
Received August 20, 2021, accepted September 17, 2021, date of publication September 27, 2021, date of current version October 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115946

Learning Without Forgetting: A New Framework
for Network Cyber Security Threat Detection
RUPESH RAJ KARN1, PRABHAKAR KUDVA 2, (Senior Member, IEEE),
AND IBRAHIM M. ELFADEL 1, (Senior Member, IEEE)
1Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, United Arab Emirates
2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

Corresponding author: Ibrahim M. Elfadel (ibrahim.elfadel@ku.ac.ae)

This work was conducted under a Joint Study Agreement, W1463335, between IBM Research, Yorktown Heights, NY, USA, and Khalifa
University, Abu Dhabi, UAE.

ABSTRACT Progressive learning addresses the problem of incrementally learning new tasks without
compromising the prediction accuracy of previously learned tasks. In the context of artificial neural networks,
several algorithms exist for achieving the progressive learning goal of learning without forgetting. However,
these algorithms have traditionally been tested on the well-known and widely available datasets from the
domain of image understanding and computer vision. Very little has been done on exploring the suitability
of progressive learning algorithms in the important area of network threat detection. On a more fundamental
level, progressive learning algorithms are still faced with the challenge of predicting the ultimate ability
of a given neural network architecture to add more tasks to its repertoire without undergoing catastrophic
forgetting. The goal of this paper is to address such a challenge in the context of cyber security threat
detection. It does so by providing a unified conceptual and computational framework where progressive
learning algorithms can be analyzed, compared, and contrasted in terms of their learning capacity and
prediction accuracy for specific datasets from the cloud cyber security domain. In particular, this paper
provides rigorous metrics for predicting the onset of catastrophic forgetting in the cyber security domain and
contrasts themwith their usage in the imaging domain. Our extensive numerical results show that progressive
learning, along with the proposed criteria for catastrophic forgetting, provides a very structured framework
for automating network threat detection as new threats emerge throughout network operation.

INDEX TERMS Progressive learning, neural network, synaptic intelligence, elastic weight consolidation,
fisher information, Hessian matrix, matrix rank, cyber security, threat detection.

I. INTRODUCTION
Progressive learning addresses the problem of incremen-
tally learning new tasks without compromising the predic-
tion accuracy of previously learned tasks. In the context
of feed-forward artificial neural networks (ANN), there are
two major approaches to the embodiment of progressive
learning. The first is biologically-inspired and consists of
growing the network and therefore augmenting its parameter
space to accommodate the new tasks. Examples of such
approach include [1] as well as the body of learning algo-
rithms based on architectural ANN search that fall under the
AutoML paradigm [2], [3]. The second approach assumes that
the ANN architecture is fixed and focuses on ANN weight

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

management to achieve its goals. Specifically, the synaptic
weights that are important for generalizing the older tasks are
preserved with the equal-loss surfaces in the weight space
changed minimally during the learning of a new task. Such
algorithms include Synaptic Intelligence (SI) [4], Elastic
Weight Consolidation (EWC) [5], Orthogonal Weight Mod-
ification [6], continual learning with the Kalman optimizer
(CLKO) [7], Gradient Episodic Memory [8], Memory Aware
Synapses [9], and Random Path Selection [10]. Generally,
various types of regularizations are applied to preserve the
important weights of the neural network model. Such regu-
larization framework enables the same model to generalize
novel as well as older tasks with minimal impact on the
generalization accuracies of the older tasks. This accuracy
balance between older and newer tasks may be construed a
manifestation of the stability-plasticity dilemma of biological

137042 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0003-1620-0560

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

neural networks. This dilemma refers to the ability of the
neural system to integrate new knowledge while internally
compensating to prevent the loss of old knowledge. Such
ability is foundational to continual lifelong learning [11].

To date, most of the progressive learning algorithms have
been illustrated and tested on imaging datasets such as
MNIST [12] and CIFAR [13]. As is now traditional in image
recognition, convolutional neural networks (CNN) have been
used in feed-forward architectures upon which the progres-
sive learning algorithms have been implemented. Successive
CNN layers are used to identify simple features in the data,
which are then aggregated to create the complex features
used in the higher decision layers for image classification.
In such a process, due to translation invariance of the convo-
lution filter, feature location within the image is not of high
relevance. This is the case not just for spatial data but also
for temporal data where translation-invariant filters are used
to detect salient features, as is the case in audio processing,
natural language processing, or sensor waveform processing.
On the other hand, there are application domains where the
location of the feature within the data is of very high rele-
vance. One such domain is that of network data collected for
network security monitoring. While imaging datasets have
pixels activating all the input nodes of a CNN, in a cloud
security application, the input nodes of an ANN are activated
with signals, each having its own physical interpretation in
the cloud domain. Under such conditions, progressive models
that perform efficiently in image recognition are not guaran-
teed to perform as well in the cloud cyber security domain.

Yet, the latter domain is a very natural context for pro-
gressive learning as cloud monitoring signals often expose
new types of cyber security attacks. Indeed, a threat detection
model trained for a group of attacks such as worm, Dos,
shellcode, and exploits [14] has to learn new types of attacks
such as backdoor and fuzzers. Each group of attack labels is
a learning task, and so one training task consists of learning
worm, Dos, shellcode, and exploits, while another learning
task consists of learning backdoor and fuzzers. Amajor theme
of this paper is to explore the use of progressive learning
in the cloud cyber security domain. Another major theme of
this paper is to address a fundamental problem of progressive
learning, which is the fact that for a given neural architecture,
learning cannot go forever.

Indeed, as new tasks are added to the ANN learning reper-
toire, it comes to a critical point where the ANN runs a real
risk of losing the knowledge of previously learned tasks. This
risk is manifested in a phenomenon known sd catastrophic
forgetting [15], which may be defined as the sudden loss
of generalization accuracy based on the previously learned
tasks. This loss occurs because the ANN weights responsi-
ble for the exact generalization based on the old tasks are
compromised as they are modified to adapt to the new tasks.
Several attempts have been made to develop an algorithm
that mitigates catastrophic forgetting. The mitigation algo-
rithms include regularization, sparse encoding, dual memory,
rehearsal, ensemble [15], generative replay [16], reinforced

learning [17], and phantom sampling [18]. In spite of these
mitigation attempts, catastrophic forgetting remains an open
problem, and current solutions to measure it do not ade-
quately estimate the ‘‘saturation’’ level in the weight space
of the ANN prior to learning additional tasks. An attempt
has been made to measure the catastrophic forgetting through
several metrics in [15]. But these metrics are based on mea-
surements bearing on the datasets and the cross-validation
accuracies of various trained tasks, and do not account for the
ANN synaptic weights as they shift between various tasks.
Metrics based on weight behavior are essential to assess
whether the ANN is capable of learning new tasks or not.
As pointed out in [15], there is a pressing need for such
metrics, which should apply to a wide range of progressive
learning algorithms. One of the major contributions of this
paper is to propose such metrics, both exact and heuristic, and
validate them on a variety of progressive learning algorithms
using cyber security datasets.

II. CONTRIBUTIONS AND ORGANIZATION
As already mentioned, in progressive learning based on
feed-forward neural networks, the algorithm attempts to pre-
serve the equal-loss contours of weights that are important
for old tasks while tuning other available weights during
back-propagation for adapting them as precisely as possible
to the new tasks. It is intuitively clear that after training a
large number of progressive tasks, most of the ANN weights
will become ‘‘important,’’ and as a result, the dual goals of
preserving the equal-loss contours of the old tasks and tuning
the network to adapt to the new tasks become inherently con-
flicting. In this paper, we have used the term ‘‘congestion’’
to describe the competition between older and newer tasks
for access to ANN weights. Not only does such congestion
cause the catastrophic forgetting of previously learned tasks,
but also it negatively impacts the learning accuracy of new
tasks.

We are now in a position to summarize the key contribu-
tions of this paper:

1) We provide a unified conceptual and computational
framework for the comparative assessment of three
major progressive learning algorithms: Synaptic Intelli-
gence (SI) [4], Elastic Weight Consolidation (EWC) [5],
and Orthogonal Weight Modification (OWM). [6].

2) We extend the application domain of progressive learn-
ing from imaging to cyber security and illustrate the
advantages that such a learning paradigm can achieve
on network threat detection.

3) We use the unified computational framework to intro-
duce, evaluate, and compare exact and heuristic criteria
for predicting the onset of catastrophic forgetting and
network congestion. We further contrast these criteria
according to the two application domains of imaging and
cyber security.

4) We provide algorithms for accelerating the computation
of the second-order information used in the exact rules

VOLUME 9, 2021 137043

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

for congestion prediction. We implement these algo-
rithms for classification loss functions.

5) We use the unified conceptual and computational frame-
work to introduce a new progressive learning algorithm
called Fisher Synaptic Intelligence (FSI) that integrates
the probabilistic features of EWC with the task specifi-
cations of SI. The newFSI algorithm is implemented and
compared with both SI and EWC from the viewpoint of
network congestion on both cyber security and imaging
datasets.

6) Finally, we provide a computational analysis of label
grouping amongst various tasks and evaluate its impact
on network congestion. This analysis is generic and
applies to all the progressive learning algorithms con-
sidered in this paper.

The remainder of this paper is organized as follows.
In Section III, the three major progressive learning algorithms
of SI, EWC, and OWM are surveyed under a unified con-
ceptual and mathematical framework. In Section IV, exact
and heuristic metrics for predicting the onset of network
congestion are introduced. The exact metric is based on the
evaluation of the rank of the Hessian matrix of the loss
function. Also in Section IV, methods for the fast estimation
of the Hessian rank for cross-entropy loss functions are pre-
sented. In Section V, the unified computational framework
for comparing the various progressive learning algorithms is
described, along with the network security datasets UNSW
and AWID. The extensive numerical experiments for each
of the three progressive learning algorithms are presented
in Section VI, along with an evaluation of catastrophic for-
getting for each case. The new FSI algorithm is introduced
and evaluated in Section VII. Section VIII is devoted to
design issues such as the impact of label grouping and weight
sharing on learning without forgetting. Also in Section VIII,
the two application domains of network security and imaging
are compared and contrasted. Finally, the paper is concluded
in Section IX where recommendations for future work are
also provided. Additional results and figures illustrating the
various points made in this work have been assembled in an
appendix attached to the end of the article.

This article is a major expansion of our earlier conference
publication [19], where the focus was only on the SI algo-
rithm and the least-squares loss function, which corresponds
in part to Subsections III-A and VI-A of this article. The
rest of the article is entirely original. To facilitate its reading,
the reader is encouraged to refer to Table 1, which has the
definitions of the various abbreviations used throughout the
article.

III. PROGRESSIVE LEARNING: UNIFIED FRAMEWORK
In this section, we describe a unified conceptual frame-
work for presenting three progressive learning algorithms,
namely, Synaptic Intelligence (SI) [4], Elastic Weight Con-
solidation (EWC) [5], and Orthogonal Weight Modification
(OWM) [6]. All these algorithms belong to the supervised

TABLE 1. List of abbreviations.

learning paradigm and use one form or another of gradient
descent to incrementally find the optimal ANN weights as
more tasks are presented to the network for training.

A. SYNAPTIC INTELLIGENCE
Synaptic Intelligence [4] is based on the premise that
progressive learning can proceed in the parameter space
θ = (θ1, θ2, . . . , θP) ∈ RP if there is a subset of the P param-
eters that is available for tuning to accommodate the new task
while the complementary subset is held unchanged to account
for the learning of the prior tasks. Two important concepts are
used to translate this intuitive idea into an algorithm: proxy
loss and weight importance. To explain these two important
concepts, assume that the ANN has learned µ tasks by opti-
mizing a loss function L̃µ(θ) with respect to θ . To learn the
µ + 1 task without compromising the past learning of the µ
prior tasks, a proxy loss function L̃µ+1(θ) is introduced:

L̃µ+1(θ) = Lµ+1(θ)+ cLτ≤µ(θ)

= Lµ+1(θ)+ c
P∑
k=1

�
µ
k (θ

µ
k − θk)

2 (1)

where τ denotes a task and Lµ+1(θ) is the actual loss of the
(µ + 1)th task only, which can be the standard least-squares
or the cross-entropy loss function. The term �

µ
k (θ

µ
k − θk)

2

is the surrogate loss which approximates the loss function
of the previous tasks Lτ≤µ(θ) in the neighborhood of θµ.
During the back-propagation phase of training, the model
considers the loss with respect to the older tasks through the
surrogate loss component, Lτ≤µ, along with the current task’s
loss function Lµ+1. The symbol θµ = (θµ1 , θ

µ
2 , . . . , θ

µ
P)

denotes the vector of optimized learning parameters of the
first µ tasks, and �µk denotes the importance of the k-th
ANN parameter to the loss function of the prior µ tasks.
The higher this importance coefficient, the less incentive
there is to change θk from its µ-optimal value θµk . The role
of the additional quadratic summation in (1) is to enforce
this proximity according to the importance of each ANN
parameter. The c coefficient in (1) is used to balance the
need for parameter update as required by the regular loss
function Lµ+1(θ) against the proximity penalty Lτ≤µ(θ) in
order to preserve previously learned tasks. The expression of

137044 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

the importance of k-th ANN parameter is given by

�
µ
k = −

∑
τ≤µ

∂L̃τ (θ)
∂θk

1τk

(1τk)
2 + ε

(2)

1τk = θ
τ
k − θk (3)

The interpretation of the importance coefficient of an ANN
parameter θk is that it is proportional to both the rate of
variation of the loss function with respect to θk and to the
actual change 1τk of θk with respect to its starting value.
The normalizing term (1τk)

2
+ ε is used to scale each term

in the proxy loss summation while ε is used to avoid dividing
by zero in case of zero change in the k-th parameter.

B. ELASTIC WEIGHT CONSOLIDATION
As in the Synaptic Intelligence (SI) method previously
described, the Elastic Weight Consolidation (EWC) algo-
rithm is based on the principle of having the optimizer
remember the old tasks by selectively slowing down the
updates on the weights that are important for those tasks.
To better understand this statement, we adopt the terminology
and concepts of the original EWC publication [5].

EWC is based on the premise that there is a weight vector
θµ+1 for accurately learning task τ = µ + 1 that is close to
the previously found weight vector θµ for tasks τ ≤ µ. When
learning τ = µ + 1, EWC therefore protects the accuracy
in τ ≤ µ by constraining the weights to stay in a region of
low error centered around θµ. To define the weights that are
most important for a given task, EWC uses a probabilistic
framework for neural network training. Let Dτ be the dataset
corresponding to task τ , and let p(Dτ |θ τ) be the probability
density function of the Dτ given the model parameters θ τ .
Then the Fisher’s information matrix of the data Dτ is given
as the ensemble average

F(θτ) = E
[
(∇θ log p(Dτ |θ τ))(∇θ log p(Dτ |θ τ))T

]
(4)

where ∇θ designate the row gradient vector with respect
θ . The Fisher’s information matrix for task τ can also be
expressed in terms of the likelihood function p(θ |Dτ) in which
case the EWC loss function L̃µ+1 for training task τ = µ+ 1
is expressed as

L̃µ+1(θ) = Lµ+1(θ)+
β

2

P∑
k=1

Fµk (θ
µ
k − θk)

2 (5)

where Fµk is the k-th diagonal coefficient of the Fisher’s
information matrix (4) for the µ-th task. The component
Lµ+1(θ) is the loss for task τ = µ + 1 only, β is a penalty
coefficient penalizing the deviation from optimal parameters
θµ of task µ. It plays a role similar to that of c in (1). Note
that the loss function Lµ+1(θ) may be a least-squares or a
cross-entropy loss function. To compute the Fisher’s diagonal
coefficient for task µ, a statistical average is used for the
Fisher’s information matrix according to the formula

Fµ(θ) =
1
N

N∑
m=1

[
∇θ log p(D(m)

µ |θ
µ)
]

×

[
∇θ log p(D(m)

µ |θ
µ)
]T

(6)

whereD(m)
µ is them-th sample of the dataDµ for taskµ, andN

is the number of samples. For the Fisher’s diagonal coefficient
in (5), the above statistical average is specialized to

Fµk =
1
N

N∑
m=1

[
∂

∂θk
log p(D(m)

µ |θ
µ)

]2
(7)

In the EWC [5] algorithm implementation at [20], the Dτ
training data are considered independent of each other, and
the surrogate loss Fµk (θ

µ
k −θk)

2 in (5) depends only on taskµ
rather than tasks τ ≤ µ as in (1). This aspect will be addressed
further in Section VI-A.

Finally, note that the Fisher’s coefficient Fµk in EWC (5)
plays a role similar to that of �µk in SI (1).

C. ORTHOGONAL WEIGHT MODIFICATION
Assume that the training data for task τ has N samples
denoted by Dτ = [Dxτ ,Dyτ] where Dx’s are training samples
and Dy’s are labels.
The Orthogonal Weight Modification (OWM) [6] algo-

rithm is based on the principle that the model remembers
the old tasks by modifying its weights only in the direction
orthogonal to the subspace spanned by the training data of
the old. Unlike SI and EWC, the OWM algorithm does
not use a surrogate loss function to remember older tasks.
Rather, the standard gradient descent function is scaled with
an orthogonal projection transformation to update theweights
considering that an orthogonal weight update does not inter-
fere with older weights. To better explain this statement,
we adopt the terminology of [6]. We first assume that the
network has l+1 layers indexed by l = 0, 1, 2, . . . ,L,L+1,
with l = 0 and l = L + 1 being the input and output layers,
respectively. Assume the network has already learnedµ tasks
by optimizing a loss function Lµ(θ) with respect to θ . To learn
the (µ+1)-st task without compromising the past learning of
the µ prior tasks, the standard ANN loss function Lµ+1(θ)
is minimized by updating weights according to the gradient
descent

G(θ) =
[
∇θLµ+1(θ)

]T (8)

θ → θ − κOµ+1G(θ) (9)

Oµ+1 = I− Dτ≤µ(DTτ≤µDτ≤µ)
−1Dτ≤µ (10)

where Dτ≤µ designates the data matrix of all tasks τ ≤ µ,
κ is the learning rate, I is the identity matrix, and Oµ+1 is a
projection matrix whose columns generate a subspace that is
orthogonal to the subspace generated by Dτ≤µ. Indeed, it is
easy to verify that Dτ≤µOµ+1 = 0. In (9), the projection
matrix is constructed to be conformal to the dimension P of
the parameter space.
The recommended method to compute Oµ+1 is through

an iterative process as in the Recursive Least Squares algo-
rithm [6], with Oµ+1 computed for each layer separately
using only the training dataset Dµ+1 and the projection for
the most recent task Oµ.

VOLUME 9, 2021 137045

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

TABLE 2. Comparison of SI, EWC, and OWM.

The OWM formulation is different from that of SI and
EWC as it abides by the traditional back-propagation algo-
rithms and does not use any proxy loss functions or any
importance coefficients such as �µk in SI (2) and Fµk in
EWC (7).

D. COMPARISONS
A summary of the features of the three progressive learning
algorithms SI, EWC, and OWM is provided in Table 2. Note
that EWC has the distinct advantage of being less prone to
the vanishing gradient problem. This problem is well known
in ANN training using gradient descent and backpropaga-
tion [21], and results in certain weights failing to get updated
when their loss function partial derivatives are close to zero.
This problem is directly inherited by the projected gradient of
OWM (8). In the context of SI progressive learning, the van-
ishing gradient will also impact the importance parameters of
Eq. (2) and hamper their use as weights in the proxy loss func-
tions. On the other hand, the Fisher coefficients of the EWC
algorithm are less likely to be impacted by the vanishing
gradient problem as a result of the statistical averaging of (6).
All these algorithms are prone to catastrophic forgetting, with
only heuristic methods amenable to be used in OWM for its
prediction. Details will be given in the next section.

IV. LEARNING WITHOUT FORGETTING AND ITS METRICS
A natural barrier to continuous progressive learning in fixed
ANN architectures is of course the pre-fixed, finite number
of neurons in the ANN architecture. Network congestion
will occur when the network capacity to learn new tasks
without compromising the accuracy of prior tasks is reached.
A symptom of network congestion is the conflict between
older and new tasks for weight tuning and the subsequent loss
of accuracy due to conflicting demands on weight updates.
The main goal of the fixed-architecture algorithms presented
in the previous section is to delay the occurrence of network
congestion asmuch as possible bymanaging the weight space
and schedulingweight updates according to accuracy require-
ments across all tasks. In this section, we present various
quantitative metrics for detecting network congestion during
progressive learning.

A. WEIGHT IMPORTANCE
In all the progressive learning algorithms described in
Section III, a restriction criterion is typically applied over
the trajectory of ‘‘important’’ weights so that their paths
do not deviate much with respect to those defined by the

older tasks [4]–[6]. The model undergoes congestion when
most of the weights become ‘‘important’’ as far as the older
tasks are concerned. It follows that inspecting the number
of important weights iteratively after training every task can
signal the occurrence of congestion. Intuitively, the number
of important weights should increase as the model learns a
new task. The model is on the verge of congestion when it
approaches the number of weights P in the ANN. Beyond
P, the number of important weights starts to decrease in the
numerical experiments of Section VI. The intuition behind
such decline is that once the network is congested, the impor-
tance coefficients become dependent on the data of several
learned tasks at once. The contributions of these tasks to
a given importance parameter may cancel out, which could
result in decreasing the algebraic value of the importance
coefficient. As discussed in Section III, SI uses �µk defined
in (2) while EWC uses the Fµk defined in (7) to measure
weight importance. The value of importance can be either
positive or negative. Aweight can be treated as non-important
if its importance value is zero. In our detection methodology,
we counted the number of non-zero importance values for SI
and EWC to determine weight space utilization and denoted
them as n(�) and n(F), respectively.

B. HESSIAN MATRIX RANK
The ANN should become congested as soon as the size of
the set of important weights is too high relative to the total
number of weights. The extensive numerical examples of
Section VI will show that it is possible to effectively detect
the ANN congestion using importance coefficients. However,
such simple congestion metric has three main shortcomings:
1) The lack of a clear mapping between weight subsets

and learned tasks in a given ANN. This often results
from the interplay between the backpropagation algo-
rithm, the ANN connectivity graph, and the weights
initialization.

2) Correlated tasks often result in weight sharing, which
lowers the threshold at which congestion starts to occur.
Due to task correlation, the number of important weights
may decrease with the training of new tasks without
showing congestion.

3) The use of the importance metric is restricted to pro-
gressive learning algorithms such as SI or EWC, where
a proxy loss function is used. It cannot be used with
algorithms such as OWM where the notion of weight
importance is not defined.

These shortcomings can be overcome if we use the
second-order information provided by the hyper-surface of
the ANN cost function. This second-order information is the
Hessian matrix evaluated at the optimal weights where the
ANN cost function has a local minimum for the set of tasks
already learned.

The change in the loss function of a model that has learned
µ tasks can be approximated in the neighborhood of θµ by

1L̃µ(θ) ≈ 1θTH(θµ)1θ (11)

137046 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

where1θ = θ−θµ andH(θµ) is the P×PHessian matrix of
the loss function computed at θµ. To simplify the expressions,
we use the notation Hµ

= H(θµ). The (i, j) element of the
Hessian matrix, denoted by hµij , is the second-order derivative
of the loss function and is given by

hµij =
∂2L̃µ(θµ)
∂θi∂θj

It is well known that the Hessian matrix is symmetric, and
when computed at the point where the loss function has a
local minimum, it is positive semi-definite. We propose to
use the rank R of the Hessian matrix as a measure of network
congestion after the learning of µ tasks. The rank R is a
function of the number of learned tasks, i.e., R = R(µ), which
increases with µ and is bounded by P. When R(µ) = P,
the ANN is fully congested, and learning without forgetting
is impossible. In our conference paper [19], we showed the
relevance of rank to congestion using the spectral decom-
position of the Hessian matrix and illustrated with extensive
numerical experiments using the SI algorithm. In the follow-
ing paragraphs, we give further theoretical justification for the
use of the rank of the loss function Hessian matrix to detect
congestion.

Assume the network has been trained for task µ using the
dataset Dµ and that the optimal weight found is θµ. A new
task τ = µ + 1 arrives for training. The loss function in the
neighborhood of θµ can be approximated as a second-order
Taylor series expansion1

L̃(θ ,Dµ) = L̃(θµ,Dµ)+
1
2
1θTH (θµ,Dµ)1θ

where the first-order term, 1θTG(θµ,Dµ) vanishes at the

optimal weight. The notationG(θµ,Dµ) =
[
∇θ L̃(θµ,Dµ)

]T
designates the gradient. When the network is being trained
for task τ = µ+ 1 using the dataset Dµ+1, the loss function
in the neighborhood of θµ is written as:

L̃(θ ,Dµ+1) = L̃(θµ,Dµ+1)+1θTG(θµ,Dµ+1)

+
1
2
1θTH (θµ,Dµ+1)1θ

Note that the data dependence in the previous equation is
on the new datasetDµ+1 for which the gradientG(θµ,Dµ+1)
does not vanish as θµ is no longer optimal for the new taskµ+
1. One possible approach for training the network to account
for the new task τ = µ + 1 is to find the weight update 1θ
according to the constrained optimization problem:

min
1θ
{
1
2
1θTH (θµ,Dµ+1)1θ}

such that

1θTG(θµ,Dµ+1) = 0.

The minimization problem is formulated with the Hessian
matrix corresponding to τ = µ, which is meant to preserve

1For clarity, we make the dependence on the training data explicit.

the contours of the weights for all the older tasks τ ≤ µ

and therefore prevent catastrophic forgetting. The constraint
using the loss function gradient is meant to achieve the nec-
essary optimality condition for τ = µ+1 along the direction
of the updated weight. Using the scalar Lagrange multiplier
υ corresponding to the equality constraint, one can derive the
necessary condition satisfied by the weight update 1θ

H (θµ,Dµ+1)1θ + υG(θµ,Dµ+1) = 0

Multiplying the above equation by 1θT , one gets

1θTH (θµ,Dµ+1)1θ = 0

Since the Hessian at the optimal weight θµ is symmet-
ric positive semi-definite, the above equation is satisfied by
a non-zero 1θ if and only if the Hessian matrix is rank-
deficient.

When the Hessian matrix has full rank, the constrained
minimization problem has no feasible solution, and the only
solution possible is one that will involve some form of catas-
trophic forgetting.

C. HESSIAN MATRIX APPROXIMATION
In [19], we explored two techniques for computing the ele-
ments of the Hessian matrix. The first one is exact and
is based on the second-order finite difference formula, and
the second is an approximation based on the sum-of-squares
format of the ANN loss function. The exact calculation is
simple to implement but excessively time-consuming [19]
while the approximation is more efficient as it requires only
first-order information for computing the Hessian matrix.
In this section, we derive a Hessian approximation expression
for the entropy loss function, which is the more common loss
function in classification problems.

Consider a current task τ with N training samples having
xm, 1 ≤ m ≤ N , as the input features, and ym, 1 ≤ m ≤ N ,
as the labels. The input-output mapping from the features xm
to the label ym is denoted as 0̃τ (θ , xm). The (i, j) Hessian
element for task τ is

hτij =
∂2L̃τ (θ)
∂θi∂θj

where L̃τ (θ) is given by the cross-entropy loss function

L̃τ (θ) = −
1
N

N∑
m=1

ym log[0̃τ (θ , xm)]

−
1
N

N∑
m=1

(1− ym) log[1− 0̃τ (θ , xm)] (12)

To get more insight into above equation, consider a binary
classification between labels {0, 1}. Note that the terms of the
entropy loss functions are very small when the classification
is correct, i.e., 0̃τ (θ , xm) ≈ ym and becomes large when
0̃τ (θ , xm) deviates significantly from ym.

VOLUME 9, 2021 137047

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

To approximate the Hessian of the entropy loss function,
the gradient is first computed:

∂L̃τ (θ)
∂θi

= −
1
N

N∑
m=1

ym
0̃τ (θ , xm)

∂0̃τ (θ , xm)
∂θi

+
1
N

N∑
m=1

1− ym
1− 0̃τ (θ , xm)

∂0̃τ (θ , xm)
∂θi

To calculate the Hessian, we take the derivative once more

∂2L̃τ (θ)
∂θi∂θj

=−
1
N

N∑
m=1

ym
0̃τ (θ , xm)

∂20̃τ (θ , xm)
∂θi∂θj

+
1
N

N∑
m=1

ym
[0̃τ (θ , xm)]2

∂0̃τ (θ , xm)
∂θj

∂0̃τ (θ , xm)
∂θi

+
1
N

N∑
m=1

1− ym
1− 0̃τ (θ , xm)

∂20̃τ (θ , xm)
∂θi∂θj

−
1
N

N∑
m=1

1− ym
[1− 0̃τ (θ , xm)]2

∂0̃τ (θ , xm)
∂θj

∂0̃τ (θ , xm)
∂θi

When the output 0̃τ (θ , xm) ≈ ym, the first and third terms
in the above expression cancel out, while the second and
fourth terms are simplified, and we get for the (i, j) Hessian
element the approximate expression

hτij ≈
1
N

N∑
m=1

[
1

0̃τ (θ , xm)
−

1

1− 0̃τ (θ , xm)
]

×
∂0̃τ (θ , xm)

∂θi

∂0̃τ (θ , xm)
∂θj

(13)

The above equation indicates that the Hessian can be
approximated as the weighted outer products of the model
gradients scaled with the difference of the model output
reciprocals and averaged over all the training samples. This
simplified Hessian expression, along with the fact that model
gradients are already computed by the back-propagation
training algorithm, results in a more efficient computation
than the finite-difference Hessian formula [19]. In the exper-
iments of this paper, the Hessian rank is computed based on
the approximation of (13).

D. HEURISTIC METRICS
While the Hessian approximation (13) speeds up the calcu-
lation of the Hessian matrix, computing the Hessian rank is
itself time-consuming as it has a cubic time complexity in the
number of parameters P. It is therefore desirable to comple-
ment the weight importance and Hessian rank metrics with
heuristic approaches that are less computationally demanding
but nonetheless capable of providing rough predictions of
neural network congestion. In a heuristic approach, a snap-
shot of the weights is taken after each progressive task
training, and the ‘‘distance’’ between the weights of two
successive tasks is measured. A large distance is an indicator
of ANN congestion and of possible catastrophic forgetting.

Such a large distance may occur if all the parameters of
the ANN are important and change significantly to learn
new tasks. Heuristic distance metrics are typically based on
the notion of similarity between vectors in a linear space.
Four metrics are proposed and evaluated for the measure-
ment of similarities between weights. They are Euclidean
distance [22], Cosine angle [23], Jaccard similarity [24], and
SequenceMatcher [25]. The Euclidean and cosine metrics
measure the quantitative deviation between two snapshots
of weight vectors while the Jaccard and SequenceMatcher
metrics measure qualitative similarity, i.e., the fraction of
the total number of weights that remain unchanged between
two successively learned tasks. The Euclidean distance mea-
surement can attain any value between zero and infinity.
A small Euclidean distance indicates that the two weight
vectors are similar. On the other hand, the cosine, Jaccard,
and SequenceMatcher metrics take values between 0 and 1,
and a value close to 1 is an indication that the two weight
vectors are similar.

E. COMPUTATIONAL COMPLEXITY
The computational cost associated with each of the conges-
tion metrics proposed above is described in the following
paragraphs.

1) WEIGHT IMPORTANCE
As indicated in Section IV-A, the number of non-zero impor-
tance values is used to evaluate weight space usage for SI
and EWC. Because each weight parameter has an impor-
tance value, the size of the importance vector is equal to P,
the dimension of the weight vector. According to Eq. (2),
the computation of each importance parameter requires
O(3µ) multiplications, assuming that the computational cost
of a floating-point square or division is the same as a floating-
point multiplication. The computational complexity of the
importance vector is therefore O(3µP).

2) APPROXIMATE HESSIAN RANK
The Hessian matrix elements are computed using Eq. (13).
For each element, two multiplication and two division opera-
tions are required to obtain each term in the summation for
a total of 4N operations followed by a scaling operation.
In total, each element requires 4N + 1 operations. The size
of the Hessian matrix is P × P. The order of calculation
for the complete Hessian matrix is O

(
P2(4N + 1)

)
. Using

the QR decomposition, the rank r of a square matrix of
order P can be determined in O(P2r) operations [26]. The
complexity of employing the estimated Hessian rank metric
is thusO

(
P2(4N + 1)

)
+O(P2r). The rank estimation is done

at the completion of every task, and its complexity is linear
in the number of tasks µ.

3) HEURISTIC METRICS
The complexity of computing the Euclidean distance and
cosine angle between the parameter vectors of two pro-
gressive tasks is O(P2) [27], [28]. The complexity of

137048 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 1. Flow chart showing the steps to build progressive model.

Jaccard’s similarity is O(P lnP) [29]. The complexity of
linear sequence search is O(P) [30]. Note that all these
complexities are linear in the number of tasks µ.

V. COMPARISON METHODOLOGY
In this section, we present the methodology, datasets, and
software tools we have used to compare and contrast the
various ANN congestion metrics. The results will be given
in Section VI for the three progressive learning algorithms:
SI, EWC, and OWM. In Section VII, the same experimental
testbed will be used to evaluate a new progressive algorithm
of our own, Fisher’s Synaptic Intelligence (FSI), from the
viewpoints of ANN congestion and catastrophic forgetting.
Recall that unlike [1] where the dimension of theANNweight
vector is allowed to increase, the ANN of SI, EWC, and
OWM is assumed to be fixed with the dimension of the
weight vector remaining the same throughout the progressive
learning.

A. EXPERIMENTAL SETUP
Aflowchart showing the overall methodology for progressive
learning and network congestion detection is given in Fig. 1.
The setup starts with a baseline ANN architecture that is
trained on an initial task τ = 1 using data D1. As a new task
arrives with its own training data, the same model is incre-
mentally re-trained using a progressive learning algorithm.
The model is then sent to the congestion detector to evaluate
its potential for further training. If the ANN is already con-
gested, congestion = true, then the training sets across all
the previous tasks are combined to create multiple tasks, and
the ANN is expanded by adding neurons to the hidden layer
or adding more hidden layers. If congestion = false, then
the model remains on standby until new training data arrives.
It should be noted that the expansion of the feed-forward
ANN by adding a hidden layer after congestion can result in
a deep neural network where the problem of vanishing and
exploding gradient may occur [21]. The residual learning
framework of [31] addresses this issue, as does the gated
recurrent unit approach of [32]. Care weights initialization

TABLE 3. Dataset description.

ahead of training can also mitigate gradient anomalies [33].
Such techniques are outside the scope of this paper but will
be explored in our future publications.

B. DATASETS
Three datasets have been used for the experimental runs.
Since our research has evolved in the context of providing
AI tools for network security, we have selected two datasets
from cloud network security, namely, UNSW [34], [35],
AWID [36] and compared their congestion results with those
of the MNIST [12] image dataset. They are briefly described
in Table 3.

The original number of features in the AWID is 155,
out of which 57 have raw values or invalid characters
replaced with ‘‘?’’ across all the dataset records. The latter
features are dropped from the experimental runs. To illus-
trate ANN progressive learning and network congestion,
tasks are constituted with each task consisting of labels
randomly selected and combined from the existing dataset.
For the UNSW dataset, each task τ ∈ {1, 2, 3, 4, 5}
represents a binary classification of two different secu-
rity attacks, e.g., τ = 1:{worms/shellcode}, τ =

2:{reconnaissance/normal}, τ = 3:{generic/fuzzers},and so
on. Similarly, for the AWID datasets, each task performs
a binary classification between two security attacks, e.g.,
τ = 1:{normal/fragment}, τ = 2:{arp/probe_request}
τ = 3: {chop_chop,deauthentication}, and so on. As for
MNIST, the examples of binary classification tasks are τ =
1:{0/1 digit}, τ = 2:{2/3 digit}, τ = 3:{4/5 digit}, and so on.
In the experimental runs, the same task setup is used across
all progressive learning models.

C. SOFTWARE TOOLS
All the experiments are performed in Python 3.5. The
open-source code at [37] is used for the synaptic intelli-
gence (SI) progressive learning model [4]. The Keras Python

VOLUME 9, 2021 137049

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

TABLE 4. ANN hyper-parameters for progressive learning. The same
hyper-parameter values are used across all the datasets for each of the
three progressive learning algorithms: SI, EWC, and OWM.

package [38] is used for the numerical experiments with the
back-end being Tensorflow. The open-source code at [20]
is used for the elastic weight consolidation (EWC) learn-
ing model [5]. Likewise, the open-source code at [39] is
used for the orthogonal weight modification (OWM) learning
model [6]. The Hessian matrix is computed from the outer
product of gradients as given in (13). Gradients with respect
to weights are calculated using Keras callbacks, where the
finite difference of the loss function computed at the last two
epochs is used. For small matrix sizes, the rank is calculated
using Python’s Numpy linear algebra library [40], while for
largematrix sizes, the rank is calculated as the number of non-
zero eigenvalues.

VI. LEARNING WITHOUT FORGETTING AND NETWORK
CYBER SECURITY
In this section, the details of our comparative experiments
regarding the prediction of network congestion in ANN
designed to classify network security threats are given. To the
best of our knowledge, this is the first such comparative
study between the three progressive learning algorithms SI,
EWC, and OMW, using the same computational platform
with learning achieved in the networking domain, on cyber
security datasets, rather than in the computer vision domain
on imaging datasets. The main objective is to identify the
algorithm that is capable of supporting continual learning
without catastrophic forgetting so as to dynamically and
autonomously detect and track emerging network cyber secu-
rity threats.

A. SYNAPTIC INTELLIGENCE MODEL
The synaptic intelligence (SI) model is built with the speci-
fications given in Table 4. Such specifications are obtained
based on a baseline experiment using AutoKeras [41], [42]
on the training dataset corresponding to the τ = 1 task.
In the progressive learning setup, only the training data cor-
responding to τ = 1 is known, and so the ANN architec-
ture performance is optimized for τ = 1 but not for the
subsequent tasks. As a result, the ANN model trained on
the first task τ = 1 has its highest accuracy in predicting
classes. Based on (1), catastrophic forgetting is mitigated by
choosing c = 1 [4]. The model is then trained progressively

and validated after completing the training for each task. The
validation is conducted not only on the completed task but
also on the tasks already trained and the tasks that are still
pending. The validation on the already trained tasks is meant
to verify the preservation of model accuracy on prior tasks as
the progressive learning proceeds. The validation on pending
tasks is meant to produce reference accuracy for them against
which to compare the accuracies they achieve after they are
learned progressively. As an example, consider task τ = 3 on
the x-axis of Fig. 2 for the UNSW data. The points falling on
the vertical line at τ = 3 are the accuracies of all tasks that
preceded τ = 3 and that are still pending after τ = 3. On the
other hand, the accuracy plots, when read vs. the task axis τ ,
represent the dependence of the accuracy of a given task on
the progressive learning as it proceeds from task τ = 1 to
τ = 7. Note that the progressive task learning accuracy for
the MNIST dataset is given in [4]–[6] and is not reproduced
here.

To clarify the accuracy plots of Fig. 2 further, we define the
matrix A = (aij), where the element aij is the accuracy with
respect to the data of task τ = i once the task τ = j has been
learned. The A matrix is square but not symmetric, and the
arrays of Fig. 14 in the Appendix give the numerical values
corresponding to the curves of Fig. 2.

One indication of catastrophic forgetting can be read from
plots such as Fig. 2 by tracking a sudden drop in accuracy
for a task that was previously learned adequately. This is
for instance the case of task τ = 1, whose accuracy drops
drastically after the network learns task τ = 6. Another
important plot in Fig. 2 is the average accuracy computed in
terms of the entries of the matrix A = (aij) as

āk =
1
k

k∑
i=1

aik (14)

In other words, once task τ = k has been progressively
learned, the average accuracy āk computes the average of
accuracies with respect to the datasets of all learned tasks up
to task τ = k . On the plots of Fig. 2, this average is computed
as the average of the y coordinates at task k for all datasets
of tasks i ≤ k . The numerical values of these averages are
shown as the last row in Fig. 14 of the Appendix where they
can be computed as the average of a given column inA of the
rows that are at or above the matrix diagonal. For instance in
the AWID dataset, only a fraction of the average accuracy is
lost as a result of progressive learning, as can be concluded
from comparing the average accuracies of τ = 1 with that of
τ = 9.

As for the congestion metrics described in Sections IV,
they are shown in Figs. 3 and 4. It is clear from Fig. 3
that the number of important weights increases as the model
learns new tasks. So does the Hessian matrix rank. For the
UNSW dataset, Fig. 3a shows that the weight space has been
completely occupied by the training of tasks τ = 1 to τ = 4.
Specifically, the plot indicates that tasks τ = 1 and τ = 2
together have used more than half of the weight space, with

137050 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 2. Accuracy evaluation of the Synaptic Intelligence progressive learning model. Note the impact of progressive learning on maintaining
accuracy across the tasks.

FIGURE 3. Importance and Hessian rank congestion metrics for the
Synaptic Intelligence model of Fig. 2 for both the UNSW and AWID
datasets.

the Hessian rank exceeding 50%. Further training has caused
congestion as indicated by the saturation of the Hessian rank
curve. This is because most of the available directions in the
2332-dimensional weight space have been utilized, leaving
only few directions for learning new tasks. As a result, tasks
τ = {3, 4, 5} are not trainable with sufficient accuracy. Fur-
thermore, there is a high likelihood of catastrophic forgetting
in case progressive learning is pursued after τ = 2 on this
model. To demonstrate such likelihood, the model is trained
further with tasks τ = {5, 6}, and sure enough, catastrophic
forgetting has occurred, as shown in Fig. 2a, where there is
a significant degradation in the cross-validation accuracy of
τ = {1, 5} after training for the task τ = 6. Such occurrence
illustrates the intuitive statement made earlier that not only
does congestion negatively impact the accuracy of previously
learned tasks, but also it negatively impacts the learning of
future tasks.

In the AWID case of Fig. 2b, the model exhibits a large
capacity to learn new tasks beyond task τ = 9, as shown
in Fig. 3b. This is because the model has the freedom to
choose amongst several available directions for the new

FIGURE 4. Heuristic congestion metrics for the Synaptic intelligence
model. Unlike Figs. 2 and 3, the tasks start at τ = 2 along the x axis, while
the similarity metrics are along the y axis. Note that in the numerical
experiments, these metrics calculate the weight dissimilarity between
two adjacent tasks τ and τ + 1.

weights as the Hessian rank has not exceeded 50% after
learning task τ = 9. The heuristic metrics of Fig. 4b show that
the Euclidean distance between adjacent weights decreases
as the model learns new tasks. Likewise, the cosine similarity
is close to 1. The qualitative heuristic metrics, Jaccard and
SequenceMatcher, of the AWID dataset are higher than those
of UNSW, which indicates that many more of the AWID
weights are shared across the tasks than in the UNSW case.
The net result of this weight sharing is a lower likelihood of
network congestion.

In Table 6 and Section VIII, further comparisons will be
given to contrast the congestion metrics across the progres-
sive learning algorithms and across the datasets.

B. ELASTIC WEIGHT CONSOLIDATION MODEL
As in the SI model, the EWC model is trained progressively
with several tasks. The specifications of Table 4 are again fol-
lowed in the EWC model with β = 2 in Eq. (5). The conges-
tion metrics are calculated progressively at the completion of

VOLUME 9, 2021 137051

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 5. Importance and Hessian rank congestion metrics for the Elastic
Weight Consolidation model for both the UNSW and AWID datasets.

learning each task. In the EWCmodel, the Fisher information
coefficient Fµk (7) plays a role similar to that of�µk (2) in the
SI model as a weight importance coefficient. The importance
and Hessian rank congestion metrics of the EWC model are
shown in Fig. 5 while its Heuristic congestion metrics are
given in Fig. 6.

In Fig. 15 of the Appendix, an accuracy evaluation similar
to that of Fig. 2 is given for the EWC model.

In reference to Fig. 5 and the UNSW dataset, learning task
τ = 1 has used more than 50% of the weights, but the
network maintains some capacity to learn tasks τ = 2 & 3
as well. The capacity is significantly diminished for all the
subsequent tasks. In reference to Fig. 6b and the AWID
dataset, the Euclidean distance metric is virtually infinite,
which is consistent with a weight distribution pattern with no
weight sharing beyond task τ = 5.
In the EWC experimental runs, the task setup is similar to

that of the SI model in that the binary classification tasks do
not share any labels. However, the EWC algorithm has worse
accuracy performance than SI due to statistical differences
between the distribution of the Fisher’s coefficients and the
distribution of the SI importance parameters. These differ-
ences will be quantified in Section VII and used to motivate
the introduction of a novel progressive learning algorithm
using Fisher’s information that achieves significant accuracy
improvement with respect to EWC.

C. ORTHOGONAL WEIGHT MODIFICATION MODEL
As in the SI and EWC model, the OWM model is trained
progressively with the specifications of Table 4. All the con-
gestion metrics are calculated after training each task. The
OWM model has no importance coefficients like �µk for SI
or Fµk for EWC. Nor does it use a surrogate loss Lτ≤µ as in
SI and EWC. The congestion metrics of the OWMmodel are
shown in Fig. 7.
Furthermore, an OWM accuracy plot similar to that of

Fig. 2 has been generated and included as Fig. 16 in the
Appendix. The OWM accuracy will be compared to that of
SI and EWC in the next section.

VII. FISHER SYNAPTIC INTELLIGENCE (FSI)
In this section, we introduce an improved version of EWC
called Fisher Synaptic Intelligence (FSI). The main novelty
of FSI is to replace the original penalty terms of EWC based
on the raw Fisher’s information coefficients with summations

FIGURE 6. Heuristic congestion metrics for the Elastic Weight
Consolidation model for both the UNSW and AWID datasets.

that are similar to the ones used to compute the importance
coefficients of SI. Numerical experiments show that FSI
results in significantly improved accuracies with respect to
EWC using the same set of tasks as the SI algorithm. This
section also contains a comparison among the various pro-
gressive learning algorithms: SI, EWC, OWM, and FSI, from
the viewpoint of their accuracies.

A. MOTIVATION
As mentioned in Section VI-B, when both SI and EWC are
compared on the same set of cyber security tasks, EWC
suffers a loss of accuracy. To gain more insight into this
loss, the histograms of the SI penalty coefficients (importance
parameters) are generated and plotted in Fig. 8 for the UNSW
dataset. This histogram has a long tail, indicating that some
of the �µk penalty parameters are large. In Fig. 8a, the �µk
histogram of SI is compared with the Fµk histogram of EWC
to show that the latter is much narrower than the former.
The large penalty parameters on the tail of the SI histogram
force the optimization algorithm to keep some of the weights
close to their previous values while using the weights of the
small parameters to learn new tasks. This is not the case for
EWC where the majority of the penalty coefficients (Fisher’s
information) are small and, in fact, concentrated close to zero.
The EWC optimization algorithm treats each new task as
essentially as a learning-from-scratch case, thus resulting in
the EWC accuracy loss.

B. IMPROVING EWC
To address the EWC loss of accuracy, we replace the raw
Fisher’s coefficient at task µ with the cumulative sum of
all the Fisher’s coefficients up until task µ according to the
formula

8
µ
k =

∑
τ≤µ

Fτk (15)

with the objective function becoming

L̃µ+1(θ) = Lµ+1(θ)+ c
P∑
k=1

8
µ
k (θ

µ
k − θk)

2 (16)

Note that the summation (15) is similar to that of (2) of SI,
and as a result, the objective function of (16) along with (15)
is called Fisher Synaptic Intelligence (FSI). The computation
of 8µk can be done recursively according to

8
µ+1
k = 8

µ
k + F

µ+1
k (17)

137052 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 7. Congestion metrics of the OWM model for both the UNSW and AWID datasets.

FIGURE 8. Comparisons of the penalty coefficients for SI, EWC, and FSI for the UNSW dataset at task τ = 5. The ‘E’ marker denotes maximum value of the
EWC distribution. The ‘2×E’ marker is twice the value of ‘E’. All the values larger than 2×E are included in a ‘Tail’ bin. The subplot inside each plot is a
zoom-in on the distribution details. Please note the scale difference of the y-axis in the two diagrams.

with no need to store the training data corresponding to tasks
prior to µ. The net effect of using 8µk instead of Fµk is
to broaden the histogram of the penalty coefficients of the
objective function. This is illustrated in Fig. 8b, where the FSI
histogram is shown to be close to the SI one and therefore
much broader than the EWC histogram, thus increasing the
penalty on some of the terms of the proxy loss function. As in
SI, this increase will result in a differentiated update of the
weights with the new tasks triggering changes in the weights
having small penalty coefficients. More information on the
SI, EWC, and FSI histograms using the UNSW dataset is
given in Figs. 18b and 19 of the Appendix.

The FSI model has been trained with tasks identical to
those of the SI and EWC models of Sections VI-A and VI-B.
The FSI accuracy plot is given in Fig. 17 of the Appendix.
The FSI congestion metrics are shown in Figs. 9 and 10.

For UNSW, the behavior of FSI is similar to that of the SI
model of Fig. 2a, where tasks τ = 3 and 4 have not been
able to train due to congestion and task τ = 1 encounters
catastrophic forgetting (drop in accuracy at τ = 6). The
n(F) andHessian rank plots show full weight space utilization
around τ = 3. The Euclidean distance plot of Fig. 10 shows
monotonous decrease down to τ = 5, after which the distance
increases, signaling congestion. The Jaccard and Sequence-
Matcher show minimal similarity ratio between weights of

adjacent with a further decrease after τ = 5. The AWID
model is not as congested as the UNSW one. In particular,
the Hessian rank indicates a significant capacity to learn new
tasks, yet the number of non-zero penalty coefficients shows
near-full weight utilization starting at τ = 6. This situation is
explained by the presence of weight sharing among the tasks.
In this particular case, the non-zero penalty coefficients give
a false congestion alarm, while the Hessian metric is a much
better indicator of progressive learning capacity. As for FSI
accuracy, more will be said about it in the next paragraph.

C. SI, EWC, OWM, AND FSI COMPARISONS
In this paragraph, the accuracy comparisons of the three prior
models on progressive learning: SI, EWC, and OWM, are
given along with the accuracy results of the proposed FSI
model. Only average accuracies as given in (14) are consid-
ered in the comparisons. Aside from the new FSI progressive
learning model, one major contribution of this paper is that
all comparisons are conducted on the same platform using
the same datasets and the same task definition for all the
algorithms. The accuracy comparison results are summarized
in Fig. 11. We note the following:

1) The EWC model is less accurate than the SI model with
a significant drop beyond task τ = 3.

VOLUME 9, 2021 137053

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 9. Fisher synaptic intelligence (FSI) model evaluation with
rigorous congestion metrics for the UNSW and AWID datasets.

FIGURE 10. Fisher synaptic intelligence (FSI) model evaluation with
heuristic congestion metrics for the UNSW and AWID datasets.

2) The OWMmodel is also less accurate than the SI model
andmore prone to early congestion. The OWMaccuracy
drops after task τ = 4 for both datasets UNSW and
AWID.

3) The use of FSI results in a significant improvement of
accuracy, especially for the AWID dataset.

It is important to note that the above results are dataset-
dependent. When the MNIST dataset is used, [6] reports
an improvement in accuracy of OWM over both SI and
EWC. On the other hand, such an improvement has not been
obtained with UNSW and AWID. To gain more insight into
this dependence on the dataset, we have listed, in Table 5,
the matrix rank of Oµ(0), the sub-matrix of the projec-
tion matrix Oµ (see (10) that is conformal to the weights
of the input layer l = 0 of the ANN. For MNIST, this
rank decreases with progressive learning, but for UNSW
and AWID, it remains near full rank. This suggests that
the MNIST data is correlated task-to-task, resulting in the
projection space becoming of lower dimension as the learn-
ing proceeds. However, the data of UNSW and AWID are
independent task-to-task, resulting in the projection space
corresponding to the weights of the input layer maintaining
nearly the same dimension.

In reference to Figs. 3 and 9, the penalty coefficients
increase monotonically with task learning for the SI and FSI
models, but for EWC, their behavior is mixed, as shown
in Fig. 5. OWM has no such coefficients.

VIII. DESIGN AND DOMAIN-SPECIFIC ISSUES
A. WEIGHT SHARING AND LABEL GROUPING
Once the ANN model undergoes congestion, the inference
engine has to be discarded, and a new engine should be
designed with additional hidden layers, as shown in Fig. 1.
In order to avoid early congestion in the re-designed inference

FIGURE 11. Comparison of average accuracies for the SI, EWC, OWM, and
FSI progressive learning algorithms. Refer to Section VI-A and Figs. 2
and 14 for the interpretation of this plot.

TABLE 5. Orthogonal projection matrix across tasks for OWM algorithm.
Size of orthogonal matrix for UNSW is 〈Oτ (0)〉 = [43× 43], AWID is
〈Oτ (0)〉 = [98× 98], MNIST is 〈Oτ (0)〉 = [784× 784].

engine, the labels should be packed together to improve
weight space usage. Instead of randomly selecting such
labels, a label packing algorithm is more likely to reduce
over-fitting and improve the overall generalization accuracy.
Such label packing can be derived based on similarity met-
rics applied to the ANN weights of a given pair of tasks.
An approximate measure of similarity between ANNweights
can maximize the number of labels that can be packed into
an ANN model without risking congestion or catastrophic
forgetting.

To evaluate label packing, we have used the UNSW
dataset. It has 43 feature columns and an ‘attack_category’
column [34] containing 10 classes that are used as
labels. One-hot encoding [43] has been applied to the
‘attack_category’ column, which has resulted in a 10-bit
binary code for each label and 10 binary classification mod-
els. Each model has one output node containing the sigmoid
activation function. The other hyper-parameters are as given
in Table 4. A standard ANN learning model is trained for
each binary classifier, and model weights are collected. The
binary classifiers are paired, and the four similarity metrics,

137054 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

explained in Section IV-D, are applied to the weights of each
pair, thus resulting in 10 matrix for each similarity metric.
These matrices are visualized in Figs. 12a and 12b for the
Euclidean and Cosine metrics, respectively. These two met-
rics are able to detect the pairwise weight similarity. On the
other hand, the Jaccard and SequenceMatcher fail to detect
such similarity. Illustrations similar to those of Fig. 12 for
Jaccard and SequenceMatcher have been included in Fig. 20
of the Appendix.

Based on Figs. 12a and 12b, the weights correspond-
ing to Worm and Analysis pair of labels have the high-
est similarity. So do the weights corresponding to the
DoS and Backdoor pair. Therefore each pair of labels
can be packed together in a single binary classification
task with the expectation that some of their ANN weights
will be shared. The labels are paired as follows: τ =
1:{‘Worm’/‘Analysis’}, τ = 2:{‘DoS’/‘Backdoor’}, τ =
3:{‘Normal’/‘Exploits’}, τ = 4:{‘Shellcode’/‘Generic’},
τ = 5:{‘Reconnaissance’/‘Fuzzers’}. A progressive learning
model is created using these paired labels with a set of 5
binary classification tasks. Such tasks are fed sequentially to
the SI learning model with the specifications given in Table 4.
Another SI learning model with 5 binary classification tasks
is built with the same specifications but with labels paired
randomly as in Section VI-A and Fig. 2a. As illustrated
in Fig. 13, similarity-based label packing results in better
accuracy than random packing of labels. Accuracy compari-
son is shown in Fig. 13(1), while two congestion metrics are
shown in Fig. 13(2&3). Finally, the differences in the Hessian
rank and penalty coefficient metrics are shown in Fig. 13(4).
The similarity-based label packing has distinct advantages
in comparison with random label packing, including better
accuracy and lower congestion risk. Because of the latter
advantage, similarity-based label packing may be able to
accommodate more tasks for a given ANN architecture.

While label packing results have been shown for the
UNSW dataset for SI model, similar results carry over to the
other datasets and to the EWC, OWM, and FSI progressive
learning models.

B. NETWORK SECURITY VS. IMAGE RECOGNITION
Published articles on Progressive Learning have often used
image datasets to illustrate its main features and advantages.
In particular, the MNIST dataset has been the most used,
followed by the CIFAR and Imagenet datasets. On the other
hand, publications on Progressive Learning using cloud net-
work security datasets are few and far between [44].

ANNmachine learning has shown distinct advantages over
‘‘expert-system’’ learning for the detection of network mal-
ware and intrusion. Such neural network models have to be
maintained and upgraded post-deployment in order to adapt
to newly encountered attacks. Progressive learning provides a
rigorous framework for enabling such adaptation in near real
time and with reasonable computational complexity. ANN
models for cloud security datasets are typically much smaller
than their image-recognition counterparts. As an example,

the UNSW and AWID cloud cyber security datasets have 43
and 98 features, respectively, while a high-definition image
may have up to 3, 145, 728 pixels, each being a feature, with
the input ANN layer having one input node per pixel. As a
result, image classification models have a larger number of
weights than cyber-attack classification ones, with the conse-
quence that progressive learning is easier to implement in the
cyber security case.

While results related to MNIST progressive learning have
been extensively reported [4]–[6], [15]–[18], we have used
our platform to perform our own MNIST experiments so
as to facilitate apple-to-apple comparisons with the results
obtained for the UNSW and AWID cyber security datasets.
Our results are summarized in Table 6. Note that the MNIST
tasks used in the generation of Table 6 are binary classifica-
tion tasks similar to those defined for the UNSW and AWID
datasets. In other words, they are not the identification tasks
used in [5] which are meant to address a different classifica-
tion question, namely, ‘‘Does any of the digits between 0 and
9 show up in this image?’’ When symmetry transformations
are applied to an MNIST image, the digit is still present but
the underlying pixel distribution is changed. On the other
hand, the sequence of 5 non-overlapping binary tasks, τ =
{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, of Table 4 addresses the
binary classification question ‘‘Is the digit present in the
image i or j?’’.
It is conceivable to construct a cyber security detection

model to check if a given incoming attack is one of a
given set of learned attacks. However, feature permutation
within each attack in the training set is not appropriate due
to the non-homogeneity of features across various attacks.
Furthermore, each feature in the attack data has a physical
interpretation of its own, and two different attacks may be
characterizedwith sets of non-overlapping features. The issue
of task definition has a far-reaching impact on the outcome
of progressive learning and catastrophic forgetting. As an
example, the behavior of the EWC model on tasks, each
made of a collection of transformed MNIST images [5] is
quite at variance with its behavior on tasks, each made of
a binary classification of pair of MNIST images. The FSI
improvement introduced in Section VII is meant to address
this difference. Indeed, as shown in Table 6, the Hessian rank
of the FSI model is much lower than that of the EWC one,
which ismore in linewith the expectation that the CNNmodel
ofMNIST is still far away from catastrophic forgetting.When
it comes to progressive learning, the differences between
the image domain and the cyber security domain may be
summarized as follows:
1) Task Definition: As mentioned above, there are sev-

eral methods for defining progressive learning tasks,
and the specific method used depends on the precise
statement of the classification problem the neural net-
work is supposed to solve. It also depends on whether
the data features are homogeneous or heterogeneous.
By and large, in the imaging domain, the feature space
is homogeneous, which allows flexibility in the selection

VOLUME 9, 2021 137055

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 12. Quantitative similarity between model weights.

FIGURE 13. Progressive learning for the UNSW dataset where each task
contains labels that are grouped using Euclidean and cosine similarity.
The label-packing model is compared with the one built in Section VI-A,
where labels were selected randomly for each task. Plot 1 compares the
average accuracies of the two models. Plots 2 and 3 compare their
congestion metrics. In Plot 4, the dark-blue curve represents the
difference in SI penalty coefficients, while the light-blue curve represents
the difference in Hessian ranks.

of tasks. In the cyber security domain, the feature space
is essentially attack-dependent, whichmakes the options
for task selection quite restricted.

2) Network Architecture: Convolutional neural net-
work (CNN) models are heavily used for image classi-
fication [13], where the image pixels are manipulated
through filtering, cropping, sub-sampling, and pool-
ing layers. The weights of each filter are tuned in
the back-propagation learning phase. A large number
of layers increases the number of weights but also
produces highly accurate progressive learning models.
For instance, an accuracy of more than 95% has been
achieved with CIFAR [6]. On the other hand, CNN is
not used for cyber security datasets. The ANN in the

latter domain is rather shallow but fully connected with
the weight space having a lower dimension than that of
CNN.

3) Congestion Metrics: The size of the Hessian matrix is
[P×P], where P is the total number of ANN parameters.
In CNN image recognition, the value of P increases
with the number of layers, the number of filters, and
the number of weights in each filter, which ultimately
makes the size of the Hessian matrix excessively large
for even approximate rank computation. For instance,
the CIFAR model contains two convolutional, two max-
pooling, and a densely connected output layer, total-
ing 1, 276, 508 weights [37], with the resulting Hessian
matrix rank calculation becoming prohibitive. Heuristic
congestion metrics are therefore more convenient for
imaging applications. On the other hand, in cyber secu-
rity applications, the Hessian rank, along with the other
heuristic congestion metrics of Section IV, is applicable
with very reasonable computational cost.

In light of the above differences, the cyber security domain
is quite amenable to the usage of progressive learning models
that are computationally efficient and highly accurate. Such
models have the additional advantage that the onset of catas-
trophic forgetting is highly predictable due to the use of the
loss function Hessian rank in evaluating network congestion.

C. RELATED WORK
Machine learning frameworks for cyber security threat iden-
tification have received significant attention over the last
decade. One of the most recent studies [45] uses several
machine learning methods to develop an intrusion detection
system for the IoT domain. The framework consists of stan-
dard one-shot learning organized hierarchically with the first
level using deep autoencoders to detect traffic with malicious
activity and the second level using random forests, Naive
Bayes, and multi-layer perceptrons to classify anomalous
traffic into several categories of cyber security threats. The

137056 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

TABLE 6. Comparison of congestion metrics using SI [4], EWC [5], our
proposed FSI, and OWM [6]. Rows corresponding to ‘‘Penalty
Coefficients’’ and ‘‘Hessian Rank’’ are measured as percentages with
respect to their total values after training on the last task. Example:
Hessian Rank = R(H)

P × 100% where P is the number of weights, which is
the maximum number the rank can reach. Note that not all heuristic
metrics have an upper bound. For instance, the Euclidean distance may
be infinite. Using heuristic metrics, congestion is quantified by measuring
metric deviation between the first and last trained tasks.

reader is referred to [45] and its reference list for more
pointers to the prior art on using machine learning for cyber
security threat detection. In this section, we focus on the
use of multi-task progressive learning for incremental threat
detection and identification and the risks of catastrophic for-
getting that ANN’s may incur in the cyber security context.

As mentioned in Section IV, the Hessian matrix of the loss
function can be used as the basis for predicting catastrophic
forgetting. The closest work to this Hessian matrix approach
is [46], where a technique called curvature propagation (CP)
has been proposed to efficiently calculate Hessian approxi-
mations. CP uses a rank-one approximation of the Hessian
matrix based on the gradient vector. Higher-order approxima-
tions are dependent on the number of CP iterations. In con-
trast, this paper provides higher-rank approximations in a
computationally efficient manner because it uses the ANN
weight gradients which are pre-calculated during progressive
learning. In [47], the exact Hessian matrix is calculated using
multiple forward and backward propagations through the net-
work. The number of operations per propagation is quadratic
in the number of weights, which is also the case for accurate
Hessian calculation. An alternativemethod for approximating
the Hessian matrix is given in [48], where the Levenberg-
Marquardt (LM) optimization algorithm is used to provide
a Gauss-Newton approximation of the Hessian. LM is used
to locate the optimal weights under an L2 regularization con-
straint. Note that the Gauss-Newton approximation requires
the computation of the Jacobian of the cost function, and as
such, is similar to the CP approximation.

In relation to weight sharing amongst tasks (see Subsec-
tion VIII-A), there are two methods of multi-task learn-
ing according to whether weight sharing is hard or soft,
as explained in [49]. Hard sharing amounts to a complete
sharing of the hidden layers amongst all tasks while keep-
ing the output layers task-specific. The multi-task learning
framework DISTILLER [50] is an example of hard sharing.
To learn any task, it employs a two-phase learning procedure
comprising a pre-training phase and a fine-tuning phase. The
pre-training phase distills discriminative information from
each task to generalize the network traffic dataset repre-
sentation. The fine-tuning phase adjusts the parameters of
task-specific layers while freezing the parameters of the
shared layer. On the other hand, in soft sharing, one model
with its own weights is dedicated to each task. The distances
between model weight vectors are then regularized to come
up with weight vectors that are as close as possible [1]. The
progressive learning algorithms of this paper uses soft weight
sharing. A process of identifying the relationship between
tasks and its impact on multi-task learning has been presented
in [51], where regularization and soft weight sharing are used
to help predict task synergies and facilitate their grouping
for multi-task learning. Another example is [1], which also
uses a combination of regularization and soft weight sharing.
The learning of a new task is accomplished in three phases:
a growth phase, a warm-up phase, and a full optimization
phase. In the growth phase, the output layer is augmented
with additional nodes and, therefore, additional weights to
accommodate the new task. The warm-up phase initializes
the new weights in the output layer while freezing all other
weights. The full optimization phase tune all weights jointly
using a regularization penalty that implicitly enforces soft
weight sharing. The impact of training secondary tasks in
parallel with primary tasks on the convergence and accuracy
of the latter has been analyzed in [52]. The analysis has been
performed for various applications, including topic predic-
tion, sentiment analysis, and hash-tag recommendation. Two
methods have been used for parallel training. The first is
based on the sharing of a long-short-term memory (LSTM)
model between the primary and secondary tasks. The sec-
ond method is based on having the secondary task control
the training of an output LSTM model of the primary task.
In transfer learning [53], [54], the training that a given model
has already received from prior tasks is used to guide its
training on new tasks.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, a unified learning-without-forgetting frame-
work for network cyber security applications has been inves-
tigated using four different progressive learning algorithms.
Three of these algorithms, namely, Synaptic Intelligence (SI),
ElasticWeight Consolidation (EWC), andOrthogonalWeight
Modification (OWM), are from the prior art, but in the pro-
posed framework, they have been applied to the network
cyber security domain for the very first time. The fourth algo-
rithm, Fisher Synaptic Intelligence (FSI), is a novel algorithm

VOLUME 9, 2021 137057

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 14. Accuracy matrices corresponding to the plots of Fig. 2. Note that the font colors correspond to the color legend of the plots.

FIGURE 15. Accuracy evaluation of the Elastic Weight Consolidation (EWC) progressive learning model.

that is based on a statistical analysis of the coefficients of the
proxy loss functions of SI and EWC. All these algorithms
have been compared and contrasted from the viewpoints of
accuracy and progressive-learning capacity using datasets
from the network cyber security domain. In particular, three
methods based on penalty coefficients, approximate Hessian
rank, and weight similarity metrics have been investigated for
detecting the onset of congestion and catastrophic forgetting
in all four algorithms. The results have shown adequate align-
ment of these three criteria in detecting these phenomena in
cyber security datasets. The paper has further provided new
insights into the differences between SI and EWC progres-
sive learning performance based on the statistical analysis of
their proxy loss function coefficients. This analysis was the
foundation of the novel FSI algorithm, which uses Fisher’s
information to compute the proxy loss coefficients but yields
a progressive learning performance that is comparable to SI
on cyber security datasets. An additional aspect of this paper
was the use of similarity measures to conjure up label packing
techniques that were shown to result in better prediction
accuracy than random label packing.

This work can evolve in several interesting directions.
First, the proposed framework is based on the premise
that the ANN architectures are fixed and that the various
progressive-learning tasks have to be accommodated within
a parameter space of fixed dimension. The catastrophic for-
getting criteria proposed in this paper make fundamental
use of this fixed-architecture assumption. An interesting
future direction is to explore such criteria for learning-
without-forgetting frameworks that include architectural
growth under the AutoML paradigm of [1]–[3]. Second,
the training of all the tasks in the proposed framework
has assumed that the hyper-parameters of each algorithm
are fixed throughout the progressive learning process. This
assumption may not be optimal as task-to-task variabil-
ity might require task-based hyper-parameter tuning to
achieve faster convergence or better accuracy. It is, there-
fore, important that future work explores the incorporation
of hyper-parameter tuning paradigms [55], [56] within the
context of progressive learning and investigates its impact
on the learning-without-forgetting framework for cyber secu-
rity applications. Third, in time-critical applications, such

137058 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 16. Accuracy evaluation of the Orthogonal Weight Modification (OWM) progressive learning model.

FIGURE 17. Accuracy evaluation of the Fisher Synaptic Intelligence (FSI) progressive learning model.

as identification and classification of cyber network threats,
the computational efficiency of the machine-learning algo-
rithms is of paramount importance. Hardware acceleration
of machine learning has been a major research area over
the past few years, especially in the context of imaging
and computer vision [57], [58]. However, to the best of our
knowledge, very little work has been reported on the hard-
ware acceleration of progressive learning algorithms and even
less on their accelerations in the context of cyber security
applications.

APPENDIX
This appendix contains additional figures that are meant to
provide further support to the various claimsmade in the body
of our paper:
1) Fig. 14 displays the array of numerical values corre-

sponding to the Synaptic Intelligence (SI) model curves
of Fig. 2.

2) Fig. 15 shows accuracy evaluations of the ElasticWeight
Consolidation (EWC) model using the UNSW and
AWID datasets. This figure is a counterpart of Fig. 2.

VOLUME 9, 2021 137059

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

FIGURE 18. Distribution of �µk of the SI model on the UNSW dataset. Fig. 18a shows the histogram for one task. Fig. 18b shows the histogram
evolution through progressive learning. It should be noted that the �µk are calculated starting from task τ = 2.

FIGURE 19. Histogram evolution of Fµk for the EWC model and 8µk for the FSI model on the UNSW dataset.

FIGURE 20. Qualitative similarity between model weights.

3) Fig. 16 shows accuracy evaluations of the Orthogonal
Weight Modification (OWM) model using the UNSW
and AWID datasets. This figure is also a counterpart of
Fig. 2.

4) Fig. 17 shows accuracy evaluations of the Fisher Synap-
tic Intelligence (FSI) model using the UNSW andAWID
datasets. This figure is also a counterpart of Fig. 2.

Of note is the similarity between the two figures for the
AWID dataset.

5) Fig. 18a shows the distribution of �µk for task τ = 5
of the UNSW dataset in the SI model. It is another
representation of the SI histogram in Fig. 8a.

6) Fig. 18b shows the evolution of the histograms of �µk
as the SI model learns tasks τ = {2, 3, 4, . . . , 7}. Note

137060 VOLUME 9, 2021

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

the successive broadening of the histogram. This fig-
ure complements the information given in Fig. 18a.

7) Fig. 19 shows the evolution of the histograms of Fµk
for EWC and 8µk for FSI as they learn tasks τ =
{2, 3, 4, . . . , 7}.

8) Fig. 20 shows the qualitative similarity between model
weights. The heuristic metrics Jaccard and Sequence-
Matcher are used to calculate the similarity ratio
between adjacent tasks for the UNSW dataset. This
figure complements Fig. 13.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for their con-
structive comments on the original version of this manuscript.

REFERENCES
[1] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern

Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.
[2] X. He, K. Zhao, and X. Chu, ‘‘AutoML: A survey of the state-of-the-art,’’

Knowl.-Based Syst., vol. 212, Jan. 2021, Art. no. 106622.
[3] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu,

D. Jajetic, B. Ray, M. Saeed, M. Sebag, A. Statnikov, W.-W. Tu, and
E. Viegas, ‘‘Analysis of the AutoML challenge series 2015–2018,’’ in
Automated Machine Learning: Methods, Systems, Challenges, F. Hutter,
L. Kotthoff, and J. Vanschoren, Eds. Cham, Switzerland: Springer, 2019,
pp. 177–219, doi: 10.1007/978-3-030-05318-5_10.

[4] F. Zenke, B. Poole, and S. Ganguli, ‘‘Continual learning through synaptic
intelligence,’’ Proc. Mach. Learn. Res., vol. 70, Mar. 2017, pp. 3987–3995.
[Online]. Available: http://proceedings.mlr.press/v70/zenke17a.html

[5] K. James, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and D. Hassabis,
‘‘Overcoming catastrophic forgetting in neural networks,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

[6] G. Zeng, Y. Chen, B. Cui, and S. Yu, ‘‘Continual learning of context-
dependent processing in neural networks,’’ Nature Mach. Intell., vol. 1,
no. 8, pp. 364–372, Aug. 2019.

[7] H. Li, S. Enshaeifar, F. Ganz, and P. Barnaghi, ‘‘Continual learning in deep
neural network by using a Kalman optimiser,’’ 2019, arXiv:1905.08119.
[Online]. Available: http://arxiv.org/abs/1905.08119

[8] D. Lopez-Paz and M. Ranzato, ‘‘Gradient episodic memory for continual
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6467–6476.

[9] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
‘‘Memory aware synapses: Learning what (not) to forget,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 139–154.

[10] J. Rajasegaran, M. Hayat, S. Khan, F. S. Khan, L. Shao, and
M.-H. Yang, ‘‘An adaptive random path selection approach for incremen-
tal learning,’’ 2019, arXiv:1906.01120. [Online]. Available: http://arxiv.
org/abs/1906.01120

[11] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, ‘‘Continual
lifelong learning with neural networks: A review,’’ Neural Netw., vol. 113,
pp. 54–71, May 2019.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[13] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[14] N.Moustafa and J. Slay, ‘‘The significant features of the UNSW-NB15 and
the KDD99 data sets for network intrusion detection systems,’’ in Proc. 4th
Int. Workshop Building Anal. Datasets Gathering Exper. Returns Secur.
(BADGERS), Nov. 2015, pp. 25–31.

[15] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan, ‘‘Mea-
suring catastrophic forgetting in neural networks,’’ in Proc. AAAI, 2018,
pp. 3390–3398.

[16] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, A. Stoian, and D. Filliat,
‘‘Generative models from the perspective of continual learning,’’ 2018,
arXiv:1812.09111. [Online]. Available: http://arxiv.org/abs/1812.09111

[17] J. Xu and Z. Zhu, ‘‘Reinforced continual learning,’’ 2018,
arXiv:1805.12369. [Online]. Available: http://arxiv.org/abs/1805.12369

[18] R. Venkatesan, H. Venkateswara, S. Panchanathan, and B. Li, ‘‘A strategy
for an uncompromising incremental learner,’’ 2017, arXiv:1705.00744.
[Online]. Available: http://arxiv.org/abs/1705.00744

[19] R. R. Karn, P. Kudva, and I. M. Elfadel, ‘‘Criteria for learning without
forgetting in artificial neural networks,’’ in Proc. IEEE Int. Conf. Cognit.
Comput. (ICCC), Jul. 2019, pp. 90–97.

[20] Continual Learning Through Elastic Weight Consolidation Implementa-
tion. Accessed: Aug. 6, 2019. [Online]. Available: https://github.com/
yashkant/Elastic-Weight-Consolidation

[21] R. Pascanu, T. Mikolov, and Y. Bengio, ‘‘Understanding the explod-
ing gradient problem,’’ 2012, arXiv:1211.5063. [Online]. Available:
https://arxiv.org/abs/1211.5063

[22] G. Qian, S. Sural, Y. Gu, and S. Pramanik, ‘‘Similarity between Euclidean
and cosine angle distance for nearest neighbor queries,’’ in Proc. ACM
Symp. Appl. Comput. (SAC), 2004, pp. 1232–1237.

[23] S. Pramanik and K. Mondal, ‘‘Cosine similarity measure of rough neutro-
sophic sets and its application in medical diagnosis,’’ Global J. Adv. Res.,
vol. 2, no. 8, pp. 212–220, 2015.

[24] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, ‘‘Using
of Jaccard coefficient for keywords similarity,’’ in Proc. Int. Multiconf.
Eng. Comput. Sci., 2013, vol. 1, no. 6, pp. 380–384.

[25] Python Standard Library—Sequence Matcher. Accessed: Mar. 6, 2018.
[Online]. Available: https://docs.python.org/2/library/difflib.html

[26] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD,
USA: The Johns Hopkins Univ. Press, 1996.

[27] H. R. Loo, S. B. Joseph, andM. N. Marsono, ‘‘Online incremental learning
for high bandwidth network traffic classification,’’ Appl. Comput. Intell.
Soft Comput., vol. 2016, pp. 1–13, Jan. 2016.

[28] Cosine Wiki. Accessed: Jun. 30, 2021. [Online]. Available: https://en.
wikipedia.org/wiki/Cosine_similarity

[29] J. Plank. CS494 Lecture Notes—MinHash. Accessed: Sep. 30, 2021.
[Online]. Available: https://web.eecs.utk.edu/~jplank/plank/classes/cs494/
494/notes/Min-Hash/index.html

[30] Sequential Search: Defining and Analyzing the Sequential
Search Algorithm. Accessed: Jun. 30, 2021. [Online]. Available:
https://barnasahadotcom.files.wordpress.com/2016/09/similarity.pdf

[31] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[32] S. Kanai, Y. Fujiwara, and S. Iwamura, ‘‘Preventing gradient explosions
in gated recurrent units,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 435–444.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ‘‘On the importance of
initialization and momentum in deep learning,’’ in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1139–1147.

[34] UNSW-NB15 Dataset Features and Size Description. Accessed:
Aug. 16, 2017. [Online]. Available: https://www.unsw.adfa.edu.au/
australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

[35] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[36] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, ‘‘Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a pub-
lic dataset,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 184–208,
1st. Quart., 2016.

[37] Continual Learning Through Synaptic Intelligence Implementation.
Accessed: Aug. 16, 2018. [Online]. Available: https://github.com/ganguli-
lab/pathint

[38] F. Chollet. (2015). Keras: Deep Learning Library for Theano and Tensor-
flow. [Online]. Available: https://keras.io/k

[39] Continual Learning Through Orthogonal Weights Modification Imple-
mentation. Accessed: Aug. 6, 2020. [Online]. Available: https://github.
com/beijixiong3510/OWM

[40] W. McKinney, Python for Data Analysis: Data Wrangling With Pandas,
NumPy, IPython. Sebastopol, CA, USA: O’Reilly Media, 2012.

[41] Autokeras. Accessed: Dec. 16, 2019. [Online]. Available: https://autokeras.
com/

[42] H. Jin, Q. Song, and X. Hu, ‘‘Auto-keras: An efficient neural architecture
search system,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Jul. 2019, pp. 1946–1956.

[43] Categorical Encoding Guide to Encoding Categorical Values in Python.
Accessed: Aug. 22, 2017. [Online]. Available: http://pbpython.com/
categorical-encoding.html

[44] R. Kozik, M. Choras, and J. Keller, ‘‘Balanced efficient lifelong learning
(B-ELLA) for cyber attack detection,’’ J. UCS, vol. 25, no. 1, pp. 2–15,
2019.

[45] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape, ‘‘A hier-
archical hybrid intrusion detection approach in IoT scenarios,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2020, pp. 1–7.

VOLUME 9, 2021 137061

http://dx.doi.org/10.1007/978-3-030-05318-5_10

R. R. Karn et al.: Learning Without Forgetting: New Framework for Network Cyber Security Threat Detection

[46] J. Martens, I. Sutskever, and K. Swersky, ‘‘Estimating the Hessian by back-
propagating curvature,’’ in Proc. ICML, 2012, pp. 1783–1790.

[47] C. Bishop, ‘‘Exact calculation of the Hessian matrix for the multilayer
perceptron,’’ Neural Comput., vol. 4, no. 4, pp. 494–501, Jul. 1992.

[48] F. Dan Foresee and M. T. Hagan, ‘‘Gauss-Newton approximation to
Bayesian learning,’’ in Proc. Int. Conf. Neural Netw., vol. 3, Jun. 1997,
pp. 1930–1935.

[49] S. Ruder, ‘‘An overview of multi-task learning in deep neural net-
works,’’ 2017, arXiv:1706.05098. [Online]. Available: http://arxiv.org/abs/
1706.05098

[50] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘DISTILLER:
Encrypted traffic classification via multimodal multitask deep learning,’’
J. Netw. Comput. Appl., vols. 183–184, Jun. 2021, Art. no. 102985.

[51] J. Bingel and A. Søgaard, ‘‘Identifying beneficial task relations for multi-
task learning in deep neural networks,’’ in Proc. 15th Conf. Eur. Chap-
ter Assoc. Comput. Linguistics, Short Papers, vol. 2. Valencia, Spain:
Association Computational Linguistics, Apr. 2017, pp. 164–169. [Online].
Available: http://aclweb.org/anthology/E17-2026

[52] D. Liang and Y. Shu, ‘‘Deep automated multi-task learning,’’ in Proc.
8th Int. Joint Conf. Natural Lang. Process. (Short Papers), vol. 2, 2017,
pp. 55–60. [Online]. Available: http://aclweb.org/anthology/I17-2010

[53] J. Gideon, S. Khorram, Z. Aldeneh, D. Dimitriadis, and E. M. Provost,
‘‘Progressive neural networks for transfer learning in emotion recogni-
tion,’’ in Proc. Interspeech, Aug. 2017, pp. 1098–1102.

[54] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[55] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and
I. Stoica, ‘‘Tune: A research platform for distributed model selection and
training,’’ 2018, arXiv:1807.05118. [Online]. Available: http://arxiv.org/
abs/1807.05118

[56] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina,M. J. Ben-Tzur, B. Recht,
and A. Talwalkar, ‘‘A system for massively parallel hyperparameter tun-
ing,’’ in Proc. Int. Conf. Mach. Learn. Syst., Mar. 2020, pp. 1–13.

[57] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[58] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, and N. Cao, ‘‘A scalable
multi TeraOPS deep learning processor core for AI trainina and inference,’’
in Proc. IEEE Symp. VLSI Circuits, Jun. 2018, pp. 35–36.

RUPESH RAJ KARN received the Ph.D. degree
from Khalifa University, Abu Dhabi, United Arab
Emirates, under the supervision of Prof. Ibrahim
Elfadel. His Ph.D. thesis title was ‘‘Machine
Learning Methods for the Automated Manage-
ment of Cloud ComputingWorkloads.’’ During his
Ph.D. degree, he worked as an Intern for three
months and a Research Scholar for six months
at the IBM T. J. Watson Research Center, NY,
USA, under the supervision of Prabhakar Kudva.

He is currently a Postdoctoral Fellow in electrical engineering and computer
science with Khalifa University. His research interests include the appli-
cation of AI technologies to cloud management and security. His awards
include the Best Paper Award from the UAE Graduate Student Research
Conference (twice) and the Best Paper Award from the IEEE Conference
on Cognitive Computing, Milan, Italy, in July 2019.

PRABHAKAR KUDVA (Senior Member, IEEE)
received the Ph.D. degree in computer science
from The University of Utah, in 1995. He was
on the Adjunct Faculty of Yale University and
Columbia University. He is currently a Research
StaffMember with the IBMT. J.Watson Research,
Yorktown Heights, NY, USA, where he leads sev-
eral projects in the areas of enterprise data cen-
ters, cloud computing for business intelligence and
analytics, PaaS, and CaaS. He has received several

IBM awards for High-Value Patents and Outstanding Technical Achieve-
ments and the IEEE Region 1 Award for Outstanding Contributions to the
Design Automation of Resilient Chips and Systems.

IBRAHIM (ABE) M. ELFADEL (Senior Mem-
ber, IEEE) received the Ph.D. degree from MIT,
in 1993. He is currently a Professor of electri-
cal engineering and computer science at Khalifa
University, Abu Dhabi, United Arab Emirates.
Prior to his current academic position, he was a
Research Staff Member and then a Senior Sci-
entist with the corporate CAD organizations at
IBM Research and the IBM Systems and Technol-
ogy Group, Yorktown Heights, NY, USA, where

he was involved in the research, development, and deployment of CAD
tools and methodologies for IBM’s high-end microprocessors. His current
research interests include the IoT platform prototyping, energy-efficient
edge and cloud computing, secure IoT communications, embedded digital-
signal processing, computer-aided design for VLSI, MEMS, and silicon
photonics. He was a recipient of the six Invention Achievement Awards,
the one Outstanding Technical Achievement Award, and the one Research
Division Award, all from IBM, for his contributions in the area of VLSI
CAD. His other awards include D. O. Pederson Best Paper Award from
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, the SRC Board of Directors Special Award for ‘‘pioneering
semiconductor research in Abu Dhabi,’’ and the Best Paper Award from the
IEEEConference on Cognitive Computing,Milan, Italy, in July 2019. He has
served on the technical program committees for several leading conferences,
including DAC, ICCAD, ASPDAC, DATE, ISCAS, VLSI-SoC, ICCD,
ICECS, and MWSCAS. He was the General Co-Chair of the IFIP/IEEE 25th
International Conference on Very Large Scale Integration (VLSI-SoC 2017),
Abu Dhabi. He is an Associate Editor of the IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

137062 VOLUME 9, 2021

