
Received August 28, 2021, accepted September 21, 2021, date of publication September 28, 2021, date of current version October 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3116061

An Empirical Study on Using Multi-Labels for
Issues in GitHub
JINDAE KIM 1, (Member, IEEE), AND SEONAH LEE 2, (Member, IEEE)
1Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
2Department of Aerospace and Software Engineering and Department of AI Convergence Engineering, Gyeongsang National University, Jinju 52828, Republic of
Korea

Corresponding author: Seonah Lee (saleese@gnu.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant by the
Ministry of Education under Grant NRF-2018R1D1A1A02085551 and Grant NRF-2021R1A2C1094167, and in part by the Human
Resources Development of Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant by the Ministry of Trade,
Industry and Energy under Grant 20194030202430.

ABSTRACT On GitHub, one of the most successful services for software project hosting, labels have been
used to represent various information and decisions about reported issues. However, previous studies on
labels were limited to simple statistics or label recommendations for issue types. In this paper, we aim to
provide a better understanding of labels and their usage in software development. We particularly focus on
using multiple and custom labels on issues. To analyze label usage, we collected software project data and
label usage information from GitHub. We then quantitatively investigated the performance of projects with
multi-label features and qualitatively investigated the categories of multi-labels, and the usage of multi-labels
based on these categories. Our analysis results show that multi-labels are common in the majority of software
projects and that projects using multi-label features manage their issues more effectively. In addition, our
analysis results reveal different types of information represented by labels, which are related to features,
development, and issues. This study finds several facts that can be used for studies on issue management and
thus that help develop labeling techniques to mitigate the burden of issue management.

INDEX TERMS Issue tracking system, issue management, issue labels, multi-labels, github, open source
software, software maintenance.

I. INTRODUCTION
GitHub is one of the most successful, flourishing services for
software project hosting with an issue management system.
In the issue management system, GitHub provides support
for labels, which can be used to represent various informa-
tion and decisions about reported issues. Project contributors
can freely attach any labels to express the same kind of
information regarding their issues, as shown in Fig. 1 . Issue
labeling can increase the visibility of issues and can facilitate
contributors to resolve issues in less time.

The labeling system is the backbone of GitHub’s issue
management system. Due to such importance, there have

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .
Fig. 1 shows the labels attached to issues. Among them, bug is a default

label that GitHub provides, while other labels are custom labels that project
contributors have created. Issues have a different number of labels, because
project contributors decide how many labels they will use for each issue.
As shown in the upper right corner of the figure, the vscode project has
352 labels as of August 21, 2021.

been several studies to analyze and improve the labeling
system. Some studies sought to analyze labels to reveal
interesting facts on issue management [1], [2]. Other studies
developed techniques to analyze and improve the labeling
system, such as visualizing label usages [3] or automatically
labeling reported issues [4].

However, there exist limitations in previous studies on the
labeling system, and many questions are still unanswered.
First, none of the previous studies considered aspect of
using multiple labels for an issue. Different labels assigned
to issues indicate different information or attention on the
issues, which may affect issue management. Second, previ-
ous studies did not investigate custom labels. Custom labels
can represent the information that developers would like to
express formanaging issues. On the other hand, custom labels
might be one of the huge obstacles that interfere with label
analysis on issue management. For instance, one of the pop-
ular labels ‘bug’, which represents the type of an issue, has
many variants. Although GitHub provides the default label
‘bug’, many projects have their own labels, such as ‘bugs’

134984 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1864-0148
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0003-3264-185X

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

FIGURE 1. Example of labels attached to issues for the vscode project in GitHub.

or ‘type:bug’, to represent the same thing. To obtain more
meaningful, interesting information, we need to understand
the characteristics of custom labels.

In this study, we considered all these limitations and sought
to answer questions that still remained unknown. To the best
of our knowledge, this is the first attempt to analyze the label-
ing system of GitHub from the perspective of multi-labels
and the first to analyze custom labels. We carefully designed
the process to refine data from the GHTorrent dataset [5]
and updated the data with recent information obtained from
GitHub. The subjects we analyzed included 14,415 projects
with 13 million issues and 0.3 million labels.

We first analyzed how many issues have multiple labels
and how multiple labels affect issue management. Our anal-
ysis result shows that 90% of the projects have used multiple
labels on their issues at least once. Moreover, projects with
multi-label issues have a higher close rate (81%) than the
other projects with no multi-label issues (68∼74%). In terms
of close time, the projects with multi-label issues have a
longer average close time than the other projects without
multi-label issues, since multi-label issues are often more
difficult to resolve. However, if we compare the average
close time of single-label issues only, then projects having
multi-label issues have more than a month shorter close time
(131.9 days) than projects having single-label issues without
multi-label issues (173.6 days). These results indicate that
projects using multi-labels have resolved their issues more
effectively.

Next, we analyzed what kinds of custom labels are defined
in projects, and how such labels have been assigned to issues.
We qualitatively analyzed custom labels in three selected
projects. Our analysis result shows that issues have up to
7∼9 labels and frequently use 2∼4 labels. Custom labels are
usually defined in the feature, development, issue concepts.
In particular, custom labels that are relevant to issue status
are actively used. Meanwhile, custom labels that are relevant
to functionality are actively used in two projects, but not
in one project. When we investigated labels used together,
we found that labels representing a bug were widely used in
the three projects, but other labels frequently used together

varied according to projects. These findings indicate that
different kinds of labels work differently on issues during
issue management.

We listed contributions of this study as follows.
• We Design a Process to Collect and Refine Data From
GitHub for Issue and Label Analysis: We carefully
refined projects from existing the GHTorrent dataset to
improve the credibility of our study results and described
the process in detail for similar future studies.

• We Provide an Empirical Study Analyzing Multi-Labels’
Effectiveness on Issue Management:We compared issue
management performance when no-label, single-label
or multi-label was used. The result shows that projects
using multi-labels have resolved their issues more
effectively.

• We Analyze How Labels Are Customized: Unlike other
previous studies onGitHub labels, we studied how labels
have been customized. We devised label categories that
can be used in future studies to aggregate custom labels
into groups and to identify more information and char-
acteristics at a high-level.

The remainder of sections will be organized as follows.
First, Section III explains our empirical study design includ-
ing research questions, data collection and analysis methods.
Then Section IV presents analysis results and discusses their
implications, and Section V provides further discussion about
custom labels and label categorization. After that, Section II
discusses related work. and Section VI discusses threats to
validity of this study Finally, Section VII concludes the study
with future work.

II. RELATED WORK
We classify our related work into three categories: empirical
studies on GitHub, studies on issue labeling and classifica-
tion, and empirical studies on issues.

A. EMPIRICAL STUDIES ON GitHub
There have been many empirical studies on GitHub, which
have investigated various angles of software development and
its analysis on GitHub.

VOLUME 9, 2021 134985

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

Several studies on GitHub revealed the pitfalls of mining
GitHub, and they affected our design of subject refinement
and analysis. Kalliamvakou et al. investigated the advantages
and disadvantages of mining GitHub [6], [7] after Bird et al.’s
analysis on the advantages and disadvantages of Git [8].
They showed that the addressed biases could threaten the
validity [7]. Likewise, Consentino et al. also discussed their
concerns about the reliability of GitHub studies due to issues
such as poor sampling techniques [9]. Munaiah et al. noted
that GitHub repositories contain not only engineered software
projects but also noisy contents that are irrelevant to software
projects [10]. We reviewed these studies and considered and
adapted their findings when we designed our subject refine-
ment and experiments.

Two recent studies investigated forks and pull requests.
Zhou et al. revealed that the concept of forks has changed
from hard forks that are independent development branches
to social forks that are temporary branches created for feature
implementation [11]. Brown and Parnin investigated sug-
gested changes associated with pull requests on the GitHub
system [12]. They uncovered the facts that developers mainly
suggested correcting errors, formatting and improving code,
and modifying the non-functional part of the code. These
studies targeted different subjects - forks and pull requests
- unlike multi-labels on issues in our study. However, the
findings in those studies helped us to understand software
development community on GitHub and were useful for our
analysis on issues and labels related to the development.

Other studies focus more on software development activi-
ties and communities on GitHub. Borges et al. explored the
characteristics of popular GitHub repositories by assuming
the star ratings of repositories as their popularities [13]. They
analyzed the correlations of the star ratings and other char-
acteristics, such as ages, commits, contributors, forks and
more, and they found a strong correlation between stars and
forks. Subramanian analyzed the first contributions of OSS
developers by collecting the first pull requests of 3,501 devel-
opers [14]. He reported that about 30% of the changes were
only on one to five lines of code, which were mainly mod-
ified or inserted. Although these studies explored different
territories, they provide valuable information to understand
software development activities on GitHub, similar to our
study on multi-label usages.

B. STUDIES ON ISSUE LABELING AND CLASSIFICATION
There are studies that focus on issue labeling [1]–[3]. First,
Izquierdo et al. noted that labeling is a basic classification
mechanism for issue reports, but it is infeasible to infer
relevant information from labels as issue reports increase [3].
To address this issue, they developed a GitHub Label Ana-
lyzer that visualizes label usages in a graph and label timeline
in a tree form.

Liao et al. investigated the importance of behaviors related
to issue management [1]. Similar to our study, they used
the data collected from GitHub Archive and seven popular
projects collected by using GitHub REST API. By analyzing

the data, they found interesting facts such as that labeling
issues have a positive impact on issue processing and the
trends of label changes according to different development
phases. While they found a positive impact of labels on issue
reports, they did not focus on multi-labels, or how individual
labels affected issues differently.

Cabot et al. studied the impact of issue labeling on open
source projects [2]. With respect to label usage, they found
that only 122,012 out of 3,737,038 projects (3.25%) attached
labels to issue reports. They also found that the most com-
monly used label is ‘enhancement’. The next most common
labels are ‘bug’ and ‘question’. These labels were sometimes
used together. With respect to label influences, they found
that labeled issues have a high percentage of being solved
(more than 43.51%), compared to unlabeled issues (22.53%).
While they identified commonly used labels, they did not
investigate the multi-labels commonly used together.

In addition, researchers have steadily studied automatic
classification of issue reports, since Herzig et al. manually
categorized more than 7,000 issue reports and found that one-
third of bug reports are irrelevant to bugs [15]. Researchers
have proposed techniques to classify issue reports into
two categories: bugs and non-bugs [16]–[23]. In addition,
Kochhar et al. proposed classifying issue reports into thirteen
pre-defined categories [24], and Fazayeli et al. proposed
classifying issue reports into five categories [25]. Recently,
Kallis et al. proposed an automatic labeling system, called
TicketTagger [4]. TicketTagger predicts a label whenever an
issue report is submitted to the GitHub issue tracking system
and automatically attaches the predicted label to the submit-
ted report. To predict a label relevant to an issue, TicketTagger
preprocesses the issue report, expresses the issue reports as a
vector, and classifies the issue report. Kallis et al. evaluated
TicketTagger by applying it to balanced data with 10-fold
cross-validation. The evaluation results show 78.1% to 82.2%
precision and 76.3% to 87.4% recall. TicketTagger limits the
labels to the three types of issues: Bug, Enhancement, and
Question. These classification studies mainly focus on issue
types, while our study explores the performance of projects
with multi-labels and the kinds of custom labels on issues, not
limiting issue types.

Our study differs from the previous studies [1], [2], [4],
[16]–[21], [24], [25] since our study focuses on the usage of
multi-labels. Our study goes one step further than previous
studies [1], [2] by showing that the projects with multi-labels
have a shorter resolution time than the projects without multi-
labels. In addition, our study could be a basis for research
on automatically assigning multiple labels to an issue report,
which previous studies have not yet proposed.

C. EMPIRICAL STUDIES ON ISSUE DISCUSSION AND
SUCCESS
There are two lines of work in empirical studies on issue
reports. One line of work studied the discussions in issue
reports [26]–[31], and the other co-related issue reports with
project or issue success [32]–[35].

134986 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

Among the studies on the discussions in issue reports,
Krishna et al. worked on predicting the trends of bugs and
enhancements based on the number of issue reports [26].
Hu et al. studied the multiple discussions of developers
across several issue reports [27]. Hu et al. found that projects
with multiple discussions tend to have a shorter resolution
time than the others. Likewise, our study reveals that projects
using multi-label features tend to have a shorter close time.

Four studies investigated or classified the comments of
issue reports [28]–[31]. Arya et al. qualitatively classified
4,656 comments into 16 major types such as solution dis-
cussion and bug reproduction [29]. Huang et al. analyzed
154,493 issue reports that had questions (29.73%) and no
questions (70.27%) [28]. Issue reports with questions have
a longer elapsed time and a higher number of develop-
ers, comments and reassignments. Rath and Mäder inves-
tigated developers’ communication patterns by analyzing
270,000 comments [30]. They found conversations for col-
laborations (44%), conversations for feedback (41%), and
monologues (15%). Raman et al. developed a sentimen-
tal classifier to detect toxic conversations among develop-
ers [31]. By applying the classifier to 1,734,124 issues, they
found that toxic conversations decreased from 2012 to 2018.

Our study differs from these studies since we address dif-
ferent subjects, issue comments versus issue labels. However,
we noticed that label prediction approaches could utilize
comments as one of the features to predict labels [4], [36].
Their studies on issue comments and our study on issue
labels could be considered together to develop an effective
mechanism for predicting labels on issue reports.

Among the studies that co-related issue reports with project
or issue success, Bissyandé et al. defined project success as
the popularity of a project and investigated the impact of the
adoption of issue tracking systems on project success [32].
They found that one-third of projects maintain issue reports
and that the projects with issues are maintained a half a
year longer than other projects without issues. Kikas et al.
suggested dynamic features such as the number of comments
in an issue and contextual features such as the number of
issues closed in two weeks [33]. They found that contextual
features play an important role in predicting issue lifetime
and that dynamic features contribute to the prediction less
than contextual features but still complement static and con-
textual features. Ramírez-Mora et al. identified successful
and unsuccessful issues [34]. They also found that there
are key development phrases in the trend of issue reports.
Zhou et al. studied the impact of bounties on addressing
issues in GitHub [35]. They found that the timing of propos-
ing bounties is important to address issue reports and that the
higher the bounty is given, the more likely the issue reports
are to be resolved.

Our study goes a different direction from these studies,
since our study conducts an empirical study on multi-labeled
issue reports. Furthermore, our study goes one step fur-
ther from Bissyandé et al.’s [32] by showing that projects
with labeled issues maintain a higher close rate and

a shorter close time than projects with only unlabeled
issues.

III. STUDY DESIGN
In this section, we will present research questions and explain
study design, including data collection and analysis methods.
We will use the terms repository and project interchangeably,
as we consider one repository as one project in this study. The
concept of a project could be broader than that of a repository.
For example, the dart-lang project has several repositories
such as sdk and language. However, it will not considerably
affect our analysis, since a repository that belongs to a project
can be considered as a sub-project, such as dart-lang/sdk .

A. RESEARCH QUESTIONS
We introduce research questions regarding multi-label usage
and its influence on issue management performance and
research questions investigating multi-labels in projects.

1) RQ1. MULTI-LABELS AND ISSUE MANAGEMENT
PERFORMANCE
• RQ1.1 How Popular Are Multi-Labels in Issue Manage-
ment? We investigated how many projects and issues
used labels, before we analyzed issue management per-
formance of projects and issues with respect to the usage
of labels.

• RQ1.2 Does Using Multi-Labels Affect Issue Manage-
ment Performance of Projects? Each project may have
their own policy to assign labels to issues for manage-
ment. We analyzed whether using multi-labels affected
issue management performance of projects.

• RQ1.3 Does Using Multi-Labels Increase Issue Man-
agement Performance of Individual Issues? In a software
project, there might be different issues with different
numbers of labels. We investigated whether multi-label
issues have differences in issue management perfor-
mance compared to other issues with no labels or just
one label.

2) RQ2. INVESTIGATION ON MULTI-LABELS IN PROJECTS
• RQ2.1 How Many Labels do Issues Have in Projects?
We investigated how many labels are used for label-
ing issues, especially focusing on how many labels are
attached to an issue.

• RQ2.2 What Kinds of Custom Labels Are Defined in
Projects? Although GitHub provides default labels for
issues, many projects define their own custom labels.
We analyzed the kinds of custom labels that are defined
in projects.

• RQ2.3 What Kinds of Custom Labels Are Used in
Projects? Even if custom labels are defined in projects,
those labels might not be used in projects. We analyzed
the kinds of custom labels that are used in projects.

https://github.com/dart-lang

VOLUME 9, 2021 134987

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

• RQ2.4 Which Custom Labels Are Used Together? We
analyzed which labels are frequently assigned together
to represent various information about issues.

B. DATA COLLECTION
To answer the research questions, we first collected issue
reports of open source projects and their labels in GitHub.
GitHub provides REpresentational State Transfer Applica-
tion Programming Interface (REST API) v3 to access var-
ious information of repositories. GHTorrent is an enormous
public archive that collected such information for years [5].
At the time we started this study, the latest GHTorrent dataset
provided data collected until June 2019, which contained
information of more than 125 million repositories.

However, we could not use the dataset for the following
reasons. First, the latest GHTorrent dataset was not actu-
ally up-to-date, since we started to collect data for this
study in March 2020. We found that some of the reposi-
tories in GHTorrent were deleted. Some of the repositories
were migrated to other repositories; hence, we could not
access recent data of those repositories based on GHTorrent’s
records. Second, we focused on issues and their labels in
this study, and not all repositories had such information.
As revealed in a previous study [7], many of the repositories
in GitHub are personal or not even about software devel-
opment, which makes them out of this study’s scope. Last,
there were inconsistencies among the information stored in
GHTorrent. For instance, some of the issues’ were recorded as
closed earlier than their creation, which would have affected
our study.

For these reasons, we went through refinement steps to
select our subjects, and collected the latest data of sub-
jects via GitHub REST API. From the GHTorrent dataset,
we first listed all projects that were not forked from another
project and had at least 210 issues. These projects were
not simply copied from other repositories and thus man-
aged by developers more actively. Using a minimum num-
ber of issues was necessary to secure sufficient material
for our study, and 210 issues were from 99% percentile of
the ranking in the unique number of issues of projects. For
these filtered projects, we collected the latest information
to remove unavailable or duplicate projects. Finally, we dis-
carded projects with no language information returned by
GitHub, which indicated that there was no detectable code;
hence, it was more likely that they were not about software
development.

Table 1 shows the simple statistics of our subjects. The
final dataset we used includes 14,415 projects with more than
13 and 0.3 million issues and labels, respectively. Languages
used in subjects included JavaScript (21%), Java (12%),
Python (12%) and many others such as PHP, C++, C and
Ruby. These subjects had a maximum of 12 years of devel-
opment histories, and the average period of development is

https://developer.github.com/v3/
http://ghtorrent.org

5.43 years. Popular open source software projects such as
Visual Studio Code, Elasticsearch, TypeScript, and NumPy
are also included in the subjects. Hence, our subjects are
software projects in various programming languages with
sufficient development histories for the study.

The key information and data of this study are publicly
available in our repository. This repository contains the infor-
mation of the 14,415 projects as well as the issues and labels.
It also provides intermediate data we produced and used
during analysis, which were reported as figures and tables in
Section IV. We did not include complete raw data obtained
from GitHub API and GHTorrent, since they are already
publicly available and not all of them were used in this study.

C. ANALYSIS METHODS
In this section, we explain howwe analyzed the collected data
to answer the research questions.

1) RQ1. MULTI-LABELS AND ISSUE MANAGEMENT
PERFORMANCE
For RQ1, we considered the number of labels assigned to
issues of projects. Based on the number of labels, we catego-
rized projects and issues into three groups: No-label, Single,
and Multi. For issues, we simply assigned issues without
any labels to the no-label group, those with only one label
to the single label group, and those with more than one
label to the multi-label group. For projects, we used the
existence of single-label and multi-label issues. If a project
contained any multi-label issues, it was categorized in the
multi-label group, and any remaining projects with at least
one single-label issues were categorized in the single label
group. The remaining projects were assigned to the no-label
group. Throughout the paper, we used terms no-label, single-
label and multi-label to indicate No-label, Single and Multi
groups respectively. For instance, single-label issues are the
issue with only one label, and project using multi-label means
the project belonging to the Multi group.

We analyzed multi-label usage and issue management per-
formance for the three groups. For RQ1.1, we counted the
number of issues and projects for each group and analyzed
them. For RQ1.2, we measured issue close rate and issue
close time to evaluate issue management performance. Issue
close rate, or close rate is the ratio of closed issues to all
issues in each project group. For example, as shown in Fig. 1,
the vscode project has 5,851 open issues and 112,278 closed
issues. In the case, the close rate is the ratio of 112,278 closed
issues to 118,129 total issues, which is 0.95.We computed the
close rate for each project, and then we averaged the close
rates of all projects in each group.

Issue close time, or close time is the duration between
the creation time and close time of an issue. For example,
the issue titled ‘‘Escaping pattern highlighting fails’’ in Fig. 1
was created at 2021-08-17 16:38:14 and closed at 2021-08-18
14:25:54. Then the duration is less than 24 hours, hence the

https://github.com/Jindae/issue-label-study

134988 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

TABLE 1. Information of subjects.

close time is computed as 0 days. We first computed the aver-
age close time of each project as the project’s close time, and
then computed the average close time of all projects in each
group. We also investigated the distribution of projects’ close
time. For RQ1.3, close rate and close time is straightforward,
and we computed close rate and close time for each issue
group.

2) RQ2. INVESTIGATION ON MULTI-LABELS IN PROJECTS
We investigated how labels were created and used in projects.
GitHub provides nine default labels. In addition, developers
can freely create labels to organize issues in GitHub, which
we call custom labels. First, to select the target projects
to manually investigate custom labels, we selected the top
100 projects having the most number of issues. Then we
manually examined the projects and selected 10 candidate
projects. To select the candidate projects, we checked the
following conditions for each project.
• Is it a software project developed actively?
• Does it have more than ten contributors?
• Does it actively use the issue tracking system at our
investigation time?

• Does it actively use multi-labels?
After selecting 10 projects, we re-examined the projects

and selected three target projects that possessed relatively
many labels. As a result, we selected the vscode, the dart-
lang/sdk and the typescript projects.

We first investigated the number of labels which issues
have for RQ2.1.We analyzed the labels attached to issues and
created an issue distribution of the three projects according to
the number of labels.

We then qualitatively analyzed the custom labels for the
three target projects in detail for RQ2.2 and RQ2.3. To under-
stand the concepts of labels, we adopted a qualitative analysis
method, Grounded Theory [37]. We manually tagged labels
in two steps. We first tagged each label by a word commonly
used in labels if possible. If the label did not contain any
commonly used word, we assigned a word that stands for
the label. If we found it difficult to catch the meaning of the
label, we referred to the description of the label and tried to
understand its meaning. If the description was insufficient
to understand the label, we checked the issues that had the

Close times are integers computed by MySQL func., so 0 days is used in
the case.

https://docs.github.com/en/free-pro-team@latest/github/managing-your-
work-on-github/about-labels

https://github.com/microsoft/vscode
https://github.com/dart-lang/sdk
https://github.com/microsoft/TypeScript

label to understand its context. After assigning the first tag
to each project, we added the second tag to each label based
on the concepts formed from the first tagging. The second
tag represents a more general concept than the first tag. The
attached tags might be subjective. To reduce the subjectivity,
two authors of this paper assigned the tags separately. Then,
the authors reviewed the tags and resolved the conflicts that
arose in the review with discussion. Labels were re-tagged if
any problems were found during the discussion.

In addition, we investigated the multi-labels that were
used together in the three target projects for RQ2.4. We first
extracted the labels of each issue and converted them to a set
of labels for the issue. Then, we applied an association rule
mining technique by using WEKA [38]. We finally sorted
the derived association rules by the number of co-occurrences
and analyzed the set of labels most frequently used together.

IV. ANALYSIS RESULTS
In this section, we present our analysis results and discuss
their implications.

TABLE 2. Projects and issues with no, single and multi labels.

A. RQ1. MULTI-LABELS AND ISSUE MANAGEMENT
PERFORMANCE
1) RQ1.1 HOW POPULAR ARE MULTI-LABELS IN ISSUE
MANAGEMENT?
Table 2 shows how many issues and projects belong to the
three groups. The numbers in parentheses represent the ratio
of each group with respect to the total number of issues and
projects. Table 2 shows that 26.11% of the issues are multi-
label issues, 28.48% are single-label issues, and 45.41%
are unlabeled. No-label issues compose a higher portion of
the issues since many of them might not yet be triaged.
In terms of projects, the Multi group accounts for 90.70% of
all projects. The Single and No-label groups occupy 6.86%
and 2.43%, respectively. The majority of the projects have
used multi-labels during issue management, although the
ratio of multi-label issues is similar to that of single-label
issues. It means that using multi-labels is popular in issue
management, but not only about half of the labeled issues
were assigned multi-labels.

Fig. 2 represents the issue distribution of Multi group
projects. For each project, we computed the portion of the
issues that belonged to the No-label, Single andMulti groups.
In each box plot, a horizontal bar indicates the median, and
a dot represents the average. As shown in Fig. 2, no-label
issues compose slightly less than 50% (47.99%) of the issues
on average. The average ratio decreases for single-label
and multi-label issues, which are 31.18% and 20.82%,
respectively.

VOLUME 9, 2021 134989

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

FIGURE 2. Issue distribution of multi group projects.

These results show the reason why we categorized projects
based on the existence, not based on the issue ratio. Even for
Multi group projects, the ratio of no-label issues is high due
to non-triaged issues. Additionally, not many of the issues
are actually given more than one label. However, the low
ratios of single-label or multi-label issues do not indicate that
those projects have not utilized multi-labeling features. It is
probable that many issues are not yet processed or are not
worth tagging with multiple labels. Hence, we decided to
consider the existence of single-label and multi-label issues
for project categorization.

RQ.1.1 The percentage of projects that havemulti-labels.
90% of the projects have used multi-labels at least once,
but only 20% of the issues have multi-labels.

2) RQ1.2 DOES USING MULTI-LABELS AFFECT ISSUE
MANAGEMENT PERFORMANCE OF PROJECTS?
Fig. 3 shows the distribution of close rate for each project
group. We drew box plots in Section IV with the same con-
figuration as follows. Every box plot represents its median
with a straight line and its mean as a dot. Whiskers represent
the minimum and maximum observed data within 1.5 times
the Inter-Quartile Range (IQR) from above or below boxes.
Since there are a great number of outliers, we omitted them
for brevity.

In Fig. 3, the average close rates of No-label, Single, and
Multi groups are 67.80%, 73.87% and 81.46%, respectively.
Close rate tends to be higher in Multi group projects, demon-
strated as a shorter box towards to the upper side. We con-
ducted the KW (Kruskal Wallis) test, since close rate did not
satisfy the normal distribution assumption. We then verified
that the differences among the three groups were statistically
significant (p-value < 0.05).
The results indicate that projects in Multi group have man-

aged their issues more effectively. Compared to the other two
groups, its average close rate is 13.66% (No-label) and 7.59%
(Single) points higher, respectively. As shown in Fig. 3,
the box plot of Multi group contracted upward compared to

FIGURE 3. Close rate distribution of project groups.

TABLE 3. Close rate of project groups for different labels.

the other groups. This means that projects using multi-labels
tend to have a higher close rate and thus that the projects
handled reported issues effectively.

We further investigated that Multi group projects were
indeed effective in their issue management. Table 3 shows
the average close rate of no-label, single-label andmulti-label
issues in each group of projects. The average close rate of
no-label and single-label issues in Multi group are 83.15%
and 80.39% respectively. Single group projects have 74.12%
no-label and 70.68% single-label close rates, and No-label
group projects have only 67.80% close rate, which is lower
than that of Multi group projects.

Based on these results (Table 3), Multi group projects have
processed their no-label and single label issues more actively
and effectively. On the other hand, projects which have never
used single or multiple labels are less eager to manage their
reported issues. Note that approximately half of the issues in
Multi group projects are no-label issues (Fig. 2). Even if we
consider that some of the no-label issues were not yet noticed,
Multi group projects still show a higher close rate for no-label
issues. Similar behavior was observed in a previous study [1],
which showed that popular projects resolved almost all of
their issues except for recently posted issues. Therefore, we
may consider the usage ofmulti-labels as a sign of active issue
management.

Fig. 4 presents box plots of the close time distribution.
The close time of each project is the average of issues’ close
times in days. We also verified that the differences among the
groups were statistically significant (p-value < 0.05) using
the KW test.

In Fig. 4, Multi group tends to spend more time to close
issues. The box plot of Multi group is higher than those of
the other two groups. Both the average close time (dots) and

134990 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

FIGURE 4. Close time distribution of project groups.

TABLE 4. Average close time of project groups for different labels.

median close time (bars) were higher in the Multi group
as well. The average close time of No-label, Single, and
Multi group projects are 82.7, 84.2, and 101.6 days, respec-
tively. On average, Multi group projects spent approximately
20 more days to close the issues.

However, these results do not indicate the inefficiency of
issue management in Multi group projects. Table 4 shows
the average close time of differently labeled issues for each
project group. Only Multi group projects have multi-label
issues which have a longer close time (179.5 days) than single
or no-label issues, and this may lead to a longer close time of
Multi group projects, unlike close rate. Additionally, the aver-
age close time of single-label issues in Multi group projects
is 131.9 days, which is shorter than that of Single group
projects (173.6 days). This is similar for no-label issues.Multi
group projects have closed no-label issues in 67.4 days on
average, which is more than 10 days shorter than 79.0 days
of the Single group, and similar to 82.7 days of the No-label
group. Therefore we can state that Multi group projects have
managed their issues efficiently, although they have more
time-consuming multi-label issues.

RQ.1.2 Issue management performance of projects
that have multi-labels. Projects with multi-labels have
7.59∼13.66% higher close rate than other projects. How-
ever, projects with multi-labels spent more than 20 days to
close the issues than other projects.

3) RQ1.3 DOES USING MULTI-LABELS INCREASE ISSUE
MANAGEMENT PERFORMANCE OF INDIVIDUAL ISSUES?
Table 5 represents the average close rate of the three issue
groups. The No-label and Single issue groups have similar
close rates, which are 84.80% and 84.48%, respectively.

TABLE 5. Close rate of issue groups.

FIGURE 5. Close time distribution of issue groups in days.

Multi issue group has the lowest close rate (79.62%), which is
even lower than the total close rate. Although it is only about
5%p, the Multi group clearly has a lower close rate than the
others.

These results imply that the issues marked with multiple
labels tend to bemore difficult to resolve. In RQ 1.2 (Table 3),
we have already investigated the close rate of differently
labeled issues in project-level. Note that the average close rate
of multi-label issues at the project-level is 74.78%, which is
lower than issue-level, since it is the average of project-level
close rate. However, when we consider all issues together,
the results are consistent with the project-level result, which
indicates that issues with multiple labels are not closed easily
compared to the no-label or single-label issues.

Fig. 5 shows the close time distribution of issue groups.
Consistent with the close rate, multi-label issues have lower
issue management performance. The average close time
of Multi group was 165.2 days, which was approximately
93 days longer than that of the No-label group (72.7 days),
and almost 40 days longer than the Single group (125.5 days).

This result indicates that multi-label issues require more
time to resolve. The Multi issue group box plot in Fig. 5
spreads further than those of the other groups. We suspected
that such a longer close time for multi-label issues was due to
their difficulties and complications.

We further investigated the average number of comments,
title length and body length of the issues. Issues with more
comments or longer titles and bodies might indicate that these
issues were more complicated and hence need more discus-
sion.We found that multi-label issues tend to have more com-
ments and longer titles and body lengths. Multi-label issues
have more comments (4.05) than no-label (3.15) and single-
label (3.56) issues. The average title length of the issues
was also longer in multi-label issues (50.48) than those in
no-label (44.63) and single-label (47.03) issues. The average

VOLUME 9, 2021 134991

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

body lengths were 1201.96 (Multi), 1139.44 (No-label) and
1018.05 (Single), respectively, which show that multi-label
issues neededmore characters to be described than the others.
We also conducted the KW tests and confirmed that these
differences were statistically significant (p-value < 0.05).

RQ.1.3 Issue management performance of issues that
have multi-labels. Multi-label issues have a lower close
rate by 5% than the other issues, and the average close
time of multi-label issues is approximately 40∼93 days
longer than that of other issues. Issues with multi-labels
are more complicated and difficult to resolve.

B. RQ2. INVESTIGATION ON MULTI LABELS
As explained in Section III-C2, we qualitatively analyzed
labels of the three projects. We first analyzed the number of
labels that issues have. We then showed what kinds of custom
labels are defined, and what kinds of labels are mainly used
for issue labeling. We finally reported the labels that were
frequently used together for each project.

1) RQ2.1. HOW MANY LABELS DO ISSUES HAVE IN
PROJECTS?
We analyzed the number of issues according to the
number of labels over the three projects. Note that the
vscode project had 274 labels and 92,286 issues, the dart-
lang/sdk project had 208 labels and 41,864 issues, and
the typescript project had 127 labels and 30,702 issues.
Fig. 6 shows the issue distribution according to the number
of labels attached to the issues in three projects.

First, Fig. 6a shows the number of issues according to the
number of labels in the vscode project. In Fig. 6a, the number
of issues with a single label is the highest over 20,000, while
the number of issues with two or more labels is greater than
the number of issues with a single label. The number of issues
without labels is less than the number of issues with three or
fewer labels but more than the number of issues with four or
more labels.

Fig. 6b and Fig. 6c show similar trends to Fig. 6a. Never-
theless, the number of issues with a single label is the highest,
but the number of issues with two or more labels is greater
than or similar to the number of issues with a single label.
Projects maintain up to 7∼9 labels per issue, as shown in the
figure.

RQ.2.1 The number of labels that issue have. Issues have
up to 7∼9 labels. While one label is most commonly used
for issues, two, three and four labels are also frequently
used. In contrast, more than five labels are seldom used.

2) RQ2.2. WHAT KINDS OF CUSTOM LABELS ARE DEFINED
IN PROJECTS?
To understand what kinds of custom labels are defined,
we analyzed the custom labels by tagging them in two steps.
The results are shown in Table 6, Table 7 and Table 8.

In each table, the Classification column lists categories of
labels. The Label Examples column shows label examples
that are included in each category. Next, the #Labels column
represents the number of labels in the category, and %Labels
provides the ratio of labels in the category to the total labels.
#Issues represents the number of issues associated with the
category, and %Issues is the ratio of issues in the category to
the total issues.

Table 6 presents the classification results for the labels
of the vscode project. The labels of the vscode project are
classified into 10 categories and 3 concepts. The first concept
is related to features to which functionality, environment, lan-
guage, and non-functionality categories belong. The second
concept is related to development to which version, config-
uration and development phase categories belong. The third
concept is related to issues to which issue status, issue type
and issue priority categories belong.

When we analyzed the ratio of each category of labels in
the vscode project, we found that the functionality category
includes the most labels with 51.46% (see Table 6). The
category that includes the second most labels is the issue
status with 9.49%. The development phase includes a similar
ratio of labels with 9.12%. The environment category follows
with 8.39%.

Table 7 shows the results for the labels of the dart-lang/sdk
project. The labels of the dart-lang/sdk project are classified
into 11 categories and 3 concepts. The concepts are the same
as in Table 6, but the categories are slightly different from
Table 6. Different categories between Table 6 and Table 7 of
the two projects are marked with ‘*’, which are language for
the vscode project in Table 6 and documentation and imple-
mentation details for the dart-lang/sdk project in Table 7.
Two categories, language and implementation details, are
classified into the feature concept, while documentation is
classified into the development phase concept.

Regarding the ratio of each category of labels in the dart-
lang/sdk project, the functionality category includes the most
labels with 42.79% (see Table 7), which is the same as
the analysis result of the vscode project. The category that
includes the second most labels is implementation details
with 18.27%, which is unique to the dart-lang/sdk project.
The environment and issue status categories follow with
11.06% and 6.25%, respectively.

Table 8 shows the results for the labels of the typescript
project. The labels are classified into 11 categories and 3 con-
cepts. The concepts are the same as in Table 6 and Table 7.
The categories are also similar to Table 6 and Table 7. The cat-
egories of language and documentation, which are different
between Table 6 and Table 7 and reappear in Table 8, are still
marked with ‘*’. The newly appearing categories in Table 8,
author and festival, are marked with ‘**’.

Regarding the ratio of each category of labels in the type-
script project, the functionality category includes the most
labels with 29.92% (see Table 8), which is the same as
the analysis result of the vscode and dart-lang/sdk projects.
The category that includes the second most labels is issue

134992 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

FIGURE 6. Issue distribution according to the number of labels.

TABLE 6. Qualitative classification of labels in vscode project.

status with 22.05%. The issue type and development phase
categories follow with 12.60% and 10.24%, respectively.

RQ.2.2 The kinds of custom labels. Custom labels
are defined in three concepts that are relevant to fea-
tures, development, and issues, respectively. In addition,
the functionality and issue status are the categories where
many custom labels are created across three projects.

3) RQ2.3. WHAT KINDS OF CUSTOM LABELS ARE USED IN
PROJECTS?
The ratio of custom labels and the ratio of using the cus-
tom labels can be different. Some labels are defined but not
used, while one label can be used many times. To under-
stand the usage of custom labels, we investigated the number
of issues according to the label categories we identified in
Section IV-B2. The results are shown in the #Issues and
%Issues columns of Table 6, Table 7 and Table 8. Note that the
total numbers of issues shown in Table 6 and Table 7 are larger

than the numbers of issues we mentioned in Section III-C2
because one issue report could have more than one label.

The %Issues column of Table 6 shows that the labels
in the issue status category are used the most at 31.11%.
The labels in the functionality category are the second most
used at 24.06%. The labels in the issue type category are
the third most used at 19.96%. In contrast, the labels in the
development phase and environment categories, which have
a significant number of labels, are used at 5.43% and 6.40%,
respectively.

The %Issues column of Table 7 shows that the labels in
the functionality category are used a lot at 42.15% and the
labels in the issue type are used at 16.29%. The column
also shows that the labels in the issue status are used at
12.62% and the labels in the environment are used at 12.31%.
Surprisingly, the labels in the implementation detail cate-
gory, which maintains the second most labels, are used at
only 6.27%.

The %Issues column of Table 8 shows a different distri-
bution from the other projects. The labels in the issue status

VOLUME 9, 2021 134993

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

TABLE 7. Qualitative classification of labels in dart-lang/sdk project.

TABLE 8. Qualitative classification of labels in typescript project.

category are the most used at 40.99% and the labels in the
issue type category are the second most frequently used at
38.55%. Interestingly, the labels in functionality are used at
only 5.80%.

RQ.2.3 The kinds of custom labels used in projects. All of
three projects used the labels in the issue status category.
Regarding the labels in the functionality category that two
projects used the most, another project did not use the
labels in the category much.

4) RQ2.4. WHICH CUSTOM LABELS ARE USED TOGETHER IN
PROJECTS?
We also investigated which custom labels are used together
by mining association rules in the labels that are attached to
issues together. As a result, Table 9 shows the top 5 most
frequent multi-labels in the target projects.

As shown in the left column in Table 9, the labels ‘verified’
and ‘bug’ were most frequently used together 9,405 times in
the vscode project. The labels ‘verified’ and ‘feature-request’
were the next most frequently used together. The labels
‘verified’ and ‘verification-needed’, ‘bug’ and ‘debug’, and
‘feature-request’ and ‘*out-of-scope’ were also frequently
used together. In the project, the top-5 multi-labels include
‘bug’, ‘verified’, ‘feature-request’, and other labels.

As shown in the middle column in Table 9, in the dart-
lang/sdk project, the labels ‘type-bug’ and ‘area-analyzer’
were the most commonly used 2,154 times, followed
by ‘area-analyzer’ and ‘P2’ 1,630 times, and ‘type-bug’
and ‘P2’ 1,368 times. In the project, the top 5 multi-
labels include ‘type-bug’, ‘area-analyzer’, ‘area-library’,
‘P2’, etc.

As shown in the right column in Table 9, the labels
‘awaiting more feedback’ and ‘suggestion’ were the most
frequently used together 203 times in the typescript project.
The next frequently used labels are ‘in discussion’ and ‘sug-
gestion’. In the project, the top-5 multi-labels include ‘bug’,
‘suggestion’ and various other labels.

RQ.2.4 Custom labels used together in projects. The
‘bug’ relevant labels are included by all the projects. How-
ever, other labels are specialized for projects: ‘verified’ for
the vscode project, ‘area-analyzer’ for the dart-lang/sdk
project and ‘suggestion’ for the typescript project.

V. DISCUSSION
We additionally investigate common label usage across all of
our subjects, and discuss how the findings of our empirical
studies help automate multi-labeling for issues.

134994 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

TABLE 9. Top 5 most frequent multi-labels in the three projects.

TABLE 10. Top 5 most frequent labels used in many projects.

A. COMMON LABEL USAGE
We inspected which label states were used frequently in
all our subjects. A label state is a set of labels assigned
to an issue, which consider single or multiple labels alto-
gether. Table 10 shows the top 5 most frequent label states
in descending order of their occurrences. The Frequency col-
umn indicates the number of occurrences, and The Projects
column represents the number of projects in which each label
state was observed. In the results, all frequent label states have
one single label.

Overall, the majority of the frequent label states con-
sist of one single label from nine default labels offered by
GitHub. We found that the ‘feature’ label, which is the only
non-default label indicating feature requests, is frequently
used in almost two thousand projects. We first thought that
‘feature’ was another form of the default label ‘enhance-
ment’. However, it seems that developers want to distinguish
them since they were willing to create a new label to use it,
although there is a similar default label. Although we found
an exception, our investigation on frequent label states mostly
confirms that default labels are popular.

One of the reasons that default labels are captured in the top
5 most frequent label states is that there are many variations
in custom labels that actually represent the same information.
For instance, labels indicating low priority appear with differ-
ent special characters (e.g., ‘priority:low’, and ‘priority-low’)
and abbreviations (e.g., ‘p: low’, ‘p3: low’, and ‘[pri] low’).
This is similar to the case in which two code snippets have
the same functionality but differ in text due to coding style.
Hence, we need more sophisticated methods to aggregate
such custom labels.

B. DISCUSSION ON OUR EMPIRICAL FINDINGS
The results of our empirical study reveal several facts that can
be used for studies on issue management.

First, our results on RQ1 show that the majority of projects
- about 90% - have used multi-labels, and they have shown
better issue management performance. Although the overall
close time is longer, Multi group projects have a higher
close rate, and shorter close time for no-label and single-
label issues. Of course, there is no hard evidence that using

multi-labels actually improves issue management perfor-
mance. However, we can consider the usage of multi-labels
as an indicator of projects with effective and efficient issue
management, which are worth studying.

At this point, we could think of what kinds of multi-labels
could be desirable for issue management. Through statistics,
RQ2 reports that the number of issues with one label is the
largest, while the number of issues with 2∼4 labels is higher
than the number of issues without labels. This indicates that
2∼4 labels were carefully added to issues. Based on these
facts, we suggest considering 2∼4 labels in the multi-label
automation study. We also suggest considering a single label.

Next, RQ2 investigated what kinds of custom labels are
defined and used. We found that many labels for features,
development, and issues are defined and that all three target
projects utilized the labels that are relevant to issue status
and type. This information can be helpful to future studies
on issues and labels, since we can aggregate issues and labels
and analyze them based on such categories.

We further analyzed issue management performance for
issues with different kinds of labels in issue concept, since
these labels appeared on all three projects and were used
similarly. We first checked the close rate of issues with status
labels and the others. The issues with status labels have a
higher close rate (79.61%) than the other issues (72.67%).
This indicates that using issue status labels can be helpful to
handle issues, but automatic labeling techniques often focus
on issue types only. Moreover, issue priority labels were
seldom used in all three projects, but the close time of issues
with priority labels is much shorter (171.9 days) than that of
the other issues (202.4 days). It is likely that priority labels are
mostly used when issues are urgent. However, this increases
the importance of assigning priority labels, and it is worth
developing a method to help such labeling and reduce the
burden of developers for improved issue management.

VI. THREATS TO VALIDITY
Internal validity threats of this study mainly come from our
subject refinement and analysis methods.

First, we did not use all the projects we collected, but
instead refined the subjects that were more appropriate for
our study. Due to the refinement, we might have introduced
a bias in our dataset; hence, the results may be affected.
However, without careful refinement, the results drawn from
the unrefined dataset would have been more distorted since
they contained toomuch inconsistent, outdated, and irrelevant
information. We carefully designed our refinement steps to
filter out the projects that are not software projects. All the

VOLUME 9, 2021 134995

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

steps were necessary to acquire projects which had enough
data (i.e., issues) to be analyzed.

Second, we divided projects into three groups based on the
existence of single and multiple labels. There are different
ways to group projects such as using the ratio of single-label
and multi-label issues in each project. If we used different
grouping methods, the results and their implications might
be different from the results of this study. However, this
does not mean that our results are incorrect or meaningless.
They still reveal interesting characteristics of projects using
multi-labels. Additionally, the issue distribution results in
Section IV-A1 show that it is inevitable to categorize projects
based on existence, not based on issue ratio, due to the natural
distribution of differently labeled issues.

Third, we conducted a qualitative analysis to understand
custom labels, so the findings about the custom labels could
be subjective. Our classification of labels in the three selected
projects and label categorization results could be biased by
our knowledge and experience. Moreover, we had to specu-
late about labels based on limited information such as labels
themselves, the issues they were assigned, or their descrip-
tions which were often unavailable. These are all threats that
could undermine the validity of our analysis results. However,
we tried our best to be objective in our judgment about custom
labels.

Last, althoughwe showed differences in issuemanagement
performance related to label usage, there exist other factors
that affect the performance. For instance, a software project
managed bymore experienced senior software engineers may
have better issue management. Similarly, functionalities of
software, size of code, complexity of code, development
methods and processes, tools, individuals in development or
management teams, ownership of software, and many others
can affect the issue management. Since this study is not
based on a controlled experiment, we cannot control all these
factors or variables. However, the goal of this study is not
identifying all the factors which affect the issue management
performance, but analyzing whether label usage is related
to the performance. To that extent, we conducted statistical
tests and confirmed that there exist statistically significant
differences rather than random coincidental differences.

External threats of validity to this study are mostly from
our limited access to data. Although we studied over 14K
projects, 13 million issues and 0.3 million labels, we only
collected publicly available data from a limited period of
time. Since GitHub is also popularly used by private entities
or enterprises, our findings about labels might not be valid for
such cases. Also, even if we carefully refined projects, there
is a possibility that our subjects are not representative of all
software projects hosted by GitHub. However, our findings
are still valid for software development projects that have
managed issues to a certain degree.

VII. CONCLUSION
In this study, we investigated how developers have usedmulti-
labels, a GitHub’s distinctive feature of issue management.

We collected and refined public data regarding issues and
labels from GitHub for the study. With the collected data,
we analyzed how multi-labels have influenced issue man-
agement performance, and how labels have been customized
and used. Our analysis results include interesting findings
regarding issues and labels. First, many software projects
have exploited the multi-label feature of GitHub, and projects
using multi-labels managed their issues more effectively.
Second, although default labels are the most frequent ones,
there are still various custom labels used by many projects.
We grouped the custom labels and found that many of the
labels are defined in the feature, development, and issue
concepts and used together to represent the type, status and
other characteristics of issues.

Based on the results, we understood that GitHub’s multi-
label features have been used quite actively, but there are
some opportunities for improvement. First, a larger-scale
study on the kinds of multi-labels could be conducted.
However, since there are many variants in custom labels,
we should develop a method to normalize the variants before
the study. Additionally, since developers freely define custom
labels, it is difficult to find the meanings of various cus-
tom labels automatically. We thus should find an automatic
method to capture themeanings of labels and to classify them.
Next, we need to analyze the multi-labels used together in
more projects. To conduct such a study, we should adopt
or develop an appropriate method to identify the kinds of
multi-labels. Based on themethod, we couldmore thoroughly
obtain evidence for the facts revealed in this study. Through
the process, it will be possible to suggest a more effective
method for managing issues and an automatic labeling tech-
nique for issue management.

REFERENCES
[1] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, ‘‘Exploring the

characteristics of issue-related behaviors in GitHub using visualization
techniques,’’ IEEE Access, vol. 6, pp. 24003–24015, 2018.

[2] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, ‘‘Exploring
the use of labels to categorize issues in open-source software projects,’’
in Proc. IEEE 22nd Int. Conf. Softw. Anal., Evol., Reeng. (SANER),
Mar. 2015, pp. 550–554.

[3] J. L. C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, and J. Cabot,
‘‘GiLA: GitHub label analyzer,’’ in Proc. IEEE 22nd Int. Conf. Softw.
Anal., Evol., Reeng. (SANER), Mar. 2015, pp. 479–483.

[4] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, ‘‘Ticket tagger:
Machine learning driven issue classification,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2019, pp. 406–409.

[5] G. Gousios, ‘‘The GHTorent dataset and tool suite,’’ in Proc. 10th Work.
Conf. Mining Softw. Repositories (MSR), Piscataway, NJ, USA,May 2013,
pp. 233–236.

[6] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, ‘‘The promises and perils of mining GitHub,’’ in Proc. 11th
Work. Conf.Mining Softw. Repositories (MSR), NewYork, NY,USA, 2014,
pp. 92–101.

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, ‘‘An in-depth study of the promises and perils of mining
GitHub,’’ Empirical Softw. Eng., vol. 21, no. 5, pp. 2035–2071, Oct. 2016.

[8] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, ‘‘The promises and perils of mining git,’’ in Proc. 6th IEEE
Int. Work. Conf. Mining Softw. Repositories, May 2009, pp. 1–10.

[9] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, ‘‘A systematic map-
ping study of software development with GitHub,’’ IEEE Access, vol. 5,
pp. 7173–7192, 2017.

134996 VOLUME 9, 2021

J. Kim, S. Lee: Empirical Study on Using Multi-Labels for Issues in GitHub

[10] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, ‘‘Curating GitHub
for engineered software projects,’’ Empirical Softw. Eng., vol. 22, no. 6,
pp. 3219–3253, Dec. 2017.

[11] S. Zhou, B. Vasilescu, and C. Kästner, ‘‘How has forking changed in the
last 20 years? A study of hard forks on GitHub,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., Jun. 2020, pp. 445–456.

[12] C. Brown and C. Parnin, ‘‘Understanding the impact of GitHub sug-
gested changes on recommendations between developers,’’ in Proc. 28th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
Sacramento, CA, USA, Nov. 2020.

[13] H. Borges, A. Hora, and M. T. Valente, ‘‘Understanding the factors that
impact the popularity of GitHub repositories,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Oct. 2016, pp. 334–344.

[14] V. N. Subramanian, ‘‘An empirical study of the first contributions of
developers to open source projects on GitHub,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., Companion, Jun. 2020, pp. 116–118.

[15] K. Herzig, S. Just, and A. Zeller, ‘‘It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,’’ in Proc. 35th Int. Conf. Softw.
Eng. (ICSE), May 2013, pp. 392–401.

[16] S. J. Sohrawardi, I. Azam, and S. Hosain, ‘‘A comparative study of text
classification algorithms on user submitted bug reports,’’ in Proc. 9th Int.
Conf. Digit. Inf. Manage. (ICDIM), Sep. 2014, pp. 242–247.

[17] N. Pandey, D. Kumar, S. Abir, and H. Amitava, ‘‘Automated classification
of software issue reports using machine learning techniques: An empirical
study,’’ Innov. Syst. Softw. Eng., vol. 13, no. 4, pp. 279–297, 2017.

[18] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang, ‘‘Where is the road for
issue reports classification based on text mining?’’ in Proc. ACM/IEEE
Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Nov. 2017, pp. 121–130.

[19] P. Terdchanakul, H. Hata, P. Phannachitta, and K. Matsumoto, ‘‘Bug or
not? Bug report classification using N-gram IDF,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2017, pp. 534–538.

[20] N. Pandey, A. Hudait, D. K. Sanyal, and A. Sen, ‘‘Automated classification
of issue reports from a software issue tracker,’’ in Progress in Intelligent
Computing Techniques: Theory, Practice, and Applications. Singapore:
Springer, 2018, pp. 423–430.

[21] Y. Zhu, M. Pan, Y. Pei, and T. Zhang, ‘‘A bug or a suggestion? An auto-
matic way to label issues,’’ 2019, arXiv:1909.00934. [Online]. Available:
https://arxiv.org/abs/1909.00934

[22] F. Elzanaty, C. Rezk, S. Lijbrink,W. van Bergen,M. Cote, and S.McIntosh,
‘‘Automatic recovery of missing issue type labels,’’ IEEE Softw., vol. 38,
no. 3, pp. 35–42, May 2021.

[23] S. Herbold, A. Trautsch, and F. Trautsch, ‘‘On the feasibility of automated
prediction of bug and non-bug issues,’’ Empirical Softw. Eng., vol. 25,
no. 6, pp. 5333–5369, Nov. 2020.

[24] P. S. Kochhar, F. Thung, and D. Lo, ‘‘Automatic fine-grained issue report
reclassification,’’ in Proc. 19th Int. Conf. Eng. Complex Comput. Syst.,
Aug. 2014, pp. 126–135.

[25] H. Fazayeli, S. M. Syed-Mohamad, and N. S. Md Akhir, ‘‘Towards auto-
labelling issue reports for pull-based software development using text
mining approach,’’ Proc. Comput. Sci., vol. 161, pp. 585–592, Jan. 2019.

[26] R. Krishna, A. Agrawal, A. Rahman, A. Sobran, and T. Menzies, ‘‘What
is the connection between issues, bugs, and enhancements?’’ in Proc. 40th
Int. Conf. Softw. Eng., Softw. Eng. Pract., May 2018, pp. 306–315.

[27] D. Hu, T. Wang, J. Chang, G. Yin, and Y. Zhang, ‘‘Multi-discussing across
issues in GitHub: A preliminary study,’’ in Proc. 25th Asia–Pacific Softw.
Eng. Conf. (APSEC), Dec. 2018, pp. 406–415.

[28] Y. Huang, D. A. da Costa, F. Zhang, and Y. Zou, ‘‘An empirical study on
the issue reports with questions raised during the issue resolving process,’’
Empirical Softw. Eng., vol. 24, no. 2, pp. 718–750, Apr. 2019.

[29] D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, ‘‘Analysis and detection
of information types of open source software issue discussions,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 454–464.

[30] M. Rath and P. Mäder, ‘‘Request for comments: Conversation patterns in
issue tracking systems of open-source projects,’’ in Proc. 35th Annu. ACM
Symp. Appl. Comput., Mar. 2020, pp. 1414–1417.

[31] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu, ‘‘Stress
and burnout in open source: Toward finding, understanding, and mitigating
unhealthy interactions,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
New Ideas Emerg. Results, Jun. 2020, pp. 57–60.

[32] T. F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. L. Traon,
‘‘Got issues? Who cares about it? A large scale investigation of issue
trackers from GitHub,’’ in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.
(ISSRE), Nov. 2013, pp. 188–197.

[33] R. Kikas, M. Dumas, and D. Pfahl, ‘‘Using dynamic and contextual fea-
tures to predict issue lifetime in GitHub projects,’’ in Proc. 13th Int. Conf.
Mining Softw. Repositories, May 2016, pp. 291–302.

[34] S. L. Ramírez-Mora, H. Oktaba, and H. Gómez-Adorno, ‘‘Descriptions of
issues and comments for predicting issue success in software projects,’’
J. Syst. Softw., vol. 168, Oct. 2020, Art. no. 110663.

[35] J. Zhou, S. Wang, C.-P. Bezemer, Y. Zou, and A. E. Hassan, ‘‘Studying
the association between bountysource bounties and the issue-addressing
likelihood of GitHub issue reports,’’ IEEE Trans. Softw. Eng., early access,
Feb. 17, 2020, doi: 10.1109/TSE.2020.2974469.

[36] J. M. Alonso-Abad, C. López-Nozal, J. M. Maudes-Raedo, and
R. Marticorena-Sánchez, ‘‘Label prediction on issue tracking systems
using text mining,’’ Prog. Artif. Intell., vol. 8, no. 3, pp. 325–342,
Sep. 2019.

[37] K. Charmaz, Constructing Grounded Theory: A Practical Guide Through
Qualitative Analysis. Newbury Park, CA, USA: Sage, 2006.

[38] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2016.

JINDAE KIM (Member, IEEE) received the B.S.
degree in physics and computer science and the
M.S. degree in computer science and engineer-
ing from Seoul National University, South Korea,
in 2009 and 2011, respectively, and the Ph.D.
degree in computer science from The Hong Kong
University of Science and Technology, in 2019.
He is currently an Assistant Professor with Com-
puter Science and Engineering Department, Seoul
National University of Science and Technology.

His research interests include automatic program repair, mining software
repositories, and software evolution.

SEONAH LEE (Member, IEEE) received the
B.S. and M.S. degrees in computer science
and engineering from Ewha Womans University,
in 1997 and 1999, respectively, the M.S.E. degree
from the School of Computer Science, Carnegie
Mellon University, in 2005, and the Ph.D. degree
from the School of Computer Science, KAIST,
in 2013. She worked as a Software Engineer with
Samsung Electronics, from 1999 to 2006. She
worked as a Research Professor at KAIST, from

2014 to 2015. She is currently an Associate Professor with the Department
of Aerospace and Software Engineering and the Department of AI Conver-
gence Engineering, Gyeongsang National University. Her research interests
include software evolution, documentation updates, requirement traceability,
software architecture, and data mining.

VOLUME 9, 2021 134997

http://dx.doi.org/10.1109/TSE.2020.2974469

