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ABSTRACT The eyes are the first channel used by humans to obtain various types of visual information
from the outside world and, especially when driving, 80-90% of information is received through the eyes. Eye
movement behaviors are generally divided into six types, but attention is often paid to fixation, saccade, and
smooth pursuit. Due to their importance, it is essential to classify eye movement behaviors accurately. The
classification of eye movements should be a complete process, including the three steps of pre-processing,
classification, and post-processing. However, it is very uncommon for all of these steps to be included in the
eye-tracking literature when eye movement classification is discussed. Therefore, first, this paper proposes
a refined eye movement data pre-processing framework and an improved method consisting of three steps
is introduced. Second, an eye movement classification algorithm based on an improved decision tree that
is independent of the threshold setting and application environment is proposed, and a post-processing
consisting of merging adjacent fixations and discarding short fixations is described. Finally, the application
of the classified eye movement behavior in the driving field is described, including the estimation of preview
time using fixation and the estimation of time-to-collision using smooth pursuit. Two important results are
obtained in this paper. One concerns the classification accuracy of eye movement behavior, the F1-scores of
fixation, saccade, and smooth pursuit being respectively 92.63%, 93.46%, and 65.29%, which are higher than
the scores of other algorithms. The other relates to the application to driving. On the one hand, the preview
time calculated by fixation is mostly distributed around 1-6s, which is closer to reality than the traditional
setting of 1s. At the same time, the regression relationship between the preview time and the road turning
radius is also quantitatively analyzed and their regression function is obtained. On the other hand, the average
estimated error of time-to-collision used by smooth pursuit is 7.37%. These results can play an important
role in the development of ADAS and the improvement of traffic safety.

INDEX TERMS Keywords eye movement data, refined pre-processing, behavior classification, feature
construction, improved decision tree.

I. INTRODUCTION
The eyes are the first channel used by humans to obtain
various types of visual information from the outside world,
and represent an important way of searching for and receiv-
ing information. For example, statistical studies show that

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

80-90% of driver information is received through vision in
driving [1]. Therefore, the extraction and analysis of human
visual information has theoretical significance and applica-
tion value in many fields. It is therefore relevant to study eye
movement characteristics and their classification.

The irises can be used to obtain human gaze informa-
tion as well for biometric identification as they are stable,
unique, and non-contact identification objects. At present,
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iris detection technology is an important research channel for
obtaining eye movement information. Moreover, the classifi-
cation of eye movement data after iris detection is also an
important research branch, which can be used to quantify
visual attention and to mine the area of interest of the indi-
vidual, and even to evaluate their mental load. Nowadays,
it is widely used in the fields of market research, learning
and education, driving safety, etc. In this paper, we focus on
the classification of eye movement and its application in the
driving field.

Studies have shown that the fovea, the most sensitive and
clear-sighted part of the eye, occupies only a small area of the
retina. In order to see and locate an object of interest, humans
need to adjust the position of the eyeballs so that light can
be focused in the fovea as much as possible. According to
the characteristics of eye movements and the role they play in
visual imaging, human eyemovements can be divided into six
types: fixation, saccade, smooth pursuit, optokinetic reflex,
vestibulo-ocular reflex, and vergence [2]. However, in the
application of eye movements to scientific research, attention
is often paid to only three of these types: fixation, saccade,
and smooth pursuit. Therefore, determining how to classify
these three eyemovement types correctly and accurately from
raw eye movement data is very important.

Early eye movement classification algorithms focused on
distinguishing between fixation and saccade, because the
stimulusmaterials used aremostly static, for example, images
or text. More recently, the application of dynamic stimula-
tion has attracted growing attention. Unlike static stimuli,
which are relatively still (fixation) or move rapidly from one
fixation point to another (saccade), for dynamic stimuli the
subject’s eyes track the stimulus and keep it in the fovea,
creating a smooth eye movement known as smooth pursuit.
The presence of smooth pursuit affects the performance of
classification algorithms in distinguishing between fixation
and saccade, as smooth pursuit points are eventually classi-
fied into one of these two categories. Therefore, in the study
of eye movement involving dynamic stimuli, developing an
automatic and effective algorithm to distinguish between fix-
ation, saccade, and smooth pursuit is of great importance.

Traditional eye movement classification models are
divided into three main categories: threshold-based,
probabilistic-based, and hybrid algorithms [3].

A threshold-based algorithm takes eye movement behavior
characteristic parameters (such as the speed or spatial dis-
persion of eye movement data) as the threshold, and then
uses them to generate classification results. It is a compar-
ative classification algorithm and is still widely used. Classic
threshold-based algorithms include I-VT (velocity thresh-
old identification) and I-DT (dispersion threshold identifi-
cation) [3]. The I-VT algorithm separates the fixation point
from the saccade point by setting a speed threshold [4].
The advantage of I-VT is its fast-processing speed, but the
disadvantage is that it can easily produce classification errors
because it strongly depends on the threshold setting. The prin-
ciple of the I-DT algorithm is to calculate the dispersion of

eye movement points within a sliding time window, compare
the calculated dispersion in the window at each time point
with a preset threshold for the dispersion, and finally, realize
the separation of fixation and saccade points.

The I-VVT (Identification with Velocity and Velocity
Threshold) and I-VDT (Identification with Velocity and Dis-
persion Threshold) algorithms have since been developed
based on the above two algorithms. I-VDT distinguishes eye
movement behavior by using speed and dispersion thresh-
olds [5]. The speed threshold is firstly used to distinguish
saccades, and then the dispersion threshold is used to clas-
sify fixation and smooth pursuit points. The purpose of the
I-VVT algorithm is to classify eye movement behavior using
two velocity thresholds [6]. It initially uses the first speed
threshold to separate the saccades from the others, and then
uses the second speed threshold to identify the fixation and
smooth pursuit points. Although I-VVT can classify the three
kinds of eye movement behaviors, its disadvantage is that
it can easily produce errors in classification. Moreover, its
classification performance on eye movement data with high
sampling frequency is also poor.

Probability-based algorithms are used to build a charac-
teristic probability distribution model for each kind of eye
movement state (for example, the distribution of speed),
estimate the posterior probability using the prior proba-
bility, recalculate the probability distribution parameters to
minimize them, and finally obtain the classification results.
Algorithms of this type include the Markov model algorithm
(I-HMM), the Bayesian theory algorithm (I-BDT), and the
Kalman filtering algorithm. The advantages of the I-HMM
are its performance at state prediction and its probability
characteristics [3]. In the I-BDT, a Gaussian mixture model
is used to fit the velocity distribution based on the eyeball
velocity [7]. This is used to distinguish between fixation and
saccade behaviors because the basic parameters of the model
are determined by eye movement velocity calculated from
two sample points, so the model parameters are constantly
updated as the number of samples increases. This means the
classification effect is continually improved.

Hybrid algorithms are fusions of threshold-based and
probability-based algorithms, and include I-DFCM (Distance
threshold and FCM Identification), AFKF (Attention Focus
Kalman Filter), I-VMPRay (Velocity and Movement Pat-
tern Rayleigh), and I-BMM (Bayesian Mixture Model). The
I-DFCM first identifies the saccade points using a distance
threshold and then distinguishes the fixation and smooth
pursuit points using the space characteristics and fuzzy
C-means [8]. In the AFKF algorithm, one firstly distinguishes
saccades from other eye movements using a Kalman filter
and chi-squared test, and then classifies fixation and smooth
pursuit points using velocity and time thresholds.

In recent years, with the rapid development of com-
puter technology, machine learning algorithms have become
popular, and another kind of novel eye movement classifi-
cation algorithm based on machine learning has been devel-
oped. These methods can achieve real-time classification by
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extracting features from eye movement data and training
the classification model. Taking some classic algorithms,
Melodie Vidal proposed a novel set of shape features includ-
ing slope, range, mean velocity, variance, integral, energy,
and waveform length of data, and used the machine learning
method to obtain a classification model [9]. Then, the classi-
fication accuracy of models with different time windows was
calculated. Finally, the model with the highest level of accu-
racy was selected to classify eye movement behavior. Mikhail
Startsev used a combination of the ID-CNN and BLSTM to
carry out a mapping of data to obtain eye movement behavior
results [10]. The method had good real-time performance, but
the classification accuracy of the saccades and the smoothing
tracking was low. Sabrina Hoppe used a convolutional neural
network to achieve end-to-end learning [11]. The model pro-
posed has strong learning ability and fast classification speed,
but does not carry out pre-processing of raw eye movement
data.

Thus far, most eye movement classification algorithms
have been based on manually set thresholds and rules [12],
and the classification results are subjective andmay notmatch
the actual situation very well. Although machine learning
methods can be used to avoid some of the above problems
and achieve a high level of classification accuracy, they are
always limited by the application environment. Therefore,
the development of an accurate eye movement classification
algorithm that is not affected by the environment is urgently
required. In addition, the quality of the eye movement data
collected is inevitably affected by factors such as the irregular
sampling frequency of eye-trackers, the instability of data
transmission, errors associated with iris detection algorithms,
and eye tremor, jitter, or even abnormal eye movements or
head turning influenced by the experimental environment.
In other words, determining how to pre-process raw eye
movement data, improve its quality, and then better apply it to
the classification and application of eye movement behavior
is also crucial.

Based on the above problems, we propose a refined eye
movement data pre-processing framework and an eye move-
ment classification algorithm that is independent of the
threshold setting and application environment. The applica-
tion of the classified eye movement behavior to the driving
field is also described. The main contributions of this paper
are as follows:

(1) We propose a refined pre-processing framework and
an improved method involving three key steps for optimizing
the quality of raw eye movement data. The processed data
are more similar to reality and will be beneficial for the
construction of different kinds of eye movement behavior.
The key steps are sampling frequency correction, small gap
fill-in, and fusion filtering.

(2) Five new features of eye movement behavior classifica-
tion are constructed and proposed after we have fully mined
the movement and distribution characteristics of the fixation,
saccade, and smooth pursuit points.

(3) In our machine learning method, we use the deci-
sion tree algorithm for eye movement classification. In order
to improve the generalizability of the decision tree model,
a post-pruning method is proposed to optimize the model,
considering the depth of the tree and the number of classified
samples.

(4) The driver’s eye movement data are collected, pre-
processed, and classified. Finally, the fixation and smoothing
pursuit points are used to estimate the preview time and
collision time when driving.

II. TRACKING PRINCIPLES AND QUALITY ANALYSIS
OF RAW EYE MOVEMENT DATA
A. EYE MOVEMENT DATA TRACKING AND MEASUREMENT
Eye movement tracking and measurement has been gaining
popularity for decades as a way to understand and study
an observer’s visual characteristics as well as their cogni-
tive ability [13], [14]. Common methods of eye movement
tracking and measurement include the electro-oculography
method and the camera method [15]. The electrical poten-
tial around the eyes changes as they move, which can be
used to track and measure eye movements [16]. Compared
with the method above, the camera method is more stable.
It uses a camera to record a subject’s eye movement, extract
eye feature information, and estimate the eye direction or
determine the eye movement points. Based on the location
of the eye-tracker at the time of eye movement tracking and
measurement, they can be divided into two categories: head-
mounted and remote. Until now, non-contact eye-trackers
combined with video cameras have been the method most
commonly used to record eye movement [17].

FIGURE 1. Eye-tracker-fixed coordinates used to describe driver eye
movement.

B. TYPES OF PARAMETERS COLLECTED BY EYE TRACKERS
In the transportation field, eye trackers are widely used to
collect drivers’ eye movement data. The collected data can
be used to analyze drivers’ eye movement characteristics.
Generally, the remote eye tracker is attached to the top of
the vehicle dashboard, just in front of the driver. The origin
of the coordinates is located in the center of the eye tracker,
as shown in Figure 1. The x-axis is in the direction of the
driver’s left side, the z-axis is parallel to vehicle’s longitudinal
axis and in the direction of the driver, and the y-axis is
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TABLE 1. Parameters for tracking and measuring using eye trackers.

perpendicular to the XZ plane and in the upward direction.
The head-mounted tracker is worn on the driver’s head. Here,
the origin of the coordinates is on the driver’s head, which can
also be seen in Figure 1. Regardless of the kind of eye-tracker
used, the parameters used to describe the eye movement are
quite similar. The only difference is in the parameters used to
describe the eye position. The essential parameters are listed
and described in Table 1.

C. QUALITY ANALYSIS OF RAW EYE MOVEMENT DATA
There are three possible reasons for noise or a lack of eye
movement data in the tracking process:

1. Noise caused by the eye tracker, such as image distor-
tion, data transmission, different collecting frequencies, etc.

2. Errors caused by an algorithm embedded in the eye-
tracker, such as a location error for the center of the iris caused
by the camera algorithm.

3. Tremor or jitter caused by the eyeball itself.
Moreover, the tracking quality might be influenced by the

experimental environment or by movement of the subject’s
head. Therefore, it is essential to conduct a quality analysis
of the raw eye movement data in two ways: a validity check
and correctness checking of the tracking frequency.

1) PRELIMINARY VALIDITY CHECK
The record validity is an important parameter, which can be
used to describe the accuracy of eye movement data tracking.
If the eye tracker cannot track the subject’s eye movement
well, effective eye movement data cannot be collected, which
means that the data collected will be invalid. Invalid data are
useless for subsequent feature construction and eye move-
ment classification. Therefore, a preliminary validity check
is an essential procedure for an eye tracker. Taking the Tobii
eye tracker as an example, a larger value indicates a lower
tracking accuracy, and a smaller value, a higher tracking
accuracy.

2) CORRECTNESS CHECK OF ACTUAL FREQUENCY
To capture eye movement accurately, the eye tracker should
have a high sampling frequency. Generally, the theoretical

sampling frequency of an eye-tracking device is between
40 and 120 Hz. However, the actual sampling frequency
is often different from the theoretical sampling frequency.
In general, the actual sampling frequency fluctuates around
the theoretical sampling frequency, and its random fluc-
tuations cannot be predicted. Taking eye trackers with
40 and 60 Hz frequencies as examples, the actual tracking
sampling frequencies are shown in Figure 2. Taking the eye
tracker with 40 Hz sampling frequency as an example, its
actual sampling frequency ranges from 5 to 120 Hz. The
probabilities of these frequencies occurring are also presented
in Figure 2. Sampling frequencies of 30–35 Hz account for a
large proportion of the total, at about 70%. For the 60 Hz eye
tracker, the sampling frequencies of 50–80 Hz account for a
large proportion of 95% of the total.

FIGURE 2. Practical sampling frequency distributions of eye trackers with
40 Hz (left) and 60 Hz (right) sampling frequencies in data collection.

Accordingly, the amount of eye movement data recorded
per second differs due to random changes in the practical
sampling frequency, seriously affecting the accuracy of sub-
sequent eye movement analyses. Therefore, it is necessary to
check and correct the sampling frequency before the classifi-
cation and application of eye movement.

III. THE ENTIRE EYE MOVEMENT
CLASSIFICATION PROCESS
The classification of eye movement behavior has an influence
on the accuracy of research results regarding human visual
characteristics. Therefore, in order to obtain accurate clas-
sification results for eye movement behavior, each step of
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the eyemovement behavior classification process is essential,
including the pre-processing of the raw eye movement data,
the classification (classification model construction), and the
post-processing of the labeled eye movement data.

After these three steps have been applied, eye movement
behavior can be accurately classified and used to extract
further indicators, such as the fixation duration, fixation num-
ber, smooth tracking duration, fixation trajectory, tracking
trajectory, and effective attention area. The complete process
is shown in Figure 3.

FIGURE 3. A complete process for eye movement behavior classification.

A. PRE-PROCESSING OF RAW EYE MOVEMENT DATA
Due to environmental noise, hardware problems, user blink-
ing, head movement, and other behaviors during eye track-
ing, the raw eye movement data obtained may not be ideal.
Therefore, pre-processing of the raw eye movement data is
carried out. Five steps are included, namely, validity check-
ing, frequency correction, channel selection, gap filling, and
data filtering. This will be discussed in Part IV.

B. CLASSIFICATION
This step has three sub-steps. First, features containing rich
and multi-dimensional information are constructed. Second,
a model that is suitable for eye movement behavior clas-
sification is selected. Third, the constructed features are
input into the classification model and the eye movement
behavior is finally classified. This will be discussed in
Parts V and VI.

C. POST-PROCESSING ON THE LABELED EYE
MOVEMENT DATA
In this step, the classified and labeled eye movement data are
merged into adjacent points, and any invalid points are dis-
carded according to certain principles. This will be discussed
in Part VII.

IV. EYE MOVEMENT PRE-PROCESSING
A. THE PURPOSE
In order to process the raw eye movement data, we designed
a pre-processing framework consisting of four steps: validity
checking, frequency correction, missing data filling, and data
filtering.

B. THE PRE-PROCESSING PROCEDURE AND
ITS ALGORITHM
1) VALIDITY CHECKING OF RAW EYE MOVEMENT DATA
After the collection of eye movement data, it is necessary
to check its validity. Different eye trackers have different
coordinate reference systems, as shown in Figure 4. There-
fore, the collected eye movement data should be checked
according to the position of the coordinate axis.

FIGURE 4. Remote eye-tracker (up) and head mounted
eye-tracker (down).

2) CHECKING AND CORRECTION OF ACTUAL
SAMPLING FREQUENCY
Irregular sampling frequency may easily lead to the com-
plication of data processing, especially in terms of the syn-
chronization of eye movement data and other data types.
As a comparison with theoretical sampling, a schematic dia-
gram of a section of actual records is presented in Figure 5
(first line). It shows that there can be several types of discrep-
ancy between the actual sampling point and the theoretical
sampling point.

The problems described above can be solved by correcting
the sampling frequency. Then, there will be one record for
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FIGURE 5. A schematic diagram of a section of actual records.

each ideal sampling moment, regardless of whether there are
any data, as shown in Figure 5 (last line). If there are no data,
the record is marked as blank. The correction process is as
follows:

1. Calculate the ideal number of data points:

N = f (Tend − Tstart )+ 1 (1)

where TStart and TEnd are the start and end times for the eye-
tracking experiment. f is the designed sampling frequency of
the eye-tracker.

2. Calculate the ideal timestamp for each record:

ti = Tstart +
i− 1
f
, i = 1, 2, . . . ,N (2)

3. Calculate the index value of the theoretical sampling
points for the raw eye movement data:

Indexideal = [t − Tstart )× f ]+ 1 (3)

It is important to note that there is only one sampling
moment for each ideal record. At the beginning of the fre-
quency correction, the values for each record are set to blanks.

4. Assign the closest practical record to each ideal one and
fill in the blanks using the values from the assigned practical
one. The allocation will follow the following principle,

Data(i)Indexideal = Data(i)Indexpractical∣∣tIndexpractical − tindexideal ∣∣ ≤ 1
2
f

Data(i)Indexideal = 0 or blank∣∣tIndexpractical − tindexideal ∣∣ ≥ 1
2
f

(4)

A selection of records obtained following the frequency
correction is presented in Figure 6.

It is clear that the practical sampling time is the same as the
theoretical sampling time after frequency correction. There is
a small time offset for each practical record after frequency
correction. Following frequency correction, the number of
records collected in each second is equal to the designed sam-
pling frequency. However, there are gaps between adjacent
eye movement data points, so it is necessary to fill in the gaps
to improve the integrity of the eye movement data.

3) FILLING IN SMALL GAPS
After completing the above steps, there will be some
gaps between the adjacent eye movement data points.

FIGURE 6. A section of records before and after frequency correction.

However, the reasons for the missing data points should be
determined before data filling is implemented.

If the gaps are caused by the subject’s movement, such
as blinking, head rotating, etc., or by the eye tracker being
blocked by something else, the gaps do not need to be filled.
However, if the gaps are caused by sampling frequency cor-
rections, it is necessary to fill them.

Therefore, the gaps should be filled according to certain
rules. The duration of a blink is 75–425 ms. Therefore,
a threshold of 75 ms can be used to judge whether the gaps
should be filled or not [3]. For gaps with a duration of less
than 75 ms, fill-in methods should be applied.

In general, gaps are filled by linear interpolation or by
taking the average value based on the data points at both ends.
The gap-filling process is described in reference [18], and the
formula is as follows:

Pgap = Pf +
Pf − Pa
Tf − T a

(Tgap − Tf ) (5)

where Pgap and Tgap are the parameter value and the sampling
moment of the record in the gap, Pf and Tf are the parameter
value and the sampling moment of the valid record before
the gap, Pa and T a are the parameter value and the sampling
moment of the valid record after the gap.

Although the method described in references [18] and [19]
is simple and easy to implement, the data that are filled in are
greatly affected by the beginning and end eye movement data
points, and there is no sampling noise or random error. As a
result, the filled-in eye movement data are not realistic.

Therefore, another gap-filling method is proposed that
involves the construction of a Fourier series equation. It is
called the 3F (Fit Fourier Function) method and has the
following steps:

1. Mark the missing data as
{
X(1),X(2), . . . ,X(i)

}
. These

data should satisfy (1000 · i)
/
f ≤ 75ms.

2. Construct a Fourier series equation f (x) = a0 +
∞∑
n=1

(an cos nx + bn sin nx) with k data points before the miss-

ing data point and substitute the timestamp corresponding to
the missing data point into the equation. The result of the
calculation is that data point 1 is filled in and marked as{
X1
(1),X

1
(2), . . . ,X

1
(i)

}
.
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3. Construct a Fourier series equation f (x) = a0 +
∞∑
n=1

(an cos nx + bn sin nx) with k data points after themissing

data point and substitute the timestamp corresponding to
the missing data point into the equation. The result of the
calculation is that data point 2 is filled in and marked as{
X2
(1),X

2
(2), . . . ,X

2
(i)

}
.

4. Calculate the average value of the filled-in data
points 1 and 2 to obtain the final filled-in data points:{
X1
(1)+X

2
(1)

2 ,
X1
(2)+X

2
(2)

2 , . . . ,
X1
(i)+X

2
(i)

2

}
The contrasting data points filled in using the method

proposed in this paper and linear interpolation can be seen
in Figure 7. It shows that the data filled in by the 3F method
are more realistic in terms of random noise.

FIGURE 7. Gaps filled-in by linear interpolation (top) and the method
proposed in this paper (bottom).

4) FUSION FILTERING
Noise is common in eye tracking, no matter what kind of eye
tracker is used. There are many causes of noise, including the
eye movement itself, as well as other environmental influ-
ences. Therefore, data filtering or smoothing is necessary.
In order to reduce the level of noise, we propose a fusion
filter method for improved bilateral convolution filtering and
wavelet filtering for eye movement data [20]. The main pro-
cesses are as follows:

1. Record the eye movement data to be denoised
as {(X1,Y1)(X2,Y2)(X3,Y3) . . . (Xn,Yn)} and calculate the
Euclidean distance {L1,L2 . . . Ln−1} between adjacent eye
movement points using the following formula:

L =
√
(Xi − Xi+1)2 − (Yi − Yi+1)2 (6)

2. Utilize the improved three-point bilateral convolu-
tion filter method to initially reduce the noise in the eye

movement data. The filtered eye movement data are recorded
as {(X(1),Y(1)), (X(2),Y(2)), (X(3),Y(3)) . . . (X(n),Y(n))}, and
the formulas used are as follows:

X(i+1) = α1 ∗ X(i) + α2 ∗ X(i+1) + α3 ∗ X(i+2) (7)

α1 =
L2

2 ∗ (L1 + L2)
α3 =

L1
2 ∗ (L1 + L2)

(8)

X(1) = β1 ∗ X(1) + β2 ∗ X(2) (9)

X(n) = β1 ∗ X(n) + β2 ∗ X(n−1) (10)

where α1, α2, α3 are the convolution kernel coefficients,
α2 = 0.5; β1, β2 are the weight coefficients, β1 = 0.8,
β2 = 0.2.
3. Performwavelet filtering on the denoised eye movement

data to obtain wavelet coefficients composed of the detailed
noise and eye movement features. Based on the differences
in the properties of the wavelet coefficients of the noise and
eye movement data on different scales, the threshold is set to
remove the wavelet coefficients in the noise and then obtain
the denoised data through inverse transformation. The values
of the wavelet denoising parameters are given in Table 2:

TABLE 2. Values of wavelet denoising parameters.

The processed data obtained by different filtering methods
are compared with the raw eye movement data in Figure 8.
It can be seen that the fluctuation characteristics of the raw
data are perfectly preserved after the fusion filtering. The
filtered result used in this paper is smoother than that obtained
when filtering by the moving average method. The precision
errors shown in Table 3 before and after data filtering show
that the fusion filtering is much better, which could be ben-
eficial for future studies involving the extraction of features
from eye movement data.

TABLE 3. Contrasting effects of different filter methods.

V. FEATURE CONSTRUCTION FOR EYE
MOVEMENT CLASSIFICATION
Raw eye movement data can be collected with an eye tracker.
These data include the coordinate values of the gaze posi-
tion, the coordinate values of the eye position, and the pupil
diameter. Although these raw data can show different aspects
of eye movement behavior, neither the coordinate values nor
the pupil diameter can be used directly for the analysis of
eye movement behavior. Therefore, based on these types
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FIGURE 8. Eye movement data filtered by moving average method (top)
and the fusion filter proposed in this paper (bottom).

of raw data, it is essential to extract the primary variables
related to eyemovement behavior, such as speed and distance.
However, the meanings expressed by the above variables are
too specific to be used to describe eye movement behavior
comprehensively and deeply from multiple perspectives. It is
therefore necessary to construct features with more depth and
breadth based on the raw data and primary variables so as
to accurately and reliably express different eye movement
behaviors. This can also be beneficial for the classification
of eye movement behaviors.

A. EXTRACTION OF TEMPORAL AND SPATIAL VARIABLES
The movement characteristics of the three kinds of eye move-
ment are obviously different. The empirical values are shown
in Table 4. According to previous studies, the most basic
features used for eye movement classification are velocity
and distance. These two features are generally called the
primary features or variables.Most of the threshold-based eye
movement classification algorithms determine the values of
the thresholds using these two features.

TABLE 4. Empirical values of movement characteristics of the three kinds
of eye movements.

A schematic diagram of the gaze angle of eye movement
is shown in Figure 9.

FIGURE 9. Gaze angle of eye movement.

The eye movement velocity V can be expressed by the
following formula:

V =
L

|t1 − t2|
=

√
(Xi − Xi+1)2 − (Yi − Yi+1)2

|t1 − t2|
(11)

where t is the sampling time and L is the Euclidean distance
between adjacent eye movement points.

The eye movement acceleration a can be expressed by the
following formula:

a =
Vi+1 − Vi
1t

(12)

where V is the eye moment velocity.

B. FEATURE CONSTRUCTION
Features derived from raw eye movement data are used
as inputs for a machine learning algorithm. High-quality
features (e.g., informative, relevant, non-redundant, inter-
pretable, etc.) improve the understandability of algorithms,
which is important for problem-solving [21]. Since the learn-
ing process relies on the exact information being delivered
into the algorithms, features are the key to generating reliable
and convincing classification results.

As the primary features of eye movement, speed and dis-
tance are highly correlated. For eye movement data collected
by an eye tracker with a fixed sampling frequency, the fol-
lowing relationship exists between speed and distance:

V = L · f (13)

Therefore, these two features (variables) play the same role
in the classification algorithm. Although the classification
effect is better when eye movement behavior is based on
speed and distance thresholds, it is limited to distinguishing
between fixation and saccade points. It is difficult to classify
smooth tracking behavior correctly and accurately using only
the above two features.

To solve the above problems, in this paper, new features
are constructed based on the primary features. At present,
there are three methods of feature construction: the variable
extraction method, the functional method, and the statistical
analysis method. The most commonly used are the functional
and statistical analysis methods. The former substitutes the
data as independent variables into the function to obtain new
variables; the latter obtains the statistical characteristics of the
data (such asmaximumvalues, extreme values, and variance).

The features constructed in this paper are based on the
functional method and can be used to describe and measure
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eye movement behavior in depth and from multiple perspec-
tives. The features include

• the minimum coverage circle radius R;
• the weighted average sum of the Euclidean distance
ratios β and variance1L2 of the adjacent eye movement
points;

• the direction of movement α, the rate of change in the
direction of movement 1α, and the radius of curvature
r of adjacent eye movement points;

• the acceleration of eye movement a.
These features are extracted to produce in-depth and multi-

view descriptions and measures of eye movement behaviors.
We not only focus on the movement characteristics (the range
of movement) and movement trend (the directionality of
movement) but also consider the information provided by the
features in different sliding time windows for the classifica-
tion of eye movement behavior. Finally, the feature set that
can provide the largest amount of information in a specific
time window is selected as the input for the classification
model.

1) MINIMUM COVERAGE CIRCLE RADIUS R
The movement ranges of the three eye movement behaviors
are all different. Compared with the fixation and smooth pur-
suit points, the movement range of saccades per unit of time
is much larger. In other words, the faster an eye movement
point moves, the greater the distance it travels per unit of time.
If fixations are mixed with saccades, the movement range of
these points will be larger. In order to quantitatively describe
the eye movement range in the coordinate plane, the use
of the minimum covering circle radius for a unit of time is
proposed. This can be used to describe an eyemovement point
directly using the geometric shape in the coordinate plane.
The feature not only considers the movement characteristics
of the three eye movement behaviors but also considers their
geometric characteristics in the coordinate plane. A geomet-
rical diagram of the minimum coverage circle radius is shown
in Figure 10.

FIGURE 10. Geometrical diagram of the minimum coverage circle radius.

The specific calculation method used for this feature is as
follows:

• The points collected for a certain unit of time are
recorded as a point set Gi = {g1, g2, . . . . . . gk}, where
k ≥ 3.

• Taking the line g1g2 as the diameter, the initial circle C2
is obtained.

• The points in the point set Gi = {g1, g2, . . . . . . gk} are
added in order. The current point is set as gi, and if the
point is in circle C2, then the radius of circle C2 is the
radius of the minimum coverage circle of the point set
per unit of time.

• If not, a circle Ci with a diameter of g1gi is temporar-
ily obtained, and the insertion point gi must be on the
boundary of the circle Ci.

• The circle Ci may not contain all points 1 to, but a point
gj(j < i) that is not in Ci can be found. If a circle Ci is
temporarily obtained for the diameter gigj, gi, gj must be
on the boundary of the circle.

• The circle Cj may not include all points 1 to j[as above].
If a point gk (k < j < i) that is not inCi is found, gi, gj, gk
is used to establish a new circle. gi, gj, gk must be on the
boundary of the new circle. The radius of the new circle
is the radius of the minimum coverage circle of the point
set per unit of time, and this is denoted as R.

2) THE WEIGHTED AVERAGE SUM OF THE RATIOS AND THE
VARIANCE OF THE EUCLIDEAN DISTANCE BETWEEN
ADJACENT EYE MOVEMENT POINTS
The Euclidean distance between adjacent fixation points is
small, while the Euclidean distance between adjacent sac-
cade points is large. Therefore, the dispersion of Euclidean
distance values between adjacent points is an important fea-
ture when describing differences in eye movement behavior.
In the unit of time window, the lower the Euclidean distance
dispersion, the simpler the type of eye movement in the win-
dow, and vice versa. Therefore, the Euclidean distance of the
primary feature can be constructed, and its statistical features,
including the ratios and the variance of adjacent Euclidean
distances, can be used to describe the dispersion features
of the distance. Therefore, the increment in the Euclidean
distance can be used to describe the differences in eye move-
ment behavior, so the use of the weighted average sum of the
Euclidean distance ratios of adjacent eye movement points
and the variance of the Euclidean distance within the unit of
time window is proposed. These can describe the variation
characteristics of eye movement points from different per-
spectives. The features above are beneficial for distinguishing
different eye movement behaviors. The proposed features
take full account of the sudden changes in distance caused by
the appearance of a saccade, which can effectively distinguish
fixation points (smooth tracking points) from saccade points.
The specific calculation method used for the two above fea-
tures is as follows:

• The eye movement dataset is denoted by G =

{g1, g2, . . . . . . gn}, where gi is the ith eye movement
tracking point, the corresponding coordinate point is
(X ,Y , t), i = 1, 2, . . . , n, and n is the number of tracking
points contained in the set.

• The Euclidean distance L between adjacent eye move-
ment points is calculated by

L(i, i+ 1) =
√
(Xi − Xi+1)2 − (Yi − Yi+1)2 (14)

136172 VOLUME 9, 2021



X.-S. Li et al.: Classification of Eye Movement and Its Application in Driving

FIGURE 11. The movement characteristics of fixation, saccade, and smooth pursuit.

• The weighted average sum of the ratios of adjacent
Euclidean distances per unit of time β can be calcu-
lated by

β =
1
n
(
L(2, 3)
L(1, 2)

+ · · · · · · +
L(n, n+ 1)
L(n− 1, n)

) (15)

• The variance in the Euclidean distance1L2 in the input
data can be calculated for a fixed unit of time. The
Euclidean distance set Li = {L2, . . . . . .Lk} of adjacent
points can be calculated, where k ≥ 3. The calculation
formula is

1L2 =
1

k − 1

k∑
i=2

(Li − L)2 (16)

3) THE DIRECTION AND RATE OF CHANGE IN THE
DIRECTION OF EYE MOVEMENT POINTS AND THE
CURVATURE RADIUS COMPOSED OF EYE MOVEMENT
POINTS IN THE COORDINATE PLANE
When the eye follows a dynamic stimulus, it produces con-
tinuous feedback movement, which is called smooth pursuit.
Due to the different causes of eye movements, the smooth
pursuit movement trend is different from those of fixation
and saccade, as can be seen in Figure 11. The movement
trends of the fixation and saccade are disorganized and cannot
form a fixed shape in the coordinate system plane, while the
movement trend of smooth pursuit has a certain direction and
can form a banded structure in the coordinate plane.

The tracking speed of smooth pursuit is slow but similar
to the speed of the dynamic stimulus. In addition, the curves
formed from eye movement in the coordinate plane have
strong directivity, which means the curve-bending degree
changes very little. Therefore, based on the movement char-
acteristics of the smooth pursuit mentioned above, the use of
the movement direction of adjacent eye movement points in
the unit of time window and the curvature radius composed
of eye movement in the coordinate plane is proposed. The
former feature can be used to describe the eye movement
trend, and the latter to describe the degree of curve-bending
change.

In addition, during the process of smooth pursuit, the eye
movement direction is the same as the motion direction of
the observed dynamic stimulus, and there is no mutation in
the direction. Once a mutation occurs, the eye movement
behavior changes from smooth pursuit to saccade. That is to
say, the rate of change of the eye movement direction will
remain within a certain range during this period. Therefore,
the rate of change of eye movement can be used to describe
the eye movement behavior trend.

The specific calculation method for the above two features
is as follows:

• When calculating the eye movement direction for con-
tinuous eye movement input data point α, the movement
direction of the ith point is αi, and the calculation for-
mula is

αi = arctan(
Yi − Yi−1
Xi − Xi−1

) (17)

• The radius r of curvature is calculated for every three
points for a fixed unit of time for the input data. By uti-
lizing the point set Gi = {g1 , g2, . . . . . . gk} included
in a certain unit of time i, the distance between three
consecutive points can be calculated. If the three points
are not collinear, then

r =
a

2
√
1− ( b

2+c2−a2
2bc )2

(18)

VI. EYE MOVEMENT BEHAVIOR CLASSIFICATION
USING A DECISION TREE
A. INTRODUCTION TO DECISION TREES
At present, the decision tree algorithm is one of the most
popular machine-learning algorithms used in data mining.
It is a nonparametric approach for building classification
models. It does not require any prior assumption about the
probability distribution governing the class and attributes of
the data, and is thus applicable to a wide variety of datasets.
Another appealing feature of the decision tree classifier is that
the induced trees, especially the shorter ones, are relatively
easy to interpret. The accuracies of the trees are also quite
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comparable to other classification techniques for many sim-
ple datasets. Moreover, the employed techniques can quickly
construct a reasonably good decision tree even when the
training set size is very large, without requiring expensive
computational efficiency. Finally, the decision tree algorithm
is robust to noise [22].

Therefore, for the classification problem of eye move-
ment behavior studied in this paper, the decision tree can be
regarded as a very cost-effective algorithm. At present, exam-
ples of some well-known decision tree algorithms include
CART, ID3, and C4.5, distinguishable mainly by differ-
ent methods of splitting functions [23]–[25]. In this paper,
the C4.5 algorithm, which can deal with continuous data,
is selected. This algorithm uses the information gain rate as
the splitting function method, which can overcome the short-
comings of other algorithms regarding inaccurate splitting.

B. SELECTION OF THE DATA SET
At present, there are few eye movement datasets published,
because the annotation of eye movement data is complex
and time-consuming. Therefore, we used GazeCom record-
ings for both training and testing through a strict cross-
validation procedure. The GazeCom dataset was collected
in Karl Gegenfurtner’s lab at the University of Giessen,
and the GazeCom project is funded by the European Com-
mission (contract no. IST-C-033816) within the Information
Society Technologies (IST) priority of the 6th Framework
Programme [26].

All eye movement recordings were made with an SR
Research EyeLink II eye tracker using information from
pupil and corneal reflections to estimate gaze at a fre-
quency of 250 Hz. The 54 subjects were students (age range
18 to 34 years) at the Psychology Department of Giessen
University who were paid for their participation. The total
number of individual labels was about 4.3 million, of which
72.5%, 10.5%, 11%, and 5.9% were labeled as fixations,
saccades, smooth pursuits, and noise, respectively. The
eye movement data labels were manually assigned by two
experts, and the format of the data was.arff. The data con-
tent included the sampling time, x,y coordinates of the gaze
point, confidence level of the gaze data, labels from the two
experts, and final labels. A segment of the dataset is shown
in Table 5.

Given that the amount of data in each folder is sufficient
(about 200,000-250,000 data points) and the number of sub-
jects in each folder is the same (54 subjects), eye movement
data from two independent dynamic videos in the GazeCom
dataset are selected for the final dataset used in this paper.
One dataset is split into a training set and a verification set in
a ratio of 7:3. The training set is used to fit the data samples,
and the verification set is used to adjust the parameters of
the decision tree model and evaluate the classification ability
of the model. The other dataset is used as the test set, with
the data run through the constructed classification model to
evaluate its accuracy.

TABLE 5. Information in a GazeCom segment.

C. DETERMINATION OF INITIAL PARAMETERS
To set the model parameters, the following aspects need to be
considered: window length, window moving step size, and
window label selection rules. These are shown in Table 6.

TABLE 6. Model parameter setting.

D. MODEL OPTIMIZATION AND TEST ANALYSIS
Overfitting is one of the main challenges with the deci-
sion tree algorithm. Without any restrictions, the established
model can provide 100% accuracy for the training set, but this
accuracy level does not translate to the test set. Therefore, it is
important to prevent the model from overfitting. Generally,
the overfitting problem can be solved by two methods: one
is to constrain the size of the tree; the other is tree pruning.
In addition, the correlations among attributes in the dataset
can easily be ignored in the modeling process. To address the
above problem, we first analyzed the correlations among the
features used for the classification of eye movement behavior
using the Pearson correlation coefficient method. Features
with low correlations were then selected as the inputs to the
decision tree model. The Pearson correlations between the
features are shown in Table 7.

Table 7 shows that the correlation coefficients between
the primary features and constructional features exceed 0.5.
Therefore, the primary features are removed because they
contain less information and cannot be explained from mul-
tiple views.
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TABLE 7. Pearson correlations between features.

The final feature set (R, β,1L2,1α, r) is obtained as the
feature inputs for the decision tree.

In order to improve the generalizability of the decision
tree model and avoid overfitting, we adopt the tree pruning
method to reduce the complexity of the tree by deleting the
branches of unimportant features. This further improves the
performance of the tree and the predictive ability of the estab-
lished model. An improved cost-complexity pruning (CCP)
algorithm is proposed. Based on the traditional CCP algo-
rithm, the improved method considers the influence of the
model depth on the pruning process. If a decision tree is deep
enough, then the deeper the level is, the greater the likelihood
of it being pruned will be.

The improved CCP method includes the following steps:
(1) A sequence of subtrees {T0,T1, . . . ,Tn} is generated

from the original decision tree T0. Among them, Ti+1 is
generated from Ti, and Tn is the root node.
(2) The optimal decision tree is selected based on the true

error estimation of the tree from the sequence of subtrees
generated in step 1.

In step 1, the basic idea of generating a sequence of sub-
trees {T0,T1, . . . ,Tn} is to cut branch Ti with the smallest
increase in the training dataset error to obtain Ti+1.
The increase in the error rate after the tree branch is

clipped is

θ =
[R(t)− R(Tt )]
(N1 − N2) ∗ h

(19)

where N1 and N2 are the number of nodes before and after
pruning, respectively;R(t) is the error cost of the node,R(t) =
r(t) ∗ p(t); r(t) is the misclassification sample rate of node t;
p(t) is the proportion of all samples that fall into node t; R(Tt )
is the subtree error cost, R(Tt ) =

∑
R(i); i is the leaf node of

subtree Tt ; and h is the depth of the decision tree at which the
pre-pruned node is located.

Once θ has been calculated for each non-leaf node of deci-
sion tree T0, the subtree with the smallest θ value is circulated
and cut until the root node is left. A series of pruned trees
{T0,T1,T2 . . . Tm} can be obtained, and the optimal decision
tree can be selected according to the true error.

The pseudo code for this procedure is shown in Figure 12.
The evaluation indexes of the classification algorithm usu-

ally include the accuracy, precision, recall, and F1-score,
which is a comprehensive evaluation index. The confusion
matrix after classification is constructed to calculate the

FIGURE 12. A brief description of the improved pruning.

TABLE 8. The evaluation indexes of the constructed decision tree model
before pruning.

TABLE 9. The evaluation indexes of the constructed decision tree model
after pruning.

above evaluation indexes. The evaluation indexes of the con-
structed decision tree model before and after pruning are
shown in Tables 8 and 9, respectively.

The numbers of layers in the constructed decision tree
model are, respectively, 32 and 20 before and after pruning.
The runtime comparison can be seen in the following table.
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TABLE 10. The evaluation indexes of the constructed decision tree model
after pruning.

By comparing the classification accuracy of the decision
tree model and the number of layers on the tree before and
after pruning, it can be observed that, although the classifica-
tion accuracy of the model is reduced by pruning, the number
of decision tree model layers is also reduced. Compared with
the unpruned model, the pruned model is simpler, and its
generalizability is improved.

The F1-score’s comparison with other algorithms is shown
in Table 11. Those of the method proposed in this paper are
higher than those of the other algorithms for all three eye
movement behaviors.

TABLE 11. The F1-score comparison between the proposed method and
other algorithms.

The test set accuracy of the eye movement classification
model proposed in this paper is shown in Table 12.

TABLE 12. The test set accuracy of the eye movement classification
model proposed in this paper.

The classification algorithm proposed in this paper has
higher accuracy for saccade and smooth pursuit, but slightly
lower accuracy for fixation. As fixation and smooth pur-
suit are similar, the classification accuracy of these two eye
movement behaviors is mutually restricted. Although the
algorithm proposed in this paper has slightly lower classifi-
cation accuracy for fixation, the classification accuracy for
smooth pursuit is greatly improved. The overall accuracy of
the improved decision tree algorithm is better than that of the
existing classification algorithms. This is beneficial for the
study of visual characteristics in dynamic stimulus scenarios.

VII. THE POST-PROCESSING OF EYE MOVEMENT
BEHAVIOR CLASSIFICATION
A. MERGE ADJACENT FIXATIONS
After the eye movement behavior has been classified,
the duration of the fixation points is longer than that of the
other eye movement behaviors. Therefore, a fixation may be
divided into two shorter ones by noise or saccades, which
means that some post-processing of the data is required after

the eye movement classification has been completed in order
to identify and merge fixations that are very close in time and
space.

The combination of adjacent fixation points can be judged
based on two parameters: the interval time and the span angle
between the two fixation points. The values set for the two
parameters are shown in Table 13.

TABLE 13. The parameter values for merging adjacent fixations.

According to the physiological characteristics of human
eyes, a blink takes at least 75 ms. When the interval between
two fixations is greater than 75 ms, there may have been
a blink or an eye closure or some other reason for the eye
movement not having been picked up by the eye tracker.
Therefore, when the interval is less than 75 ms, the adjacent
fixation points should be merged. Since the angle between
fixations is usually less than 0.5–1◦, the fixations should also
be merged when the angle between them is less than 0.5◦.

B. DISCARD SHORT FIXATIONS
Fixations with very short durations can also exist after
the merging operation. Based on the characteristics of
visual information acquisition, short-term fixation behavior
is meaningless because the short term is not long enough to
obtain useful information. Therefore, a second judgment can
be made according to the duration of fixations, and the value
is suggested to be 60 ms [19].

VIII. ESTIMATION OF THE PREVIEW DISTANCE AND
TIME-TO-COLLISION IN DRIVING
A. THE APPLICATION OF EYE MOVEMENT
TECHNOLOGY IN DRIVING
Drivers need to get all kinds of information from the road
environment when driving, and this information is received
through the sense organs [1]. Statistical studies show that
80-90% of information related to the traffic environment is
received through vision when driving [13]. Drivers’ cogni-
tive ability, attention, and mental state while driving is very
important to driving safety. Fortunately, these aspects can
be quantitatively analyzed and studied based on eye move-
ment [29], [30]. At present, the study and application of eye
movements in driving mainly focus on the following aspects:

• Visual characteristics of drivers, such as saccade ampli-
tude, distribution of fixation points, fixation duration,
etc., in different driving environments [31].

• Cognitive characteristics of drivers, such as focus target,
estimation of distance or speed etc. [32].

• Visual search characteristics of drivers, such as area
of interest, visual search scope, fixation transfer,
etc. [33], [34].
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• Preview characteristics of drivers, such as preview dis-
tance, preview time, etc. [35].

• Attention characteristics of drivers, such as con-
centration of attention, fixation area, gaze duration,
etc. [36], [37].

• Fatigue and distraction state monitoring in driving,
such as frequency of blink, Perclos, fixation direction
etc. [38].

• Intention recognition in driving, such as lane changing
or overtaking intention recognition, etc. [39].

• Visual load assessment, such as changes in pupil diam-
eter, visual tremor and so on [31].

No matter what the application or type of research, drivers
mainly obtain traffic information through fixation and smooth
pursuit behaviors when driving [40]. In addition, based on
the motion direction, moving objects in the longitudinal
direction are detected through fixation points, and moving
objects in the lateral direction are obtained through smooth
tracking [41]. Therefore, the application of eye movement
behavior to driving in this paper mainly focuses on two
aspects. One is to study the driver’s preview characteristics;
that is, the driver’s preview time or preview distance can be
estimated from fixations. The other application is innovative,
in that traffic conflicts and collision risk can be estimated
from smooth pursuits [42]. Next, the solution algorithm for
the preview time and the estimation of the time-to-collision
in traffic conflicts will be introduced.

B. SOLUTION ALGORITHM FOR THE PREVIEW TIME
The driver’s preview behavior refers to the information per-
ception process by which the driver obtains driving infor-
mation by observing the road traffic environment during the
driving process. Here, the driving information includes the
vehicle’s motion state, road width, changes in road curvature,
pedestrians or other vehicles, etc. Preview behavior is the
most important information source for drivers, so it is an
important parameter to be considered in driver modeling.
Typical models are Guo Konghui’s original preview optimal
curvature model and Professor MacAdam’s optimal seedling
control model [43], [44].

1) THEORETICAL DEDUCTION OF PREVIEW-TIME-SOLVING
ALGORITHM FOR A STRAIGHT SECTION AND
A CURVED SECTION
The driver’s preview time on a straight section can be
calculated by using the eye’s pitch angle and the vertical
distance from the driver’s eyes to the ground. The calcula-
tion diagram is shown in Figure 13 and the formula is as
follows:

PreviewDistances = H/ tanϕ (20)

where H is the vertical distance from the driver’s eyes to the
ground, the unit is m, and the height needs to be measured
before the experiment because it will be different for each
driver. ϕ is the pitch angle of the eyes.

The preview time can be expressed as the ratio of the
driver’s preview distance to the vehicle’s current velocity:

PreviewTimes = H/V · tanϕ (21)

where V is the instantaneous velocity of the vehicle and the
unit is m/s.

FIGURE 13. Preview distance calculation diagram on a straight section.

When driving on a curved section, the driver’s preview time
can be calculated by using the pitch angle and the yaw angle
of the eyes and the vertical distance from the driver’s eyes to
the ground. The calculation diagram is shown in Figure 14
and the formula is as follows:

Pr eviewTimec = H/V · tan(tan(ϕ) cos(β)) (22)

where β is the yaw angle of the eyes.

FIGURE 14. Preview distance calculation diagram for a curved section.

2) REGRESSION ANALYSIS OF PREVIEW TIME AND
ROAD TURNING RADIUS
The preview time is influenced by many factors, such as the
radius of the curvature of the road, the speed of driving,
and the characteristics of the driver, among which the most
important factor is the road turning radius. In order to obtain
the mathematical relationship between the preview time and
the road turning radius, an experiment was carried out in this
research. The driving simulator, experiment scene, experi-
ment route, and some subjects are shown in Figure 15.

The driving simulator has eight degrees of freedom. The
experimental scenario generated using UC-win Road is a
section of city expressway of length 10km. The road section
includes straight sections and curved sections with various
turning radii. The vehicle dynamics model comes from Car-
SIM. The driver’s eye movements were collected using the
remote eye-tracker of FaceLab and 17 subjects’ data were
collected in this experiment.

By processing the eye movement data, the preview time
of the drivers under different road curvature radii can be
calculated using formulas 20-22, and the solution formula
for the road turning radius is as (23), shown at the bottom
of the next page, where R is the road turning radius, x, y are
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FIGURE 15. Pictures of actual simulation experiment.

the coordinates of real-time trajectory points, and the number
of trajectory points in the sliding window is 2n+ 1.
Because the raw calculated preview times do not obey a

normal distribution, the regression analysis cannot be carried
out directly. A logarithmic transformation of the raw calcu-
lated preview times must be carried out so that they obey a
normal distribution. The distribution histograms of PT and
ln (PT) can be seen in Figure 16.

FIGURE 16. The distributions of PT (left) and ln(PT) (right).

The road turning radii are grouped and the median of
ln(PT) is calculated in each group. The scatter diagram
of ln(PT) and each group of road turning radii is shown
in Figure 17. It can be seen from the figure that the scat-
ter plot can be fitted by an exponential function with the
following formula:

PT = 3.071− 1.515× exp(−(
R

465.9
)2) (24)

The coefficient of determination is 0.995, which shows
that the formula above can explain 99.5% of the samples
in Figure 17.

FIGURE 17. The scatter diagram (left) and regression curve (right) of
ln(PT) and each group of road turning radii.

C. ESTIMATION OF TIME-TO-COLLISION BASED
ON SMOOTH PURSUIT
In the natural environment, humans can recognize and track
the movement of an object. Even if the object disappears or is
blocked for a short time, humans can express and predict its
space and time characteristics (such as speed and position).
This slow, smooth tracking behavior is called smooth pursuit
eye movement (SPEM). The visual information received in
the SPEM process can be used to judge the position, velocity,
moving trajectory, and time required for a moving object to
reach a specific position. Therefore, the driver can estimate
the initial motion of the lateral object and the final time-to-
collision using SPEM. The calculation formula is as follows:

TTC = β/ωSPEM (25)

where ωSPEM is the angular velocity of smooth pursuit.
In this study, a collision experiment between vehicles and

pedestrians is designed to verify the accuracy of the estimated
time-to-collision. The eye movements are collected by Tobii
Glasses2, and the experiment is conducted on a real road.
To reduce the error introduced by other parameters in the
experiment, the values of some parameters are fixed. For
example, the yaw angle of the driver’s eyes is fixed by fixing
the start positions (20m and 30m away from the intersection)
of the vehicle and the pedestrian, in order to reduce the
psychological pressure on the pedestrian caused by vehicle
movement and the impact of the yaw angle collection error
on the driver’s smooth pursuit. A schematic diagram of the
experiment is shown in Figure 18.

FIGURE 18. Schematic diagram of the conflict experiment.

In the experiment, pedestrians cross a road at three speeds
(fast, medium, and slow), and the experiment is repeated

λ =
1
R
=

arccos

(
(xi+n−xi)(xi+2n−xi+n)+(yi+n−yi)(yi+2n−yi+n)

√
(xi+n−xi)2+(yi+n−yi)2

√
(xi+2n−xi+n)

2
+(yi+2n−yi+n)

2

)
√
(xi+2n − xi)2 + (yi+2n − yi)2

(23)
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TABLE 14. The experimental data and calculation results of the conflict experiment between a pedestrian and a vehicle.

FIGURE 19. Actual photos of conflict experiment.

five times for each speed. Thus, 15 experiments are con-
ducted. Those with poor eye movement data are removed,
leaving 12 experiments whose data are finally collected.
Smooth pursuit behavior data are collected when the drivers
are tracking the moving pedestrians, and the average tracking
angular velocity of the data in the first 0.5–1s is calculated to
estimate the time-to-collision, that is the time it will take the
pedestrians to reach the conflict point. Actual pictures of the
experiment are shown in Figure 19.

The eye movement data from one experiment is shown
in Figure 20. It can be seen from Figure 20 that, when the
pedestrian is still, the driver’s eye movement behavior is that
of fixation (blue points in Figure 20). When the pedestrian
begins to move, the eye movement of the driver changes from
fixation (blue points) to smooth pursuit (red points) to track
the moving pedestrian, during which some saccades (green
points) are mixed in. Therefore, when the smooth pursuit can
be accurately classified, its velocity can be used to estimate
the time-to-collision. The experimental data and calculation
results are shown in Table 14.

FIGURE 20. Real eye movement data showing fixation, saccade, and
smooth pursuit points from a sample of the conflict experiment between
a pedestrian and a vehicle.

FIGURE 21. Line chart of estimated and actual times-to-collision.

The estimated time-to-collision is calculated using equa-
tion (25), and the actual arrival time is recorded by a timer.
The average estimated accuracy error is found to be 7.37%,
and a line chart of the estimated and actual times-to-collision
can be seen in Figure 21.
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IX. DISCUSSION AND CONCLUSION
Classifying raw data into the different types of eye move-
ments is an important part of eye-tracking research. It is
essential to classify eye movement behavior accurately using
an appropriate classification algorithm. Importantly, the clas-
sification of eye movements should be a complete process,
including the three steps of pre-processing, classification, and
post-processing. However, it is very uncommon for all of
these steps to be included in the eye-tracking literature when
eye movement classification is discussed. Therefore, in this
paper, a refined pre-processing of eye movements and clas-
sification of eye movement behavior is studied. Moreover,
the application of the classified eye movement behaviors
to the driving field is described. We will now discuss and
summarize what we have done in this paper.

Firstly, a universal procedure for raw data pre-processing
has been designed. The three steps of this pre-processing
have been improved and optimized. We proposed a sampling
correction method, a 3F method for filling in gaps, and a
fusion filtering method for the last step. Although we encoun-
tered difficulties in the process of algorithm improvement,
for example, some of the parameters in the fusion filter are
determined by an empirical method, the improved methods
are more effective than the existing methods.

Secondly, five new features of eye movement behavior
classification have been constructed, and the movement and
distribution characteristics of three eye movement behaviors
mined, especially for smooth pursuit. The features proposed
not only consider themovement ranges and trends of different
eye movement behaviors but also consider the information
provided by each feature under different time windows. This
is critical for the subsequent machine learning, because the
quality of the features constructed will directly determine the
effect of the classification.

Thirdly, for the machine learning, the decision tree algo-
rithm was used for the classification of eye movement behav-
iors. Considering that overfitting is the most challenging
problem for the decision tree algorithm, in order to improve
the generalizability of the decision tree algorithm, we pro-
posed a post-pruning method that considers the depth of
the tree. The F1-scores of the proposed algorithm for the
classification of fixation, saccade, and smooth pursuit are
92.63%, 93.46%, and 65.2% respectively. The results show
that the proposed method is highly accurate in classifying eye
movement behaviors.

Finally, the application of fixation and smooth pursuit
behaviors in driving has been presented. One application is
the estimation of the preview time using fixation points. The
preview times calculated using fixation are mostly distributed
around 1-6s, which is more practical than the traditional
setting of 1s. Also, a regression function between the preview
time and the road turning radii was derived, which is very
important for the study of the guiding mechanism of drivers’
visual perception features for vehicle steering. Another appli-
cation described in this paper was the estimation of time-
to-collision using the smooth pursuit eye movements of the

driver. The average estimated accuracy error was found to be
7.37%.Although only a few sampleswere collected due to the
limitations of the test conditions, and the reliability of the data
needs to be further verified, this is still a very pleasing result,
which implies that smooth pursuit can be used to develop
driver warning assistance systems in lateral confliction.
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