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ABSTRACT Ising machines are promising alternatives to solve combinatorial optimization problems,
which search for their quasi-optimal solutions with high speed and high accuracy. However, the obtained
solution much depends on the initial spin states, since the computation time is finite. Moreover, due to their
probabilistic nature, they cannot always satisfy the constraints given to combinatorial optimization problems.
In this paper, we propose a three-stage annealing method, targeting a slot-placement problem as a typical but
difficult example of combinatorial optimization problems. The proposed method is composed of an initial
process, an annealing process, and a correction process. The initial process and the correction process are
executed by a classical computer while the annealing process is executed by an Ising machine. In the initial
process, we give initial spin values that lead to a relatively good solution to the combinatorial optimization
problem, which satisfies the given constraints. Then, the annealing process is executed by an Ising machine,
and the solution obtained by the annealing process is further corrected to satisfy the constraints. The
experimental results demonstrate that the proposed method reduces a minimum total weighted wiring length
by 0.0898%–2.45% on average depending on the initial process methods used, compared to the existing
method. The mean total weighted wiring length is reduced by 2.79%–7.08% on average depending on the
initial process methods used.

INDEX TERMS Ising machine, Ising model, QUBO model, slot-placement problem, initial process,
correction process, combinatorial optimization problem.

I. INTRODUCTION
A. ISING MACHINES
A combinatorial optimization problem is a problem to find
a combination of variables that maximizes or minimizes
an objective function while satisfying its given constraints.
In combinatorial optimization problems, there exist NP-hard
problems, in which it is very difficult to search for an optimal
solution by using a conventional von Neumann architecture
machine.

In recent years, various Ising machines, non-von Neu-
man architecture machine, using the Ising model [1], [2]
have been studied to efficiently solve combinatorial opti-
mization problems [3]–[12]. Ising machines search for their
quasi-optimal solution with high speed and high accuracy,
where a quasi-optimal solution refers to a solution that does
not always maximize or minimize the objective function.
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When we solve a combinatorial optimization problem
using an Ising machine, we map it onto a model in sta-
tistical mechanics called an Ising model, or its equivalent
quadratic unconstrained binary optimization (QUBO)model.
Nowadays, various combinatorial optimization problems are
mapped to Ising models or QUBO models and solved by an
Ising machine such as in [13]–[15].

B. SLOT-PLACEMENT PROBLEM
The slot-placement problem [16], [17] is known as one of
those difficult combinatorial optimization problems. Given
lattice slots and several items connected by a certain number
of wires, the goal of the slot-placement problem is to find an
optimal item assignment to lattice slots.

In the slot-placement problem, every itemmust be assigned
to a single slot and no more than one item cannot be assigned
to a single slot. This is called a slot-placement constraint.
Several items are connected by a certain number of wires. The
wiring length is given by the Manhattan distance between the
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slots where the items are assigned. Then we can define the
total weighted wiring length over all the item pairs with wires.
Minimizing the total weighted wiring length is the objective
of the slot-placement problem (See Section III in detail).

The slot-placement problem can be applied to many practi-
cal optimization problems such as labor shift scheduling and
FPGA logic-block placement [18], [19]. It can be considered
to be a variation of quadratic assignment problems, which
are known as an NP-hard problem [20], and has been solved
using simulated annealing (SA) [21] and branch-and-bound
methods [22]. A method for mapping the slot-placement
problem to the QUBO model and solving it using an Ising
machine has also been proposed [16].

In this paper, we pick up the slot-placement problem as a
typical but difficult example of combinatorial optimization
problems for Ising machines.

C. HOW TO UTILIZE AN ISING MACHINE SOLVING
COMBINATORIAL OPTIMIZATION PROBLEMS
Now we consider solving a combinatorial optimization prob-
lem by using an Ising machine. In practice, the obtained solu-
tion depends on the initial spin values and the optimal solution
is not always obtained, since the computational time is finite.
Moreover, the obtained solution can be a quasi-optimal solu-
tion and hence it cannot always satisfy the constraints given
to the original combinatorial optimization problem. How to
tackle those problems is one of the key issues to utilize Ising
machines efficiently.

In [16], after the quasi-optimal solutions are obtained by
using an Ising machine targeting the slot-placement prob-
lem, they are improved as post-processing using a classical
computer, so that they satisfy the slot-placement constraint.
However, no process is applied before the annealing process
of the Ising machine, and all initial spin values are input as
zero. As far as we know, there exist no previous researches
where any initial process is applied before an Ising-machine-
based annealing process.

D. OUR PROPOSAL
In this paper, we propose a three-stage annealing method
solving the slot-placement problem. The proposed method is
composed of three processes: an initial process, an annealing
process, and a correction process. The initial process and
the correction process are executed by a classical computer
while the annealing process is executed by an Ising machine.
In the initial process, we give initial values that give a rela-
tively good solution to the slot-placement problem,1 which
satisfies the slot-placement constraints. Then, the annealing
process is just executed by an Ising machine as usual. Finally,
the correction process corrects the quasi-optimal solution

1We can input initial values to spins in an Ising machine as follows:
In semiconductor-based Ising machines [3], [8], [23], initial spin values
are directly given to them using their API environment; and, in quantum
annealers like D-Wave 2000Q [24], initial values can be given to spins using
external magnetic fields.

obtained by the annealing process so that it can satisfy the
slot-placement constraints.

As the initial process, we propose three initial process
methods: a pair-wise exchange method, a random exchange
method, and a cluster-growth method. Given a random fea-
sible slot-placement solution, the pair-wise exchange method
repeatedly exchanges the paired items or moves the item to an
empty slot whichmost reduces the objective function, until no
further improvement is seen. The random exchange method
randomly exchanges the paired items or moves the item to
an empty slot for the fixed number of times, if improved.
In the cluster-growth method, we first place the item which
is most connected to other items to the center of the lat-
tice slots. Then we place an item connected most to the
items already assigned to a neighboring slot in a one-by-
one manner. The pair-wise exchange method gives a good
initial solution but requires much time. The random exchange
method runs within a limited time and gives an initial solution
depending on its execution time. The cluster-growth method
runs very fast but it may not give a good solution. Which
method is better is depends on the situation where our pro-
posed three-stage annealing method is utilized.

In the correction process, we correct the obtained
quasi-optimal solution by an Ising machine so that it can
satisfy the slot-placement constraint. We traverse the QUBO
matrix horizontally and vertically and resolve any item
assignment violations and/or slot assignment violations.

In our experiment, we apply our three-stage annealing
method to various slot-placement problems and evaluate the
solutions using an Ising machine hardware [23], [25], and
confirm its effectiveness.

E. CONTRIBUTIONS OF THIS PAPER
The contributions of this paper are summarized as follows:

1) We propose a three-stage annealing method solving
the slot-placement problem, which efficiently utilizes
an Ising machine and obtains a feasible quasi-optimal
solution to the slot-placement problem.

2) As the initial process, we propose a pair-wise exchange
method, a random method, and a cluster-growth
method. We also describe a correction process, which
corrects an obtained quasi-optimal solution so that it
satisfies the slot-placement constraint.

3) We applied the proposed three-stage annealing method
to many types of slot-placement problems. Compared
to the two-stage annealing method [16] not includ-
ing any initial process, the proposed method reduces
the minimum total weighted wiring length by approx-
imately 2.42% on average in the case of using the
pair-wise exchange method, approximately 2.45% on
average in the case of using the random exchange
method, and approximately 0.0898% on average in the
case of using the cluster-growth method. The mean
total weighted wiring length is reduced by approx-
imately 6.92% on average in the case of using the
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pair-wise exchange method, approximately 7.08% on
average in the case of using the random exchange
method, and approximately 2.79% on average in the
case of using the cluster-growth method.

F. ORGANIZATION OF THIS PAPER
This paper is organized as follows: Section II summarizes the
related works; Section III defines the slot-placement prob-
lem and its constraints and objective function; Section IV
introduces the Ising model and QUBO model and explains
the slot-placement problem mapping to the QUBO model;
Section V proposes a three-stage annealing method, where
we particularly propose three initial processes, i.e., a pair-
wise exchange method, a random exchange method, and
a cluster-growth method, and also a correction process;
Section VI demonstrates the effectiveness of the proposed
method using the Ising machine hardware; and Section VII
summarizes this paper and gives several concluding remarks.

II. RELATED WORKS
In this section, we firstly summarize typical Ising-machine-
applied combinatorial optimization problems. After that,
we introduce several approaches to efficiently utilize an Ising
machine to solve these combinatorial problems.

A. ISING-MACHINE-APPLIED COMBINATORIAL
PROBLEMS
Firstly, we summarize typical combinatorial optimization
problems solved by an Ising machine.

In [13], a rectangle packing problem is solved using an
Isingmachine. Given a set of rectangles, the problem arranges
them into a small-sized area without overlapping. The prob-
lem is efficiently mapped onto the Ising model and solved by
the Ising machine.

In [14], [26], a graph partitioning problem is solved using
an Ising machine. Given a graph composed of vertices and
edges, the problem is to minimize the number of edges con-
necting the two partitioned vertex sets, such that the number
of elements in the two partitioned vertex sets must be equal.
The problem is efficiently mapped onto the Ising model and
solved by the Ising machine.

In [15], an induced subgraph isomorphism problem is
solved using an Ising machine. Given two graphs, a substi-
tution matrix X with binary variables as elements is intro-
duced, which represents the mapping relation between the
two graphs, and the problem is mapped to the QUBO model.
The problem has two constraints: one is that there exists only
one (+1) binary variable in the row direction of X , and the
other is that there exists only one (+1) binary variable in the
column direction of X . The objective of the problem is to find
a substitution matrix X that satisfies XA2XT = A1, given the
adjacency matrices A1 and A2 of the two graphs.

In [16], a slot-placement problems is solved using an
Ising machine. This problem is mapped to the QUBO model
using t-by-mmatrix with binary variables as elements, where
t shows the number of slots and m shows the number of

items. The objective of this problem is to minimize the total
weighted wiring length under the slot-placement constraint.

In [27], a number partitioning problem is solved using an
Ising machine. Given a set of numbers, the problem is to
partition the set so that the sum of the elements of the two
partitioned sets is equal. The problem is efficiently mapped
onto the Ising model and solved by the Ising machine.

In [28], a traveling salesman problem is solved using an
Ising machine. The problem is mapped to the QUBO model
using an n-by-n matrix with binary variables as elements,
where n refers to the number of cities to be traversed. The
problem has two constraints: one is that a person cannot visit
multiple cities at the same time, and the other is that the same
city cannot be visited multiple times. The objective of the
problem is to minimize the total travel cost in a route that
visits all cities while satisfying the above two constraints.

In [29], a nurse scheduling problem is solved using an
Ising machine. This problem has three constraints: upper and
lower limit of the number of breaks, the number of nurses
in duty for each shift slot, and upper and lower limit of
time interval between two days of duty. The objective of the
problem is to find an optimal schedule while satisfying the
three constraints.

All the above combinatorial optimization problems except
for [16] are directly solved by Ising machines. No pre-
processes nor post-processes are applied to them to fur-
ther improve the obtained solution. Due to the probabilistic
nature of Ising machines, the obtained solution cannot always
become an optimal solution and hence it cannot always satisfy
the constraints given to the original combinatorial optimiza-
tion problem.

B. HOW TO EFFICIENTLY UTILIZE AN ISING MACHINE
In order to efficiently solve combinatorial optimization prob-
lems, several approaches have been proposed to utilize an
Ising machine and a classical computer.

In [30], a black-box optimization approach is proposed.
Black-box optimization is composed of a machine-learning
process by a classical computer and annealing process by an
Ising machine. Black-box optimization is effective for partic-
ular applications as in material design, but is not applicable
for general combinatorial optimization problems since its
target is machine-learning-based optimization and it requires
a large number of iterations.

In [16], an efficient two-stage annealing method utiliz-
ing an Ising machine and a classical computer is pro-
posed to solve combinatorial optimization problems. Firstly,
an Ising machine is applied to solve a combinatorial opti-
mization problem. After that, a classical computer improves
the obtained solution so that it satisfies the constraints given
to the original combinatorial optimization problem. This
approach can be effectively applied to the slot-placement
problem and considered to be one of the state-of-the-art
methods proposed before, since no other methods are pro-
posed combining Ising machines and classical computers to
satisfy the constraints as post-processing, as far as we know.
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However, the obtained solutions by this method much depend
on initial spin values in the Ising machine used, and the
accuracy of the solutions may not be sufficient.

Based on these discussions, hereinafter, we pick up the
slot-placement problem as an example in Sections III and IV
and propose an effective annealing method combining an
Ising machine and classical computer in Section V.

III. FORMULATION OF THE SLOT-PLACEMENT PROBLEM
In this section, we define and formulate the slot-placement
problem as well as its constraints and objective function.

Let us define a setM ofm items asM = {c1, c2, . . . , cm}
and a set S of slots consisting of h rows and v columns as S =
{s1, s2, . . . , st }, where t = h× v and m ≤ t . When the slot
sa is positioned at a1-th row and a2-th column, and slot sb is
positioned at b1-th row and b2-th column (1 ≤ a1, b1 ≤ h and
1 ≤ a2, b2 ≤ v), theManhattan distance l(sa, sb) between the
two slots sa and sb is defined by

l(sa, sb) = |a1 − b1| + |a2 − b2|. (1)

Let w(ci, cj) be the number of wires between two items
ci and cj (1 ≤ i, j ≤ m). w(cj, ci) is equal to w(ci, cj) and
w(ci, cj) is zero when ci and cj are not connected. w(ci, cj)
is also zero when i = j. When an item ci is assigned to
any slot, the slot is denoted by s(ci). The weighted wiring
length between items ci and cj is denoted by w(ci, cj) ×
l(s(ci), s(cj)). The total weighted wiring length (TWWL), L,
is defined by

L =
m−1∑
i=1

m∑
j=i+1

w(ci, cj)l(s(ci), s(cj)). (2)

Eqn. (2) is the objective function of the slot-placement
problem.

In addition, every item must be assigned to a single slot,
which is called item assignment constraint and no more than
one item cannot be assigned to a single slot, which is called
slot assignment constraint. The slot-placement constraint
refers to both of the item assignment constraint and slot
assignment constraint.

Hence, we define the slot-placement problem as follows:
Definition 1: Given t = h × v slots andm items which are

connected by wires, the slot-placement problem is to find the
slot assignment of items that minimizes the total weighted
wiring length, L, while satisfying the slot-placement con-
straint.

Fig. 1 shows an example of the slot-placement problem of
h = v = 3 and m = 5. As in Fig. 1(a), we have five items
and 3 × 3 slots, and some items are connected to each other
with wires. For example, the items 1 and 2 are connected by
three wires, and the items 1 and 4 are connected by two wires.
Fig. 1(b) shows the solution to the slot-placement problem.
For example, the item 1 and item 4 are assigned to the slot
1 and the slot 2, respectively. The total weightedwiring length

FIGURE 1. Example of slot-placement problem.

is calculated as:

L =
5−1∑
i=1

5∑
j=i+1

w(ci, cj)l(s(ci), s(cj))

= 3× 2+ 2× 1+ 4× 1

+ 1× 1+ 2× 1+ 2× 2+ 1× 2

= 21. (3)

IV. QUBO MODEL MAPPING OF THE SLOT-PLACEMENT
PROBLEM
In this section, we firstly introduce the Ising model and
QUBOmodel. After that, we describe QUBOmodel mapping
to the slot-placement problem.

A. ISING MODEL AND QUBO MODEL
The Ising model [1], [2] is a fundamental model in statis-
tical mechanics, which describes the behavior of an entire
system of microscopic elements called spins, depending on
the interaction between the spins and the external magnetic
field acting on each spin. As in Fig. 2, the Ising model is
defined on an undirected graph G = (V , E), where V is a
set of vertices and E is a set of edges between the vertices.
When two vertices i, j ∈ V are connected, (i, j) ∈ E denotes
the connected edge between the vertices i and j. Let σi be the
spin placed on the vertex i. σi takes either (+1) or (−1), where
(+1) is the upward spin and (−1) is the downward spin. Let
Ji,j be the interaction coefficient between the two spins σi and
σj and hi be the external magnetic field coefficient acting on
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FIGURE 2. Ising model.

the spin σi. Then, the Hamiltonian H of the Ising model is
expressed as:

H = −
∑

(i,j)∈E

Ji,jσiσj −
∑
i∈V

hiσi. (4)

The smaller the value of H is, the more stable the state of
the Ising model is. The state giving the minimum value ofH
is called the ground state.

The quadratic unconstrained binary optimization (QUBO)
model [31] is an equivalent to the Ising model, which uses
a binary variable ni that takes the value of 0 or 1 instead of
using a spin σi. The Hamiltonian H of the QUBO model is
expressed as follows:

H = −
∑

(i,j)∈E

J ′i,jninj −
∑
i∈V

h′ini − const (5)

where J ′i,j is the interaction coefficient acting between the
two binary variables ni and nj, h′i is the external magnetic
field coefficient acting on the binary variable ni, and const
is a constant. Eqn. (4) can be converted to Eqn. (5) by using
Eqn. (6) below:

ni =
σi + 1

2
. (6)

In the rest of this paper, we focus on QUBO models. Note
that, QUBO models can be equivalently converted into Ising
models as described above.

B. QUBO MODEL MAPPING OF THE SLOT-PLACEMENT
PROBLEM
In this subsection, we describe slot-placement problem map-
ping to the QUBO model based on [15], [16]. Let m be the
number of items, t = h × v be the number of slots, ci (1 ≤
i ≤ m) be the i-th item, and sa (1 ≤ a ≤ t) be a-th slot.
We define a binary variable xa,i as follows:

xa,i =

{
1 (if ci is assigned to the slot sa)
0 (otherwise).

(7)

Fig. 3 shows an example solution of the slot-placement
problem when m = 3 and t = 2 × 2 = 4. In this figure,

an orange colored circle indicates xa,i = 1 and a white
colored circle indicates xa,i = 0.

1) OBJECTIVE FUNCTION
The objective function in the slot-placement problem is given
by Eqn. (2). Using the binary variables xa,i and xb,j defined
above, Eqn. (2) can be re-written as follows:

HA =
1
2

t∑
a=1

m∑
i=1

t∑
b=1

m∑
j=1

w(ci, cj)l(sa, sb)xa,ixb,j. (8)

Let ha be the minimum value of HA. ha depends on the
slot-placement problem instance.

2) ITEM ASSIGNMENT CONSTRAINT
The item assignment constraint shows that every item ci must
be assigned to a single slot. Fig. 3(b) shows an example.
In Fig. 3(b), the green check indicates that the constraint is
satisfied and the red checks indicate that the constraint is
violated. The constraint can be formulated as follows:

t∑
a=1

xa,i = 1 (1 ≤ i ≤ m). (9)

Then we introduce the HamiltonianHB below:

HB =
m∑
i=1

(
1−

t∑
a=1

xa,i

)2

. (10)

HB takes the minimum value of zero if and only if all items
satisfy Eqn. (9).

3) SLOT ASSIGNMENT CONSTRAINT
The slot assignment constraint shows that no more than one
item cannot be assigned to every slot. Fig. 3(c) shows an
example. In Fig. 3(c), the green checks indicate that the
constraint is satisfied and the red check indicates that the
constraint is violated. The constraint can be formulated as
follows:

m∑
i=1

xa,i = 1 or
m∑
i=1

xa,i = 0 (1 ≤ a ≤ t). (11)

Then we introduce the HamiltonianHC below:

HC =
t∑

a=1

(
1
2
−

m∑
i=1

xa,i

)2

. (12)

HC takes the minimum value of t/4 if and only if all slots
satisfy Eqn. (11).

4) TOTAL HAMILTONIAN
Summing up Eqn. (8), Eqn. (10), and Eqn. (12) with a hyper-
parameter α > 0, we have the total Hamiltonian as follows:

H = HA + α(HB +HC). (13)

TheHamiltonianH takes theminimum value of ha + αt/4,
if and only if the ground state is found and the binary variables
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FIGURE 3. QUBO model mapping examples where m = 3 and t = 2× 2 = 4.

FIGURE 4. The flow of the proposed three-stage annealing method.

giving the ground state shows an optimal solution. How to set
up the hyper-parameter α will be discussed in VI-C.

Note that the number of binary variables required to
express Eqn. (13) becomes (m × t), where m shows the
number of items and t shows the number of slots.

V. THREE-STAGE ANNEALING METHOD UTILIZING AN
ISING MACHINE
A. THREE-STAGE ANNEALING STRATEGY
In general, the annealing process by an Ising machine tries to
minimize the Hamiltonian expressed by Eqn. (4) or Eqn. (5).
However, the solution obtained by the Ising machine does not
necessarily become a ground-state solution and hence does
not necessarily minimize Eqn. (4) or Eqn. (5). Particularly,
the constraint terms such as Eqn. (10) and Eqn. (12) in the
slot-placement problem cannot beminimized and hence those
constraints cannot necessarily be satisfied.

Based on this discussion, we firstly introduce a correction
process as in [16] after the annealing process by an Ising
machine is over. The correction process is executed by a
classical computer and corrects slightly the quasi-optimal
solution obtained by the annealing process so that it satisfies
the constraints to the original combinatorial optimization
problem.

The annealing process globally searches for the solution
space represented by the Ising model or QUBO model and
reaches the ground state regardless of its initial spin values
theoretically if it takes the infinite amount of time [32], [33].

However, in practice, the obtained solution depends on the
initial spin values and the optimal solution is not always
obtained, since the computational time is finite. There is a
trade-off between time and solution accuracy, and finding
a quasi-optimal solution in a short time is as demanding
as finding an exact optimal solution in practice. Therefore,
by appropriately setting the initial spin values or binary vari-
ables, we can obtain a better quasi-optimal solution in a short
time by using an Ising machine. Furthermore, due to the exis-
tence of constraints in combinatorial optimization problems,
the solution space can be multimodal and it may take much
time to obtain a global optimal solution [34]. By providing
initial values close to the optimal solution, we can improve
the probability to reach a better quasi-optimal solution since
we can start the search which may be closer to one of them.

Based on this discussion, we secondly introduce an initial
process before the annealing process by an Ising machine
starts. The initial process is executed by a classical computer
and gives initial values for spins or binary variables so that
the annealing process can obtain a better solution.

In summary, Fig. 4 shows the proposed three-stage anneal-
ing method including the initial process and the correction
process. (Stage 1) First, the initial process gives an initial
solution that satisfies the constraints to the combinatorial
optimization problem, which may be close to the optimal
solution. (Stage 2) Then, we perform the annealing process
on an Ising machine [3], [4], [8], [23], [24] as usual. (Stage 3)
Finally, the correction process corrects the quasi-optimal
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solution obtained by the annealing process so that it satisfies
the constraints to the combinatorial optimization problem.
Note that, the time complexity of the proposed initial pro-
cesses (Stage 1) and correction process (Stage 3) can be cal-
culated as in the subsequent subsections, while the annealing
time (Stage 2) using an Ising machine much depends on the
Ising machine hardware used and its parameter settings (See
Section VI-D for the discussion on execution time).

In the rest of this section, we propose an initial process
and also describe a correction process targeting the slot-
placement problem.

B. INITIAL PROCESS
As an initial process to the slot-placement problem, we pro-
pose a pair-wise exchange method (Section V-B1), a ran-
dom exchange method (Section V-B2), and a cluster-growth
method (Section V-B3).

1) PAIR-WISE EXCHANGE METHOD
We propose a pair-wise exchange method as an initial process
to the slot-placement problem. Firstly, we generate a random
feasible slot-placement solution, where a feasible solution
shows the slot placement satisfying the slot-placement con-
straint. This is done by just assigning every item to a slot
randomly without overlapping. Next, we select two slots and
exchange the items assigned to them. If no item is assigned to
one of the selected slots, we move the item to the empty slot.
If no items are assigned to both the selected slots, no move
is done. We try all those exchanges and moves and accept
the one which most reduces the total weighted wiring length.
This process is repeated until the total weighted wiring length
no longer improves.

Algorithm 1 shows the pair-wise exchangemethod. By per-
forming the pair-wise exchange method, a set of initial binary
variables to the QUBO model is obtained.

The pair-wise exchange method starts with a random solu-
tion that satisfies the slot-placement constraint and greedily
exchanges two items or moves one item to an empty slot to
reduce the total weighted wiring length. Although it may lead
to a locally optimal solution, it can provide a relatively good
initial solution. Since the pair-wise exchange method repeats
the exchange and move process until it well converges to a
local minima, it requires several amount of time. In some
cases, it may become longer than the annealing time (See the
discussion in Section VI).
The time complexity of the pair-wise exchange method

is calculated as follows: The single item exchange or item
move requires O(m) time to re-evaluate the total weighted
wiring length, where m shows the number of items. Since
we try all item exchanges and moves, we require O(m × t2)
time in every iteration, where t shows the number of slots.
Assume that we repeat this process Npwe times, i.e., after
Npwe iterations, no further improvement of the total weighted
wiring length is seen. Npwe depends on every slot-placement
problem instance. Then the time complexity of the pair-wise
exchange method becomes O(Npwe × mt2).

Algorithm 1 Pair-Wise Exchange Method
Generate a random feasible slot-placement solution;
while (TWWL is improved) do

Try all item exchanges and moves;
Accept the one which most reduces TWWL;

end while
return (Slot-placement solution at this time)

Algorithm 2 Random Exchange Method
Generate a random feasible slot-placement solution;
for (Iteration N ) do

Try item exchange or item move randomly;
if (old TWWL > new TWWL) then

Accept the trial above;
end if

end for
return (Slot-placement solution at this time)

2) RANDOM EXCHANGE METHOD
Next, we propose a random exchange method as an initial
process to the slot-placement problem. Firstly, we generate
a random feasible slot-placement solution. Then, secondly,
we try to exchange the items assigned to the slots or move
the item to an empty slot for several times. When the total
weighted wiring length is reduced, we accept the exchange or
move. Algorithm 2 shows the random exchange method. The
number N of iterations is given beforehand. By performing
the random exchange method, a set of initial binary variables
to the QUBO model is obtained.

The random exchange method starts with a random solu-
tion that satisfies the slot-placement constraint and randomly
exchanges two items or moves an item to an empty slot for
a certain number of iterations to reduce the total weighted
wiring length. Depending on the number of iterations, a rel-
atively good solution can be obtained as the initial solution.
Note that, since the number of iterations can be given in the
proposed random exchange method, the CPU time required
to the initial process can be adjusted.

The time complexity of the random exchange method is
calculated as follows: In the same way as the discussion in
the pair-wise exchange method, we require O(m × t2) time
in every iteration. Since the iteration is repeated N times,
time complexity of the random exchange method becomes
O(N × mt2).

3) CLUSTER-GROWTH METHOD
Lastly, we propose a cluster-growth method as an initial
process to the slot-placement problem. Firstly, we assign an
item i which is connected most to other items onto the center
of the lattice slots. Next, among the items that have not yet
been assigned to slots, we pick up the item j which is most
connected to the item i and assign j to the slot neighboring
to i. Similarly, we pick up an unassigned item which has
the maximum connections to the items already assigned and
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FIGURE 5. The flow of our proposed method.

Algorithm 3 Cluster-Growth Method
Assign an item which has the most connections to other
items to the center of the lattice slots;
for (m− 1) do

Select an unassigned item jwhich is most connected to
the items already assigned;

Assign the item j to the empty slot neighboring to the
occupied slots;
end for
return (Slot-placement solutioin at this time)

assign it to an empty slot neighboring to the occupied slots.
This process is repeated until all the items are assigned to
slots. Algorithm 3 shows the cluster-growth method. By per-
forming the cluster-growth method, a set of initial binary
variables to the QUBO model is obtained.

Unlike the pair-wise exchange method and random
exchange method, the cluster-growth method does not cal-
culate the total weighted wiring length explicitly during its
process. Therefore, the cluster-growth method runs fast even
when the scale of the problem becomes larger.

The time complexity of the cluster-growthmethod is calcu-
lated as follows: When we find out the item most connected
to other ones, we require O(m2) time, where m shows the
number of items. Since we assign an item to a slot in a one-
by-one manner, the time complexity of the cluster-growth
method becomes O(m3).

C. CORRECTION PROCESS
When an annealing process in Fig. 4 outputs a slot-placement
solution which does not satisfy the slot-placement con-
straint, the correction process corrects the slot-placement
solution so that it satisfies the slot-placement constraint. Now
the QUBO matrix {xa,i} refers to the matrix arranging the
binary variables given by Eqn. (7) as in Fig. 3. According
to [15], [16], we simply apply the processes below as the
correction process:

1) DELETE REDUNDANT ITEMS FROM QUBO MATRIX
COLUMNS AND ROWS
When two or more (+1) binary variables exist in any column
in the QUBO matrix as in the first column of Fig. 3(b),
we select one of the (+1) binary variables which minimizes
the total weighted wiring length and set the other binary
variables in this column to zero. We traverse the QUBO
matrix from the first column to the last column to resolve the
slot direction overlap.

After that, when two or more (+1) binary variables exist
in any row in the QUBO matrix as in the second row of
Fig. 3(c), we select one of the (+1) binary variables which
minimizes the total weighted wiring length and set the other
binary variables in this row to zero. We traverse the QUBO
matrix from the first row to the last row to resolve the item
direction overlap.

The time complexity of this process is calculated as fol-
lows: When verifying that a given QUBO matrix satisfies the
slot-placement constraint, we require O(mt) time, where m
and t show the number of items and the number of slots,
respectively. This is because we traverse the QUBO matrix
just twice in the column direction and row direction. Assume
that we find out the violation of item assignment constraint
in the QUBO matrix column. We require O(m2

+ t) time
to try the operation that one of the binary variables is fixed
to (+1) and the others to zero in this column, to flip binary
variables in this column and re-evaluate the total weighted
wiring length. Since we have totally m items and we try the
operation for these items at worst, we require O(m3

+ mt)
time. The similar discussion holds for the violation of slot
assignment constraint. Totally, the time complexity of this
process becomes O(m3

+ mt).

2) ADD ITEMS TO QUBO MATRIX COLUMNS
After deleting several items as above, there may exist no
(+1) binary variables in a column in the QUBO matrix as
in the second column of Fig. 3(b). In this case, we flip one
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of the binary variables in the column which minimizes the
total weighted wiring length. We traverse the QUBO matrix
from the first column to the last column and add an item if
necessary to satisfy the item assignment constraint.

The time complexity of this process is calculated as fol-
lows: In the worst case, we try to flip almost every binary vari-
able in the QUBO matrix and re-evaluate its total weighted
wiring length. Hence, the time complexity of this process
becomes O(mt × m) time.
By applying the above processes, the slot-placement solu-

tion can satisfy the slot-placement constraint and hence we
can always obtain a feasible slot-placement solution.

VI. EXPERIMENTAL EVALUATIONS
We have evaluated the proposed three-stage annealing
method applying to various slot-placement problems.

A. COMPARISON METHOD
We have compared the following twomethods to demonstrate
the effectiveness of the proposed method:

1) OUR PROPOSED METHOD
The first one is the proposedmethod. In the proposedmethod,
we use the classical computer environment of CentOS Linux
7.7.1908 and Intel Xeon Gold 6148 CPU processor for the
initial process and the correction process. We run the pair-
wise exchange (PWE) method, the random exchange (RE)
method, and the cluster-growth (CG) method as an initial
process. The number of iterations in the random exchange
method is set to 10,000. ‘‘Ours (PWE)’’ refers to the proposed
method with the pair-wise exchange method. ‘‘Ours (RE)’’
refers to the proposed method with the random exchange
method. ‘‘Ours (CG)’’ refers to the proposed method with the
cluster-growth method.

As an Ising machine, we use one of the semiconductor-
based Ising machines, called Digital Annealer (DA)
Unit 2 [23], [25], for the annealing process.2 The num-
ber of iterations in the annealing process in DA is set to
1,000,000 (default). In DA, we use the parallel tempering
mode (PT mode), where 128 quasi-optimal solutions are
obtained simultaneously. We apply the correction process to
these 128 solutions if necessary and obtain the 128 feasible
slot-placement solutions. Fig. 5 summarizes the experimental
flow of the proposed method.

2) BASELINE METHOD [16] (TWO-STAGE ANNEALING
METHOD)
For comparison, we run the existing state-of-the-art
method [16] which is composed of the annealing process and
the correction process. Before starting the annealing process,
we initialize all the binary variables to zero. In this method,
we use the same classical computer environment as Ours.
We also use a Digital Annealer Unit 2 for the annealing

2The Ising machine that we use is implemented on ASIC and realized by
hardware [23], [25]. It can deal with a maximum of 8,192 binary variables
and hence we set up the problem instances as described in Table 1 where we
can use at most 7,500 binary variables.

TABLE 1. The values of the hyper-parameters.

process. The number of iterations in the annealing process is
set to 1,000,000. In the same way, we use PT mode, where
128 quasi-optimal solutions are obtained simultaneously.
We apply the correction process to these 128 solutions if nec-
essary and obtain the 128 feasible slot-placement solutions.

Note that, if we do not apply the correction process,
the obtained slot-placement solutions cannot necessarily sat-
isfy the slot-placement constraint. In fact, if we do not apply
the correction process in our experiments, amaximumof 98%
solutions violate the slot-placement constraint (See Table 6
in detail). Hence, we compare our proposed method to the
two-stage annealing method above.

B. PROBLEM SETTING
We prepare 4 × 4 slots to 10 × 10 slots. For every
p × p slot instance, we prepare three item instances, m =
(p × p) × (1/2), m = (p × p) × (3/4), and m = (p × p).
Note that, we did not prepare an item instance m = 100
for 10 × 10 slot instance, because the number of variables
exceeds the upper limit of the Ising machine that we use for
the annealing process. The items are randomly connected by
wires such that w(ci, cj) ∈ [0, 10] for any two items ci and
cj.

For every slot-placement problem instance, we randomly
generate 10 different problems. For each of 10 different
problems, we obtained 128 feasible slot-placement solutions
by our methods or the baseline method [16]. As in Fig. 5,
we picked up the best solution (Min. value) which minimizes
the total weighted wiring length over these 128 solutions.
We also calculated the mean value (Avg. value) of the total
weighted wiring length over 128 solutions. Then, we aver-
aged these Min. values and Avg. values over 10 different
problems and summarized them.

C. SEARCH FOR THE OPTIMAL HYPER-PARAMETER
Before we evaluate our proposed method, we have searched
for the optimal hyper-parameter α value described in
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FIGURE 6. The result of the optimal hyper-parameter search.

Eqn. (13). In this search, we did not use any initial process and
set zero to all the binary values at first. We used the correction
process to obtain a feasible solution. We prepared 10 dif-
ferent problems for every slot-placement problem instance
and searched for the hyper-parameter value in the range of
α ∈ [10, 600] for 4 × 4, 5 × 5, and 6 × 6 slot instances
and in the range of α ∈ [100, 700] for 7 × 7 slot instance.
We also used PT mode as in Section VI-A and we obtained
128 feasible solutions at a time for every problem. We calcu-
lated and summarized averaged Avg. value and Min. value as
described in Section VI-B for every slot-placement problem
instance.

Fig. 6 shows the results. In most of the cases, Avg. value
andMin. value are minimized at the particular α value, which

gives the optimal hyper-parameter. This is because of the
following reason: if the α value is too small, the constraint
terms of HB and HC of Eqn. (13) cannot be minimized
and hence the non-feasible solutions are obtained. Then the
correction process corrects those solutions and their total
weighted wiring lengths are not globally minimized. If the
α value is too large, the constraint terms of HB and HC of
Eqn. (13) can be minimized and the obtained solutions can
satisfy the slot-placement constraint. But the first term HA
of Eqn. (13) is not fully minimized and hence their total
weighted wiring lengths are not minimized.

According to the results of Fig. 6, Fig. 7 plots the
optimal hyper-parameter value versus the number of vari-
ables. As in Fig. 7, the optimal hyper-parameter value is
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TABLE 2. The results of the minimum and mean values of the total weighted wiring length.

TABLE 3. The results of the total weighted wiring length after the initial process and the best value.

proportional to the number of variables used and it is
expressed by:

αopt = 0.2113× Nv + 33.571 (14)

where Nv shows the number of variables and αopt shows
the optimal hyper-parameter value. Based on this discussion,
we summarize the hyper-parameter values in Table 1 for every
slot-placement problem instance.

D. EVALUATION RESULTS
Table 2 summarizes the averaged minimum and mean values
(Min. values and Avg. values) of the total weighted wiring
length over 10 different problems for 4 × 4 to 10 × 10 slot
instances by using our methods and the baseline method [16].
The numbers in parentheses indicate the improvement of our
methods over [16]. From Table 2, the minimum values are

FIGURE 7. The linear regression of the hyper-parameter.

improved by approximately 2.42% on average in the case of
Ours (PWE), 2.45% on average in the case of Ours (RE),
and 0.0898% on average in the case of Ours (CG) compared
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TABLE 4. The results of the averaged execution time.

TABLE 5. The results of the averaged total execution time.

to [16]. The mean values are improved by approximately
6.92% on average in the case of Ours (PWE), 7.08% on
average in the case of Ours (RE), and 2.79% on average
in the case of Ours (CG). The results indicate that Ours is
superior to [16] in almost all the cases. The total weighted
wiring length obtained by Ours (PWE) and Ours (RE) is
almost the same. In any cases except for small examples,
the total weighted wiring length is reduced by introducing the
initial process, which definitely indicates that the three-stage
annealing process is effective to the slot-placement problem.

Table 3 shows the total weighted wiring length after the
initial process and the averaged minimum value (Min. value)
after the correction process. The numbers in parentheses indi-
cate the improvement of Min. value over ‘‘after initial pro-
cess.’’ The averaged minimum total weighted wiring length
obtained after the correction process are improved approxi-
mately up to 4.4% in the case of Ours (PWE), 2.9% in the case

TABLE 6. The results of the number of the correction process runs.

of Ours (RE), and 12% in the case of Ours (CG) compared to
those after initial process. These results demonstrate that the
annealing process successfully improves the total weighted
wiring length, even after the initial solution is given by the
initial process.

Table 4 summarizes the averaged execution time for
each stage and Table 5 summarizes the total averaged exe-
cution time for multiple stages. The initial process itself
requires several amounts of time, but by introducing the
initial process, the time required for the correction process
is much reduced. Particularly, Ours (CG) requires less time
than Ours (PWE) and Ours (RE), and the overall execu-
tion time of Ours (RE) and Ours (CG) are comparable
to [16].

Table 6 shows the average number of the correction pro-
cess runs. As described, we obtain 128 solutions simulta-
neously and hence the correction process can be applied to
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each of them, i.e., the maximum number of the correction
process runs becomes 128. If all the solutions obtained by
the annealing process are feasible ones, then the number of
the correction process runs becomes zero. Table 6 clearly
indicates that, by introducing the initial process, the anneal-
ing process tends to output the feasible solutions and hence
the average number of the correction process runs is much
decreased.

Overall, the three-stage annealing process is effective
enough to the slot-placement problem in terms of reducing
the objective function, satisfying the slot-placement con-
straint, and computational time.

VII. CONCLUSION
In this paper, we have proposed a three-stage annealing
method solving the slot-placement problem. The exper-
imental results demonstrate that the proposed method
reduces the minimum total weighted wiring length by
0.0898%–2.45% on average depending on the initial process
methods used, compared to the existing method. The mean
total weighted wiring length is reduced by 2.79%–7.08%
on average depending on the initial process methods used.
Totally, the proposedmethod is effective to the slot-placement
problem. In the future, we will apply the proposed approach
to other combinatorial problems and further confirm its
effectiveness.
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