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ABSTRACT The uncertainty in the data is an obstacle in decision-making (DM) problems. In order to
solve problems with a variety of uncertainties a number of useful mathematical approaches together with
fuzzy sets, rough sets, soft sets, bipolar soft sets have been developed. The rough set theory is an effective
technique to study the uncertainty in data, while bipolar soft sets have the ability to handle the vagueness,
as well as bipolarity of the data in a variety of situations. This study develops a new methodology, which we
call the theory of dominance-based bipolar soft rough sets (DB-BSRSs), which will be used to propose a new
technique to solve decision-making problems. The idea introduced in this study has never been discussed
earlier. Furthermore, this concept has been explored by means of a detailed study of the structural properties.
Moreover, some important measures like the accuracy measure, the measure of precision, and the measure
of quality for DB-BSRSs are also provided. Finally, an application of the DB-BSRSs in multi-criteria
group decision-making (MCGDM) problem is presented and an algorithm for this application is proposed,
supported by an example, which yields the best decision, as well as, the worst decision between some objects.
In comparison with some existing results, we also present some advantages of our proposed method.

INDEX TERMS Rough set, bipolar soft rough set, DB-BSRSs, decision-making.

I. INTRODUCTION
Cantor’s set theory is essential for the entire of mathematics.
But one issue related to the notion of a set is the concept
of uncertainty. This uncertainty has been an issue for a long
time for researchers andmathematicians to solve complicated
problems in various fields, like social sciences, economics,
medical sciences, management sciences, engineering, deci-
sion making, and artificial intelligence, etc.

To get rid of this uncertainty, researchers in mathemat-
ics, computer science, and many other related fields have
proposed various theories like Probability theory, Fuzzy set
theory [68], Rough set (RS) theory [52], Vague set theory,
Graph theory, Decision-Making theory, etc. But, all of these
theories have their own internal problems, which might be
due to the inadequacy of the parameterization tools of the
theories as discussed in [48].

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

In 1999, Molodtsov [48] initiated the idea of the soft
set (SS) as a new mathematical approach for handling uncer-
tainty and vagueness. SS theory has rich potential for appli-
cations in many areas. Many interesting applications of
SS theory can be seen in [12]–[14], [27], [29], [31], [42], [69].

There has been a growing interest in SS theory.
Maji et al. [42] introduced some operations on soft sets
and made a theoretical study of soft sets. Based on [42],
Ali et al. [4] proposed a number of new operations on soft
sets and improve the concept of compliment of the soft set.
Fatimah et al. [16] introduced the concept of N-soft set as an
extension of SS. Feng et al. [17], [18], proposed the relation-
ships among soft sets, rough sets, and fuzzy sets, obtaining
three types of hybrid models: rough soft sets, soft rough sets,
and soft-rough fuzzy sets. Shabir et al. [57] reclassified a
model of a soft rough set known as a modified soft rough
set (MRS-set). Malik and Shabir [46] introduced the idea of
soft mapping and studied some of its properties. They applied
soft mapping in medical diagnosis. Maji et al. [43] proposed
the notion of fuzzy soft sets by combining fuzzy sets and
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soft sets. Babitha and Sunil [11] introduced the concept of soft
relations and soft functions. Then Qin et al. [54] pointed out
that Babitha and Sunil’s definition contradicts Cantor’s set
theory. Therefore they redefined the notion of soft relations
and soft functions.

SS theory [48] and RS theory [52] are regarded as effective
mathematical approaches to address uncertainty. In 2011,
Feng et al. [17] established a relationship among these two
theories and introduced the concept of a new hybrid version of
the soft rough sets (SRSs), that can give better approximations
over Pawlak’s RS theory in some cases ([17], Example 4.7).
This approach can be viewed as a generalization of RS theory.

The idea of dominance-based rough sets was proposed by
Greco et al. [21]–[24], [65]. It is an extension of RS theory.
Du and Hu [15] presented the notion of a dominance-based
rough fuzzy set. In 2019, Shaheen et al. [64] put forth
the idea of dominance-based SRSs and discuss their appli-
cation in decision analysis. Jun and Ahn [30] discussed
the double-framed soft sets with applications in BCK/
BCI-algebras.

A. LITERATURE REVIEW
In numerous sorts of data analysis, the bipolarity of the data
is a key component to be taken into consideration while
developing mathematical models for some issues. Bipolar-
ity discusses the positive and negative aspects of the data.
The positive data addresses what is assumed to be possible,
while the negative data addresses what is not possible or
certainly false. The concept that lies behind the presence
of bipolar information is that a wide assortment of human
decision-making depends on bipolar judgemental thinking.
For example, sweetness and sourness of food, participation
and rivalry, friendship and hostility, effects and side effects
of drugs are the two different aspects of information in
decision-making and coordination. The soft sets, the fuzzy
sets, and the rough sets are not appropriate tools to handle
this bipolarity.

Because of the significance of giving positive and nega-
tive aspects of data, Shabir and Naz [59] in 2013, initiated
the concept of bipolar soft sets (BSSs) and its set-theoretic
operations such as union, intersection, and complement and
discuss its application to DM problems. After this research,
BSSs have become increasingly popular with researchers.
In 2015, Karaaslan and Karataş [33] reclassified a version
of BSSs with another approximation giving opportunity to
examine topological structures of BSSs. They also provide
a DM methodology using BSSs with the help of an exam-
ple. Later on, Karaaslan et al. [35] presented the notion of
bipolar soft groups. In addition, Naz and Shabir [49] initiated
the notion of fuzzy BSSs and studied their algebraic struc-
tures. In 2017, Shabir and Bakhtawar [60] first proposed the
notion of bipolar soft connected, bipolar soft disconnected,
and bipolar soft compact spaces. Then, Öztürk ‘ [51] fur-
ther discussed the notions of interior and closure operators,
basis, and subspaces in the bipolar soft topological spaces.
Abdullah et al. [1] brought the idea of bipolar fuzzy soft

sets by hybridizing the soft sets and the bipolar fuzzy sets
and applied this idea in DM problem. Alkouri et al. [8]
initiated the idea of bipolar complex fuzzy sets and dis-
cussed their application in DM problems. In 2018, Karaaslan
and Çağman [36] proposed the concept of the bipolar soft
rough sets (BSRSs) which is a combination of RS theory
and BSSs. They also provide applications of BSRSs in DM.
Shabir and Gul [61] introduced the notion of modified rough
bipolar soft sets (MRBS-sets) and discussed their application
in MCGDM. Mahmood et al. [41] introduced a novel com-
plex fuzzy N-soft sets and their DM algorithm. Malik and
Shabir [45] initiated the idea of rough fuzzy BSSs and applied
this idea to solve DM problems. Also, Malik and Shabir [46]
developed a consensus model based on rough bipolar fuzzy
approximations. Mahmood [40] redefined a version of BSSs
which is called T-bipolar soft sets and applied this idea in
DM problems. Shabir et al. [62] initiated the idea of rough
approximations of BSSs by soft relations and applied this idea
in DM. Al-Shami [9] came up with the concept of belong
and nonbelong relations between a BSS and an ordinary
point. Riaz and Tehrim [55] initiated the concept of bipolar
fuzzy soft mappings and discuss their applications to bipolar
disorders. Kamacı and Petchimuthu [32] proposed the idea
of bipolar N-soft set, which is an extension of N-soft set, and
discuss its applications in DM problems. Akram and Ali [2]
developed a hybrid model for DM under rough Pythagorean
fuzzy bipolar soft information.

B. MOTIVATION
If we summarize all the above arguments, then we have
noticed that the BSSs have the capability to deal with the
bipolarity of the information about certain objects with the
help of two mappings. One mapping handles the positivity
of the information, while the other mapping measures the
negativity. Keeping in view the association between RSs and
BSSs, two attempts have been made to study the rough-
ness of BSSs: one by Karaaslan and Çağman [36], and the
other by Shabir and Gul [61]. This is the main motiva-
tion for us to introduce and study the novel approach of
the roughness of BSSs by using dominance-based bipolar
soft rough sets (DB-BSRSs) and discuss their application in
decision-making.

C. AIM OF THE PROPOSED STUDY
The main goal of this study is to present another interesting
and novel version of BSRSs by utilizing DB-BSRSs.

We highlight the article by the following pioneering work:

• A novel concept known as DB-BSRSs is proposed.
• Some important structural properties of DB-BSRSs are
investigated in detail.

• Some important measures associated with DB-BSRSs
are proposed.

• A comprehensive MAGDM method in the framework
of DB-BSRSs is introduced and the validity of this
approach is also verified by a practical example.
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• The detailed comparative analysis with other existing
methods is done in order to show the advantages of the
proposed methodology.

D. ORGANIZATION OF THE PAPER
The article has been organized in the following manner.
Section 2 gives an overview of some basic ideas, which
is required for the understanding of our research work.
Section 3 starts by characterizing some dominance-based
bipolar soft operators. Further, we discuss the relationship
between these operators and their properties.Moreover, based
upon these operators, we proposed the notion of DB-BSRSs.
The notion is further investigated by considering its important
structural properties in detail. In section 4, we discuss some
important measures associated with DB-BSRSs and examine
their properties. In section 5, we present a general framework
of the MCGDM technique based on DB-BSRSs to choose
the best element among the alternatives. Section 6 states our
proposed DM algorithm for selecting the best alternative.
After that, we give an illustrative example of the proposed
DM technique to show that the technique can be effectively
applied to some real-life problems in section 7. In section 8,
a comparison analysis is made between the proposed model
and some other well-known DM techniques. At the last,
section 9 concludes with a summary of the present work and
a suggestion for further research.

II. PRELIMINARIES
This section is dedicated to recall some essential ideas and
notions that will be utilized in the coming sections. All
through this article, we will use U to denote the initial uni-
verse, A to denote the parameters set, and 2U to denote the
power set of U, except if expressed something else.
Definition 1 [52]: Assume that U be a non-empty finite

universe, and � be an equivalence relation on U. Then
P = (U, �) is named an approximation space.
For a non-empty set X ⊆ U, the lower and upper approx-
imations of X with respect to P = (U, �) are respectively
characterized as follows:

�∗(X ) =
{
x ∈ U : [x]� ⊆ X

}
, (1)

�∗(X ) =
{
x ∈ U : [x]� ∩ X 6= ∅

}
, (2)

where

[x]� =
{
u′ ∈ U : (x, u′) ∈ �

}
. (3)

Moreover, the set

Bnd�(X ) = �∗(X ) −�∗(X ) (4)

is regarded as the �-boundary region of X .
Subsequently set X is called definable with respect to � if

�∗(X ) = �∗(X ); equivalently Bnd�(X ) = ∅. Furthermore,
set X is called undefinable (rough) with respect to � if
�∗(X ) 6= �∗(X ); equivalently Bnd�(X ) 6= ∅.
Definition 2 [48]: Let U be a non-empty finite universe

of objects andA be a non-empty set of parameters associated

with the objects of U. Then a pair (f ,A) is named a SS over U,
where f is a set-valued mapping given by f : A −→ 2U.

Thus, a SS over the universe U offers a parameterized
family of subsets of the universe U. For e ∈ A, f (e) could
also be considered as the set of e-approximate elements of U
by the SS (f ,A). A SS over U may also be expressed by the
set of ordered pairs:

(f ,A) =
{(
e, f (e)

)
: e ∈ A, f (e) ∈ 2U

}
. (5)

Definition 3 [42]: By a NOT set of parameters of A,
we mean a set of the form Ã = {¬e : e ∈ A} in which
¬e = not e for e ∈ A.
Definition 4 [59]: Let f and g are two mappings, given by

f : A −→ 2U and g : Ã −→ 2U such that f (e) ∩ g(¬e) = ∅
for all e ∈ A. Then, a triplet (f , g : A) is called a BSS over
the universe U.

Subsequently, a BSS over the universe U offers a couple of
parameterized families of subsets of U and f (e) ∩ g(¬e) = ∅
for all e ∈ A, ¬e ∈ Ã, is used as a consistency constraint.
A BSS can also be represented through the set of triples as
follows:

(f , g : A) =
{(
e, f (e), g(¬e)

)
: e ∈ A,¬e ∈ Ã

and f (e) ∩ g(¬e) = ∅
}
. (6)

From now onward, the set of all BSSs over the universe U
are going to be represented by BPSS(U).
Definition 5 [36]: A BSS (f , g : A) ∈ BPSS(U) is said

to be a full BSS if the following two conditions are satisfied:
(1)

⋃
e∈A

f (e) = U

(2)
⋃
¬e∈Ã

g(¬e) = U.

Definition 6 [36]: For (f , g : A) ∈ BPSS(U), the object
of the form ϒ =

〈
U, (f , g : A)

〉
is known as a BSA-space

(bipolar soft approximation space). Based on ϒ , the subse-
quent four operators are defined for any X ⊆ U as follows:

SϒP (X ) =
{
x ∈ U : ∃ e ∈ A,

[
x ∈ f (e) ⊆ X

]}
,

SϒN (X ) =
{
x ∈ U : ∃ ¬e ∈ Ã,

[
x ∈ g(¬e),

g(¬e) ∩ X c 6= ∅
]}
,

SϒP (X ) =
{
x ∈ U : ∃ e ∈ A,

[
x ∈ f (e),

f (e) ∩ X 6= ∅
]}
,

SϒN (X ) =
{
x ∈ U : ∃ ¬e ∈ Ã,

[
x ∈ g(¬e) ⊆ X c

]}



(7)

are regarded as soft ϒ-lower positive, soft ϒ-lower negative,
soft ϒ-upper positive, and soft ϒ-upper negative approxima-
tions of X , respectively. Generally, the ordered pairs are given
as:

BSϒ (X ) =
(
SϒP (X ),SϒN (X )

)
,

BSϒ (X ) =
(
SϒP (X ),SϒN (X )

)
 (8)
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are called bipolar soft rough approximations (BSR-
approximations) of X with respect to BSA-space. Moreover,
when BSϒ (X ) 6= BSϒ (X ), then X is referred to as bipolar
soft rough set (BSRS); in any case, X is referred to as bipolar
softϒ-definable. Further, the boundary region of the BSRS is
characterized as follows:

Bndϒ (X ) =
(
SϒP (X ) − SϒP (X ),SϒN (X ) − SϒN (X )

)
.

(9)

The properties satisfied by BSR-approximations of X ⊆ U
can be found in [36].

To preserve the underlying idea of the BSSs as a parame-
terization tool and the capacity of RS theory to accommodate
with vague ideas because of indiscernibility in data, Shabir
and Gul [61] offered the notions of modified rough bipolar
soft sets (MRBS-sets) as follows:
Definition 7 [61]: Assume that (f , g : A) ∈ BPSS(U),

where the mappings f and g are given by f : A −→ 2U and
g : Ã −→ 2U. Let us characterize two different mappings 8
and 9 as follows:

8 : U −→ 2A

8(x) =
{
e : x ∈ f (e)

}
and

9 : U −→ 2Ã

9(x) =
{
¬e : x ∈ g(¬e)

}
for all x ∈ U.

Then 2 =
〈
U, (8,9)

〉
is named as MRBSA-space (modi-

fied rough bipolar soft approximation space).
For any M ⊆ U, the lower and the upper modified bipolar

pairs with respect to 2 are respectively characterized as
follows:

MBS2(M ) =
(
M8+ ,M9−

)
,

MBS2(M ) =
(
M8+ ,M9−

)
,

}
(10)

where

M8+ =
{
x ∈ M : 8(x) 6= 8(y) for all y ∈ M c},

M8+ =
{
x ∈ U : 8(x) = 8(y) for some y ∈ M

}
,

M9− =
{
x ∈ U : 9(x) = 9(y) for some y ∈ M

}
,

M9− =
{
x ∈ M : 9(x) 6= 9(y) for all y ∈ M c}.

 (11)

Here M c
= U − M . Generally X8+ , X8+ , X9− and

X9− are called 8-lower positive, 8-upper positive,
9-lower negative and9-upper negativeMRBS-approximati-
ons of M ⊆ U, respectively. Moreover, If MBS2(M ) 6=
MBS2(M ), thenM is stated to beMRBS-set; otherwise,M is
calledMRBS-definable. Furthermore, the boundary region of
the MRBS-set is described as follows:

MBnd2(M ) =
(
M8+ \M8+ ,M9− \M9−

)
. (12)

The properties satisfied by MRBS-approximations can be
found in [61].

III. DOMINANCE-BASED BIPOLAR SOFT ROUGH
SETS (DB-BSRSs)
BSRSs were initially presented by Karaaslan and Çağ-
man [36] to deal with the roughness through BSSs which
were subsequently altered and upgraded by Shabir and
Gul [61]. In the current section, we introduce another novel
version of BSRSs by using DB-BSRSs.
Definition 8: Assume that (f , g : A) ∈ BPSS(U). For

any object, u ∈ U, define the A-dominating set f +(u) and
Ã-dominating set g+(u) as follows:

f +(u) =



{
v ∈ U : v /∈ f (e)

for all e ∈ A

}
if u /∈ f (e)

for all e ∈ A⋂
u∈f (e)

f (e) if u ∈ f (e)

for some e ∈ A,

g+(u) =



{
v ∈ U : v /∈ g(¬e)

for all ¬e ∈ Ã

}
if u /∈ g(¬e)

for all ¬e ∈ Ã⋂
u∈g(¬e)

g(¬e) if u ∈ g(¬e)

for some ¬e ∈ Ã.


(13)

Similarly, A-dominated set f −(u) and Ã-dominated set
g−(u) are defined as follows:

f −(u) =
{
v ∈ U : u ∈ f +(v)

}
,

g−(u) =
{
v ∈ U : u ∈ g+(v)

}
.

}
(14)

And, A-equivalent sets f ±(u) and Ã-equivalent set g±(u)
are defined as follows:

f ±(u) = f +(u) ∩ f −(u),

g±(u) = g+(u) ∩ g−(u).

}
(15)

Generally, the operators f +, g+, f −, g−, f ± and g± are called
A-dominating, Ã-dominating, A-dominated, Ã-dominated,
A-equivalent and Ã-equivalent bipolar soft operators,
respectively.
Remark 1: From the above definition, we have f +, f −, f ± :

U −→ 2U and g+, g−, g± : U −→ 2U.
Remark 2: From the above definition, we can see that:

(1) The sets f +(u)and g+(u) consists of all those elements
that are not inferior to u subject to given parameters in
A and Ã, respectively.

(2) The sets f −(u)and g−(u) consists of all those elements
that are not superior to u subject to given parameters in
A and Ã.

(3) The sets f ±(u)and g±(u), is the intersection of the pre-
ceding two, consists of all those elements that have the
similar parameters as u.

(4) The objects that do not have any parameter from the
given set of parameters are going to be mapped under
the six operators to all those objects that have a similar
behavior subject to the given parameter set.
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Definition 9: Let x, y ∈ U, then preference among the
objects of U is taken in the following sense:
• We say that x is preferred over y with respect to the
parameter e, represented as x �e y, if x is at least as
good as y with respect to the parameter e.
• Similarly, x is preferred over y with respect to the not
parameter ¬e, represented as x �¬e y, if x is at least as
bad as y with respect to the not parameter ¬e.

Equivalently,

x �e y⇐⇒ x, y /∈ f (e) or x, y ∈ f (e) or x ∈ f (e)

but y /∈ f (e),

and

x �¬e y⇐⇒ x, y /∈ g(¬e) or x, y ∈ g(¬e) or x ∈ g(¬e)

but y /∈ g(¬e).

In the framework of BSSs, the relation x �e y implies that
either x and y both have the parameter e or x possesses this
parameter but y does not, or x and y both do not have the
parameter e. Similarly, the relation x �¬e ymeans that either
x and y both have the not parameter¬e or x possesses this not
parameter but y does not or x and y both does not have the not
parameter ¬e.
Proposition 1: Suppose that (f , g : A) ∈ BPSS(U). Then

for any object u ∈ U, we have
(1) f ±(u) is the greatest set which is contained in both f +(u)

and f −(u).
(2) g±(u) is the greatest set which is contained in both g+(u)

and g−(u).
Proof 1: Straightforward.

To understand the ideas of bipolar soft operators given in
Definition 8, here, we consider an example.
Example 1: Suppose that (f , g : A) ∈ BPSS(U), where

U = {u1, u2, u3, u4, u5, u6}, A = {e1, e2, e3} and Ã =
{¬e1,¬e2,¬e3}. The maps f and g are characterized as
follows:

f : A −→ 2U,

e 7→


{u1, u3, u5} if e = e1,
{u2, u3, u5} if e = e2,
{u2, u5} if e = e3,

g : Ã −→ 2U

¬e 7→


{u2, u4} if ¬e = ¬e1,
{u4, u6} if ¬e = ¬e2,
{u3, u4, u6} if ¬e = ¬e3.

Now, according to Definition 8, the A-dominating, the Ã-
dominating, the A-dominated, the Ã-dominated, the A-
equivalent and the Ã-equivalent bipolar soft operators for the
elements of the universe U can be calculated as follows:

f +(u1) = {u1, u3, u5},

f +(u2) = f (e2) ∩ f (e3) = {u2, u5},

f +(u3) = f (e1) ∩ f (e2) = {u3, u5},

f +(u4) = {u4, u6},

f +(u5) = f (e1) ∩ f (e2) ∩ f (e3) = {u5},

f +(u6) = {u4, u6},

f −(u1) = {u1},

f −(u2) = {u2},

f −(u3) = {u1, u3},

f −(u4) = {u4, u6},

f −(u5) = {u1, u2, u3, u5}

f −(u6) = {u4, u6},

f ±(u1) = {u1}

f ±(u2) = {u2},

f ±(u3) = {u3},

f ±(u4) = {u4, u6},

f ±(u5) = {u5},

f ±(u6) = {u4, u6},

and

g+(u1) = {u1, u5},

g+(u2) = {u2, u4},

g+(u3) = {u3, u4, u6},

g+(u4) = g(¬e1) ∩ g(¬e2) ∩ g(¬e3) = {u4},

g+(u5) = {u1, u5},

g+(u6) = g(¬e2) ∩ g(¬e3) = {u4, u6},

g−(u1) = {u1, u5},

g−(u2) = {u2},

g−(u3) = {u3},

g−(u4) = {u2, u3, u4, u6},

g−(u5) = {u1, u5},

g−(u6) = {u3, u6},

g±(u1) = {u1, u5},

g±(u2) = {u2},

g±(u3) = {u3},

g±(u4) = {u4},

g±(u5) = {u1, u5},

g±(u6) = {u6}.

Similarly, we can calculate

x �e1 y =

{
(x, y) : x, y /∈ f (e1) or x, y ∈ f (e1)

or x ∈ f (e1) but y /∈ f (e1)

}

=



(u2, u4), (u2, u6), (u4, u2), (u4, u6), (u6, u2),

(u6, u4), (u1, u3), (u1, u5), (u3, u1), (u3, u5),

(u5, u1), (u5, u3), (u1, u2), (u1, u4), (u1, u6),

(u3, u2), (u3, u4), (u3, u6), (u5, u2), (u5, u4),

(u5, u6)


.

x �e2 y =

{
(x, y) : x, y /∈ f (e2) or x, y ∈ f (e2)

or x ∈ f (e2) but y /∈ f (e2)

}
135106 VOLUME 9, 2021



R. Gul et al.: Novel Approach Toward Roughness of BSSs and Their Applications in MCGDM

=



(u1, u4), (u1, u6), (u4, u1), (u4, u6), (u6, u1),

(u6, u4), (u2, u3), (u2, u5), (u3, u2), (u3, u5),

(u5, u2), (u5, u3), (u2, u1), (u2, u4), (u2, u6),

(u3, u1), (u3, u4), (u3, u6), (u5, u1), (u5, u4),

(u5, u6)


.

x �e3 y =

{
(x, y) : x, y /∈ f (e3) or x, y ∈ f (e3)

or x ∈ f (e3) but y /∈ f (e3)

}

=



(u1, u3), (u1, u4), (u1, u6), (u3, u1), (u3, u4),

(u3, u6), (u4, u1), (u4, u3), (u4, u6), (u6, u1),

(u6, u3), (u6, u4), (u2, u5), (u5, u2), (u2, u1),

(u2, u3), (u2, u4), (u2, u6), (u5, u1), (u5, u3),

(u5, u4), (u5, u6)


.

and

x �¬e1 y =

{
(x, y) : x, y /∈ g(¬e1) or x, y ∈ g(¬e1)

or x ∈ g(¬e1) but y /∈ g(¬e1)

}

=



(u1, u3), (u1, u5), (u1, u6), (u3, u1), (u3, u5),

(u3, u6), (u5, u1), (u5, u3), (u5, u6), (u6, u1),

(u6, u3), (u6, u5), (u2, u4), (u4, u2), (u2, u1),

(u2, u3), (u2, u5), (u2, u6), (u4, u1), (u4, u3),

(u5, u4), (u4, u6)


.

x �¬e2 y =

{
(x, y) : x, y /∈ g(¬e2) or x, y ∈ g(¬e2)

or x ∈ g(¬e2) but y /∈ g(¬e2)

}

=



(u1, u2), (u1, u3), (u1, u5), (u2, u1), (u2, u3),

(u2, u5), (u3, u1), (u3, u2), (u3, u5), (u5, u1),

(u5, u2), (u5, u3), (u4, u6), (u6, u4), (u4, u1),

(u4, u2), (u4, u3), (u4, u5), (u6, u1), (u6, u2),

(u6, u3), (u6, u5)


.

x �¬e3 y =

{
(x, y) : x, y /∈ g(¬e3) or x, y ∈ g(¬e3)

or x ∈ g(¬e3) but y /∈ g(¬e3)

}

=



(u1, u2), (u1, u5), (u2, u1), (u2, u5), (u5, u1),

(u5, u2), (u3, u4), (u3, u6), (u4, u3), (u4, u6),

(u6, u3), (u6, u4), (u3, u1), (u3, u2), (u3, u5),

(u4, u1), (u4, u2), (u4, u5), (u6, u1), (u6, u2),

(u6, u5)


.

Proposition 2: Assume that (f , g : A) ∈ BPSS(U). Then
for any u1, u2 ∈ U, the following axioms are true.
(1a) u2 ∈ f +(u1) if and only if f +(u2) ⊆ f +(u1),
(1b) u2 ∈ g+(u1) if and only if g+(u2) ⊆ g+(u1).
(2a) u2 ∈ f −(u1) if and only if f −(u2) ⊆ f −(u1),
(2b) u2 ∈ g−(u1) if and only if g−(u2) ⊆ g−(u1),
(3a) u2 ∈ f ±(u1) if and only if f ±(u2) = f ±(u1),
(3b) u2 ∈ g±(u1) if and only if g±(u2) = g±(u1),
(4a) f ±(u1) =

{
u2 ∈ U : f +(u1) = f +(u2)

}
=
{
u2 ∈ U :

f −(u1) = f −(u2)
}
,

(4b) g±(u1) =
{
u2 ∈ U : g+(u1) = g+(u2)

}
=
{
u2 ∈ U :

g−(u1) = g−(u2)
}
.

Proof 2: Obvious.
Proposition 2 is better explained through Example 1. Sup-

pose, for instance
u5 ∈ f +(u2) implies that f +(u5) = {u5} ⊆ {u2, u5} =

f +(u2) and u4 ∈ g+(u2) implies that g+(u4) = {u4} ⊆
{u2, u4} = g+(u2).
Similarly,
u1 ∈ f −(u3) implies that f −(u1) = {u1} ⊆ {u1, u3} =

f −(u3) and u3 ∈ g−(u6) implies that g−(u3) = {u3} ⊆
{u3, u6} = g−(u6).
Also,
u4 ∈ f ±(u6) implies that f ±(u4) = {u4, u6} =

f ±(u6) and u1 ∈ g±(u5) implies that g±(u1) = {u1, u5} =
g±(u5).
Finally, consider
f ±(u4) = {u4, u6}. It contains two objects which satisfies

f +(u4) = f +(u6) = {u4, u6} = f −(u4) = f −(u6). Also,
g±(u1) = {u1, u5}. It contains two objects which satisfies
g+(u1) = g+(u5) = {u1, u5} = g−(u1) = g−(u5).
Now, we give the definition of bipolar soft dominating

rough set, bipolar soft dominated rough set, and bipolar soft
equivalent rough set with the help of soft operators given in
Definition 8.
Definition 10: Let (f , g : A) ∈ BPSS(U). Then for

any X ⊆ U, the bipolar lower and upper approximations
of X under the A-dominating bipolar soft operator f + and
the Ã-dominating bipolar soft operator g+ can be defined,
respectively, by the following two pairs:

DBS(f +,g+)(X ) =
(
X f + ,Xg+

)
,

DBS(f +,g+)(X ) =
(
X f + ,Xg+

)
,

}
(16)

where,

X f + =
{
u ∈ U : f +(u) ⊆ X

}
,

Xg+ =
{
u ∈ U : g+(u) ∩ X c 6= ∅

}
,

X f + =
{
u ∈ U : f +(u) ∩ X 6= ∅

}
,

Xg+ =
{
u ∈ U : g+(u) ⊆ X c

}
.

IfDBS(f +,g+)(X ) 6= DBS(f +,g+)(X ) then X is called bipo-
lar soft dominating rough set, otherwise, it is called bipolar
soft dominating definable set.

Similarly, the bipolar lower and upper approximations
of X under theA-dominated bipolar soft operator f − and the
Ã-dominated bipolar soft operator g− can be defined by the
following two pairs:

DBS(f −,g−)(X ) =
(
X f − ,Xg−

)
,

DBS(f −,g−)(X ) =
(
X f − ,Xg−

)
,

}
(17)

where,

X f − =
{
u ∈ U : f −(u) ⊆ X

}
,

Xg− =
{
u ∈ U : g−(u) ∩ X c 6= ∅

}
,

X f − =
{
u ∈ U : f −(u) ∩ X 6= ∅

}
,

Xg− =
{
u ∈ U : g−(u) ⊆ X c

}
.
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IfDBS(f −,g−)(X ) 6= DBS(f −,g−)(X ) then X is called bipo-
lar soft dominated rough set, otherwise, it is called bipolar
soft dominated definable set.

Moreover, the bipolar lower and upper approximations
of X under the A-equivalent bipolar soft operator f ± and the
Ã-equivalent bipolar soft operator g± can be defined by the
following two pairs:

DBS(f ±,g±)(X ) =
(
X f ± ,Xg±

)
,

DBS(f ±,g±)(X ) =
(
X f ± ,Xg±

)
,

}
(18)

where,

X f ± =
{
u ∈ U : f ±(u) ⊆ X

}
,

Xg± =
{
u ∈ U : g±(u) ∩ X c 6= ∅

}
,

X f ± =
{
u ∈ U : f ±(u) ∩ X 6= ∅

}
,

Xg± =
{
u ∈ U : g±(u) ⊆ X c

}
.

IfDBS(f ±,g±)(X ) 6= DBS(f ±,g±)(X ) then X is called bipo-
lar soft equivalent rough set, otherwise, it is named bipolar
soft equivalent definable set.

The approximations in Equations (16) to (18) are collec-
tively called dominance-based bipolar soft rough approxima-
tions (DB-BSR-approximations) of X ⊆ U.
Remark 3: In the framework of the decision-making

process:
(1) X f + may be considered as the collection of most favored

alternatives in X under f +, while Xg+ may be consid-
ered as the collection of most favored alternatives in X c

under g+.
(2) X f − may be considered as the collection of least favored

alternatives in X under f −, while Xg− may be consid-
ered as the collection of least favored alternatives in X c

under g−.
(3) X f + may be considered as the collection of all possible

alternatives that could be favored over the elements of X
under f +, while Xg+ can be considered as the collection
of all possible alternatives that could be favored over the
elements of X c under g+.

(4) X f − may be interpreted as having elements over which
the elements of X could possibly be favored under f −,
while Xg− may be interpreted as having elements over
which the elements of X c could possibly be favored
under g−.

Definition 11: The regions listed below:
(1) POS(f +,g+)(X ) =

(
X f + ,Xg+

)
,

(2) BND(f +,g+)(X ) =
(
X f + − X f + ,Xg+ − Xg+

)
,

(3) NEG(f +,g+)(X ) = (U,U)−
(
X f + ,Xg+

)
,

are called the bipolar positive dominating region, the bipolar
boundary dominating region and the bipolar negative dom-
inating region, respectively. The same terminologies can be
defined for bipolar dominated region and bipolar equivalent
region.
Corollary 1: From the above definition, we immedi-

ately have that X ⊆ U is a dominance-based bipolar

soft definable set if and only if BND(f +,g+)(X ) =

BND(f −,g−)(X ) = BND(f ±,g±)(X ) = (∅,∅).
Example 2: To illustrate the notion of DB-BSR-

approximations, let us revisit Example 1, where X =

{u1, u3, u5} ⊆ U and X c = {u2, u4, u6}. Now using
Definition 10, we get

X f + = {u1, u3, u5}, Xg+ = {u2, u3, u4, u6},
X f + = {u1, u2, u3, u5}, Xg+ = {u2, u4, u6}.

Thus, bipolar soft dominating rough approximations of
X ⊆ U are:

DBS(f +,g+)(X ) =
(
{u1, u3, u5}, {u2, u3, u4, u6}

)
,

DBS(f +,g+)(X ) =
(
{u1, u2, u3, u5}, {u2, u4, u6}

)
.

Similarly,

X f − = {u1, u3}, Xg− = {u2, u4, u6},
X f − = {u1, u3, u5}, Xg− = {u2}.

Therefore, bipolar soft dominated rough approximations of
X ⊆ U are:

DBS(f −,g−)(X ) =
(
{u1, u3}, {u2, u4, u6}

)
,

DBS(f −,g−)(X ) =
(
{u1, u3, u5}, {u2}

)
.

Also,

X f ± = {u1, u3, u5}, Xg± = {u2, u4, u6},

X f ± = {u1, u3, u5}, Xg± = {u2, u4, u6}.

So, bipolar soft equivalent rough approximations of X ⊆ U
are:

DBS(f ±,g±)(X ) =
(
{u1, u3, u5}, {u2, u4, u6}

)
,

DBS(f ±,g±)(X ) =
(
{u1, u3, u5}, {u2, u4, u6}

)
.

Moreover, the bipolar positive dominating region, the bipo-
lar boundary dominating region and the bipolar negative
dominating region can be calculated as:

POS(f +,g+)(X ) =
(
{u1, u3, u5}, {u2, u4, u6}

)
,

BND(f +,g+)(X ) =
(
{u2}, {u3}

)
,

NEG(f +,g+)(X ) =
(
{u4, u6}, {u1, u5}

)
.

Similarly, the bipolar positive dominated region, the bipo-
lar boundary dominated region and the bipolar negative dom-
inated region can be calculated as:

POS(f −,g−)(X ) =
(
{u1, u3}, {u2}

)
,

BND(f −,g−)(X ) =
(
{u5}, {u4, u6}

)
,

NEG(f −,g−)(X ) =
(
{u2, u4, u6}, {u1, u3, u5}

)
.

Also, the bipolar positive equivalent region, the bipolar
boundary equivalent region and the bipolar negative equiv-
alent region can be calculated as:

POS(f ±,g±)(X ) =
(
{u1, u3, u5}, {u2, u4, u6}

)
,

BND(f ±,g±)(X ) =
(
∅,∅

)
,

NEG(f ±,g±)(X ) =
(
{u2, u4, u6}, {u1, u3, u5}

)
.
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Since BND(f +,g+)(X ) 6= (∅,∅), BND(f −,g−)(X ) 6= (∅,∅)
and BND(f ±,g±)(X ) = (∅,∅), so X is a bipolar soft dominat-
ing (as well as bipolar soft dominated) rough set and a bipolar
soft equivalent definable set.
Remark 4: Assume that (f , g : A) ∈ BPSS(U). Then:

(1) For any u ∈ U such that u /∈ f (e) for all e ∈ A, we have

f +(u) = f −(u) = f ±(u) =

{
v ∈ U : v /∈ f (e)

for all e ∈ A

}
.

In this situation, we express the set by f ?(u). That is,
f +(u) = f −(u) = f ±(u) = f ?(u).

(2) For any u ∈ U such that u /∈ g(¬e) for all ¬e ∈ Ã,
we have

g+(u) = g−(u) = g±(u) =

{
v ∈ U : v /∈ g(¬e)

for all ¬e ∈ Ã

}
.

In this situation, we express the set by g?(u). That is,
g+(u) = g−(u) = g±(u) = g?(u).

For instance, in Example 1, u4, u6 /∈ f (e) for all e ∈ A,
so f ?(u4) = f ?(u6) = {u4, u6}. Similarly, u1, u5 /∈ g(¬e) for
all ¬e ∈ Ã, so g?(u1) = g?(u5) = {u1, u5}.
Definition 12: For (f , g : A) ∈ BPSS(U), an object u ∈

U is said to be a redundant object with respect to f if u /∈ f (e)
for all e ∈ A. Similarly, an object u ∈ U is said to be a
redundant object with respect to g if u /∈ g(¬e) for all Ã.
Proposition 3: Let (f , g : A) ∈ BPSS(U). Then (f , g :

A) is a full BSS if and only if (f , g : A) has no redundant
object with respect to f and g.

Proof 3: Straightforward.
Proposition 4: Let (f , g : A) ∈ BPSS(U).

(1) If u ∈ U is a redundant object with respect to f , then
u ∈ f ?(u).

(2) If u ∈ U is a redundant object with respect to g, then
u ∈ g?(u).
Proof 4: Straightforward.

Example 3: We can observe that in Example 1, u4, u6 ∈ U
are redundant objects with respect to f and u1, u5 ∈ U are
redundant objects with respect to g. Thus, u4, u6 ∈ f ?(u4) =
f ?(u6) = {u4, u6}. Similarly, u1, u5 ∈ g?(u1) = g?(u5) =
{u1, u5}.
In order to discover the relationship between the DB-

BSR-approximations of a single set and the DB-BSR-
approximations of two sets under the operators f +, g+, f −

and g−, the following properties are given.
Theorem 1: Assume that (f , g : A) ∈ BPSS(U). Then

for any X ,Y ⊆ U, the DB-BSR-approximations fulfill the
following axioms:
(1a) X f + ⊆ X ⊆ X f + ,
(1b) X f − ⊆ X ⊆ X f − ,
(2a) ∅f + = ∅ = ∅f + ,
(2b) ∅f − = ∅ = ∅f − ,
(3a) Uf + = U = Uf + ,
(3b) Uf − = U = Uf − ,
(4a) X ⊆ Y H⇒ X f + ⊆ Y f + ,

(4b) X ⊆ Y H⇒ X f − ⊆ Y f − ,
(5a) X ⊆ Y H⇒ X f + ⊆ Y f + ,
(5b) X ⊆ Y H⇒ X f − ⊆ Y f − ,
(6a) (X ∩ Y )f + ⊆ X f + ∩ Y f + ,
(6b) (X ∩ Y )f − ⊆ X f − ∩ Y f − ,
(7a) (X ∩ Y )f + = X f + ∩ Y f + ,
(7b) (X ∩ Y )f − = X f − ∩ Y f − ,
(8a) (X ∪ Y )f + = X f + ∪ Y f + ,
(8b) (X ∪ Y )f − = X f − ∪ Y f − ,
(9a) (X ∪ Y )f + ⊇ X f + ∪ Y f + ,
(9b) (X ∪ Y )f − ⊇ X f − ∪ Y f − ,
(10a) X f + = (X cf + )

c,
(10b) X f − = (X cf − )

c,
(11a) X f + =

(
(X c)f +

)c,
(11b) X f − =

(
(X c)f −

)c,
(12a) (X f + )f + = X f + ⊆ (X f + )f + ,

(12b) (X f − )f − = X f − ⊆ (X f − )f − ,

(13a) (X f + )f + ⊆ X f + = (X f + )f + ,

(13b) (X f − )f − ⊆ X f − = (X f − )f − ,

(14a) Xg+ ⊆ X c ⊆ Xg+ ,
(14b) Xg− ⊆ X c ⊆ Xg− ,
(15a) ∅g+ = ∅ = ∅g+ ,
(15b) ∅g− = ∅ = ∅g− ,
(16a) Ug+ = U = Ug+ ,
(16b) Ug− = U = Ug− ,
(17a) X ⊆ Y H⇒ Y g+ ⊆ Xg+ ,
(17b) X ⊆ Y H⇒ Y g− ⊆ Xg− ,
(18a) X ⊆ Y H⇒ Y g+ ⊆ Xg+ ,
(18b) X ⊆ Y H⇒ Y g− ⊆ Xg− ,
(19a) (X ∩ Y )g+ ⊇ Xg+ ∩ Y g+ ,
(19b) (X ∩ Y )g− ⊇ Xg− ∩ Y g− ,
(20a) (X ∩ Y )g+ ⊇ Xg+ ∩ Y g+ ,
(20b) (X ∩ Y )g− ⊇ Xg− ∩ Y g− ,
(21a) (X ∪ Y )g+ ⊆ Xg+ ∪ Y g+ ,
(21b) (X ∪ Y )g− ⊆ Xg− ∪ Y g− ,
(22a) (X ∪ Y )g+ ⊆ Xg+ ∪ Y g+ ,
(22b) (X ∪ Y )g− ⊆ Xg− ∪ Y g− ,
(23a) Xg+ =

(
(X c)g+

)c,
(23b) Xg− =

(
(X c)g−

)c,
(24a) Xg+ = (X cg+ )

c,
(24b) Xg− = (X cg− )

c,

(25a) (Xg+ )g+ = (X c)g+ ⊆ (Xg+ )g+ ,

(25b) (Xg− )g− = (X c)g− ⊆ (Xg− )g− ,

(26a) (Xg+ )g+ ⊆ (X c)
g+
= (Xg+ )g+ ,

(26b) (Xg− )g− ⊆ (X c)
g−
= (Xg− )g− .

Proof 5: Follows from Definition 10.
In order to discover the connection between the DB-

BSR-approximations of X ⊆ U under the operators
f +, g+, f −, g−, f ± and g±, the subsequent results are
given.
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Proposition 5: Suppose that (f , g : A) ∈ BPSS(U). Then
the following properties hold for any X ⊆ U;
(1) X f − ⊆ X f ± and X f ± ⊆ X f − .
(2) X f + ⊆ X f ± and X f ± ⊆ X f + .
(3) Xg± ⊆ Xg− and Xg− ⊆ Xg± .
(4) Xg± ⊆ Xg+ and Xg+ ⊆ Xg± .

Proof 6:
(1) Let u ∈ X f − . Then by Definition 10, we have f −(u) ⊆

X . But from Definition 8, it follows that f ±(u) ⊆ f −(u).
This implies that f ±(u) ⊆ X . Thus, u ∈ X f ± and hence
X f − ⊆ X f ± .
Now, assume that u ∈ X f ± . Then by Definition 10,
we have f ±(u) ∩ X 6= ∅. But according to Definition 8,
f ±(u) ⊆ f −(u). Thus, f −(u)∩X 6= ∅which implies that
u ∈ X f − and hence X f ± ⊆ X f − .

(2) Analogous to the proof of part (1).
(3) Let u ∈ Xg± . Then by Definition 10, we have g±(u) ∩

X 6= ∅. But from Definition 8, it follows that g±(u) ⊆
g−(u). This implies that g−(u) ∩ X 6= ∅ which implies
that u ∈ Xg− . Hence, Xg± ⊆ Xg− .
Similarly, assume that u ∈ Xg− . Then by Definition 10,
we have g−(u) ⊆ X c. But from Definition 8, we have
g±(u) ⊆ g−(u). This gives g±(u) ⊆ X c. Thus u ∈ Xg±
and hence, Xg− ⊆ Xg± .

(4) Analogous to the proof of part (3).
Remark 5: If we compare the DB-BSR-approximations

with BSR-approximations given in [36], we conclude the
following points.
(1) To show SϒP (X ∩ Y ) = SϒP (X ) ∩ SϒP (Y ), there is

a strong condition on the positive SS to be the inter-
section complete. However, in the case of DB-BSR-
approximations, no such condition is needed to prove
(X ∩ Y )f + = X f + ∩ Y f + or (X ∩ Y )f − = X f − ∩ Y f − .

(2) Similarly, to show SϒP (U) = U = SϒP (U), the
BSS (f , g : A) must be full. However in DB-
BSR-approximations no such condition is required for
Uf + = U = Uf + , Uf − = U = Uf − , Ug+ = U = Ug+ and

Ug− = U = Ug− .
(3) Also to show SϒP (X ) ∩ SϒN (X ) = ∅ and SϒP (X ) ∩

SϒN (X ) = ∅ in [36] Karaaslan and Çağman imposed a
constraint on the BSS (f , g : A) to be semi-intersection.
But in DB-BSR-approximations, we have X f + ∩ Y f − 6=
∅, X f + ∩ Y f − 6= ∅, Xg+ ∩ Y g− 6= ∅ and Xg+ ∩ Y g− 6= ∅
in any case.

IV. MEASURES ASSOCIATED WITH DB-BSRSs
Generally, the uncertainty of a set is because of the presence
of the boundary region. The broader the boundary region
of a set is, the lower the exactness of the set is. To present
the concept accurately, in this section, we propose a few
significant measures related with DB-BSRSs and examine
their properties.

Pawlak [52] proposed the notions of accuracy mea-
sure (AM) and roughness measures (RM) related to

RS approximations. The AM is the ratio of the cardinality
of lower approximation to the cardinality of upper approx-
imation while the RM is the complement of the AM. The
aim of introducing these measures is to express the degree of
completeness of information about set X or to communicate
the quality of an approximation. The RM is considered as the
degree of incompleteness of information about set X . As an
extension of these measures, we introduce AM and RM using
DB-BSR-approximations as follows:
Definition 13: Let (f , g : A) ∈ BPSS(U), ϒ =

〈
U, (f ,

g : A)
〉
be BSA-space and X ⊆ U. Then the accuracy

measure for DB-BSRS with respect to X under dominating
bipolar soft operators f + and g+ is denoted by AM(X+) and
is defined by an ordered pair:

AM(X+) =
(
A
f +

X ,A
g+

X

)
, (19)

where Af +

X =

∣∣∣X f + ∣∣∣∣∣X f + ∣∣ and A
g+

X =

∣∣Xg+ ∣∣∣∣∣Xg+ ∣∣∣ provided X f + 6= 0,

Xg+ 6= 0. Here |•| denote the cardinality of the set.
Similarly, the roughness measure for DB-BSRS with

respect to X under dominating bipolar soft operators f + and
g+ denoted by RM(X+) and is defined as:

RM(X+) = (1, 1)− AM(X+) =
(
1− A

f +

X , 1− A
g+

X

)
.

(20)

Obviously, 0 ≤ A
f +

X ≤ 1 and 0 ≤ A
g+

X ≤ 1 for any ∅ 6=
X ⊆ U.

Also the accuracy measures for DB-BSRS with respect
to X under dominated bipolar soft operators f − and g− and
equivalent bipolar soft operators f ± and g± are respectively
given as:

AM(X−) =
(
A
f −

X ,A
g−

X

)
, (21)

AM(X±) =
(
A
f ±

X ,A
g±

X

)
, (22)

where A
f −

X =

∣∣∣X f − ∣∣∣∣∣X f − ∣∣ , Ag−

X =

∣∣Xg− ∣∣∣∣∣Xg− ∣∣∣ , Af ±

X =

∣∣∣X f ± ∣∣∣∣∣X f ± ∣∣ and

A
g±

X =

∣∣Xg± ∣∣∣∣∣Xg± ∣∣∣ provided X f − 6= 0, Xg− 6= 0, X f ± 6= 0,

Xg± 6= 0.
The corresponding roughness measures are:

RM(X−) = (1, 1)− AM(X−) =
(
1− A

f −

X , 1− A
g−

X

)
,

(23)

RM(X±) = (1, 1)− AM(X±) =
(
1− A

f ±

X , 1− A
g±

X

)
.

(24)

Clearly, 0 ≤ A
f −

X ≤ 1, 0 ≤ A
g−

X ≤ 1, 0 ≤ A
f ±

X ≤ 1 and

0 ≤ A
g±

X ≤ 1 for any ∅ 6= X ⊆ U.
Proposition 6: Let (f , g : A) ∈ BPSS(U) and ϒ =〈

U, (f , g : A)
〉
be BSA-space. For any X ⊆ U, AM(X+)
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under dominating bipolar soft operators f + and g+ satisfies
the following properties.
(1) AM(X+) = (1, 1) if and only if X f + = X f + and

Xg+ = Xg+ .
(2) AM(X+) = (0, 0) if and only if X f + = ∅ and Xg+ = ∅.
(3) AM(X+) = (1, 1) if and only if X = U.

Proof 7: Straightforward.
Similar results can be proved for AM(X−) and AM(X±).
Proposition 7: Let ∅ 6= X ,Y ⊆ U and AM(X+) =(
A
f +

X ,A
g+

X

)
, AM(Y+) =

(
A
f +

Y ,A
g+

Y

)
be the accuracy mea-

sures of X and Y under dominating bipolar soft operators
f + and g+ respectively. If X ⊆ Y , then A

f +

X ≤ A
f +

Y and

A
g+

X ≥ A
g+

Y .
Proof 8: Obvious.

In 2001, Gediga and Düntsch [19] described the idea of the
measure of the precision for ∅ 6= X ⊆ U, which is the ratio of
the cardinality of lower approximation of X to the cardinality
of X . In the framework of DB-BSR-approximations it can be
characterized in the following manner:
Definition 14: Let (f , g : A) ∈ BPSS(U) and ϒ =〈

U, (f , g : A)
〉
be BSA-space. Then for any ∅ 6= X ⊆ U

the measure of the precision for DB-BSRS with respect to
X under dominating bipolar soft operators f + and g+ is
expressed asMP(X+) and is characterized by an ordered pair:

MP(X+) =
(
π
f +

X , π
g+

X

)
, (25)

where π f
+

X =

∣∣∣X f + ∣∣∣
|X |

and πg
+

X =

∣∣Xg+ ∣∣
|X c|

.

Here X c = U − X . Clearly, MP(X+) ≥ AM(X+). It is
noteworthy that MP(X+) needs complete knowledge about
the set X ; while AM(X+) does not.
Also, 0 ≤ π f

+

X ≤ 1 and 0 ≤ πg
+

X ≤ 1 for any ∅X ⊆ U.
Moreover, it can be noticed thatMP(X+) = (1, 1) if and only
if
∣∣∣X f + ∣∣∣ = |X | and ∣∣Xg+ ∣∣ = |X c|.
Same terminologies of measure of the precision can be

defined for DB-BSRS with respect to X under dominated and
equivalent bipolar soft operators.
Proposition 8: LetX ,Y ⊆ U andMP(X+) =

(
π
f +

X , π
g+

X

)
,

MP(Y+) =
(
π
f +

Y , π
g+

Y

)
be the measures of the precision of

X and Y under dominating bipolar soft operators f + and g+,
respectively. If X ⊆ Y , then π f

+

X ≥ π
f +

Y and πg
+

X ≤ π
g+

Y .
Proof 9: Straightforward.

In 2010, Yao [67] proposed another measure related to
RS approximations known as the measure of quality, which
is described in the following way:

α�(X ) =
|�∗(X )| + |�∗(X c)|

|U|
. (26)

In the framework of the DB-BSR-approximations it can be
characterized in the following manner:
Definition 15: Let (f , g : A) ∈ BPSS(U) and ϒ =〈

U, (f , g : A)
〉
be BSA-space. Then for any ∅ 6= X ⊆ U

the measure of quality for DB-BSRS with respect to X under

dominating bipolar soft operators f + and g+ is expressed as
MQ(X+) and is characterized by means of an ordered pair:

MQ(X+) =
(
αf
+

, βg
+
)
, (27)

where

αf
+

=

∣∣∣X f + ∣∣∣+ ∣∣∣X cf + ∣∣∣
|U|

(28)

and

βg
+

=

∣∣Xg+ ∣∣+ ∣∣X cg+ ∣∣
|U|

. (29)

Obviously, 0 ≤ αf
+

≤ 1 and 0 ≤ βg
+

≤ 1 for any
∅ 6= X ⊆ U.

The corresponding measure of roughness is defined as:

RQ(X+) = (1, 1)−MQ(X+) =
(
1− αf

+

, 1− βg
+
)
.

(30)

Same terminologies of measure of quality can be defined
for DB-BSRS with respect to X under dominated and equiv-
alent bipolar soft operators.
Proposition 9: Let (f , g : A) ∈ BPSS(U), ϒ =〈

U, (f , g : A)
〉
aBSA-space and ∅ 6= X ⊆ U. ThenMQ(X ) =

(1, 1) if and only if X = U or X = ∅.
Proof 10: Straightforward.

In order to understand the aforementioned terminologies,
here we employ an example.
Example 4: Let us consider (f , g : A) ∈ BPSS(U) as

given in Example 1, where U = {u1, u2, u3, u4, u5, u6}, A =
{e1, e2, e3}, Ã = {¬e1,¬e2,¬e3} and the maps f and g
describe as:

f : A −→ 2U,

e 7→


{u1, u3, u5} if e = e1,
{u2, u3, u5} if e = e2,
{u2, u5} if e = e3,

g : Ã −→ 2U

¬e 7→


{u2, u4} if ¬e = ¬e1,
{u4, u6} if ¬e = ¬e2,
{u3, u4, u6} if ¬e = ¬e3.

We already know that DB-BSR-approximations of X =
{u1, u3, u5} ⊆ U under f + and g+ are:

X f + = {u1, u3, u5},

Xg+ = {u2, u3, u4, u6},

X f + = {u1, u2, u3, u5},

Xg+ = {u2, u4, u6},

X cf + = {u6},

X cg+ = {u1, u5}.
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So the values of accuracy measure, measure of precision
and measure of quality are respectively given as:

AM(X+) =
(
A
f +

X ,A
g+

X

)
=

(
3
4
,
3
4

)
= (0.75, 0.75),

MP(X+) =
(
π
f +

X , π
g+

X

)
=

(
3
3
,
3
3

)
= (1, 1),

MQ(X+) =
(
αf
+

, βg
+)
=

(
3+1
6
,
3+2
6

)
= (0.666, 0.833).

Hence,Af +

X andAg+

X depicts the elements of U precisely up

to the degree 0.75. While π f
+

X and πg
+

X depict the elements of
U precisely up to the degree 1.Moreover, αf

+

and βg
+

depicts
the elements of U precisely up to the degree 0.666 and 0.833,
respectively.

V. MCGDM USING DB-BSRSs
The growing complexity of the socio-economic environ-
ment, operational research, and industrial engineering force
humans to address problems crossing many fields. Group
decision-making (GDM), as one of the successful techniques
to cope with complex DM problems, is characterized as a
decision problem in which numerous experts give their judg-
ment over a set of alternatives. The purpose is to reconcile
(or compromise) variations of opinion expressed by individ-
ual experts to discover an alternative (or set of alternatives)
that is most acceptable by the group of experts as a whole. In a
complex society, GDM methods must inevitably take many
criteria (or factors) under consideration. Thus, research on
GDM that explicitly incorporates multiple criteria has been
a major perspective and has made significant advancement
with the rapid development of operations research, manage-
ment science, systems engineering, and other fields. Hwang
and Lin [28] first look at to investigate systematically how
multiple criteria could be used in GDM.

In general, MCGDM is a procedure in which a group
of experts (decision-makers) collaborates to select the best
alternative from a set of feasible alternatives that are classi-
fied according to their attributes in a given situation. In this
section, we develop a novelMCGDMapproach using theDB-
BSRSs. We give a brief description of a MCGDM problem
under the environment of the DB-BSRSs, and afterward, give

a general DM methodology for the MCGDM problem by
using the DB-BSRSs.

A. PROBLEM DESCRIPTION
We firstly provide the basic description of the considered
MCGDM problem in this section.

Let U = {u1, u2, . . . , un} be the non-empty finite universe
of n objects (alternatives) and A = {e1, e2, . . . , em} be
the finite collection of all possible parameters of objects.
Suppose that H = {p1, p2, . . . , pk} is a set of k independent
experts (decision-makers), X1,X2, . . . ,Xk are non-empty
subsets of U, represent results of primary assessments of
experts p1, p2, . . . , pk , respectively and T1,T2, . . . ,Tr ∈
BPSS(U) are the actual results that previously received
for problems in various periods or various locations. Then
the decision-making for this MCGDM problem is: ‘‘how
to obtain the evaluation of these particular experts so
that the selected object (alternative) is optimal for all
criteria’’.

B. METHODOLOGY OF DECISION-MAKING
In this subsection, we propose the mathematical formula-
tion and the strategy of the MCGDM approach based on
the DB-BSRSs.
Definition 16: Assume that DBS+Tq (Xj) =

(
Xjf + ,Xjg+

)
and DBS+Tq (Xj) =

(
Xjf + ,Xjg+

)
be lower and upper dom-

inating soft rough approximations of Xj; (j = 1, 2, . . . , k)
related to Tq = (fq, gq : A) ∈ BPSS(U); (q = 1, 2, . . . , r).
Then, (31) and (32), as shown at the bottom of the page,
are called the dominating bipolar soft lower approximation
matrix and the dominating bipolar soft upper approximation
matrix, respectively. Here

Xjf +q
=

(
u1jf +q

, u2jf +q
, . . . , unjf +q

)
, (33)

Xjg+q
=

(
u1jg+q

, u2jg+q
, . . . , unjg+q

)
, (34)

Xjf +q =
(
u1jf +q , u2jf +q , . . . , unjf +q

)
, (35)

Xjg+q =
(
u1jg+q , u2jg+q , . . . , unjg+q

)
. (36)

[D](f +,g+) =


〈X1f +1

,X1g+1
〉 〈X2f +1

,X2g+1
〉 · · · 〈Xk f +1

,Xk g+1
〉

〈X1f +2
,X1g+2

〉 〈X2f +2
,X2g+2

〉 · · · 〈Xk f +2
,Xk g+2

〉

...
...

. . .
...

〈X1f +r ,X1g+r 〉 〈X2f +r ,X2g+r 〉 · · · 〈Xk f +r ,Xk g+r 〉

 , (31)

[D](f +,g+) =


〈X1f +1

,X1g+1
〉 〈X2f +1

,X2g+1
〉 · · · 〈Xk f +1

,Xk g+1
〉

〈X1f +2
,X1g+2

〉 〈X2f +2
,X2g+2

〉 · · · 〈Xk f +2
,Xk g+2

〉

...
...

. . .
...

〈X1f +r ,X1g+r 〉 〈X2f +r ,X2g+r 〉 · · · 〈Xk f +r ,Xk g+r 〉

 (32)
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where,

uijf +q
=

 1 if ui ∈ Xjf +q
,

0 if ui /∈ Xjf +q
.

(37)

uijg+q
=

−1/2 if ui ∈ Xjg+q
,

0 if ui /∈ Xjg+q
.

(38)

uijf +q =

{
1/2 if ui ∈ Xjf +q ,

0 if ui /∈ Xjf +q .
(39)

uijg+q =

{
−1 if ui ∈ Xjg+q ,

0 if ui /∈ Xjg+q .
(40)

In the same style, let DBS−Tq (Xj) =
(
Xjf − ,Xjg−

)
and

DBS−Tq (Xj) =
(
Xjf − ,Xjg−

)
be lower and upper dominated

soft rough approximations of Xj; (j = 1, 2, . . . , k) related to
Tq = (fq, gq : A) ∈ BPSS(U); (q = 1, 2, . . . , r). Then,
(41) and (42), as shown at the bottom of the page, are referred
to as the dominated bipolar soft lower and the dominated
bipolar soft upper approximation matrix, respectively. Here,

Xjf −q
=

(
u1jf −q

, u2jf −q
, . . . , unjf −q

)
, (43)

Xjg−q
=

(
u1jg−q

, u2jg−q
, . . . , unjg−q

)
, (44)

Xjf −q =
(
u1jf −q , u2jf −q , . . . , unjf −q

)
, (45)

Xjg−q =
(
u1jg−q , u2jg−q , . . . , unjg−q

)
. (46)

where,

uijf −q
=

 1 if ui ∈ Xjf −q
,

0 if ui /∈ Xjf −q
.

(47)

uijg−q
=

−1/2 if ui ∈ Xjg−q
,

0 if ui /∈ Xjg−q
.

(48)

uijf −q =

{
1/2 if ui ∈ Xjf −q ,

0 if ui /∈ Xjf −q .
(49)

uijg−q =

{
−1 if ui ∈ Xjg−q ,

0 if ui /∈ Xjg−q .
(50)

Definition 17: Let [D](f +,g+), [D](f +,g+), [D](f −,g−) and

[D](f −,g−) be the dominating bipolar soft lower, dominating
bipolar soft upper, dominated bipolar soft lower and dom-
inated bipolar soft upper approximation matrices, respec-
tively. Then

(V )
(f +,g+)

=

k∑
j=1

r∑
q=1

(
Xjf +q
⊕ Xjg+q

)
(51)

(V )(f +,g+) =
k∑
j=1

r∑
q=1

(
Xjf +q ⊕ Xjg+q

)
. (52)

are called the dominating bipolar soft lower approximation
vector and the dominating bipolar soft upper approximation
vector, respectively.

Similarly,

(V )
(f −,g−)

=

k∑
j=1

r∑
q=1

(
Xjf −q
⊕ Xjg−q

)
(53)

(V )(f −,g−) =
k∑
j=1

r∑
q=1

(
Xjf −q ⊕ Xjg−q

)
. (54)

are called the dominated bipolar soft lower approximation
vector and the dominated bipolar soft upper approximation
vector, respectively.

Here the operations
∑

and⊕ represent the vector addition.
Definition 18: Suppose that (V )

(f +,g+)
, (V )(f +,g+),

(V )
(f −,g−)

and (V )(f −,g−) be the dominating bipolar soft
lower, and dominating bipolar soft upper, dominated bipolar
soft lower and dominated bipolar soft upper approximation
vectors, respectively. Then

Vd = (V )
(f +,g+)

⊕ (V )(f +,g+) ⊕ (V )
(f −,g−)

⊕ (V )
(f −,g−)

=

(
v1, v2, . . . , vn

)
(55)

is known as the decision vector.
Definition 19: For a decision vectorVd =

(
v1, v2, . . . , vn

)
,

each vi is known as the weighted number (WN) of ui ∈ U.

[D](f −,g−) =


〈X1f −1

,X1g−1
〉 〈X2f −1

,X2g−1
〉 · · · 〈Xk f −1

,Xk g−1
〉

〈X1f −2
,X1g−2

〉 〈X2f −2
,X2g−2

〉 · · · 〈Xk f −2
,Xk g−2

〉

...
...

. . .
...

〈X1f −r ,X1g−r 〉 〈X2f −r ,X2g−r 〉 · · · 〈Xk f −r ,Xk g−r 〉

 , (41)

[D](f −,g−) =


〈X1f −1

,X1g−1
〉 〈X2f −1

,X2g−1
〉 · · · 〈Xk f −1

,Xk g−1
〉

〈X1f −2
,X1g−2

〉 〈X2f −2
,X2g−2

〉 · · · 〈Xk f −2
,Xk g−2

〉

...
...

. . .
...

〈X1f −r ,X1g−r 〉 〈X2f −r ,X2g−r 〉 · · · 〈Xk f −r ,Xk g−r 〉

 (42)
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FIGURE 1. (Procedure of the proposed technique for MCGDM).

(1) An object ui ∈ U is referred to as an optimal object of U
if its WN is a maximum of vi for all i = 1, 2, . . . , n.

(2) An object ui ∈ U is referred to as the worst element of U
if its WN is a minimum of vi for all i = 1, 2, . . . , n.

If there is more than one optimal/worst element of U, then
pick out any individual of them.

VI. PROPOSED ALGORITHM FOR MCGDM PROBLEM
In the current section, we give an algorithm for the estab-
lished strategy of the MCGDM problem being considered
in section V. The corresponding steps of the algorithm are
given as follows:

Step 1: Take primary assessments X1,X2, . . . ,Xk of experts
p1, p2, . . . , pk .

Step 2: Construct T1,T2, . . . ,Tr ∈ BPSS(U) using the
actual results.

Step 3: By using Definition 10, calculate DBS+Tq (Xj),
DBS+Tq (Xj), DBS−Tq (Xj) and DBS−Tq (Xj) for all
j = 1, 2, . . . , k and q = 1, 2, . . . , r .

Step 4: Calculate [D](f +,g+), [D](f +,g+), [D](f −,g−) and

[D](f −,g−) by using Equations (31), (32), (41)
and (42).

Step 5: Calculate (V )
(f +,g+)

, (V )(f +,g+), (V )
(f −,g−)

and

(V )(f −,g−) by using Definition 17.
Step 6: Compute decision vector Vd by using Definition 18.
Step 7: Calculate maxi vi; i = 1, 2, . . . , n. An alternative

with maximum WN should be chosen for the final
decision.

Flow chart portrayal of the above algorithm is displayed
in Figure 1.

VII. APPLICATION: A DESCRIPTIVE EXAMPLE
To illustrate the potential of the above-proposed technique of
DM, here we consider a real-life example
Example 5 (Selection of a Best Company for Investment):

Suppose there are three investors (decision-makers) p1, p2,
and p3 who want to make an investment in a specific com-
pany. Assume that U = {u1, u2, u3, u4, u5} be the universe
consisting of five different companies, where u1 = Automo-
bile company, u2 = Food company, u3 =Computer company,
u4 = Arms company and u5 =Medicine company. Consider
A = {e1, e2, e3} is the set of parameters (qualities of compa-
nies), where e1 = appreciation, e2 = economical growth and
e3 = yearly benefit. Then Ã = {¬e1 = depreciation,¬e2 =
economical decay,¬e3 = ayearly loss}.
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Step 1: Primary assessments of investors p1, p2 and p3 are:

X1 = {u1, u2, u5},X2 = {u1, u3, u5} and X3 = {u2, u4, u5}.

Step 2: Actual results in three distinct locations and periods
are represented as BSSs T1 = (f1, g1 : A),T2 =
(f2, g2 : A) and T3 = (f3, g3 : A) as follows:

f1 : A −→ 2U,

e 7→


{u1} if e = e1,
{u1, u5} if e = e2,
{u4, u5} if e = e3,

g1 : Ã −→ 2U

¬e 7→


{u3, u5} if ¬e = ¬e1,
{u3} if ¬e = ¬e2,
{u1, u3} if ¬e = ¬e3.

f2 : A −→ 2U,

e 7→


{u2} if e = e1,
{u2, u4} if e = e2,
{u3, u4} if e = e3,

g2 : Ã −→ 2U

¬e 7→


{u1, u4} if ¬e = ¬e1,
{u5} if ¬e = ¬e2,
{u1, u5} if ¬e = ¬e3.

and

f3 : A −→ 2U,

e 7→


{u3, u5} if e = e1,
{u2} if e = e2,
{u2, u5} if e = e3,

g3 : Ã −→ 2U

¬e 7→


{u1, u2} if ¬e = ¬e1,
{u4} if ¬e = ¬e2,
{u1, u3} if ¬e = ¬e3.

Step 3: Using Definition 8 to calculate the operators
f +, g+, f − and g− for T1 = (f1, g1 : A):

f +1 (u1) = {u1}, g+1 (u1) = {u1, u3},

f +1 (u2) = {u2, u3}, g+1 (u2) = {u2, u4},

f +1 (u3) = {u2, u3}, g+1 (u3) = {u3},

f +1 (u4) = {u4, u5}, g+1 (u4) = {u2, u4},

f +1 (u5) = {u5}, g+1 (u5) = {u3, u5},

f −1 (u1) = {u1}, g−1 (u1) = {u1},

f −1 (u2) = {u2, u3}, g−1 (u2) = {u2, u4},

f −1 (u3) = {u2, u3}, g−1 (u3) = {u1, u3, u5},

f −1 (u4) = {u4}, g−1 (u4) = {u2, u4},

f −1 (u5) = {u4, u5}, g−1 (u5) = {u5}.

Similarly, the operators f +, g+, f − and g− for T2 =
(f2, g2 : A):

f +2 (u1) = {u1, u5}, g+2 (u1) = {u1},

f +2 (u2) = {u2}, g+2 (u2) = {u2, u3},

f +2 (u3) = {u3, u4}, g+2 (u3) = {u2, u3},

f +2 (u4) = {u4}, g+2 (u4) = {u1, u4},

f +2 (u5) = {u1, u5}, g+2 (u5) = {u5},

f −2 (u1) = {u1, u5}, g−2 (u1) = {u1, u4},

f −2 (u2) = {u2}, g−2 (u2) = {u2, u3},

f −2 (u3) = {u3}, g−2 (u3) = {u2, u3},

f −2 (u4) = {u3, u4}, g−2 (u4) = {u4},

f −2 (u5) = {u1, u5}, g−2 (u5) = {u5}.

And the operators f +, g+, f − and g− for T3 =
(f3, g3 : A): we have

f +3 (u1) = {u1, u4}, g+3 (u1) = {u1},

f +3 (u2) = {u2}, g+3 (u2) = {u1, u2},

f +3 (u3) = {u3, u5}, g+3 (u3) = {u1, u3},

f +3 (u4) = {u1, u4}, g+3 (u4) = {u4},

f +3 (u5) = {u5}, g+3 (u5) = {u5},

f −3 (u1) = {u1, u4}, g−3 (u1) = {u1, u2, u3},

f −3 (u2) = {u2}, g−3 (u2) = {u2},

f −3 (u3) = {u3}, g−3 (u3) = {u3},

f −3 (u4) = {u1, u4}, g−3 (u4) = {u4},

f −3 (u5) = {u3, u5}, g−3 (u5) = {u5}.

Therefore, we have

DBS+T1 (X1) =
(
{u1, u5}, {u1, u2, u3, u4, u5}

)
,

DBS+T1 (X2) =
(
{u1, u5}, {u2, u5}

)
,

DBS+T1 (X3) =
(
{u4, u5}, {u1, u3, u5}

)
.

DBS+T1 (X1) =
(
{u1, u2, u3, u4, u5}, {u3}

)
,

DBS+T1 (X2) =
(
{u1, u2, u3, u4, u5}, {u2, u4}

)
,

DBS+T1 (X3) =
(
{u2, u3, u4, u5}, {u1, u3}

)
.

Similarly,

DBS+T2 (X1) =
(
{u1, u2, u5}, {u2, u3, u4}

)
,

DBS+T2 (X2) =
(
{u5}, {u2, u3, u4}

)
,

DBS+T2 (X3) =
(
{u2, u4}, {u1, u2, u3}

)
.

DBS+T2 (X1) =
(
{u1, u2, u5}, {}

)
,

DBS+T2 (X2) =
(
{u1, u3, u5}, {}

)
,

DBS+T2 (X3) =
(
{u1, u2, u3, u4, u5}, {u1}

)
.

Also,

DBS+T3 (X1) =
(
{u2, u5}, {u3, u4}

)
,

DBS+T3 (X2) =
(
{u3, u5}, {u2, u4}

)
,

DBS+T3 (X3) =
(
{u2, u5}, {u1, u2, u3}

)
.
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DBS+T3 (X1) =
(
{u1, u2, u3, u4, u5}, {u4}

)
,

DBS+T3 (X2) =
(
{u1, u3, u4, u5}, {u4}

)
,

DBS+T3 (X3) =
(
{u1, u2, u3, u4, u5}, {u1, u3}

)
.

In the similar way, we have

DBS−T1 (X1) =
(
{u1}, {u2, u3, u4}

)
,

DBS−T1 (X2) =
(
{u1}, {u2, u4}

)
,

DBS−T1 (X3) =
(
{u4, u5}, {u1, u3}

)
.

DBS−T1 (X1) =
(
{u1, u2, u3, u5}, {}

)
,

DBS−T1 (X2) =
(
{u1, u2, u3, u5}, {u2, u4}

)
,

DBS−T1 (X3) =
(
{u2, u3, u4, u5}, {u1}

)
.

And

DBS−T2 (X1) =
(
{u1, u2, u5}, {u1, u2, u3, u4}

)
,

DBS−T2 (X2) =
(
{u1, u3, u5}, {u1, u2, u3, u4}

)
,

DBS−T2 (X3) =
(
{u2}, {u1, u2, u3}

)
.

DBS−T2 (X1) =
(
{u1, u3, u5}, {u4}

)
,

DBS−T2 (X2) =
(
{u1, u3, u4, u5}, {u4}

)
,

DBS−T2 (X3) =
(
{u1, u2, u4, u5}, {}

)
.

Also,

DBS−T3 (X1) =
(
{u2}, {u1, u3, u4}

)
,

DBS−T3 (X2) =
(
{u3, u5}, {u1, u2, u4}

)
,

DBS−T3 (X3) =
(
{u2}, {u1, u3}

)
.

DBS−T3 (X1) =
(
{u1, u2, u4, u5}, {u3, u4}

)
,

DBS−T3 (X2) =
(
{u1, u3, u5}, {u2, u4}

)
,

DBS−T3 (X3) =
(
{u1, u2, u4, u5}, {u3}

)
.

Step 4: [D](f +,g+), [D](f +,g+), [D](f −,g−) and [D](f −,g−), as
shown at the bottom of the next page are obtained by
using Equations (31), (32), (41) and (42) as follows:

Step 5: Using Definitions 17, (V )
(f +,g+)

, (V )(f +,g+),

(V )
(f −,g−)

and (V )(f −,g−) can be obtained as
follows:

(V )
(f +,g+)

=
(
1,−0.5,−2.5,−0.5, 6.5

)
,

(V )(f +,g+) =
(
1, 2, 1.5, 0.5, 4.5

)
,

(V )
(f −,g−)

=
(
0.5, 1,−1.5,−2, 4

)
,

(V )(f −,g−) =
(
3, 1, 1,−2.5, 4.5

)
.

Step 6: By using Definition 18, the decision vector is
obtained as:

Vd =
(
5.5, 3.5,−1.5,−4.5, 19.5

)
.

Step 7: As maxi∈In ui = u5 = 19.5. So u5 (Medicine
company) is the optimal element and mini∈In ui =
u4 = −4.5, so u4 (Arms company) is the worst
element.

Moreover the ranking among the elements of the uni-
verse U is given as: u5 � u1 � u2 � u3 � u4.
The pictorial portrayal for the ranking of the companies is
shown in Figure 2.

FIGURE 2. (Ranking of companies).

VIII. DISCUSSION AND COMPARATIVE ANALYSIS
In this section, we discuss the validity of the proposed
method, its advantages, and disadvantages, and finally a
comparison of the proposed technique with some existing
methodologies.

A. VALIDITY OF THE PROPOSED MODEL
As we know that, the preferences or opinions of all decision-
makers, aggregation is the crucial step for the classi-
cal GDM methods. In our proposed DM approach, every
decision-maker expressed their opinion as a BSS, and after-
ward, all opinions given by decision-makers are aggregated
through the usage the DB-BSR-approximations, and then a
compromise optimal proposal is acquired. So, the DB-BSRSs
approach to MCGDM provides a different strategy to aggre-
gate the preferences of decision-makers. Therefore, the pro-
posed DM approach is valid and offers a novel technique and
perspective to investigate GDM problems in real life.

B. ADVANTAGES OF THE PROPOSED TECHNIQUE
In general, real-world MCDM and MCGDM problems arise
in a complicated environment under uncertain and imprecise
data, which is hard to address. The proposed technique is
exceptionally appropriate for the scenario when the data is
complex, vague, and uncertain. Especially, when the existing
data is depending on the bipolar information by decision-
makers. A few benefits of the proposed technique are listed
below:
(i) The proposed approach considers positive and nega-

tive aspects of each individual alternative in the form
of a BSS. This hybrid model is more generalized and
appropriate to deal with aggressive DM problems.

(ii) This technique is additionally ideal on the grounds that
in this strategy the decision-makers are liberated from
any external conditions and prerequisites.
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(iii) Our proposed technique is effective in solvingMCGDM
problems when the weights information of criteria is
completely unknown.

(iv) The proposed MCGDM technique is more effective for
discrete data problems.

(v) The proposed method not only considers the opinions of
key decision-makers but also incorporates the past expe-
riences by DB-BSR-approximations in actual scenarios.
Hence it is a more comprehensive method for a better
interpretation of available information and thus making
decisions using artificial intelligence.

(vi) The proposed MCGDM approach is easy to understand
and can be applied to DM problems in real life.

C. DISADVANTAGES OF THE PROPOSED TECHNIQUE
Some minor flaws are there in the proposed technique, inclu-
sive of its complicated structure, the large data in the form of
bipolar information. Such large data is hard to deal with, due
to massive calculations, which are not so natural to perform.
However, one could create a MATLAB programming code to
make these complicated calculations simpler.

D. COMPARISON WITH SOME EXISTING TECHNIQUES
There are numerous techniques in the literature helpful
for tackling MCGDM problems. All these techniques of

MCGDM have their own merits and demerits. The capability
of every technique relies on the problem under consideration.
In this subsection, we make a set-based comparison of the
proposed MCGDM technique with some current MCGDM
techniques in the fuzzy and bipolar fuzzy environments and
see the significance of the proposed MCGDM strategy.

We talk about comparative analysis of proposed strategy
with dominance-based soft rough sets [64], fuzzy soft set [3],
dominance-based rough fuzzy set [15], intuitionistic fuzzy
rough sets [66], picture fuzzy set [10], generalized hesitant
fuzzy rough sets [63] and generalized intuitionistic fuzzy
soft sets [37]. All these techniques have their own value in
the literature. If we compare all these techniques with our
proposed strategy, we investigate the following points.

(i) The previously-mentioned techniques cannot catch
bipolarity in DM which is a fundamental aspect of
human thinking and behavior.

(ii) Besides, these techniques do not ensure harmony in the
opinions of decision-makers.

(iii) If we compare our proposed model with the methods
presented in [10], [37], we have seen that these methods
require a weight vector that represents the weight of each
alternative, but in our proposed model there is no need
for a weight vector.
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TABLE 1. The results obtained using different methods for Example 5.

FIGURE 3. (Ranking of companies using different methods for Example 5).

(iv) It is well known that the models presented in [10], [37],
[66] canmanage someDMproblems to describe the idea
of decision-makers through a crisp number. However,
because of the uncertainty of the objective world and the
complexity of the decision-making problems, they fail
to handle some GDM problems. For example, several
experts argue the membership degree of an element to
a set and cannot compromise each other. One wants to
assign 0.3, but the other tends to assign 0.7. In this case,
DB-BSRSs can be a very good solution to this problem.

(v) If we compare our proposed result with the method
presented in [9], we have seen that in this method the
optimal alternative is obtained just by using the tab-
ular form of BSSs, while in our proposed model the
optimal alternative is obtained by using the DB-BSR-
approximations.

(vi) In [40], Mahmood uses the tabular form of the T-BSSs
and presented two types of algorithms with the help
of score function to obtain the optimal alternative. But
in our proposed model there is no need for the score
function.

(vii) If we apply the recent approaches proposed in [36]
and [61] to our Example 5, we get the following
ranking among the alternatives (shown in Table 1)

and the corresponding pictorial depiction is given
in Figure 3.

IX. CONCLUSION AND FUTURE DIRECTIONS
The RS theory is arising as an incredible theory and has
different applications in numerous fields. On the other hand,
the BSSs are the appropriate mathematical model to deal
with the uncertainty as well as the bipolarity of the data.
In this study, we have initiated a novel technique of roughness
of BSSs known as ‘‘dominance-based bipolar soft rough
sets (DB-BSRSs)’’. For a given BSS, we first define some
dominance-based bipolar soft operators. Using these oper-
ators, DB-BSR-approximations have been defined. Some
important structural properties of DB-BSR-approximations
have also been studied in detail with examples. Additionally,
some significant measures related to DB-BSRSs like the
accuracy measure, the measure of precision, and the measure
of quality are also provided. In the meantime, we provide
a general methodology of the MCGDM approach based on
the DB-BSRSs. An algorithm of decision-making is also pro-
posed which has the following two main advantages. Firstly,
it manipulates the bipolarity of the data, endowed with uncer-
tainty. Secondly, this algorithm accommodates the opinions
of any (finite) number of decision-makers about any (finite)
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number of alternatives. Furthermore, the legitimacy of this
methodology is illustrated by a practical application. Lastly,
a comparison analysis of the proposed model is performed.

In the future, on the basis of the characterized ideas
and operations in this paper, researchers may additionally
look at the algebraic structures of DB-BSRSs. Modeling the
supported natural phenomenon is our subsequent objective.
Another perspective route is to have a look at the topological
axioms and similarity measures of DB-BSRSs in order to
seek a strong basis of the research studies and enhance-
ment of working techniques. Also, the idea of DB-BSRSs
could also be extended to dominance-based bipolar fuzzy
soft rough set and successful decision-making strategies can
be developed. The notions of the DB-BSRSs can also be
extended to multi-granulation DB-BSRSs. For more com-
plicated decision-making problems, the technique requires
further investigation. The different types of correlation coef-
ficients can also be studied in the framework of DB-BSRSs.
Some important aggregation operators such as Hammy mean
operators, weighted aggregation operators, arithmetic and
harmonic aggregation operators, power aggregation opera-
tors, etc. can also be developed in the follow-up work. Also,
the technique is more practical for discrete data problems.
For continuous scaled data sets, this approach requires further
research. Moreover, we will concentrate on the implemen-
tation of the proposed strategy in tackling a more extensive
scope of selection problems, like TOPSIS, VIKOR, ELEC-
TRE, AHP, and PROMETHEE.We may also be searching on
the possible fuzzification of the proposed strategy to obtain
more accuracy in outcomes and applying these procedures
to certifiable problems with large data sets. In this way,
we can acquire and demonstrate the usefulness of our pro-
posed model.
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