIONS OF THE STUDY

The target of this study is to propose a prediction model
for early severity for COVID-19 patients, but the proposed
models suffer from some limitations that can be solved in
future work. Firstly, due to the small size of the available
dataset, the proposed model used specific feature extrac-
tion techniques like deep transfer learning CheXNet and
handcrafted descriptors rather than building and training
deep models based on large and different types of COVID-
19 severity images. Secondly, the proposed models were
only validated internally and lack external validation due
to data privacy and hospitals are not allowed to give any
data. Third, although the prediction model based on the deep
extracted features achieved perfect results with all measure-
ments, it lacks interpretability and transparency because the
extracted features are unknown and abstract over several
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FIGURE 10. Conflusion matrix of the ET classifier by applying RFE over
the CheXNet features.
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FIGURE 11. Conflusion matrix of the SVM classifier by applying RFE over
the CheXNet features.

model layers and neurons. Furthermore, most of the available
images are compressed into JPEG and PNG, not the original
DICOM formats, causing a loss in image quality and a lack of
consistency.

VI. CONCLUSION

This study proposes a new predictive framework for the
severity and mortality risk of COVID-19 patients to help
doctors, hospitals, and medical facilities in their decision
making about which patients need to get attention first before
others, and at the same time, to keep hospitals’ resources
for high-risk priority patients. The proposed model is based
on a public X-ray image dataset for confirmed patients with
COVID-19 disease. The dataset is classified into three sever-
ity classes: high, moderate and low severity labels. The high
severity class means that a patient may die, while the mod-
erate severity class refers that a patient will need to enter the
ICU, whereas the low severity indicates that a patient will not
need to enter the ICU. Pre-trained deep CheXNet and hybrid
handcrafted techniques were applied to extract the features
from X-ray images, then two feature selection techniques
were merged together: PCA and RFE, and many predictive
models were built based on machine learning algorithms like
KNN, Random Forest (RF), XGboosting, Bagging, Extra
Tree, and SVM to compare and ensure the results. Many
experiments were executed and the results revealed that, for
handcrafted features, merging the selected features by PCA
and RFE (PCA + RFE) achieved the best results with all
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classifiers where the number of used features is 52, which is
nearly 25% of the original number of extracted features (252).
Also, XGboost and SVM surpassed other classifiers with an
accuracy of 97% and 100% roc-AUC with (PCA + RFE)
selected features. On the other hand, for CheXNet deep fea-
tures, RFE has achieved promising results with all measures
by all classifiers and 99.6% for all measures with SVM and
Extra tree classifiers where the number of selected features is
100 from originally 9216 features.
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