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ABSTRACT In modern-day multi-dimensional recreational drones (UAVs), the global navigation satellite
system (GNSS) units in-use are commonly fraught with precise-point-positioning (PPP) data errors or
inaccuracies, hence, necessitating this work. These data inaccuracies, occasioned by the system’s drawbacks
such as sudden GPS lock or jamming, embedded device misalignment, drone’s limited communication
coverage, signaling and detection, all contributes to the system’s PPP computation complexity. To mitigate
PPP complexity, an intelligent and robust accurate continuous-discrete (ACD) based hybrid cubature-
extended Kalman filter (C-EKF) computation model for an integrated GNSS unit is corroborated in this
article.More precisely, time updates to the state and parameter sub-vectors for theGNSS unit is accomplished
using the third-degree spherical-radial cubature rule. The system’s testbed simulation is then conducted using
tightly-coupled units of (i) ring laser gyroscope (RLG) and (ii) micro-electro-mechanical system (MEMS)
variants of the inertial measurement unit (IMU) to ascertain the PPP cooperative tendencies. Optimized
performance comparisons of the proposed hybridC-EKF over the existing cubature Kalman filter (CKF) and
extended Kalman filter (EKF) models with-respect-to (w.r.t) its probabilistic outages, Yaw error-differences
and ergodic capacities are demonstrated and presented.

INDEX TERMS 4-D trajectory recreational drones, global navigation satellite system (GNSS), inertial
measurement unit (IMU), hybrid cubature-extended Kalman filter (C-EKF), precise point positioning (PPP).

I. INTRODUCTION
The frequent use of the inertial measurement unit (IMU) for
industrial and space-based vehicular estimations have gained
traction [1]–[6]. The IMU hardware, also called as the inertial
navigation system (INS), are usually embedded in tightly-
coupled GNSS devices such as the GPS unit. The Kalman
filtering (KF) derivative is a direct differential approach that
requires gradient-based methodologies in estimating position
accuracies using the corresponding filter sensitivity com-
putations. With KF, the GPS-IMU thus assigns the carrier
phase as its observation phase. Additional phases connecting
the state-vectors are further included thereby improving the
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unit’s PPP to its crucial sub-meter level. However, inherent
nonlinear drawbacks downplay the GPS-IMU performance.
Areas affected are in outage probability ratios and devicemis-
alignment scenario [4] leading to miscalculated cross-track
errors. The error may seem little but can collapse system-
critical industries such as the avionics, pervasive systems and
AI-powered systems [5], [6].

Recent introduction of up-scaled versions of CKF and
EKF [7]–[10] for drone and radar-tracking systems have been
recorded. For instance, [7], [8] focused at predicting the state
mean and covariance matrix with measurement updates of
radar tracking limitations showing when an aircraft executes
a coordinated turn. They however failed to progress further
with the integration of their scheme into GPS-IMU devices
in order to ascertain its reliability. In [9], [10], attempt at
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reviving the original EKF scheme with enhanced derivative
computations was made. Modification was made to enhance
time updates and measurement constraints for robust radar-
tracking capacities, hence minimizing system’s along-track
errors. But no sufficient detail at mitigating existingCKF and
EKF computational complexities were provided.

The need to achieve unified GPS-IMU synchronization
and error analysis with proportionate deployment resolu-
tion is important [2]. At present, there are three suitable
GPS-IMU techniques for hoisting this work. They are the
loosely-coupled, the tightly-coupled integrated and the ultra-
tightly coupled model techniques [2]. The loosely-coupled
and the tightly-coupled GPS-IMU models exhibits nonlinear
constraints with inconsistent system errors as prevalent in
all nonlinear systems. These are usually resolved using the
EKF [11]. However, prior to implementing EKF, the system’s
position and velocity computations must attain certain PPP
accuracy threshold for loosely-coupled, unlike in tightly-
coupled. The research limitations on GPS-based [2] time-
updates at sub-vector [7]–[9] levels necessitates our work.

The main contributions in this paper as follows:
• To formulate a hybrid and scalable cubature-extended
Kalman filter (C-EKF) model by concurrently estimat-
ing the state and the parameter sub-vectors with recorded
thresholds using the third-degree spherical-radial cuba-
ture rule. This is a further improvement to the works
of [7]–[9] where only the differential features of EKF
computation was investigated and introduced.

• The proposed C-EKF model is then simulated sepa-
rately into each one of a tightly-coupled i) ring laser
gyroscope (RLG) and (ii) micro-electro-mechanical sys-
tem (MEMS) IMU devices to ascertain its PPP’s coop-
erative tendencies. In [7], [8], tightly-coupled IMU
devices were not used for tracking and detection, making
them susceptible to inaccurate measurements.

• By deploying an integrated C-EKF into a GPS-IMU ,
further significant system accuracies such as the drone’s
motion dynamics, along-track and cross-track errors
were analyzed and recorded. Unlike [2], our testbed was
carried-out in a confined zone where frequentGPS-lock
losses due to long GPS baselines are common occur-
rence, and factored in the cause of estimations.

• We then investigated the system’s probabilistic capacity
outages, Yaw error-differences and ergodic capacities in
dissimilar situations of PPP caused byGNSS distortions
and signal-to-noise ratio (SNR) thresholds.

The proposed model is able to cross-interact with other
orientation and position-estimation devices, such as the Light
Detection And Ranging (LiDAR) and the Interferometric
Synthetic Aperture Radar (InSAR), where direct sensor ori-
entation measurements are applied on the exterior orientation
parameters (three orientation angles and an added position-
coordinates of embedded navigation multi-sensor) of the sys-
tem. The imaging sensors resolution is proportional to the
hybrid model’s navigation accuracy. Effective extraction of
useful numerical information about the system’s states from

available measurements is successfully conducted, hence
guaranteeing the unit’s PPP.

The rest of this article is structured as follows: Section II
discusses the problem formulation with a presentation of
the current GPS-IMU integrated system and a review
of time update mechanism on existing state-space filters.
In Section III the proposed hybrid C-EKF model was derived
and articulated. Section IV proposes novel random trajec-
tory and guidance mechanism for the drones. The paper’s
performance evaluation with focuses on the testbed deploy-
ment, computations and numerical results were exhausted
in Section V. In Section VI, broad look at this work’s open
research issues was investigated, while Section VII concludes
the work with an expansive future works.

II. GPS-IMU SYSTEM AND EXISTING FILTERS: A REVIEW
A. THE INTEGRATED GPS-IMU SYSTEM
The need to achieve unified GPS error analysis with propor-
tionate resolution necessitated theGPS-IMU [2] deployment.
The model is advanced and beneficial. The three (3) known
techniques for achieving an integrated GPS + IMU are sum-
marized as: the loosely-coupled, the tightly-coupled and the
ultra-tightly coupled approaches.
• The Loosely-coupled Technique
This is when raw data (codes, sensed acceleration and
angular rates for the inertial sensors, and carrier-phase
pseudo ranges for GPS sensors) are processed to obtain
the PPP’s velocity and orientation estimations. The data
is collated and pre-processed prior to being merged.
To obtain a merged data, KF are applied. This approach
is common as it require at-least four (4) GPS satellites
with the embedded sensors for data computation.

• The Tightly-coupled Technique
The raw data from both GPS and inertial sensors
are simultaneously processed to obtain desired goals.
Obtained goals are more accurate estimations of veloc-
ity, orientation with the sensor’s inertial error, located in
the single filter process. It is more advanced since partial
GPS raw data are available for pre-processing [2].

• The Ultra-tightly coupled Technique
It is more complex approach of attempting to access
GPS hardware information loop, in estimating the
raw data (codes, sensed acceleration and angular rates
for inertial sensors, and carrier-phase pseudo ranges
for GPS sensors) for a more dynamic (or insecure)
location. The general public cannot gain access to
the GPS hardware information, making the approach
impracticable.

The loosely-coupled and the tightly-coupled integrated
GPS-IMU models exhibit nonlinear constraints with incon-
sistent system errors as prevalent in all nonlinear systems.
These are usually resolved with the EKF methodology [11].
While the system’s position and velocity computations
are required to achieve accurate PPP in the loosely-
coupled, they are however not required in the tightly-coupled
approach.
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FIGURE 1. The system’s operational flowchart diagram depicting all blocks.

B. THE EXTENDED KALMAN FILTER (EKF) SCHEME
The EKF scheme is deployed to sub-optimally provide
nonlinear state estimations for nonlinear dynamic systems
by using linearized Taylor approximation technique. For
instance, it is used to resolve position accuracies in the
integrated GPS-IMU units. However, the evolving drone-
based GPS-IMU with its added surrounding environmental
dynamism requires enhanced EKF capacity. To enhance its
capacity, its non-linearity continuous-discrete feature from
the Taylor linearized models are obtained as follows:

xk+1 ≈ 8k+1,kxk + Gkvk ,

8k+1,k =
∂f
∂x

∣∣∣∣
x=x̂−k

,Gk =
∂f
∂v

∣∣∣∣
v=0

. (1)

zk ≈ Hkxk + Fkvk ,

Hk =
∂h
∂x

∣∣∣∣
x=x̂−k

,Fk =
∂h
∂n

∣∣∣∣
n=0

. (2)

where subscripts denoting the epochs; x,v,z and n are state
sub-vector, process description noise vector, measurement
vector and the measurement noise vector respectively. xk rep-
resents the state vector at epoch k, x̂− x, v and n are mutually
independent of themselves. F and H denotes the nonlinear
system and the measurement functions, process and mea-
surement noises are assumed to possess a zero-mean value,
x̂k represents the optimal state estimates at epoch k while the
x̂−k is the predicted state estimate at epoch k,8 and G are the

matrices forming the linearized system model, while those of
F andH are the matrices forming the linearized measurement
model.

The time update of a typical continuous-discrete filter is
split into major computing groups. The group-I solves the
Fokker-Plank’s theorem by computing its conditional density
using available numerical methods [12]–[14]. The group-II
merely computes finite values of the conditional moments
after discretizing the process equation using either higher
order Runge-Kutta methods or the Eular approach [15], [16].
The underlying computational complexity constraints of the
group-I filters increases with-respect-to (w.r.t) its state vector
dimension, while that of group-II filters varies polynomi-
ally [17]. Similar to the group-II filter family, our proposed
hybrid C + CKF model are computationally less-complex
since only finite values are computed implying that its time
updates are similar to those of continuous-discrete extended
Kalman filter (CD-EKF) [11] and the continuous-discrete
unscented Kalman filter (CD-UKF) [18].
• (CD)-Extended Kalman Filter:
The first known nonlinear derivation of CD-EKF
in [11], [chapter 6 - 9] was obtained from the EKF
fundamentals, where its predicted state estimate and its
covariance collectively form the time-update. The state
estimate is:

X̂k+1|k = E [χk+1z1:k ] ≈ X̂k|k + T f(X̂k|k , k). (3)
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where X̂k|k are expanded Taylor series derivatives [11].
The Taylor series is also harnessed to obtain the state
error covariance matrix as:

Pk+1|k = var [χk+1z1:k ]

≈ (In + T fx(k))Pk|k (In + T fx(k))
T
+ TQ. (4)

• (CD)-Unscented Kalman Filter:
Similar to the CD-EKF scheme, the CD-UKF scheme
obtains its predicted state-error and covariance matrix
values from [11] as follows:

var [χ (t + δ)]

≈ var [χ (t + δ)]+ δ(cov [χ (t), f (χ (t), t)]

+cov [f (χ (t), t)χ (t)]+ Q). (5)

where var[χ (t + δ)] remains Taylor derivatives.

C. THE CUBATURE KALMAN FILTER (CKF) SCHEME
The recently introduced (CKF) is a nonlinear discrete-time
based state-space model that specifically targets the third-
degree spherical-radial cubature rule for computing all
Gaussian-weighted integrals. The rule leads to an even num-
ber of equal cubature points 2n, (where n represents the
state vector’s dimensionality). The points are even and are
distributed at the center of the ellipsoid. Some of the cubature
rule’s desirable properties are listed as follows:
• The cubature rule is non-derivative, allowing it to seam-
lessly apply to areas where Jacobian and Hessians rules
are commonly computed.

• The rule require 2n cubature points, where n is the
state vector dimensions, making 2n to be imperatively
evaluated at each update cycle. A third-degree cubature
rules has a theoretical lower bound of 2n cubature points.

These properties further justify why the CKF is new and
optimal numerical scheme for nonlinear filtering.

1) STEPWISE ALGORITHM FOR CFK TIME UPDATE
1) Assume at time k, that the posterior density function is

known to be: p(xk−1)|Dk−1) = N (x̂k−1 k−1,Pk−1|k−1).
Factorize:

Pk−1|k−1 = Sk−1|k−1STk−1|k−1. (6)

2) where m = 2nx , evaluate cubature points
(i = 1,2, . . . ,m):

Xi,k−1k−1 = Sk−1|k−1ξi + x̂k−1|k−1. (7)

3) Evaluate the propagated cubature points (i= 1,2,. . . ,m):

X ∗i,k,k−1 = f (Xi,k−1k−1, uk−1). (8)

4) The predicted state is estimated as follow:

x̂k|k−1 =
1
m

m∑
i=1

X ∗i,kk−1. (9)

FIGURE 2. The system architecture showing the proposed hybrid C-EKF
model with its concurrent inherent actions.

5) Estimate the predicted error covariance as:

Pk|k−1=
1
m

m∑
i=1

X ∗i,kk−1X
∗T
i,kk−1−x̂k|k−1x̂

T
k|k−1+Qk−1.

(10)

D. BENEFITS OF HYBRID C-EKF DEPLOYMENT
The importance and benefits of deploying the proposed
hybrid C-EKF model over the more conventional models is
discussed. Key parameters and factors such as the model’s
interoperability with the introduced GPS-IMU devices,
the signal’s beamforming models, the relative computational
complexity and the model’s deployment purposes are all
considered. As obtained in Table 1, two EKF-based schemes
of square root (SR) and singular value decomposition (SVD),
one upper diagonal (UD) factorization CKF-based scheme,
and the original differential KF model are all compared using
the proposed hybrid C-EKF approach as case model.

The major drawbacks for all but the SVD-based EKF and
the proposed scheme is in the deployment purposes, where
the schemes can be implemented at the relaying (control
towers), source (control center) and destination (drones) seg-
ments of the system model. Other key factor to observe are
the system’s interoperability with other navigation devices.
While other schemes can either conduct one of a transmit
or a receive operation at a time, the proposed C-EKF model
simultaneously conducts both operations at the same time,
making it robust. Aside from the CKF schemewhich recorded
a higher computational complexity, others schemes recorded
a low or moderate complexities which are based on the con-
ducted computations per minute.

To summarize, the previously differentiated-KF, the
differentiated-SVD, and the differentiated-EKF based com-
putations all provides quality estimations for position
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TABLE 1. Benefits of hybrid C-EKF deployment versus others.

accuracy models by harnessing the and solving the gradient-
based parameter estimation constraints, using adaptive filter
techniques. The differentiated-CKF on the other attempts to
harness and solve a combination of factor constraints such
as time and vehicle trajectory. To make the system more
robust, intelligent-driven and precisely accurate, combina-
tion of more advanced sets of the accurate continuous dis-
creet (ACD) based CKF with EKF technique was deployed.

III. PROPOSED HYBRID C-EKF MODEL
The model’s operational flowchart as captured in Fig. 1
presents the methodology for achieving desired drone accu-
racy. First, the drones are deployed, while trajectory and
directions are navigated and controlled using embedded
GPS-IMU devices. As previously stated in section 1,
the IMU devices are either the tightly-coupled ring laser
gyroscope (RLG) or the micro-electro-mechanical sys-
tem (MEMS) units. A computation of the GPS-IMU sig-
nal beamforming with the proposed hybrid scheme is then
deployed. On the deployment, PPP accuracy for the drones
is achieved. To ascertain/verify these accuracies, goal posts
are set for the drones to cross. Once they’re able to cross the
goal post line, target PPP accuracy is met. However, in the
event goals are not met, the drone’s GPS-IMU with C-EKF
computations are re-calibrated by increasing the cubature
node points by +1. The updated value is then sent to be
re-computed by the GPS-IMU with C-EKF decision block.

The system architecture in Fig. 2 depicts the concurrent
estimation of state-space and parameter sub-vectors predic-
tions. The state’s previous (priori) and aftermath (posteriori)
estimations, with the covariance matrix of CKF’s state, are
all fed back-and-forth into EKF loop [1], [2], [6] as the
system commences its execution. Estimation of the mixed
state/parameter mobile drone sink is achieved with its linear
observation as:

xk = f (xk−1)+ Bθk−1 + wx,k−1
θk = θk−1 + wθ,k−1,
zk = C(xk )+ Bθk + vk

(11)

where xk is state function with covariance matrix P1,k , while
f(.) and θk are the parametrized covariance matrix P3,k . Also
note that w and v are the Gaussian white noise, while the
covariance matrices of Q and R refers to unity transition

matrix. Taylor’s 1st -order term for non-linear function f are
used for the cross covariance matrix (P2,k ) predictions.

A. TO ESTIMATE STATE SUB-VECTOR
To guarantee optimal PPP using drones, state and parameter
sub-vector positions for deployed drone are analyzed. Cal-
culation of state sub-vector (a non-linear system part of the
drone), embedded in the tightly-fixed GPS-IMU is achieved
first. To update CKF time-line, the 2n points known as the
cubature points are then deduced as:

Sk−1|k−1 = SVD(P1,k−1|k−1)

Xk−1|k−1 = Sk−1|k−1ξi + Xk−1|k−1. (12)

where n is the non-linear state vector’s dimensionality. SVD
is a single value method for matrix decomposition, while
X are the cubature points. Note that, subsets ξ =

√
m
2 (1)i

,
m= 2n, where n equals state vector’s dimensionality and (1)i
is system’s generator. However, when n= 2, sets of points to
denote the system generator (1)i are presented as:{(

1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
. (13)

Applying non-linear state transition function in order
to implement cubature points, latest predicted cubature
becomes;

X ∗k−1|k−1 = f(X k−1|k−1), (14)

To calculate both the predicted state and its related or rel-
evant covariance matrix, mathematical models are expressed
thus;

xk|k−1 = (
1
m
)
∑m

i=1
X ∗i,k|k−1P1,k|k−1

= (
1
m
)
∑m

i=1
X ∗i,k|k−1X

∗T
i,k|k−1 − xk|k−1x

T
k|k−1

+BPT2,k−1|k−1A
T
+ AP2,k−1|k−1BT

+BP3,k−1|k−1BT + Qx . (15)

where both P1,k|k−1 and xk|k−1 remains the predicted covari-
ance matrix and the predicted state matrix respectively. Since
unwanted noise plays a pivotal role at not achieving reli-
able systems during cross-correlation with other drones and
which occurs in the state transition matrix during estima-
tion, enlargement of the non-linear state’s noise covariance
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matrix (Qx) system will provide some level of cushion in
the overall system noise reduction and ultimately guarantee
a reliable system. Eqn. (10) is only for generic systems
devoid of tightly-coupled GPS-IMU unit. For our proposed
tightly-coupledGPS-IMU enabled drones, further upgrade on
eqn. (10) is made as:

P1,k|k−1

=

(
1
m

)∑m

i=1
X ∗i,k|k−1X

∗T
i,k|k−1−xk|k−1x

T
k|k−1 + Qx

(16)

However, to update the measurement part, cubature points
is required to be continuously regenerated using the predicted
zk|k−1 and P1,k|k−1 as follows:

Sk|k−1 = SVD(P1,k−1|k−1)

Xk|k−1 = Sk−1|k−1ξi + χk−1|k−1. (17)

To now calculate the predicted observation using newly
defined cubature points, the following steps are introduced:

Zk|k−1 = CX k|k−1

zk|k−1 =
(
1
m

)∑m

i=1
Zi,k|k−1. (18)

In an assumed parameter, then states are only estimated.
To have these measurement methodology revised by also
estimating units for parameters, it is expressed as:

zk − Dθk|k−1 = Cχk|k−1 + vk . (19)

On successfully modifying the measurement approach,
a noise occurs in the form of estimation error θ̃ emanat-
ing from θk|k−1. To convert noise into a good one, other-
wise termed as ’white noise’, the following expressions are
introduced as:

E{vk θ̃T } = 0

E{θ̃vTk } = 0. (20)

The expression implements further changes to the mea-
surement approach in (11) as:

Rk,x = E{(Dθ̃ + vk ) ∗ (Dθ̃ + vk )T }

= {Dθ̃ θ̃TDT } ∗ E{vkvTk }

= DP3,k|k−1DT + Rk . (21)

The latest measurement approach in (13) is essential in
the proposed model as it influences the system’s estimation
accuracy for better when changes to observation occurs. The
state’s white noise in (13) is accurately vilified as it pos-
sesses similar expressions with other existing (non-hybrid)
approaches, when their respective cross-correlation (P2) is
zero. Hence, the need for state covariance matrix (P1). Hence,
picking our approach from the CKF, the state’s Kalman gain
is now expressed as:

Pzz,k|k−1 =
(
1
m

)∑m

i=1
Zi,k|k−1ZT

i,k|k−1 − zk|k−1z
T
k|k−1

+Rk,x + CP2,k|k−1DT + DPT2,k|k−1C
T , (22)

Pzz,k|k−1 =
(
1
m

)∑m

i=1
Xi,k|k−1ZT

i,k|k−1 − xk|k−1z
T
k|k−1

+BPT2,k|k−1C
T
+ APT2,k|k−1D

T
+ BP2,k|k−1DT .

(23)

To finally express estimations for both a-posteriori state
and covariance matrix, these follow-up steps are introduced:

xk|k = xk|k−1 + Kx(zkDθk−1|k−1)

P1,k|k = P1,k|k−1 − KxPzz,k|k−1ATx . (24)

B. TO ESTIMATE PARAMETER SUB-VECTOR
To guarantee collaboration and consistency of operations
between EKF and the already finalized CKF, the parameter
sub-vector of EKF must be analyzed with a pre-existing
assumption of a known state’s sub-vector. As predicted by
EKF, parameters and covariance matrix are generated as:

θk|k−1 = Axk|k−1 + Bθk−1|k−1P3,k|k−1
= BP3,k−1|k−1BT + AP1,k|kAT + Qθ . (25)

As a follow-up on the analyzed CKF, the generated out-
puts shown as predicted states and covariance matrix, acts
as inputs for the system, together with state vector xk|k−1
and covariance vector P3,k|k−1. However, since the states’
estimation errors are hindrances to prediction accuracy of
parameters and covariance matrix, then a revision of the
measurement equation is required and expressed thus:

zk − Cxk|k−1 = Dθk|k−1 + vk . (26)

while its covariance matrix measurement is deduced as:

Rk|θ = E{(Cx̃k|k−1 + vk ) ∗ (Cx̃k|k−1 + vk )T }

= E{(Cx̃k|k−1̃xTk|k−1C
T )} ∗ E{vkvTk }

= CP1,k|k−1CT
+ Rk , (27)

Furthermore, expressions for Kalman gain, a-posteriori
parameters and covariance measurement are updated as:

S =DP3,k|k−1DT+CP2,k|k−1DT+DPT2,k|k−1C
T
+Rk,θ

Kθ =

(
PT2,k|k−1C

T
+ P3,k|k−1DT

S

)
θk|k = θk|k−1 + Kθ (zk − Cxk|k − Dθk|k−1)

P3,k|k = P3,k|k−1 − KθDP3,k|k−1. (28)

C. TO ESTIMATE CROSS-COVARIANCE MATRIX
The predictions and estimations for the cross-covariance
matrix is achieved in this section. To begin, a computation
of the CKF for the cross covariance is initialized as:

P2 =
(
1
m

) m∑
i=1

(Xi − x)(2i − θ)T (29)

Resulting EKF is implemented in our proposed model
to further optimize the filtering method’s reliability, often
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TABLE 2. Comparative IMU specifications for the deployed
microelectromechanical system (MEMS) units and the ring laser
gyroscope (RLG) units.

TABLE 3. Simulation parameters.

degraded due to additional computational load. Mathematical
step to obtain the predictions for cross covariance matrix is:

P2,k|k−1 = AP2,k−1|k−1 + BP3,k−1|k−1, (30)

Finally, a computation formula for a-posteriori cross
covariance matrix is presented as:

P2,k|k = (A− KxC)P2,k|k−1 + (B− KxD)P3,k|k−1. (31)

The features of (22) and (23) show resemblance to
parameter covariance matrix. In generic systems, when cross
covariance matrix (P2) is computed, one major performance-
limiting factor is parameter covariance matrix (P3), which
in-turn affects the estimation and outputs of Kalman gain.
Extension of these limitation is observed in the proposed
tightly-fixedGPS-IMU -enabled drones, where the negligibil-
ity of cross covariance matrix causes smaller Kalman gain
thereby, hence limiting the convergence speed. However,
in our approach, the flexibility of adopting different state’s
estimation for the two introduced sub-vectors meant is capa-
ble at multi-updating, guaranteeing estimation accuracy and
further ensuring that computational loads are kept at barest
minimum.

IV. TRAJECTORY AND DEPLOYMENT OF 4-D DRONES
A. TESTBED DEPLOYMENT AND INVESTIGATIONS
This work was deployed into a region-of-interest of 6 km
square-size (3500 m above sea level), mirroring a typically
hazardous/conflict terrain of limited LOS and more signal
interferences (e.g., noise, poor visibility, mountainous and in
foggy/wintery condition). Detailed numerical configurations

of EKF, CKF and hybrid C-EKF was compiled with the
GPS-IMU processor codes to analyze variance in perfor-
mance. Novatel GPS receiver and MEMS based IMU, called
as imar-VRU, was then embedded into the drones. Data sam-
plings from the GPS was kept at 1 Hz, while that of IMU
was kept at 100 Hz. The lever-arm top of the drone, closer
to the IMU was kept at nearly 1 m2 apart. While the imar-
RQH (a version of imar-VRU ) is deployed to observe the
altitude reference and phase differential-GPS (DGPS). Inbuilt
inertial DGPS features was used in obtaining results from
imar-VRU /imar-RQH devices.
The integrated GPS-IMU based imar-VRU is depicted as

relay device for estimating base stations to target coordi-
nates orientations. Estimation accuracy hinges upon scan-
error angle, footprints sizes, scan-range angle, imar-VRU
range accuracy measurements, sensor-to-sensor proximity
and the system’s navigation trajectories (both vertical and
horizontal). The scheme is implemented to retrieve the 4-D
coordinates of the deployed aircraft, where base station is able
to coordinate the parameters and actions of imar-VRU and
have them transmitted to ground imar-VRU for analysis. The
coordinates for geo-referencing is formulated as:

rM ,k =
[
rM ,INS + RMINS × (RINSL .rL + bINS )

]
. (32)

where rM ,k is 3-D vector coordinate with k mapping. rM ,INS
is 3-D vector coordinates for INS, as derived. RMINS is the
matrix rotation between mapping area (area) and INS body
area (frame), measured by INS. The bore-sight matrix rotation
between beams and INS body area is depicted by RINSL , while
rL and bINS is the 3-D object-vector coordinates and of three
bore-sight offset biases between laser and INS.

The drone’s spatial resolution as determined by imar-
VRU calibration tool, justifies higher target accuracy. The
high accuracy is determined by the estimations of the
GPS-IMU . By using Monte Carlo simulation techniques,
sensitive orientation estimations to base station was demon-
strated in Fig. 3. The simulation was done with 200 parti-
cle parameters to demonstrate both horizontal and vertical
accuracies of GPS-IMU on the base station. The features
were flight height (1000 m) to ground station, translational
(±1 cm) and rotational (±10 arcsec) sensor misalignment
accuracies, the imar-VRU range (±1 cm) and scan angle
measurements (±5 arcsec). Others are the horizontal features
(roll and pitch), the navigation selection methodology and
mapping coordinates. To achieve higher accuracy readings,
drone outputs with GPS-IMU is required. Where unit of
centimeter-to-decimeter is replaced by centimeter-to-arcsec
(roughly 0.0028 deg). Since the units are currently avail-
able in the more expensive technologies (eg., IMU devices),
achieving maximal PPP accuracy for 4-D drone becomes
imperative.

B. RANDOM TRAJECTORY MODEL
This section proposes random trajectory model of Fig. 4 for
4-D drones. Units of omni-directionally sophisticated
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FIGURE 3. Monte-Carlo simulations for PPP using GPS-IMU.

GPS-IMU antennas are embedded to at-least two or more
drones under consideration. During deployment, antennas
may encounter obstacles [21] in the LOS, hindering optimal
data transmission. To estimate the recalled drone’s capability
at data transmission with newly deployed ones, received
signal analysis of the recalled drone must be deduced:

yr (t) =
√
PUh1x(t)+ n(t), (33)

where PU denotes drone’s transmit power, x(t) is the transmit
symbol, and n(t) is the drone’s zero-mean additive white
Gaussian noise (AWGN), consisting E[|n(t)|2] = σ 2. Com-
plex coefficient between drones is h1, while LOS links are
presumed to be contained as the atmospheric open space
inside the spherical radius. The Rician factor (K ), nor-
mally accounting for the influencing reflections and scattered
signals within the confining environment is corroborated,
where the environment was assumed to have experienced
Rician fading. Simplifying K in Rician fading, which is the
ratio of LOS signal-power to power of scattered beam path,
an assumption of the receiver-side CSI is made, leading to
steps for probability density function (PDF) presented by
Beard and McLain [22] is deduced as follows:

fϑ (x)

=

[
1+ K

ϑ̄
exp

(
−K −

(1+ K )x

ϑ̄

)
I0

(
2

√
K (1+ K )

ϑ̄
x

)]
.

(34)

where ϑ̄ =
[
PU
σ 2lα

]
, representing average SNRwhere path loss

exponent is α.

1) INCLINATION AND DECLINATION STRATEGY
All drones designed for surveillance or combat purposes
(e.g., unmanned combat aerial vehicles (UCAVs)), possess
dissimilar pre-designedmechanism for inclination (climbing)
and declination (descending). But their operational strategies
are relatively similar in that their flight path angel (γ ) is
always positive during take-off or when in-motion, and gives

FIGURE 4. Operations of the tightly-coupled GPS-IMU.

FIGURE 5. Illustrating the drone’s angles of inclination and declination
parameters.

negative value when about to descend. Fig. 5 gives the fac-
tored drone parameters as: overall weight of the craft (W),
drag constant (D), craft’s lift (L), and craft’s thrust (T), which
is proportional to its center of gravitational force. The craft’s
path-angle is obtained assuming constant velocity (V) and
further re-construction of craft’s repelling forces (x-axis) as:

T − D = W × sin(γ ), (35)

where inclination angle is sin(γ ). Further steps to obtain path
angle for incline is:

γ = sin−1
[
T − D
mg

]
. (36)

where m and g are flight angle variables by base station. Path
angle (γ ) for declination using Y-axis is:

L = W × cos(γ ), (37)

where cos(γ ) is the declination. System’s path angle for
decline is obtained as:

γ = cos−1
[
L
W

]
. (38)
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To illustrate true motion or air speed for drones, features
for (V) are obtained. These features are either based on the
horizontal velocity plane (Vx) or vertical velocity plane (Vy).
(Vx) is obtained either with the craft’s rate of incline (RoI)
and rate of decline (RoD). This is expressed as:

Z = V ×
[
T − D
W

]
. (39)

2) ACHIEVING MINIMUM TURNING RADIUS
A competing drone system achieves a turn when it changes its
course in a circular twist and over a pre-determined airspeed
vector ratio, known as (V). When this is done, it ends up
defining the drone’s velocity. However, to accomplish this
level twist in a circular path, the forces acting on the sides
of the craft equals to 0, implying that the craft ends up
tilting the lift (L) vector ratio in an angle (φ) as suggested
by Crofton [23]. To generate the radial force (F), products of
the titled lift (L) with the drone weight (W) force is obtained
as n =

[ L
W

]
. The Fig. 6a expresses the use of load factor

(n) for the mathematical calculation of the radial accelera-
tion, equaling the proportionality ratio of lift (L) and weight
force (W). To illustrate the craft’s flyable path measurement,
a mathematical estimation of the craft’s turn-rate (u), the bank
angle (φ) and craft’s turning radius (r) are induced. The craft’s
envelop or commencement strategy as consistent with the
estimations are depicted in Fig. 6b. Parameters such as craft’s
limits and maximum drive velocity are illustrated as:

r =
[

V 2

g
√
n2 − 1

]
, (40)

u =
g
V

√
n2 − 1, (41)

φ = tan−1
[
V × u
g

]
. (42)

where load peak factor (n) and its airspeed value (V) are
placed at 2.45 m/s and 28.0 m/s. Assuming gravitational
acceleration (g) equals 9.8 m/s2, then peak parameters for
minimum turning radius, maximum turn rate and maximum
bank-angle becomes: 37.0m, 46.15 deg/sec and 62.75 deg/sec
respectively.

FIGURE 6. (a). Angular representations of Craft’s envelop.
(b). Its consequent measurements.

3) RANDOM TRAJECTORY-AWARE COMMUNICATION LINK
A tightly-fixed illustration of the ergodic and the outage
capacities for both the existing and the fully-recharged drones
can be deduced. First, their respective distances using the
Lemma 1 theorem which embeds the investigations made
using Crofton Fixed Point Theorem is articulated.
Lemma 1: If N vertices ζ equaling i = 1, 2, . . . ,N ,

achieved a remote-distribution and are deployed at random
in zone A, with volume of |A|, where height (H) is depen-
dent on ζ1, . . . , ζN . And that A′ ⊂ A, where δA denotes
infinite boundary value of A, but not of A′. On exploiting both
Jensen’s inequality distribution in [24] and Crofton’s theorem
of [11], the underlining postulation is made.
Postulation: The 4-D multi-drone using randomized

motion trajectory and with the Rician fading propagation is
determined thus:

Cerg1 =
(

1
ln(2)

)
× ln

(
1+

PU
σ 2 ×

(
36
35
rs

))−α
−

 (2K + 1)

(2K + 1)2
(
1+ PU

σ 2
× ( 36

35rs )
)
 ; (43)

On careful observations, model’s resulting outage capacity
is: {

Cout1 ≥ C∗out1, for E|L1| < lth
Cout1 ≥ C∗out1, for E|L1| < lth,

(44)

given that lth =
√
( τ3−1
τ1τ2τ3τ4

), and where;

C∗out1 = log2(1+ ϑth)

× exp

[
−εv(

√
2K )

(
2σ 2ϑth(1+ K )( 36

35rs )
−α

PU

)]
.

(45)

Proof: In proving (43), Euclidean distance among
drones is denoted by L1, while fL1(l) denotes the PDF of L1
value, while, P is probability between two drones spaced by
distance l. Whereas, P1 is known as probability of having at-
least one drone around network area. Referencing Crofton’s
in Lemma 1, the numerical model is:

dP = 2(P1 − P|V|−1d |V|), (46)

Given |V| = volumetric 4-D sphere, i.e., |V| = 4
3πr

3
s .

d |V| = 4πr2s drs. To evaluate P , we assume that at-least one
drone is located within network zone, while at-least another
drone is located just on the tip of network area and within
radius l. The rest drones can be within or just outside net-
work area. Exact location of strongest network point is dl,
where volumetric network area for drones is expressed as
2π l2

(
1− l

2rs

)
dl, implying that P1 is numerically obtained

as:

P =
2π l2

(
1− l

2rs

)
dl

4
3πr

3
s

=
3l2 (2rs−l) dl

4r4s
. (47)
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Average distance between existing and newly deployed
drones are derived by numerical expansion of substituting
(46) for (47) and further applying integral functions as:

E|L1| =
∫ 2rs

0
l.fLi (l) dl =

36
35
rs. (48)

However, the existing Jensen’s inequality in [25] is classi-
fied as being below-par, while its low bounds for the Ergodic
capacity is now deduced as:

E|Cerg1(l)| ≥ Cerg1(E|L1|)

=

[
1

ln(2)
ln
(
1+

PU
σ 2 ×

36
35
rs

)−α]

−

 (2K + 1)

(2K + 1)2
(
1+ PU

σ 2
× ( 36

35rs )
)
1Cerg1.

(49)

The Ergodic derivatives is concluded since (43) is proved.

C. DRONE-TO-DRONE GUIDANCE MECHANISM
By utilizing the MATLAB simulink tool, investigations
of 4-D drone guidance mechanism was accomplished in this
section. All existing PPP models based on the already dis-
cussed randomized trajectorywere consistent with ourmodel.
The along-track and cross-track errors, shown in Fig. 7 are
the commonest of all errors that are prevalent in all drones
and ways to permanently resolve these or to bring them to
the barest minimum are solved using the embedded random
trajectory tracking device. At any drone’s point or location,
vector error for cross-track is computed as the orthogonal
projection depicted with positions Pe(Xe,Ye,Ze) and is pro-
portional to the winged drone’s velocity ratio Vr situated at a
position Pr (Xr ,Yr ,Zr ) within a time-frame t, and in an earth-
based coordinates of North-East-Down (NED). In contrast
to cross-track error, the along-track error obtains the value
difference between the winged tangential drone’s velocity
Vr (Vrx ,Vry,Vrz) and its original velocity Ve(Vex ,Vey,Vez)
within the same time-frame t. A numerical estimation of the
drone’s relative velocity in NED coordinates is calculated
assuming the drones’s proximity as d = Pr − Pe, then the
drone’s original positions in NED will be expressed as dV =
Vr − Ve, implying that NED conversion to frame Rr from
frame-size (u, v, n) is achieved. The frame Rr with its frame
size (u, v, n) are deduced using the drone’s turning rotation
and shown using matrix R as:

R =


 cosXr

sinXr
0

 ,
 sinXr
cosXr

0

 ,
 0
0
1

 . (50)

where R is further enhancement of vector units with frame
size (u, v, n), while u represents a parallel vector to Vr , and
n indicates a downward pointing vector. To mitigate errors in
cross-track, a closed-loop of proportionate integral derivative
(PID) controller is used. A closed-loop of proportionate (P)
controller is used for along-track errors. Prior to this, operator

FIGURE 7. Across-track and along-track error profiles.

ensures controllers are considerably raised to their respective
optimal levels and allowed to implement velocity limits just
to avoid excess speed for cross-track error, and to also imple-
ment angular and anti-wind features by avoiding steep/sharp
turns for along-track error.

V. PERFORMANCE EVALUATION
This section discusses the deployment scenario and the per-
formance evaluation of our proposed scheme. Details such as
the system’s operational procedure, investigations and graph-
ical illustration/outputs were presented. Upon investigating
the proposed hybrid (C-EKF), and as consistent with the
detailed low-cost IMU devices of Table 2 and drone parame-
ters of Table 3, overall system performancewas then analyzed
accordingly. Preliminary and final results presented optimal
performance features at implementing the hybrid C-EKF
over EKF and CKF schemes, in that order.

A. TESTBED DEPLOYMENT
1) DRONE SYSTEM FEATURES AND DEPLOYMENT
a: MULTIPLE FLIGHT SPEEDS AND MODES
The E58 Pro Drone includes the new 3-D rolling special
effects. One-key return function allows the drone to return
automatically without losing the drone. The Headless mode
option makes the drone’s front side the same as the remote
control, making it easier to fly to a preferred destination.With
the Trimming function, the drones are adjusted according to
tilt direction thus, making the drone stabilize during flight.

b: DEPLOYMENT, APP CONTROL, AND EASY-TO-USE
MECHANICS
APPs are downloaded to control the drone. A click on
the gyroscope icon flies the drone according to the grav-
ity of the mobile phone. The drone can flip the screen
180 degrees when the REV icon is clicked. Click on
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FIGURE 8. (a) to (f) depicts recreational drone deployment, analysis and recorded outputs using the hybrid C-EKF model.

FIGURE 9. Yaw differences for drones in constant velocity and averaging
total of 20 filter runs.

the VR icon to turn on mobile phone split screen-mode.
VR glasses are essential to experience real-time transmission
in 3-D visualization [19], [20]. Click on the Trajectory flight
icon to draw flight trajectory on the phone. The drone will
then follow the trajectory. On altitude hold-mode, operator

FIGURE 10. Yaw differences for drones when in stationary state and
averaging total of 20 filter runs.

can accurately lock the height and location, stable hover and
capture video/images from any angle, making the experience
quite easy and convenient. Non-experts can easily operate the
drones. The drone automatically takes-off and lands with one
handy click. There is an emergency landing button to prevent
collision with obstacles.
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FIGURE 11. Outage probabilistic capacity vs. SNR threshold ϑ , by applying
Rician factor where K = 5 dB and PU = 0.1 W , and rs = 500 m.

FIGURE 12. Confluence comparison of ergodic capacity vs. SNR
threshold ϑ , by applying Rician factor where K = 5 dB and PU = 0.01 W ,
and ϑth = 0 dB.

2) TESTBED EVALUATION
A recapitulation of our work and its optimal performances
were buttressed in the Fig. 8a - Fig. 8f, depicting the deploy-
ment, analysis and recorded outputs of the proposed hybrid
C-EKF scheme. In Fig. 8a & Fig. 8b, the recreational drones
were deployed and controlled using a console for its marked
target goalpost. In Fig. 8c & Fig. 8d, a drone is seen to
perfectly mirror the C-EKF computations and learn the tar-
get goalpost. The Fig. 8e depicts the drone’s accuracy to
it target goalpost. In Fig. 8f, perfection is achieved when
a recreational-drone crossed the target goalpost’s opening.
The kinematic baselines and abilities of PPP accuracy of the
deployed drones to conduct and complete a task achieved sig-
nificant 45% improvement with the proposed hybrid C-EKF
model. It is also observed that the system’s speed-ratios
improved while the heading convergence rate, using the low-
cost INS/IMU was higher. Around 18% of the system’s rela-
tive improvement was found in the average position error for
1-second GPS gaps using the hybrid C-EKF model versus

11% that was recorded using other filters. During stationary
periods andwithout sufficient kinematic calibrations, a nearly
36% improvement in the heading component’s drift rate was
recorded.

B. NUMERICAL RESULTS AND DISCUSSION
1) YAW DIFFERENCE COMPARISON
The Fig. 9 and Fig. 10 depicts the yaw differences in both
stationary and in constant velocity, averaging a total of 20 fil-
ter runs. A system should maintain normal yaw to attain
credibility. In Fig. 9, its drift recorded sharp but dissimilar
increases w.r.t time for all scheme. For EKF, increased yaw
angle commenced at 200 s, posting 50 deg orientation and
peaked at 400 s, with yaw of nearly 340 deg. The hybrid
(C-EKF) commenced increase at 200 s with yaw peaking at
400 s with a yaw of nearly 210 deg. The CKF posted the least
yaw drift of 40 deg at 150 s and a yaw peak of 180 deg at 400 s.
Hence, an indication that only the hybrid C-EKF maintained
expected normal yaw.

In Fig. 10, sharp increase began at the later stages of
the stationary zone. For EKF, increased yaw difference is
recorded at 650 s, posting 5 deg orientation and peaked at
1200 s, with a yaw of nearly 10 deg. Similarly, the hybrid
C-EKF commenced an increase at 650 s with yaw of 5 and
peaked at 400 s with a yaw of 9 deg. Again, the CKF posted
least yaw of 2 deg at 400 s and a yaw peak of 6.5 deg at 1200 s.
The output suggests that only the hybrid C-EKF maintained
a normal yaw , hence, outperforming both EKF and CKF.
When comparing the system in a constant velocity and in a
stationary motion, end results suggests the optimality of the
system in stationary motion over velocity mode.

2) OUTAGE PROBABILITY VS. SNR THRESHOLD ϑ

The system’s outage capacity in (bit/s/Hz) is plotted against
the SNR threshold ϑ ratios (dB) in Fig. 11, with an applicable
Rician factor of K = 5 dB, PU = 0.1 W , and where
rs = 500 m. An increased outage capacity of all the approach
was recorded with a proportionate increase in threshold ϑ
ratios. At the lowest and highest values of threshold ϑ , all
the approaches maintained a steady increase until the value
of ϑ = 6, when they all started displaying some variance
in outage capacity. These values as recorded negates the
2-D approach with maintained a totally dissimilar ϑ rate-
value. It is seen that the 2-D approach maintained the lowest
outage of 0.5 when ϑ = 0, and also maintained the highest
outage capacity of nearly 2.5 when ϑ = 10 dB.

3) ERGODIC CAPACITY VS. SNR THRESHOLD ϑ

Fig. 12 depicts a confluence comparison of the ergodic capac-
ity against the SNR threshold ϑ , with an application of the
Rician factor where K = 5 dB and PU = 0.01 W , and
ϑth = 0 dB. The varying densities to the network link is
evaluated by implementing a multi-hop (relay-based) and
direct Ad-Hoc communication linking network. It is observed
that, with a multi-hop (relay-based) ergodic network, not
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TABLE 4. Roundoff errors effects in ill-conditioned test cases in Example 1. Where θ∗ = 5, 100 Monte Carlo runs.

much rapid changes occur. However, with direct communi-
cation link of both Cerg6 and Cerg1, under a pre-determined
radius, rapid changes occurred. A sharp decline of values was
recorded with an increased radius rs, when in Cerg1 mode for
all the approaches. The decreased values, as recorded were
consistent and was never broken for all the approaches. The
peak point of zero (0) valuewas reached for the 4-D approach,
when the coverage radius was at its widest radius of nearly
600, as against other 3-D and 2-D approaches. However for
direct Cerg6 ergodic capacity, little changes occurred as no
sharp decline was recorded, even its radius at its widest.
As seen, the values maintained a nearly-linear value for all the
approaches and only started to considerably decline when the
radius rs was nearing the mark of 300. It can also be observed
that a confluence both the ergodic values of Cerg6 and Cerg1,
occurred when at a radius of 350 m, 400 m and 500 m, for
analytical at N = 50, analytical at N = 20 and simulation at
N = 20, respectively. There was no confluence of system for
when simulation at N = 50.

C. ILL-CONDITIONING COMPUTATIONS
The numerical testbed computation procedure is organized
as follows. The unknown system parameter θ is estimated
from all available experimental data ZN1 = {z1, z2, . . . , zN },
through gradient-based adaptive KF technique and as con-
sistent with the works of [9], [26], [27]. For easier anal-
ysis, all differentiated algorithms observes the same data
process ZN1 while the initial value of the optimizationmethod,
θ̂ (0) = 1. Next, the obtained optimal estimate θ̂ (∗) is then
computed, while comparison is drawn against the ‘‘real’’
value of θ̂ (∗) = 5 for ascertaining each approach’s estimation
quality. The experiment is repeated for M = 100 times and
then numerically investigate the estimate’s a posterior mean,
the root-mean-squared error RMSE and the mean absolute
percentage error (MAPE%) over 100 Monte Carlo runs.

The results obtained in Table 4 depicts careful experi-
mental observations as consistent with the available data
and MATLAB computations. To this effect, the following
conclusions are presented. Firstly, when not ill-conditioned
i.e δ at 10−1 and 10−2, all differentiated variants of KF

work equal and normal, ascertaining that the techniques are
algebraically similar. Secondly, the differential KF is the
least performing approach, implying its fastest degradation
when δ = ∈roundoff . A computer roundoff for floating-point
arithmetic is characterized by a single parameter ∈roundoff ,
that is often defined in different sources as the largest num-
ber such that 1 + ∈roundoff = 1 or 1 + ∈roundoff /2 = 1 in
machine precision terms. The unaccounted lines for the
differential KF and differential CKF approaches suggests
MATLAB’s inability to compute the algorithms. Thirdly,
on investigation, it is observed that the UD-based CKF
approach marginally outperformed the conventional differen-
tial KF approach. It posted a bit more robust computations
with range of ill-conditioning put at 10−10 in comparison
to the KF with range of just 10−6. However, our proposed
CKF-EKF model not only outperformed UD-based EKF and
KF approaches, it also exhibited robust and quite competitive
MAPE%, RMSE and mean values against the others.

VI. OPEN RESEARCH ISSUES
A. INTERFERENCE LIMITATION FROM BASE STATION
In [28]–[31], authors confirm that adhoc interference vulner-
ability of drones with remotely located ground station (GS)
transmitters are major research concern. The effects of RF
interferences in our proposed 4-D based competing recre-
ational drones are investigated starting with a step to illus-
trate the drone’s strongest received adhoc signal as: y =
√
PUh1g1x(t) +

√
PIhIgI x(t) + n(t), where ground station

transmitter power is PI , channel fading coefficient from the
transmitter to drones is hI , path loss equaling g1 = L−α1 is
denoted, where L1 is spherical proximity between indepen-
dent drones. Similarly, path loss equaling g1 = L−αI3 is the
proximity between a drone and its designated GS, where αI
is the path loss exponent.

To estimate the system’s signal-to-interference-plus-noise
(SINR) denoted as (Z), an expression is formulated as:

Z =
PUL

−α
1 |h1|

2

PIL
−αI
3 |hI |2+σ 2

, X
Y+σ 2

, where a denotation of (X )

as (PUL
−α
1 |h1|

2), while that of the (Y ) as (PIL
−αI
3 |hI |

2
+

σ 2) are formulated. But with channel model hI that
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observes Rician distribution, where parameter K denotes
KI , an expression for PDF is then deduced as: fX (x) =[
1+K
�x

exp
(
−K − (1+K )x

�x

)
I0
(
2
√

K (1+K )
�x

x
)]

, where �x is

denoted by (PUL
−α
1 |h1|

2. In a similar manner, the PDF
of Y can be formulated with respective replacements of
K, x and X with KI , y and Y. On further mathematical
expansions, a probabilistic expectation for X is generated

as: X̄ = E[X ] =
∫
∞

0
xf X (x)dx = �x

1+K exp(−K ) ∗

(1 + k) exp(K ) = �x = PUL
−α
1 . Just as is the case of

X, a probabilistic expectation for Y is generated as: Ȳ ′ =

E[Y + σ 2] = E[Y ] + σ 2
=

∫
∞

0
yf y(y)dy+ σ 2

=

�y + σ 2
= PIL

−αI
3 + σ 2. By exploiting the benefits

of random trajectory (in section 4.2) proximity estimation,
the lower bounds for EL3 [Z1] is generated as: EL1L3 [Z1] =

EL3 [Z1(E[L1])] ≥ Z1(E[L1],E[L3]) =
[

PU ( 3635 rs)
−α

PI ( 65 rs)
−αI+σ 2

]
,

where Jensen’s inequality ratio expressions [32] are core
inequality generators.

B. ERROR-PRONE CSI AT THE PPP’S RECEIVER-END
Error-prone channel estimation are prevalent as a result of
the stipulated requirements of the minimum mean-square
error when they are being projected. Recently, authors in
[32]–[36]. have modeled and projected these error-prone CSI
to be h1 = ĥ1 + he, where the receiver side’s estimated
CSI is ĥ1, the zero-mean value is he, the Gaussian esti-
mation complex error is h1, and the CSI’s variance is ε.
To now calculate the SNR for the received average, these

expressions are presented as follows: ϑ̄ ′ =
PUL

−α
1 |̂h1|

2

PUL
−α
1 ε+σ 2

=

PU |̂h1|2

PU ε+σ 2Lα1
, However, recall that the ergodic capacity Cerg6

of the system is essential and deduced as: Cerg6 =

Cerg1(ϑ̄ ′) = 1
ln(2) [ln(1+

PU
PU ε+σ 2Lα1

)− (2K+1)

(2(1+K )2[1+ε+ σ2
PU

Lα1 ]
2)
].

The lower bounds of the ergodic capacity are further analyzed
using Jensen’s inequality formulation method expressed as:
E[Cerg6(L1)] ≥ Cerg6(E[L1]) = 1

ln(2) ln(1+
PU

PU ε+σ 2( 3635 rs)
α
)−

(2K+1)

(2(1+K )2[1+ε+ σ2
PU
×( 3635 rs)]

2)
, Cerg6.

The two discussed open issues above were resolved using
Jensen’s inequality model, together with the enhanced com-
putation C-EKF model as stated in the previous sections.
They were also instrumental in shaping this work. It must
be mentioned in clear terms that other open-issues are very
much prevalent and they are subjective to the operations and
research investigations of all other authors.

VII. CONCLUSION
This work’s major objectives and accomplishments were:

• To design and deploy hybrid C-EKF model into a
GPS-IMU tightly-coupled four-dimensional (4-D)
motion recreational drones to further enhance their abil-
ity to cooperate and execute specified tasks.

• To analyze network communication link capacity
between drones and base stations (BSs) using random-
ized 4-D trajectory model, as consistent with simulation.

• To further improve GPS-IMU reliability, which is uti-
lized for mapping applications in confined environment
where frequent losses of GPS lock and PPP inaccuracy
due to long GPS baselines are common occurrence.

Furthermore, this article recapitulates the derivatives for
proposed C-EKF for modern GNSS-enabled drone systems,
while demonstrating its inherent real-time and computational
load capacities. The PPP’s kinematic baselines and abili-
ties for the mobility system to conduct and complete a task
achieved significant 45% improvement with the proposed
model. It is also observed that significant improvement of the
system’s speed ratios was attained while its heading conver-
gence rate remained higher when IMUs are introduced. Up to
18% of the system’s relative improvement was achieved in
the average position error for every 1 SecGPS gap versus the
11% that was recorded using other filters. During stationary
periods and without sufficient kinematic calibrations, up to
36% improvement in the drift rate of the heading component
was also recorded. For future research considerations, con-
certed effort at resolving imperfect channel state information
(CSI) estimations and system signal de-noising from ground
station terminals are issues to be investigated.
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