
Received August 12, 2021, accepted September 21, 2021, date of publication September 27, 2021, date of current version October 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115768

A Systematic Review of Coevolution
in Real-Time Strategy Games
EHAB Z. ELFEKY 1, (Member, IEEE), SABER ELSAYED 1, (Member, IEEE),
LUKE MARSH 2, DARYL ESSAM 1, MADELEINE COCHRANE2, BRENDAN SIMS 2,
AND RUHUL SARKER 1, (Member, IEEE)
1School of Engineering and Information Technology, University of New South Wales Canberra, Australian Defence Force Academy, Canberra, ACT 2600,
Australia
2Australian Department of Defence, Defence Science and Technology Group, Edinburgh, SA 5111, Australia

Corresponding author: Ehab Z. Elfeky (e.elfeky@unsw.edu.au)

This work was supported by the Australian Department of Defence, Defence Science and Technology Project, under Grant RG204054.

ABSTRACT Real-time strategy (RTS) games are a subgenre of strategy video games. Due to their importance
in practical decision-making and digital entertainment over the last two decades, many researchers have
explored different algorithmic approaches for controlling agents within RTS games and learning effective
strategies and tactics. Among the techniques, coevolutionary algorithms proved to be one of the most popular
and successful algorithms for developing such games, in which players can compete or cooperate to achieve
the given game’s mission. However, as many alternative designs exist with their analysis and the applications
reported in diverse publications, a review covering the evolution of such algorithms would be valuable for
researchers and practitioners in this domain. This paper aims to provide a systematic review by highlighting
why and how coevolution is used in RTS games and analysis of the recent work. The review conducted
follows procedural steps to identify, filter, analyse and discuss the existing literature. This structured review
articulates the purposes of using coevolution in RTS games and highlights several open questions for future
research in this domain.

INDEX TERMS Coevolution, real-time strategy games, computational intelligence, evolutionary
computation, systematic review.

I. INTRODUCTION
In 2017, the annual revenue of the global video games indus-
try passed 110 Billion USD [35]. In recent years, between
2017 and 2020, the video game industry has generated
the highest annual revenue and revenue growth compared
to all other forms of media entertainment industries [78].
Video games can be classified into five genres: traditional
games (i.e., puzzle and board games), simulation games (i.e.,
sport and racing games), strategy video games (i.e., planning
strategies, such as Chess and Starcraft), action video games
(i.e., player actions are connected to the game environment,
such as Tomb Raider and Resident Evil), and lastly fantasy
games (i.e., players solve the game while they explore its
environments such as Myst and Syberia) [16].
(Strategy Video Games): Strategy video games mainly

involve tasks that require tactical planning and actions such as
creating buildings, managing resources and supervisingmany

The associate editor coordinating the review of this manuscript and

approving it for publication was Danilo Pelusi .

units such as Chess, Starcraft and Warcraft [59]. Strategy
video games can be subdivided based on the actions permitted
for players over a given period of time inside the game; that
is, either turn-based games (TBS) or real-time strategy (RTS).
In the former, every player is given a dedicated period of time
to put their strategy into action. Players are not allowed to take
any action during the allocated time for other players. On the
other hand, players in RTS games have no such restrictions on
when they implement their strategies. In other words, players
can do as many actions as they like even though other players
have decided to go with a no actions’ strategy [36]. Although
developing an RTS game environment is challenging,
a recent study showed that researchers developed equivalent
game environments for RTS and TBS games [3]. Such
attention from researchers reflects the popularity and the
importance of RTS games, which is considered the focus of
this paper.
(RTS and Coevolution): In RTS games, players are given

one ormore tasks to accomplish within the game environment
with different levels of challenges, such as: levels, maps,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136647

https://orcid.org/0000-0003-3802-3702
https://orcid.org/0000-0003-0836-6122
https://orcid.org/0000-0002-8160-3334
https://orcid.org/0000-0002-6923-7079
https://orcid.org/0000-0001-8070-1576
https://orcid.org/0000-0002-1363-2774
https://orcid.org/0000-0003-0889-278X


E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

game rules, textures, stories, items, quests, music, weapons,
vehicles and characters [68]. In some scenarios, when
developing a commercial RTS game, the target is to create
more challenging and attractive game contents as well as
more sophisticated game AI, also referred to as non-player
characters (NPCs) [21], [36]. Military games, in other cases,
are developed to explore different strategies in defence/attack
situations [31]. Researchers have tried different approaches
to control the agents within such RTS games and to learn
effective strategies and tactics; amongst them, coevolution
was shown to perform well [26].
(Brief Introduction to Coevolution): Generally speaking,

in the evolutionary computation (EC) domain, coevolution
refers to evolving individuals with a shared goal and
different roles in single or multiple populations [77].
Motivated by the work in [4], where the authors intro-
duced a competitive fitness function to evolve strategies
in a turn-based game called Tic Tac Toe, Reynolds [63]
introduced the first coevolution technique in RTS games.
He designed a coevolutionary system that could approach
quality evolved players without reaching the known opti-
mality, supported by genetic programming (GP) as the
evolutionary methodology. The technique obtained a type
of Pursuit-Evasion game called Game of Tag. Since
then, many researchers have investigated the utilisation of
coevolution features, such as competing populations with
coupled fitness to fit in modelling RTS games, especially
those with two opposing players (e.g. predator and prey
games) [54].
(Related Reviews): To the best of the authors’ knowledge,

no research has been conducted to review coevolutionary
algorithm (CA) approaches in RTS games. The two most
relevant studies in the literature date back to 2013; (1)
Lara-Cabrera et al. in [36] reviewed the computational
intelligence (CI) applications in RTS games by covering
existing approaches that deal with RTS games, their chal-
lenges and possible remedies; (2) Ontanon et al. [55]
conducted a limited survey on how to use AI in a Starcraft
game (a kind of RTS game). Due to the lack of a
comprehensive review and the importance of coevolution
in handling RTS games, this paper conducts a systematic
review that includes how coevolution is used in RTS
games and discussions on the unanswered questions in
this field. The review follows a systematic approach as
described in [74].
(Paper Organisation): This paper is organised as fol-

lows: Section II covers a theoretical background regarding
RTS games and coevolution individually, while Section III
describes the methodology used to carry out this sys-
tematic review and its significant findings. And lastly,
Sections IV andV draw out the future work recommendations
and conclusions, respectively.

II. THEORETICAL BACKGROUND
This section gives an overview of RTS games and
coevolution.

A. RTS GAMES
(Game Number of Players): While most RTS games take
place between two players, games can range from a single
player, as in [38], [57], to being massively multiplayer,
as in [61], [66], [67]. In some two-player games, each player
has control over several homogeneous/heterogeneous units,
and makes a decision on behalf of them; in this case the game
takes place between two teams of players.
(Game Tasks): As previously mentioned, in RTS games,

players are given a task to accomplish, such a task can be seen
as managing resources to achieve a predefined goal(s). Man-
aging a resource can be something like collecting/spending
material resources, such as gold, producing/positioning units
(i.e., tanks and aeroplanes), training/forming agents (i.e.,
soldiers and workers), constructing buildings, upgrading
technologies, scouting/controlling map zones, and generating
good build orders [36], [65].
(Game Management Depth Level): A player task in RTS

games can be categorised based on their management level
into two groups (1) macromanagement; and (2) microman-
agement. The former requires long-term planning, such as
gathering/spending resources, producing units, constructing
buildings, upgrading technologies, scouting map zones, and
generating good build orders. Usually, the better macroman-
agement skills players have, the larger army and/or economy
can be achieved. In contrast, micromanagement tasks require
short-term planning, such as unit formation/positioning
planning using efficient communication between units.
Usually, the better micromanagement skills players have,
the longer their units stay alive in both attack and defence
modes [1], [12], [36], [40], [55].
(Challenges in RTS): Over the last two decades,

researchers have reported many challenges associated with
RTS [14], [36], [55], which are summarised below:
• Resource Management: Part of RTS games is to gather
resources from the local environment and to use them
in creating/upgrading units, weapons, and buildings.
Players are required to gain a competitive resource
management strategy compared to their opponents.

• Decision-Making Under Uncertainty: Unlike most TBS
games, RTS games are partially observable; where
players neither have complete information about the
game environment nor their opponents’ formation and
actions. As a result, players need to have a prediction
model with an acceptable error margin.

• Spatial and Temporal Reasoning: RTS games depend
mainly on a gamemap. Recognition of both player’s and
building’s location on themap and the distances between
them, including their elevation, affects players’ actions
and their impact. Moreover, temporal reasoning plays an
essential role in both tactical and strategic reasoning.

• Collaboration: In many RTS games, players are
expected to build their own army/team. Collaboration is
required to take place between different units owned by
the player to yield actions and tactics that are able to
achieve the desired goal of the game.

136648 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

• Adversarial Real-Time Planning: As explained earlier,
there are no playing turns in RTS games. This makes it
more challenging for players as their opponent(s) may
not wait for their action, and so they may change the
game before the other player(s) react.

• Opponent Modelling and Learning: Like other games,
players in RTS games need to be able to model their
opponents’ actions and behaviour by utilising the game’s
history.

• Path Planning: Finding a path between two points on
the map is a challenging task in RTS games. Players
need to take many factors into consideration including
the number of agents and units, their formation,
the location of a dynamic opponent’s units, and the game
environment’s obstacles.

• Content Generation: Anything apart from NPC’s
behaviour and the game engine that affects playing
inside the game is considered as game content, such
as: maps, resources, obstacles, weapons, units, and
buildings. Having such a variety of game contents is
expected to produce an almost unlimited number of
different games.

• Planning:Ontanon et al. [55] encapsulated some aspects
of the following challenges: Adversarial real-time
planning, resource management, and collaboration.
He utilised the predefined decision management level
(Macro and Micro management) to categorise these
challenges in two levels: Long-term planning and short-
term planning.

• Learning: Ontanon et al. [55] considered learning as a
challenge for RTS games and categorised it into three
different forms:
– Prior Learning: significant work in the literature

has utilised prior information such as game maps.
– In-Game Learning: reinforcement learning (RL)

and NPC’s modelling has been utilised to enhance
players performance while playing a game.

– Intergame Learning: utilising the experiences
gained from prior games to increase the capability
of playing RTS games.

• Domain Knowledge Exploitation: Utilising domain
knowledge (strategies, build orders, replays, etc.) to
develop better evaluation functions.

• Task Decomposition: Problem dimensionality is another
a challenge in RTS games. Although researchers
recently tried to handle this issue by breaking down
this problem into a set of smaller sub-problems, such
as tactics, reactive control, strategy, terrain analysis, and
intelligence gathering. Finding the optimal decomposi-
tion of such tasks itself is a challenge.

B. COEVOLUTION
(Coevolution Definition & Types): Coevolution takes place
when two different populations (species) evolve in parallel,
where each population’s fitness function is affected by
shared information from the other population [20], [62].

When this shared information positively drives the receiving
population’s fitness value, it will be considered as cooperative
coevolution. This can be seen as increasing the fitness
values of one species leading to improved fitness values
of the other species. In contrast, competitive coevolution
takes place when the shared information affects the receiving
population’s fitness function negatively [20], [52], [62].
(Competitive Fitness): When one species evolves a good

strategy that increases its fitness at the same time as driving
the other species’ fitness down, the other species will not
stay silent. The corresponding evolutionary algorithm (EA)
will evolve a counter strategy to improve the situation of this
species in the game. Such behaviour keeps going and pushes
both species to improve their own strategies yielding what is
called an arms race [1], [26], [31], [34], [75]. The successful
CA seeks to preserve such behaviour for the longest time
possible. In other words, it aims to give enough time for
each species to go through many loops where each species
develops its own strategies, tests it against other species,
receives the opponents’ reaction and updates its strategies
accordingly [26].
(Memory Mechanism): One of the main challenges in

coevolution is forgetfulness; this usually happens when
individuals with favourable behaviour do not get good
chances for reproduction into the next generations [27].
Populations with a limited number of individuals suffer
from short-term memory; individuals in such populations
are required to be a winner in the selection process at
every generation to secure a place in the next generation.
As part of EAs, elitism was used implicitly to serve as short-
term memory. In 1997, Rosin and Belew [64] introduced a
long-term memory mechanism for a coevolutionary system
called Hall-of-Fame (HoF), in which the best player in every
generation joins this hall to test other species’ players. This
concept can also serve to preserve currently unfit individuals
with favourable behaviour for later generations when the
opponent changes their playing strategy. The mechanism of
moving individuals between both short-term and long-term
memory was managed later to emulate the psychology of
human memory [6]. Moreover, some researchers considered
a more precise model of the human brain to add another
type of memory (Ultra Short-Term Memory) to the existing
two [76].
(Coevolutionary Pathologies): Maintaining an emergent

behaviour, such as an arms race for a long period of time is
not an easy task due to other behaviours, referred to in the
literature as coevolution pathologies. The most recognised
ones are:
• Loss of Gradients:When all the individuals in a species
have the same capability of winning or losing against
other species’ individuals, the evolutionary process
stops as there are no more improvements expected [62].

• Over-Specialisation: Specialisation itself is a desired
behaviour, where a population’s members are well-
trained to overcome and win against another popula-
tion’s members. However over-specialisation happens

VOLUME 9, 2021 136649



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

when this winning capability cannot be generalised to
new environments [18], [62].

• Red Queen Dynamics (Also Known as Mediocre Stable
State): This effect takes place when changes in the
competing population leads to instability in the fitness
landscape. Such effects stop competing populations
from evolving new strategies, instead, they just keep
going through loops of actions and reactions with no
improvement [26], [28], [50], [54], [62].

(Coevolution Pathologies Solutions): Researchers tried to
mitigate the negative effect of such pathologies to allow
higher chances of continuing the emerging arms race during
the evolutionary process. As previously mentioned, using
long-term memory was one of those attempts in which
a memory archive, called Hall of Fame, was introduced
to preserve the best solutions so far in order to keep the
gradient of improvements [1], [9], [11], [37], [51]–[54], [62],
[73]. Researchers also imported the concept of shaping from
behavioural psychology into the field of learning. By altering
some factors in the learning problem, the learner can
converge towards some desired behaviours in an environment
such as RL [24] and Strategy Games [71]. Coevolution
includes implicit shaping by changing the fitness function
to include the competitive and/or cooperative effect. Some
researchers added an extra level of explicit fitness shaping
by changing both the fitness function and the environment
during evolution to overcome those pathologies and support
the arms race [18], [20], [22]. Another approach was to use
competitive fitness sharing, which gives higher fitness for
those individuals capable of defeating opponents that did
not lose many games. Also, there was an attempt to restrict
individuals’ interactions to only those in a proximity location
on a map [62].

III. SYSTEMATIC REVIEW
In 2014, Borrego et al. [13] suggested a methodology, which
has seven steps, to conduct a systematic literature review in
engineering education. Due to its well regarded approach, this
paper follows Borrego’s methodology, as discussed in this
section.

A. DECIDING TO DO A SYSTEMATIC REVIEW
In their research, Borrego et al. recommended to use
Petticrew and Roberts questions in [58] to decide whether
a systematic literature review is suitable. One of those
questions was ‘‘When is an accurate picture of past research,
and past methodological research required to promote the
development of newmethodologies?’’, which exactly matches
with this review’s authors situation. We plan in the future to
develop a CA to solve a weapon target assignment problem
in an RTS game environment. This is the purpose of carrying
out this review.

B. SCOPE AND RESEARCH QUESTIONS
The scope of this systematic review is to investigate existing
publications, reported in English, for those studies that have

TABLE 1. Keyword groups.

used coevolutionary approaches in RTS games. Two research
questions have driven this review as follows:
• How was coevolution used in RTS Games?
• What are the remaining open questions in this regard?

C. INCLUSION AND EXCLUSION CRITERIA
An inclusion criteria was used first to widen the search to
minimise the number of missed target papers. Afterwards,
the result set is filtered by applying exclusion criteria to
exclude irrelevant articles.
• Inclusion Criteria

– Database Selection: Two criteria are considered:
the first is the customised search capabilities, which
ensure that the search is more precise to avoid
missing relevant publications. The second criterion
is the percentage of publications covered in the
target field, which gives more access to relevant
publications.

– Search Keywords: The following combinations of
customised search keywords are used; that is three
groups of keywords, as per Table 1, are considered,
with every group containing relevant keywords. For
any publication to be considered in this review,
it should have to have at least one keyword from
Group 1 and the keyword in Group 2 in the pub-
lication’s title, abstract, or keywords. In addition,
at least one keyword from Group 3 should appear
in any field for the publication on the reference
database, i.e. references, source title, etc.

– Subject Area: Engineering, Computer Science,
Decision Sciences, and Multidisciplinary.

– Publication Type: Article, conference proceeding,
and book chapter.

– Publication Year: No Conditions.
– Publication Language: Only English.

• Exclusion Criteria: Any publication with any of the
following criteria is excluded from the review.
1) Full Text Availability: The full text is not available.
2) Game Type: The work considers TBS games, i.e.

is not an RTS game.
3) Coevolution: Coevolution is not used.

D. FINDING AND CATALOGING SOURCES
Google Scholar, Web of Science, and Scopus are the most
commonly used databases in this research field. From the
authors previous experience, Google Scholar has the lowest
customised search options, while Scopus andWeb of Science
have similarly high options. However, the recent comparison
conducted in [43] showed that Google Scholar has the best

136650 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

coverage among the three databases, while Web of Science
has the lowest.

As a consequence and to get the best results, we decided to
search for relevant publications in two stages: (1) a database
search, considering the criteria mentioned earlier, was done
using the Scopus database to utilise its strong customised
search capabilities, (2) citation searching (also known as
snowball sampling) was conducted using Google Scholar to
exploit its strong publication coverage. In the second stage,
the references cited by previously identified publications in
the first stage were scanned manually and searched for using
Google Scholar and were then added to the review list if they
did not meet any of the exclusion criterion.

On 15 March 2021, we searched Scopus using the follow-
ing advanced query. ‘‘(TITLE-ABS-KEY((‘‘Coevolution’’
OR ‘‘Co-evolution’’ OR ‘‘Coevolutionary’’ OR ‘‘Co-
evolutionary’’) AND (‘‘Game’’))) AND (ALL(‘‘RTS’’ OR
‘‘Real-Time Strategy’’ OR ‘‘Videogame’’ OR ‘‘Video
game’’)) AND (LIMIT-TO (SUBJAREA, ‘‘COMP’’)
OR LIMIT-TO (SUBJAREA, ‘‘ENGI’’) OR LIMIT-TO
(SUBJAREA, ‘‘DECI’’)) AND (LIMIT-TO (DOCTYPE,
‘‘cp’’) OR LIMIT-TO (DOCTYPE, ‘‘ar’’) OR LIMIT-
TO (DOCTYPE, ‘‘ch’’)) AND (LIMIT-TO (LANGUAGE,
‘‘English’’))’’.

Of the 53 publications discovered, the full text of only
one publication was inaccessible, and it was excluded. From
the remaining 52, 15 publications did not cover RTS Games
and three did not use coevolution, which resulted in a total
of 34 publications. Citation searching in Google Scholar was
able to provide 19 more publications, which means that the
next stage in the review started with 53 publications at hand,
as explained in figure 1.

It is worth mentioning that two of the games used in the
reviewed papers were turn based, rather than actual RTS
games. Bellus Bellum Gratia (BBG) was used in [33], [34],
and PlanetWars, the Google AI challenge introduced in 2010,
was used in [18], [25], [53]. These papers are still considered
in this review as the games used here were adjusted and
equipped with features that made them closer to RTS games
than TBS games, as will be explained later.

E. CRITIQUE AND APPRAISAL
By scanning the resultant 53 publications, it was found that
the purpose of writing those publications could be categorised
into the following three reasons:
• to analyse/review an existing system(s) that was used in
RTS games.

• to propose a new system to use coevolution in RTS
games.

• to update an existing system to use coevolution in RTS
games.

Based on this classification, 10 of the reviewed papers were
found to fall within the first category and 43within the second
and third categories collectively. The analysis and review
publications in the first category are discussed in this section,
while the remaining 43 publications are considered the core

FIGURE 1. Steps of sources finding and the relevant numbers of each
stage.

of this review and are handled in details in the following
sections.
(Analysis/Review Papers): Miller and Cliff created two

technical reports about the coevolution of pursuit and
evasion: in the first one [47], the focus was on reviewing
the importance and of using coevolution in such a game
environment. They reviewed the foundation of this field
from both biological and game-theoretical perspectives,
such as player’s biological ubiquity and mixed strategies’
optimality proofs. The focus of the second report [17] was
on the simulation methods that can be used (four simula-
tion methods reviewed) and their performance. Buro [14]
in 2003 summarised the challenges in RTS games and
called on researchers to invest more efforts in such a
promising field. In 2005, Livingstone [41] reviewed the
studies that used coevolution with RTS games that have
hierarchical decomposition that is similar to those in real
armies. He reported that although the reviewed studies enable
learning within a single layer of decision-making, they gener-
ally do not include learning across the given hierarchy. Two
review papers were introduced in 2013: Lara-Cabrera et al.
in [36] reviewed CI applications in RTS games by covering
existing CI approaches, the challenges and the solutions.
Ontanon et al. [55] limited their survey to cover how AI is
used in a RTS game (Starcraft). More recently, researchers
started reviewing and describing existing environments
to design RTS games and related AI players. In 2017,
Cook et al. [20] reviewed the architecture of an automated
game designer that uses cooperative coevolution, called
‘‘ANGELINA’’, and discussed how it works. In 2018, Danette
Allen [2] proposed a modelling and simulation environment
called ‘‘Baseline Environment for Autonomous Modelling’’.
This NASA environment is designed to support Explainable
Artificial Intelligence, which concentrates on producing
understandable AI systems. In 2019, Arulkumaran et al. [5]
highlighted the components of an artificial intelligence (AI)
system called AlphaStar, which is the first of its type to beat a

VOLUME 9, 2021 136651



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

FIGURE 2. Number of publications included in this review per year.

professional player at the game of Starcraft II. They described
its internal components, including: Lamarckian Evolution,
Competitive Coevolution Algorithms and Quality Diversity.
Furthermore, Duarte et al. [21] reviewed both planning and
learning components in games generally in 2020.

On the other hand, every publication in the second and third
groups (43 publications) was assessed via collecting some
relevant information, such as title and year, game relevant
information (e.g. game name and assigned task), coevolution
relevant information (e.g. coevolution target and type), and
finally some insight information regarding the paper, such
as advantages and possible future work. The full list of the
information collected is listed and explained in table 2. The
last column in this table gives the reader an example of how
to fill this template using paper [63] as an illustration.

F. SYNTHESIS
According to the systematic review methodology that this
paper follows, arranging and analysing the previously
obtained information is the next step to produce justi-
fied and supported findings, outcomes, and recommenda-
tions. Borrego et al. [13] recommended using Petticrew and
Robert’s internal steps in [58] to carry out the synthesis.
Those steps start with organising the publications, then
critiquing within them, and conclude with critiquing across
them.

1) ORGANISE THE PUBLICATIONS
NVivo was used to organise the publications. NVivo is a tool
that helps discover qualitative and mixed-methods research
by analysing the unstructured text of all papers found [23].

2) CRITIQUE WITHIN THE PUBLICATIONS
Considering the timeline of the evolution of the use of
coevolution in RTS games, we divided them into three stages.
Stage 1 (1994-2004): The main theme of this era was

simplicity. Coevolution was used only to evolve game
strategies for micromanagement tasks, including unit control,
formation and positioning. Reynolds [63] conducted one
of the first research studies in this field in 1994. He used
GP to co-evolve competitive strategies for a pursuit-evasion

game called ‘‘Game of Tag’’ without reaching the known
optimality. The results achieved from seven experiments were
encouraging in such a new research direction at that time.
It is worth mentioning that the author was initially inspired
by Angeline and Pollack [4] when the latter introduced a
competitive fitness function to evolve strategies in the turn-
based game called Tic Tac Toe.

Three years later, two of the Khepera robots, controlled
by neural networks (NNs), were physically used in another
pursuit-evasion game. The predator robot had a visionmodule
while the prey one was equipped with twice the speed of the
predator. By adding a competitive component to an existing
evolution experiment, Floreano and Nolfi [28] were able to
produce a form of quick adaptation from learning during life
with no extra cost of evolution time. By letting the best player
in the generation compete (in ten games) against the existing
best player, some positive features were evolved, such as
obstacle avoidance, visual tracking, object discrimination,
and following the prey. The authors concluded that the system
dynamics complexity was increased due to the ever-changing
fitness landscape resulted from the Red Queen effect of the
competing species.

Two other studies have based their work on the same
robots. Nolfi and Floreano [54] extended their previous
study [28] by exploring the best conditions for arms races
behaviour to emerge. They used a Hall of Fame as a
coevolution long-term memory, in which a player competes
against the best player evolved over the last ten generations.
The proposed system showed that coevolution was not
able to evolve a general strategy that is able to defeat all
other strategies; instead, it could evolve a strategy that is a
specialist in defeating the current opponent’s strategy. They
also explained that this should not be seen as a lack of success,
having such a non-dominant strategy gives the opponent
more room for improvement and consequently pushes every
player to continue the process of the arms race. In 2003,
Nitschke [49] constructed two teams of Khepera robots, and
ran three experiments to show that strategies that coevolved
from a player in a single environment do not work with a team
of the same players. This is due to a lack of coordination
which leads to physical interference between players from
the same team during the game. The study also showed that
coevolution in a competitive context does not need direct
communication or coordination methods to evolve successful
cooperative strategies.

Apart from coevolving competitive robots in pursuit-
evasion games, two other competitive/cooperative studies
were introduced at an early stage of this field. In 1997,
Luke et al. [42] developed a system to coevolve two teams
of soccer players to compete in the Robocop competition.
They utilised the automatic programming of GP to develop
algorithmic behaviour for soccer robots. Two separate trees
were used in GP, with the first evolving player movements,
while the other was dedicated for ball-related actions, such as
kick and pass. They also introduced a new crossover operator,
root crossover, to allow teams to swap players with their

136652 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

TABLE 2. Developed template to collect information regarding study publications using [63] as an example.

strategies. Due to having expensive fitness evaluation, fitness
was based on a single game between two random teams.
Moreover, instead of assessing the overall team performance,
they paired off the teams and assessed every player against
its pair. They found that using the number of goals scored
solely in the fitness function improves convergence. The
proposed system was able to evolve a team of robots that has
beaten a hand-crafted team of robots in a soccer game. It is

worth mentioning that every player does not communicate
with other players even in the same team. Every player
receives updated information about the game environment,
details such as the ball, the field, and other players both
inside and outside the team. In the other study in 1998,
Ficici and Pollack [26] developed a new prediction game
consisting of three players: one generates output, while the
other two players (one is with and the other is against the

VOLUME 9, 2021 136653



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

generator) predict the generator player. They have proposed
a system that provided not only a powerful metric of
behaviour, but also the ability to explore convergent and
competitive dynamics and their interaction. The fitness used
was calculated based on the average score from playing
games against all other players in the other two players’
populations. They found that the introduced game required
a mixture of cooperative and competitive pressures to avoid
simple mediocre stable-states and closed-endedness.
Stage 2 (2005-2011): Researchers in this stage started

using coevolution in evolving NPCs in addition to the
game strategies which were considered in stage-1. Spatial
reasoning challenges in RTS games also attracted researchers
to this stage; Researchers started developing coevolution
systems that use influence maps (IM) as an agent controller
to face this challenge.

In 2006, Miles and Louis [45] introduced a new RTS
game, called Lagoon, to simulate a sea battle. They developed
a coevolution system that uses an A* pathfinder to find a
path to reach the required destination, while the strategy
of any individual in the GA population was represented
via an influence map tree (IMTree). The authors found
that coordination behaviour could emerge between the same
team members, which made the team look like a real team
in nature. This means that IMTrees have the potential to
coevolve competitive NPCs for long-term RTS games. Miles
and Louis [46] extended their previous work by improving the
game to include more features, such as gathering resources,
constructing buildings and including more varieties of army
units. Furthermore, they developed a spatial reasoning system
that analyses the current game status (i.e. IMTree) to
determine player spatial objectives. Such objectives were
then optimised using GA within the resource allocation
domain. The coevolved players were found to be significantly
superior to the hand-coded players.

Avery et al. [8] designed a sea battle game based on a
‘‘capture the flag’’ scenario, in which the boats were used as
army units. They developed a competitive coevolution system
to evolve game strategies at a low tactical level, such as
which boat to attack and which places boats should target.
They used an individual IM for every boat in the game, and
tested their proposal in an open-ocean scenario with a single
flag for the defender team. The proposed system was found
to be successful in coevolving coordinated tactics for the
attacking team that could not be countered by the defending
team, due to the simplicity of the simple operation theatre.
The work was extended in [7], by adding a few islands of
different sizes to the original map and also by considering a
flag for each team to defend. Furthermore, they updated the
reasoning system by linking every set of coordinated army
entities to a certain map in order to achieve a given task,
with the focus on group tactics instead of on agent behaviour.
The experimental results showed that IMs were coevolved
successfully to produce more interesting coordinated tactics.

As a further extension, the authors in [70] used a complex
version of the capture the flag game as a testbed for the

coevolution system to investigate the impact of coevolved
players on human players’ training. They did this by training
16 undergraduate students using either or both of the
following AI: the first is a hard-coded opponent, while the
other was coevolved. Afterwards, a unified post-test game,
different from the training, was exposed to all students.
The results showed training using hard-coded or coevolved
players did not cause a performance difference between the
trained players. Taking this into consideration, designing new
training programs could be done more quickly.

In 2008, Keaveney and O’Riordan [32] developed an RTS
game called Bellus Bellum Gratia (BBG), which is a TBS
game equipped with some RTS game features including
simultaneous turns and imperfect spatial information. A com-
petitive coevolution system was proposed in [33] to handle
a BBG game. The authors introduced two measurements to
assess both tactical spread and attack coordination among
player units. Two experiments took place, in which the
populations were coevolved using a single map in one
experiment and multiple maps in the other one. The results
showed that coevolved players using multiple maps were
more robust than players coevolved using a single map.
They reported that attack coordination is more effective in
producing robust strategies than spread coordination, and
also that it is easier to evolve better attack coordination in
coevolution using a single environment compared to using
multiple ones. Two years later, the work was extended
in [34] by creating a coordination profile for each strategy
(spread/attack coordination managed separately). These pro-
files were analysed throughout the coevolution process to
monitor changes in the coordination and importance of such
changes. The results showed that coevolving strategies with
more intelligent behaviours takes place at the cost of one or
both coordination measurements.

Car racing games have attracted some researchers to build
a coevolution system to explore such an interesting game.
In 2007, Togelius et al. [73] started with a car racing game in
which one or two cars compete to score more points within
a specific time frame. They wanted to investigate the effect
of the number of populations used in the coevolution as well
as the agent controller. In terms of population number, they
tested generational solo-evolution (no coevolution) vs steady-
state evolutionary with a variety of population numbers (1,2,
and many). They also explored different types of agent
controllers within NNs, modular controllers and GP. They
found that multi-population coevolution created a better
environment to evolve the controllers, more than either
solo evolution or single-population coevolution. They also
reported that when using two cars, the modular controller is
the best one to be used among the other agent controllers.
Moreover, they concluded that larger controllers learn faster
when a single population is used in the coevolution.

A couple of years later, Cardamone et al. [15] decided to
evolve a competitive driver bot to compete in an international
competition called ‘‘2009 TORCS endurance world’’. Their
idea pivoted on utilising the winning driver of the earlier

136654 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

year’s competition ‘‘SIMPLIX’’ and coevolving the car
setup (16 out of more than 50 available parameters) using
one of the existing cooperative coevolution methods in the
literature. The results were compared with one of the well-
known EAs in the literature, covariance matrix adaptation
evolution strategy (CMA-ES), and other GAs. The proposed
cooperative system was able to evolve car settings that not
only outperforms the other EAs, but also improves one of
the existing high performing human developed drivers, i.e.
SIMPLIX.

Using coevolution to evolve NPCs started in the second
stage, as mentioned earlier. Cardamone’s work, mentioned
above, is one of those attempts. However, Hong and Cho [30]
introduced a new RTS game, called ‘‘Build & Build’’.
Every team in this game gains points from building towns,
producing army units, and attacking opponents. Individual
fitness was calculated based on the score resulting from
playing games against random opponents whose strength was
taken into consideration. While the authors’ focus was on
evolving an NPC’s reactive behaviour during the game, they
also explored different scenarios for different environment
content complexity. The results found were encouraging
enough for researchers to invest more effort in this direction.

Priesterjahn et al. [60] proposed a two population compet-
itive coevolution system to evolve NPCs in a multi-player
computer game called ‘‘Quake3’’ using evolution strategies
(µ + λ). They suggested avoiding the use of hard-coded
players during evolution but to use them as part of testing.
The coevolved NPCs were able to dominate the existing hard-
coded agent on any difficulty level and even on larger maps.
Consequently, the proposed algorithm could be utilized for
training players in games and environments without existing
artificial players.

Based on an existing military game, Thompson et al. [72]
updated the game, called it ‘‘EvoTanks’’, and used it to
coevolve NPCs in a competitive environment. Players’
efficiency and health factors were considered in evaluating
their fitness, which is calculated based on the average
of resulting scores from games played in a round-robin
league with opponent team agents. Results showed that the
coevolved agents had competent reactions and strategies to
face different hand coded players.

Dziuk and Miikkulainen [22] explored how to use
automatic shaping of coevolution to evolve NPCs with more
effective behaviours. By altering both the fitness function
and the environment throughout the evolution process, they
showed a direct way to shape the coevolutionary procedure.
They introduced several automatic shaping methodologies
to be used in the coevolution and found that using shaping
was beneficial. Also, their work concluded that the shaping
concept pivots on increasing diversity, and shaping the
environment was more effective than shaping the fitness in
this case.

Apart from the previous collective studies, a number
of individual works were conducted during this stage: In
2006, Monroy et al. [48] explored using a newly introduced

Coevolutionary Memory (CM) called the Layered Pareto
Coevolution Archive (LAPCA) to coevolve game strategies
for a game, ‘‘Pong’’, that they modified. They used Neu-
roEvolution of Augmenting Topologies (NEAT), which is an
RL technique that searches both an NNs topology and weight
spaces simultaneously to train the player controller NNs. The
proposed approach was able to show that LAPCA scales up
to NN in complex domains and does not require memory as
much as HoF. The game used was found insensitive to the
CM technique used, but more work was required to show the
effectiveness of LAPCA and HoF as memory techniques.

At the same time, Uchibe and Asada [75] explored how
CAs, using soccer robots, could evolve cooperative and
competitive emergent behaviour. They used a simplified
soccer game where only one team had a goalkeeper and the
other team had either one or two playing robots. The novelty
in their work came from relying on importance sampling for
fitness sharing and employing incremental evolution using
multiple schedules. Instead of evaluating every individual in
one population against all members of the other population,
they used importance sampling to reduce the number of
played games, which improved the efficiency of the fitness
evaluation process. Moreover, the new system was able to
utilise incremental evolution to produce cooperative and
competitive behaviour through four types of experiments.

Leigh et al. [37] introduced a study to show the potency
of using coevolution in both understanding and testing the
balance in an RTS game. Their proposed fitness was based
on the average fitness resulting from playing six games (three
against randomplayers from the hall of fame and three against
players selected via shared sampling from the opponent’s
population). The proposed system, using a simplex heating
map as a visualisation tool, was able to bring balance to the
game by tuning the game rules and parameters when required
during the game.

Menezes and Costa [44] developed a multi-player shooting
game, in which Gridbrains (GP Virtual Machine) was used
as an agent controller (for vision and audition sensors)
and Simulation Embedded EA (SEEA) to provide the
evolutionary process. The group fitness in SEEA encouraged
the players to evolve cooperative behaviour which yielded
efficient shots and better synchronisation across the whole
team’s shots. Utilising the interaction among the used fitness
function, the populations’ coevolutionary dynamics and the
environmental setup, the proposed system did not need a
geographical separation to evolve the species specialisation
behaviour.

In the same year, Lichocki et al. [38] had a lesson learned
from the only 1-player game in this review, ‘‘Gathering
Resources Game’’. They learned that behavioural sophis-
tication does not always guarantee better performance.
The proposed system proved very effective at collecting
resources, but performed poorly in situations that required
short-term memory like obstacle avoidance.

In 2010, Rawal et al. [62] introduced a piece of work
to show how to construct concurrent cooperative and

VOLUME 9, 2021 136655



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

competitive behaviour in a complex Pursuit-Evasion game
environment. Their studywas based on two experiments: both
were between two teams of players where the predator team
always had three players while the prey team consisted of
either one or two players. The proposed system showed that
for both the predators and the prey(s), high level strategies
emerged on both competitive and cooperative levels. They
also found that interactions among multiple autonomous
agents required the coexistence of both cooperative and
competitive behaviour in RTS games which have ever-
changing dynamics.
Stage 3 (2011-2021): Researchers at this stage started

using coevolution to generate game content. They also
stopped using NNs as an agent controller.

In 2012, Cook et al. [19] introduced the first study to
use coevolution to evolve game contents. Their focus was
on how to make the procedural content generation task
more of a shared creative task between a human designer
and the proposed automated designing system. To do this,
they proposed using three cooperative species to produce a
game environment: Game Map, Game Layout and a list of
powerups called a Game Powerset. They proposed a coop-
erative coevolution system to design simple Metroidvania
platform games. They used a cooperative platform System,
called ANGELINA, to design the game with a cooperative
fitness that was calculated based on the score resulting from
playing one game against the fittest member of every other
species. 180 human-players tested the system and provided
feedback. Some concerns were taken into consideration while
the rest were left for future work.

Two years later, Ruela and Guimarães [66] based their
work on the assumption that the generation of procedural
content of NPCs adapted to human strategies can produce a
more interesting and attractive game for human players. They
used an existing simulation system, called ‘‘Armageddon
Battle Simulator’’ (ABS), that simulates the game ‘‘Call of
Roma (Caesary)’’. They designed the fitness evaluation to
assess victory points, offensiveness, defensiveness, usage,
and participation of the individual design. They were also
able to only rely on the number of soldiers when the fitness
was assessed for either the player or the whole team. The
coevolutionary GA was able to present a convincing victory
rate in all games.

In 2016, Nogueira-Collazo et al. [53] proposed a com-
petitive coevolution system with two species: one to evolve
players with winning strategies, and the second to evolve
game maps that make it harder for the coevolved players
to win. They introduced an algorithm with three variants
that differed in how they updated HoF members based on
measurements that depend on quality and diversity. The
proposed algorithm was able to generate maps that favoured
both allies and game AI that performed very efficiently.

At the same time, Hintze et al. [29] explored how to
employ coevolution in adjusting opponents’ difficulty in
Pursuit-Evasion games. They used Markov networks as the
agent controller while instead of evolving two populations

independently, both populations were mixed allowing more
difficult situations to be handled by the players. The proposed
systemwas able to show that orthogonal coevolution excelled
in creating players with various levels of difficulty.

Ruela and Guimarães [67] extended their previous
work [66]. A new cooperative framework was introduced to
evolve an entire team instead of evolving a single player. They
proposed having a team of N heroes as an individual player;
the total fitness of those players constitutes the whole team
fitness. The developed system was made to choose between
random or greedy cooperation according to a proposed α-
based method. The new system was able to evolve players
with successful strategies, with well-developed formations,
against players of Call of Roma.

Nogueira et al. [52] started a series of studies; initially
they introduced a new RTS game called ‘‘RobotWars’’.
This game includes two components: a battle generator to
generate different scenarios, and a battle simulator to run
the game. They proposed an HoF competitive coevolution
system where the fitness was calculated based on the
average result of playing a game against all opposing
HoF members. While they successfully coevolved winning
strategies, the coevolution engine could use the final game
result to predict the initial players’ configurations.

A year later, they [51] extended their previous work [52]
to analyse five different HoF implementations for short/long
term memory mechanisms. They found that updating the
memory members using selection criteria produced a good
performance, noting that diversity was the best selection
criterion to be used. Moreover, they found that memory
size plays an essential role in convergence. In addition
to the existing HoF memory archive, a new archive Hall-
of-Celebrities (HoC) was introduced in [18]. HoC applies
pressure on the optimisation process and differs from HoF
when updating its archives based on quality and diversity
metrics. They showed that coevolutionary cycling frequency
was dropped when hybridising HoF/HoC based algorithms.
This work produced victorious strategies over both coevolved
and optimised players, which reflect the self-adjustment
capacities of the proposed algorithms. Two years later, they
extended this work [53] to use coevolution in evolving game
contents as explained earlier.

Ballinger and Louis [10] started a series of studies on
using GA in coevolving strategies for a two-player game,
‘‘Water craft’’, in a competitive environment. They proposed
calculating fitness based on a linearly scaled shared fitness
score resulting from playing games in a round-robin league
with opponent team agents in a teachset. The teachset always
had eight members: four random players from HoF, and four
players from the opponent population. They compared the
coevolved strategies by testing them against three hand-coded
players. Results showed that coevolved players preserved a
higher average performance over the GA developed players;
on the field level, they were also able to destroy the enemies’
command centre more frequently, highlighting the robustness
of the coevolutionary results. They extended their work [9]

136656 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

by injecting human strategies in the teachset. The updated
teachset always had eight members: three random players
from HoF, three players from the opponent population,
and two players injected with human player’s strategies.
They found that teachset with case-injection increased the
coevolution convergence without adverse effects on its
robustness. These results encouraged them to invest more in
the case-injection methodology.

In another study [11], the authors explored four different
case injection methods; injection into: only the teach set,
only the population, both the teachset and the population,
and the last one with no injection. The robustness of
the proposed methodology was tested by having the best
players compete against five players produced from hand-
tuning and coevolution. These five players were never seen
during training and were different from the ones used in
the injection. It was found that the only injection in the
population method was the only one that made a difference
in the performance. Hence, a coevolutionary population
could be influenced by inheriting some playing styles from
the injected cases, considering that injected cases might
have different levels of influence on the inherited features.
These results, along with the robustness test, emphasise a
similar conclusion to that reached in their previous study
mentioned in the last paragraph. It indicates that using case
injection into a coevolutionary population would increase its
convergence without compromising its robustness. In 2016,
the same authors extended their work [12] when they added
branching and iteration to the build-action sequence, aiming
to create better build orders by using a more complex
representation. Their focus was on finding strong (beat
opponents rapidly) and robust (beat many opponents) build
orders. Five-action build orders, developed using CA, GA,
and Hill Climber (HC), were compared. They found that
regardless of whether case injection was used, GA was able
to produce strong build orders, while CA produced robust
build orders. Furthermore, CA was able to deliver strong
build orders when case injection was used in teachset and
population.

Apart from the previous collective studies, a number of
individual works were conducted during this stage. In 2014,
Fernandez-Ares et al. [25] developed a system intending to
enhance the action controller of the players by improving
the relevant behavioural parameters in the Planet Wars game.
Planet Wars itself is a pseudo-turn-based game; it allows
bots to decide on their following action in one-second micro-
turns, which then happen at the same simulated time. They
explored three fitness functions to assess the exploration
of the bots individually. These functions are (1) Victory
Based: the final situation and number of turns required to
reach it, (2) Slope Based: the slope of a linear regression
line for the ships owned by a player, and finally (3) Area
Based: the area (integral of the curve of the live-line of bot’s)
which reflects the average percentage of ships owned by an
individual throughout the game. The proposed cooperative
coevolutionary approach significantly saved training time.

It was found that slope-based fitness was slightly better
than area-based fitness, and the latter is more effective than
victory-based fitness.

In 2015, Parker [56] proposed a competitive coevolu-
tionary system to evolve NPCs for the Xpilot-AI game.
They proposed calculating the fitness every two minutes of
gameplay, and it was biased during the calculation time,
considering that new biases would be calculated every
15 generations. It was found that fitness biasing performed
better in two cases: (1) when finding model parameters that
can be learned next to the solution is not possible and (2)when
testing a solution would not take a long time and would not
disrupt the player’s task.

Liu et al. [40] produced effective micro-behaviours (tac-
tical for a group of units and reactive control for a single
unit) using heuristic search algorithms. They also compared
the performance of their bot with two other bots from
the literature. Three different scenarios were used: training,
testing and head-to-head. They proposed calculating fitness
based on the average scores of five games played in ten runs
with a randomised seed. The proposed GA quickly evolved
adequate micro behaviour to operate both melee and ranged
attack units (one of the existing bots from the literature is
better against a melee attack, and the other is better against
ranged attacks).

Rudolph et al. [65] developed a competitive CA to evolve
NPCs for the Starcraft ‘‘Brood War’’ game. The fitness
evaluation considered the situation when a player destroys
a building that belongs to the opponent player; a player
got rewarded by adding more units as a reinforcement.
The coevolution takes place by allowing AIs to compete;
the learning during the competition pivots on combining
reinforcement and evolutionary learning components from
Extended Classifier Systems (XCS). Four different AIs were
tested (Defender, Attacker, Explorer and Strategist). They
found that the Explorer performed better than other AIs,
and that self-adaption at run-time improved every player’s
performance.

In 2017, Liu et al. [39] introduced a simple new battle
game between two spaceships with no missiles. A spaceship
is considered a winner when facing its opponent’s back
within a specified proximity. A several-step look-ahead
controller managed the following players’ actions. Rolling
Horizon Genetic Algorithm (RHGA) and Rolling Horizon
Coevolution Algorithm (RHCA) considered a macro-action
consisting of various specified actions in all the games.
Results showed that as the macro-action gets shorter,
the relevant performance improves.

Lastly, Adhikari et al. [1] conducted a study aimed at
evolving high-quality micromanagement strategies in RTS
games without the need of an opponent to evolve against.
Initially, coevolution takes place between a team of ranged
units against a team of melee units. This was followed
by coevolution between two teams; each was formed by
combining ranged and melee units. Results showed that the
proposed approach could find micromanagement strategies

VOLUME 9, 2021 136657



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

FIGURE 3. The 50 most common words appeared in the reviewed papers.
The bigger the word, the more frequent it appeared in the papers. Every
word that appears in the figure reflects the frequency of both the word
itself and its synonyms, e.g., the word strategy represents the frequency
of the usage of the words: scheme, schemes, strategy, and strategies.

that perform well in unseen scenarios, which indicates its
robustness.

3) CRITIQUE ACROSS THE PUBLICATIONS
To give readers an indication about the main keywords found
across the reviewed papers, NVIVOwas used to create a word
cloud for the 50 most common words, see figure 3.

a: COEVOLUTION PURPOSE
Considering the review conducted above, it is found that
researchers used coevolution in RTS games for three main
purposes:
• Evolving game strategies,
• Evolving NPCs, and
• Evolving game contents.
At the beginning of every stage explained in the previous

section, researchers started using coevolution for the purposes
mentioned in the same order. Interestingly, the number of
publications of every purpose depends on the time researchers
started to use coevolution for that purpose. As depicted
in Table 3, the number of publications of every purpose
was found to be almost double the preceding purpose’s
number of publications. For example, the figure shows
that the number of publications that used coevolution to
evolve game strategies (26 publications) is almost double the
number of publications that used coevolution to evolve NPCs
(12 publications). It is also worth mentioning that considering
a new purpose for using coevolution in RTS games does
not mean that researchers stopped targeting older purposes,
as explained in table 3.

b: NUMBER OF PLAYERS
By looking at Table 4, the reader can notice that only one
publication considered a 1-player game, where coevolution is
not the best approach to handle such types of games. On the
other hand, having two competing sides playing against each
other is the best environment for coevolution. Consequently,
readers can conclude from the total number column that
almost 75% of the considered games are either 2-players

TABLE 3. Number of publications of every coevolution purpose in each
stage.

TABLE 4. Frequency of number of players used across all stages.

FIGURE 4. Frequency of coevolution type used for every category of
players number in the considered publications.

or 2-teams. Comparing this table to figure 4 can explain
that considering 1-player games does not give a chance for
the coevolution to evolve cooperative behaviours, as there
will not be any player to team up with. Hence, cooperative
coevolution requires either 2-teams of players or multi-player
games to work.

c: MANAGEMENT DEPTH LEVEL & TASKS
Figure 5 shows the relationship between the management
level of decisions and the number of players for the games
used in the publications reviewed. This figure presents the
percentage of the publications that considered RTS games
with tasks from strategic and tactical levels (macroman-
agement and micromanagement) for every category and for
every number of players in the game. The figure also shows
that the percentage of publications that used coevolution
for games involving tasks from the micromanagement level
of the decision have an inverse proportional relationship
with the percentage of publications that tackled tasks from
the macromanagement level of decision. Tasks from the
macromanagement level of decisions, such as creating build
orders and collecting resources, are more complex than tasks

136658 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

FIGURE 5. Distribution of the number of players against management
depth level used.

TABLE 5. Game tasks used in the included publications in this review.

from the micromanagement level of decisions, that focus
mainly on reaction behaviours. This complexity increases
when the number of players increases. This could explain
why most researchers used coevolution for games with
macromanagement level decision tasks when considering
fewer players and vice versa. Table 5, which lists the tasks
associated with the games considered in the publications
involved in this review, supports the previous analysis.
As mentioned, games with micromanagement tactical tasks,
such as controlling and positioning units, were used more
than those games with macromanagement strategic tasks,
such as collecting resources and creating build orders.

d: EAs IN CAs
Table 6 shows that researchers prefer to coevolve using GAs
rather than GPs, yet GP was used more frequently than
the other EAs. In a further investigation of these two EAs,
we found that GA was used in 100% of the publications that
used coevolution to evolve game contents (five publications).
Moreover, GA was also used in 10 of the 12 publications that
used coevolution to evolve NPCs (83.33%). We also found
that only one EA was used solely in stage 3 since 2012,
that is, the GA. It is worth mentioning that both generational
and non-generational (steady-state) GAs were widely used
in this regard. It is notable that the five publications that
used GP as an evolution methodology all belong to either
stage 1 or 2. Although they share similar features, such as
evolving game strategies as the coevolution purpose and a
simulation model as an agent controller, they differ in other

aspects like the game, number of players and the coevolution
type considered.

e: AGENT CONTROLLER
In terms of agent controller, we found almost 49% of the
publications found it more convenient to develop their own
simulation model to simulate a player (agent) controller.
Some researchers used either NNs (almost 21%) or IM
(almost 16%) as the controller for their game players on a
smaller scale. While simulation models were used during
all stages, IMs were not used in stage 1 and NNs were not
used in stage 3. The need to have a very customised player
at very low levels of detail can be seen as the main reason
for researchers to prefer using customised simulation models
over other techniques of controlling player agents. We also
noticed that all researchers used IMs to control players only
when they used GA with 2-teams of players games. This can
be justified if we know that an IM is a grid for the considered
map in the game; this grid is assigned with values based
on a customised spatial concept. Such spatial reasoning is
usually required for games with many players competing in
a defined region such as in games with two teams of players.
It is also worth mentioning that neither IM nor NNswere used
in coevolution to evolve game contents and environment.

f: COEVOLUTION MEMORY
It was clear that researchers did not pay enough attention
to the importance of using or reporting memory techniques
to overcome the forgetfulness of CAs, as explained in
Section II-B. Table 7, shows that only slightly less than 50%
of researchers have reported the memory technique they
used in their study. It was also noted that researchers used
long-term memory techniques, such as HoF and LAPCA
(the latter was used only once) to evolve game strategies.
We do not have an explanation for this; however, maybe the
lack of information on the used memory technique hinders
the appearance of using this technique for other coevolution
purposes. Therefore, we broke down the usage of memory
techniques to a yearly level to get more insight. Interestingly,
the first short memory techniques, such as elitism, were
reported in 2009, which is 12 years later than the first reported
long-term technique; again, we believe that the missing
information has another footprint here. Consequently, readers
can now recognise how it is important for researchers to
report more details about their proposed systems to support
studies like this review. It is also noted that researchers spent
limited efforts on employing CM techniques in this field.
Researchers can extend the work in this field by exploring
various CM techniques, either on an individual level or in
combination, and by analysing their effect on coevolutionary
systems’ performance.

g: COOPERATION VS COORDINATION
We noticed that some researchers used the cooperation
and coordination terms interchangeably while they actually
are different. As explained earlier, the cooperation concept

VOLUME 9, 2021 136659



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

TABLE 6. Player controller and EAs used by every publication, with player controller on rows and the EA type on columns).

TABLE 7. Number of publications used for each memory technique per
coevolution purpose.

originated within a coevolutionary context, and it takes place
when players of one species performance (fitness) affects the
performance (fitness) of players in other species positively.
In other words, one species winning influences the winning
of other cooperating species, and the same applies in losing
situations. On the other hand, the coordination concept
originated within a multi-agent system context; it refers
to heterogeneous agents taking decisions autonomously to
achieve a common task [69]. In a coevolutionary context,
coordination can take place when players, for example,
communicate information, such as teammates/opponents
locations and actions to maintain specific behaviour like
spread, attack or defend. The source of this confusion
between these concepts comes from the similarities they
share in many aspects. Both of them share the same target
partially: players help each other achieve a given task.
Another similarity is that agents (players) that help each other
belong to the same team in both concepts. Additionally, both
concepts can occur between players belonging either to the
same or different population or species. We provide here
a guideline to differentiate between cooperation and coor-
dination: In cooperation, players share their fitness, while
they share information other than the fitness, like location

TABLE 8. Type of coevolutionary memory (CM) used in the publications
reviewed.

and actions, in coordination. It is also worth mentioning
that when coordination involves sharing players’ intentions
and beliefs, some researchers call it collaboration [69].
Table 9 shows the coevolutionary type used in the considered
publications (competitive/cooperative); it also shows whether
or not coordination was used.

136660 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

TABLE 9. Coevolution type (competitive/cooperative) along with whether
coordination was used in every publication reviewed.

G. LIMITATIONS, VALIDITY, AND RELIABILITY CONCERNS
The consideration of performance comparison for the
reviewed systems was not possible in the current paper due to
a few reasons. The proposed systems were developed using
different frameworks; besides collecting the related scattered
codes over two decades or even creating them from scratch
was not a feasible task. Furthermore, the lack of a unified
environment that includes the required facilities to compare
the validity and practicality of the proposed system was
another limitation, even in the case of having the proposed
systems’ source codes. The latter restriction highlighted a
new task that researchers are encouraged to consider in their
future work.

IV. FUTURE WORK
Based on this review and analysis of existing literature, future
potential work can be categorised as follows: (1) CA related
suggestions, (2) RTS games related recommendations, and
(3) agent controller related concepts. Table 10 summarises
those categories and relevant future work suggestions as well
as the publications that reported those suggestions.
CA Related Suggestions: Cover suggestions that were

made to improve and explore the issues that are related
more to the coevolution part of the proposed system.
The most frequent suggestion raised by researchers was
using different fitness functions; some researchers have not
determined a specific function type (as in [19], [51], [63],
[66], and [67]). On the other hand, other researchers were
able to suggest specific function types, such as dynamic
functions [75], visualisation tools to support determining
the fitness [37], automated shaping functions [22], and
mathematically approximated functions [25]. Exploration of
different CA techniques is another CA related suggestion
that was reported by researchers. Extending work on the
memory technique LAPCA was suggested in [48] while
others suggested doing more investigations on using the
memory technique HoF [18], [45], [51], [52].

Improvements in the convergence of CAs needs further
attention. The word improvement here reflects two conflict-
ing factors: convergence should be accelerated to reach better
solutions quickly, but at the same time it should not be so fast
as to avoid premature convergence.

Another CA related suggestion is to explore how to
improve CA emergent behaviours in the RTS domain. While

some researchers raised this suggestion in a generic way [18],
[49], others were more clear in their suggestions. Exploring
how to analyze the complex behaviour of an arms race
was one of the suggestions [26], [62], at the same time
the question of how to bring temporal coordination into the
coevolution process was also raised [33].

Exploring the use of cooperative coevolution is a pos-
sible way to improve CAs [40], [45], [60], [72]. Further
improvement to CAs might be achieved by using a multi-
population approach [25], [30], [40], [53]). Utilising the
coevolved plans in predicting opponents’ plans was also
reported by researchers [9], [11], [33], [52]). Another CA
related suggestion was to analyze the diversity of the used
CA, mainly to solve the issue of selecting the best performing
individual during later generations [7], [73], [75].

Exploring, and improving, different optimisation tech-
niques in CAs is still an open direction. Some researchers
suggested using multi-objective coevolution [38] to avoid
getting trapped in local solutions, while others suggested
exploring an entirely different selection method [19]. As well
as implementing the coevolution in a physical parallel
environment [66], [67]. The last CA suggestion was to
explore the effect of using different population sizes on the
evolution [42].
RTS Game Related Suggestions: Cover suggestions that

were made to improve and explore different aspects of the
game part of the proposed system. Exploring using different
levels of complexity within the game environment at hand
is a possible research direction, as suggested by many
researchers. Some researchers have suggested exploration of
different settings, features, and actions for the bot (player)
that increases the difficulty of their game [7], [9], [15], [30],
[34], [40], [45], [63], [75]. Some other researchers suggested
adding more features to the game environment, such as
barriers, obstacles, weapons, game rules and difficulty
levels [19], [29], [34], [39], [46], [53], [72]. Other researchers
suggested combining random and structured scenarios to
produce robust strategies [1]. There are suggestions to explore
different complexities of the game environment by adding
rules between environments and players [44]. Some other
researchers suggested exploring gaming with no human
interaction [22].

Proposing a general system that can cover a wide range
of RTS games is another future direction [18], [26], [33],
[51], [56], [62], [70]. Researchers suggested increasing the
complexity of the used strategy encoding to enable the
production of more complex and robust strategies [9], [10],
[12], [28], [40], [51]. Exploring different management levels
of the game tasks (i.e., covering more of the various tasks
from both strategic and tactic management decision levels,
i.e. macromanagement andmicromanagement) can be further
researched [7], [8], [12], [30], [65].
Agent Controller Related Suggestions: Cover those

suggestions made to improve and explore the issues related
to the used agent controller. The most reported suggestion
was increasing the complexity of the agent controller:

VOLUME 9, 2021 136661



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

TABLE 10. Future work suggestions reported by every publication. Suggestions are categorised based on the part of the work that the suggestion
relates to.

some researchers suggested increasing the complexity of the
controlling algorithm itself by increasing the complexity of
the reaction automation part or utilising previous knowl-
edge [1], [9]–[11], [37], [39], [42], [65]. Other researchers
suggested increasing their agent controller complexity by
introducing more complex input coding or adding sensors
to the agent [30], [72]. On the other hand, some researchers
pointed out the need to model a special behaviour of the
player or the game domain itself [8], [15], [40], [62].
Lastly, analysing an agent controller’s performance by
better comparing their performance is another open
direction [73].

By looking at the summary of the previous reported sug-
gestions in Figure 6, readers can recognise agent controller
related suggestions are significantly less in number than other
categories. This can be justified by comparing the number of
factors that controls an agent controller to each of the CA and
RTS games. It is remarkable also that CA related suggestions
have attracted researchers slightly more than for RTS games.
On the other hand, it is very clear that the number of reported
suggestions in stage 1 is significantly less than the other two
stages due mainly to the lower number of publications in
stage 1. Readers can also notice that stage 3 has got slightly
more reported suggestions compared to stage 2.

FIGURE 6. This figure shows the distribution of the future work
suggestions reported in the publications across the earlier defined stages.

When readers look at Table 10, some future suggestions
can be recommended as open areas for researchers to
investigate more. The suggestions that have high frequency in
the later stages means they are more hot recent topics. Some
of those suggestions are stated below.

1) Explore using different complexity of the game
environment,

2) Increase the complexity of the agent controller,

136662 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

3) Explore different fitness functions,
4) Explore different memory techniques in the used CA,
5) Explore generalisation of the proposed system to cover

more games,
6) Improve the convergence of the proposed system,
7) Increase the complexity of the used strategy encoding,

and
8) Explore different management levels of the game tasks.

V. CONCLUSION
This paper conducted a systematic review to show why
and how CA are applied in RTS games. We started with
this reason for conducting this review, showing its scope
and research questions. Then, we identified the document
sources for the study and the possible databases and applied
the predefined inclusion and exclusion criteria. Afterwards,
the considered publications were scanned, organised, and
analysed individually and collectively.

This review showed that CAs were used in RTS games for
three main purposes: (1) evolving game strategies, (2) evolv-
ing NPCs (Game AI), and (3) evolving game environment
contents. It was found that GAs are the most commonly used
EAs in this regard. Furthermore, we found that researchers in
this field prefer to simulate the agent (player) controller over
using other controllers that require training.

This paper explained how the attention of researchers in
this field towards using/reporting the memory techniques
used for CAs is not up to the expected level. It is very
important not only to explore more coevolution memory
techniques individually or in a hybridised mode, but also
to investigate their effect on the performance of the overall
coevolutionary systems.

This review was able to conclude that the most frequent
future work suggestions from the publications reviewed were
to: explore different complexity for the game environment,
increase the complexity of the agent controller, explore
various fitness functions, explore other memory techniques
in the used CA, explore generalisation of the proposed
system to cover more games, improve the convergence of
the proposed approach, increase the complexity of the used
strategy encoding, and explore different management levels
of the game tasks.

This paper also highlighted another limitation that requires
more attention from researchers in this field; that is the lack
of having a common environment to facilitate comparing
the proposed systems and to validate the practicality of the
suggested ideas.

REFERENCES
[1] N. K. Adhikari, J. S. Louis, S. Liu, and W. Spurgeon, ‘‘Co-evolving real-

time strategy game micro,’’ in Proc. IEEE Symp. Comput. Intell. (SSCI),
Nov. 2019, pp. 1990–1997.

[2] B. D. Allen, ‘‘Serious gaming for building a basis of certification for trust
and trustworthiness of autonomous systems,’’ in Proc. Aviation Technol.,
Integr., Oper. Conf., Jun. 2018, p. 3844.

[3] P.-A. Andersen, M. Goodwin, and O.-C. Granmo, ‘‘Deep RTS: A game
environment for deep reinforcement learning in real-time strategy games,’’
in Proc. IEEE Conf. Comput. Intell. Games (CIG), Aug. 2018, pp. 1–8.

[4] J. P. Angeline and B. J. Pollack, ‘‘Competitive environments evolve
better solutions for complex tasks,’’ in Proc. 5th Int. Conf. Genetic
Algorithms. San Francisco, CA, USA: Morgan Kaufmann, 1993,
pp. 264–270.

[5] K. Arulkumaran, A. Cully, and J. Togelius, ‘‘AlphaStar: An evolutionary
computation perspective,’’ in Proc. Genetic Evol. Comput. Conf. Compan-
ion, Jul. 2019, pp. 314–315.

[6] P. Avery, Z. Michalewicz, and M. Schmidt, ‘‘Short and long term memory
in coevolution,’’ Int. J. Inf. Technol. Intell. Comput., vol. 3, no. 1, pp. 1–30,
2008.

[7] M. P. Avery and J. S. Louis, ‘‘Coevolving influence maps for spatial team
tactics in a RTS game,’’ in Proc. 12th Annu. Genetic Evol. Comput. Conf.
(GECCO), 2010, pp. 783–790.

[8] M. P. Avery, J. S. Louis, and B. Avery, ‘‘Evolving coordinated spatial
tactics for autonomous entities using influencemaps,’’ inProc. IEEE Symp.
Comput. Intell. Games (CIG), Sep. 2009, pp. 341–348.

[9] A. C. Ballinger and J. S. Louis, ‘‘Finding robust strategies to defeat specific
opponents using case-injected coevolution,’’ in Proc. IEEE Conf. Comput.
Intell. Games (CIG), Aug. 2013, pp. 1–8.

[10] A. C. Ballinger and J. S. Louis, ‘‘Robustness of coevolved strategies in
a real-time strategy game,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2013, pp. 1379–1386.

[11] A. C. Ballinger and J. S. Louis, ‘‘Learning robust build-orders from
previous opponents with coevolution,’’ in Proc. IEEE Conf. Comput. Intell.
Games (CIG), Aug. 2014, pp. 1–8.

[12] C. Ballinger, S. Louis, and S. Liu, ‘‘Coevolving robust build-order iterative
lists for real-time strategy games,’’ IEEE Trans. Comput. Intell. AI Games,
vol. 8, no. 4, pp. 363–376, Dec. 2016.

[13] M. Borrego, M. J. Foster, and J. E. Froyd, ‘‘Systematic literature reviews
in engineering education and other developing interdisciplinary fields,’’
J. Eng. Educ., vol. 103, no. 1, pp. 45–76, Jan. 2014.

[14] M. Buro, ‘‘Real-time strategy games: A new AI research chal-
lenge,’’ in Proc. 18th Int. Joint Conf. Artif. Intell. (IJCAI), 2003,
pp. 1534–1535.

[15] L. Cardamone, D. Loiacono, and P. L. Lanzi, ‘‘Applying coopera-
tive coevolution to compete in the 2009 TORCS endurance world
championship,’’ in Proc. IEEE Congr. Evol. Comput., Jul. 2010,
pp. 1–8.

[16] E. Choi, S.-H. Shin, J.-K. Ryu, K.-I. Jung, S.-Y. Kim, and M.-H.
Park, ‘‘Commercial video games and cognitive functions: Video game
genres and modulating factors of cognitive enhancement,’’ Behav. Brain
Functions, vol. 16, no. 1, pp. 1–14, Dec. 2020.

[17] D. Cliff and G. F. Miller, ‘‘Co-evolution of pursuit and evasion II:
Simulation methods and results,’’ in Proc. 4th Int. Conf. Simul. Adapt.
Behav. Cambridge, MA, USA: MIT Press, 1996, pp. 506–515.

[18] M. N. Collazo, C. Cotta, and A. J. Fernández-Leiva, ‘‘Virtual player design
using self-learning via competitive coevolutionary algorithms,’’ Natural
Comput., vol. 13, no. 2, pp. 131–144, Jun. 2014.

[19] M. Cook, S. Colton, and J. Gow, ‘‘Initial results from co-operative co-
evolution for automated platformer design,’’ in Applications of Evolution-
ary Computation (Lecture Notes in Computer Science), vol. 7248. Berlin,
Germany: Springer, 2012, pp. 194–203.

[20] M. Cook, S. Colton, and J. Gow, ‘‘The ANGELINA videogame design
system—Part I,’’ IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 2,
pp. 192–203, Jun. 2017.

[21] F. F. Duarte, N. Lau, A. Pereira, and L. P. Reis, ‘‘A survey of planning and
learning in games,’’ Appl. Sci., vol. 10, no. 13, p. 4529, Jun. 2020.

[22] A. Dziuk and R. Miikkulainen, ‘‘Creating intelligent agents through
shaping of coevolution,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2011, pp. 1077–1083.

[23] B. Edhlund and A. McDougall, NVivo 12 Essentials. Stallarholmen,
Sweden: Form & Kunskap, AB, 2019.

[24] T. Erez and D. W. Smart, ‘‘What does shaping mean for computational
reinforcement learning?’’ in Proc. 7th IEEE Int. Conf. Develop. Learn.,
Aug. 2008, pp. 215–219.

[25] A. Fernandez-Ares, M. A. Mora, M. Garcia-Arenas, J. J. M. Guervos,
P. Garcia-Sanchez, and A. P. Castillo, ‘‘Co-evolutionary optimization
of autonomous agents in a real-time strategy game,’’ in Applications
of Evolutionary Computation (Lecture Notes in Computer Science),
vol. 8602. Berlin, Germany: Springer, 2014, pp. 374–385.

[26] S. G. Ficici and J. B. Pollack, ‘‘Challenges in coevolutionary learning:
Arms-race dynamics, open-endedness, and mediocre stable states,’’ in
Proc. 6th Int. Conf. Artif. Life, 1998, pp. 238–247.

VOLUME 9, 2021 136663



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

[27] G. S. Ficici and B. J. Pollack, ‘‘A game-theoretic memory mechanism for
coevolution,’’ in Genetic and Evolutionary Computation, E. Cantú-Paz,
J. A. Foster, K. Deb, L. D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. Miller,
Eds. Berlin, Germany: Springer, 2003, pp. 286–297.

[28] D. Floreano and S. Nolfi, ‘‘God save the red queen! Competition in
co-evolutionary robotics,’’ in Proc. 2nd Conf. Genetic Program., 1997,
pp. 1–9.

[29] A. Hintze, S. R. Olson, and J. Lehman, ‘‘Orthogonally evolved AI
to improve difficulty adjustment in video games,’’ in Applications
of Evolutionary Computation (Lecture Notes in Computer Science),
vol. 9597. Cham, Switzerland: Springer, 2016, pp. 525–540.

[30] H. J. Hong and B. S. Cho, ‘‘Evolving reactive NPCs for the real-time
simulation game,’’ in Proc. IEEE Symp. Comput. Intell. Games (CIG),
Apr. 2005, pp. 86–93.

[31] R. W. Johnson, M. E. Melich, Z. Michalewicz, and M. Schmidt,
‘‘Coevolutionary TEMPO game,’’ in Proc. Congr. Evol. Comput., vol. 2,
Jun. 2004, pp. 1610–1617.

[32] D. Keaveney and C. O’Riordan, ‘‘Abstract model of a real time strategy
game,’’ Nat. Univ. Ireland, Galway, Ireland, Tech. Rep. NUIG-IT-011008,
2008.

[33] D. Keaveney and C. O’Riordan, ‘‘Evolving robust strategies for an abstract
real-time strategy game,’’ in Proc. IEEE Symp. Comput. Intell. Games,
Sep. 2009, pp. 371–378.

[34] D. Keaveney and C. O’Riordan, ‘‘Evolving coordination for real-time
strategy games,’’ IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 2,
pp. 155–167, Jun. 2011.

[35] K. Kopeć, ‘‘Indirect financing in culture on the example of tax relief in the
video game industry,’’ Edukacja EkonomistówMenedżerów, vol. 54, no. 4,
pp. 45–60, 2019.

[36] R. Lara-Cabrera, C. Cotta, and J. A. Fernandez-Leiva, ‘‘A review of
computational intelligence in RTS games,’’ in Proc. IEEE Symp. Found.
Comput. Intell. (FOCI), Apr. 2013, pp. 114–121.

[37] R. Leigh, J. Schonfeld, and J. S. Louis, ‘‘Using coevolution to understand
and validate game balance in continuous games,’’ inProc. 10th Annu. Conf.
Genetic Evol. Comput., 2008, pp. 1563–1570.

[38] P. Lichocki, K. Krawiec, and W. Jaskowski, Evolving Teams Cooperating
Agents for Real-Time Strategy Game. Berlin, Germany: Springer, 2009,
pp. 333–342.

[39] J. Liu, D. Perez-Liebana, and S. M. Lucas, ‘‘Rolling horizon coevolu-
tionary planning for two-player video games,’’ in Proc. 8th Comput. Sci.
Electron. Eng. (CEEC), Sep. 2016, pp. 174–179.

[40] S. Liu, S. J. Louis, and C. A. Ballinger, ‘‘Evolving effectivemicrobehaviors
in real-time strategy games,’’ IEEE Trans. Comput. Intell. AI Games, vol. 8,
no. 4, pp. 351–362, Dec. 2016.

[41] D. Livingstone, ‘‘Coevolution in hierarchical AI for strategy games,’’ in
Proc. IEEE Symp. Comput. Intell. Games (CIG), Apr. 2005, pp. 190–194.

[42] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, ‘‘Co-evolving
soccer softbot team coordination with genetic programming,’’ in Robot
Soccer World Cup I, H. Kitano, Ed. Berlin, Germany: Springer, 1997,
pp. 398–411.

[43] A. Martín-Martín, E. Orduna-Malea, M. Thelwall, and E. D. López-Cózar,
‘‘Google scholar, web of science, and scopus: A systematic comparison
of citations in 252 subject categories,’’ J. Informetrics, vol. 12, no. 4,
pp. 1160–1177, Nov. 2018.

[44] T. Menezes and E. Costa, ‘‘Coevolution of competing agent species in
a game-like environment,’’ in Applications of Evolutionary Computing
(Lecture Notes in Computer Science), vol. 5484, Berlin, Germany:
Springer, 2009, pp. 263–272.

[45] C. Miles and J. S. Louis, ‘‘Towards the co-evolution of influence map tree
based strategy game players,’’ in Proc. IEEE Symp. Comput. Intell. Games
(CIG), May 2006, pp. 75–82.

[46] C. Miles, J. Quiroz, R. Leigh, and J. S. Louis, ‘‘Co-evolving influence map
tree based strategy game players,’’ in Proc. IEEE Symp. Comput. Intell.
Games (CIG), Apr. 2007, pp. 88–95.

[47] G. F.Miller andD. Cliff, ‘‘Co-evolution of pursuit and evasion I: Biological
and game-theoretic foundations,’’ School Cogn. Comput. Sci., Univ.
Sussex, Brighton, U.K., Tech. Rep. CSRP311, 1994.

[48] G. A. Monroy, K. O. Stanley, and R. Miikkulainen, ‘‘Coevolution of neural
networks using a layered Pareto archive,’’ in Proc. 8th Annu. Conf. Genetic
Evol. Comput. (GECCO), Jul. 2006, pp. 329–336.

[49] G. Nitschke, ‘‘Co-evolution of cooperation in a pursuit evasion game,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), vol. 2, Oct. 2003,
pp. 2037–2042.

[50] J. Noble and A. R. Watson, ‘‘Pareto coevolution: Using performance
against coevolved opponents in a game as dimensions for Pareto selection,’’
in Proc. Genetic Evol. Comput. Conf., 2001, pp. 493–500.

[51] M. Nogueira, C. Cotta, and J. A. Fernandez-Leiva, ‘‘An analysis of
hall-of-fame strategies in competitive coevolutionary algorithms for self-
learning in RTS games,’’ in Learning and Intelligent Optimization (Lecture
Notes in Computer Science), vol. 7997. Berlin, Germany: Springer, 2013,
pp. 174–188.

[52] M. Nogueira, M. J. Galvez, C. Cotta, and J. A. Fernandez-Leiva, ‘‘Hall-
of-fame competitive coevolutionary algorithms for optimizing opponent
strategies in a new game,’’ in Proc. 13th Int. Conf. Intell. Games Simul.
(GAME-ON), 2012, pp. 71–78.

[53] M. Nogueira-Collazo, C. C. Porras, and A. J. Fernandez-Leiva, ‘‘Com-
petitive algorithms for coevolving both game content and AI. A case
study: Planet wars,’’ IEEE Trans. Comput. Intell. AI Games, vol. 8, no. 4,
pp. 325–337, Dec. 2016.

[54] S. Nolfi and D. Floreano, ‘‘Coevolving predator and prey robots: Do ‘arms
races’ arise in artificial evolution?’’ Artif Life, vol. 4, no. 4, pp. 35–311,
1998.

[55] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, ‘‘A survey of real-time strategy game AI research and
competition in StarCraft,’’ IEEE Trans. Comput. Intell. AI Games, vol. 5,
no. 4, pp. 293–311, Dec. 2013.

[56] G. Parker, ‘‘Punctuated anytime learning for autonomous agent control,’’
in Studies in Systems, Decision and Control, vol. 27. Cham, Switzerland:
Springer, 2015, pp. 89–107.

[57] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, ‘‘Rolling horizon
evolution versus tree search for navigation in single-player real-time
games,’’ inProc. 15th Annu. Conf. Genetic Evol. Comput. Conf. (GECCO),
New York, NY, USA, 2013, pp. 351–358.

[58] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences: A
Practical Guide. Williston, ND, USA: Wiley, 2005.

[59] D. Pinelle, N. Wong, and T. Stach, ‘‘Using genres to customize usability
evaluations of video games,’’ in Proc. Conf. Future Play Res., Play, Share
Future Play, New York, NY, USA, 2008, pp. 129–136.

[60] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels, ‘‘Evolution of
human-competitive agents in modern computer games,’’ in Proc. IEEE Int.
Conf. Evol. Comput., Jul. 2006, pp. 777–784.

[61] J. Putzke, K. Fischbach, D. Schoder, and A. P. Gloor, ‘‘The evolution of
interaction networks in massively multiplayer online games,’’ J. Assoc. Inf.
Syst., vol. 11, no. 2, pp. 69–94, 2010.

[62] A. Rawal, P. Rajagopalan, andR.Miikkulainen, ‘‘Constructing competitive
and cooperative agent behavior using coevolution,’’ in Proc. IEEE Conf.
Comput. Intell. Games, Aug. 2010, pp. 107–114.

[63] W. C. Reynolds, ‘‘Competition, coevolution and the game of tag,’’ in Proc.
4th Int. Workshop Synth. Simul. Living Syst., 1994, pp. 59–69.

[64] C. D. Rosin and R. K. Belew, ‘‘Newmethods for competitive coevolution,’’
Evol. Comput., vol. 5, no. 1, pp. 1–29, Mar. 1997.

[65] S. Rudolph, S. V. Mammen, J. Jungbluth, and J. Hahner, ‘‘Design and
evaluation of an extended learning classifier-based StarCraft micro AI,’’
in Applications of Evolutionary Computation (Lecture Notes in Computer
Science), vol. 9597. Cham, Switzerland: Springer, 2016, pp. 669–681.

[66] A. S. Ruela and F. G. Guimaraes, ‘‘Coevolutionary procedural generation
of battle formations in massively multiplayer online strategy games,’’ in
Proc. Brazilian Symp. Comput. Games Digit. Entertainment, Nov. 2014,
pp. 89–98.

[67] A. S. Ruela and F. G. Guimarães, ‘‘Procedural generation of non-player
characters in massively multiplayer online strategy games,’’ Soft Comput.,
vol. 21, no. 23, pp. 7005–7020, Dec. 2017.

[68] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games, 1st ed. Cham, Switzerland: Springer, 2016.

[69] M. P. Singh, A. S. Rao, andM. P. Georgeff, Formal Methods in DAI: Logic-
Based Representation and Reasoning. Cambridge, MA, USA: MIT Press,
2020, pp. 331–376.

[70] G. Smith, M. P. Avery, R. Houmanfar, and J. S. Louis, ‘‘Using co-evolved
RTS opponents to teach spatial tactics,’’ in Proc. IEEE Conf. Comput.
Intell. Games (CIG), Aug. 2010, pp. 146–153.

[71] M. Szubert, W. Jaśkowski, P. Liskowski, and K. Krawiec, ‘‘Shaping fitness
function for evolutionary learning of game strategies,’’ in Proc. 15th Annu.
Conf. Genetic Evol. Comput. Conf. (GECCO), New York, NY, USA, 2013,
pp. 1149–1156.

[72] T. Thompson, J. Levine, and G. Hayes, ‘‘EvoTanks: Co-evolutionary
development of game-playing agents,’’ in Proc. IEEE Symp. Comput.
Intell. Games, Apr. 2007, pp. 328–333.

136664 VOLUME 9, 2021



E. Z. Elfeky et al.: Systematic Review of Coevolution in RTS Games

[73] J. Togelius, P. Burrow, and S.M. Lucas, ‘‘Multi-population competitive co-
evolution of car racing controllers,’’ in Proc. IEEE Congr. Evol. Comput.,
Sep. 2007, pp. 4043–4050.

[74] P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and
G. Rodriguez-Morales, ‘‘Methodology for systematic literature review
applied to engineering and education,’’ in Proc. IEEE Global Eng. Educ.
Conf. (EDUCON), Apr. 2018, pp. 1364–1373.

[75] E. Uchibe and M. Asada, ‘‘Incremental coevolution with competitive and
cooperative tasks in a multirobot environment,’’ Proc. IEEE, vol. 94, no. 7,
pp. 1412–1424, Jul. 2006.

[76] Y. Wang, Y. Qi, and Y. Li, ‘‘Memory-based multiagent coevolution
modeling for robust moving object tracking,’’ Sci. World J., vol. 2013,
pp. 1–13, Jan. 2013.

[77] C. H. Yong and R. Miikkulainen, ‘‘Cooperative coevolution of multi-agent
systems,’’ Univ. Texas, Austin, TX, USA, Tech. Rep. AI01-287, 2001.

[78] C. J. Young, ‘‘Game changers: Everyday gamemakers and the development
of the video game industry,’’ Ph.D. dissertation, Dept. Inf., Univ. Toronto,
Toronto, ON, Canada, 2018.

EHAB Z. ELFEKY (Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of New South Wales (UNSW) Canberra,
Australia, in 2009. He is currently a Research
Associate with the School of Engineering and
Information Technology, UNSW. His gained
expertise includes areas but not limited to solving
optimization problems in a parallel environment
for both large-scale and multi-objective domains.
His current research interests include evolutionary

computation and real-time strategy games using coevolutionary Intelligence.

SABER ELSAYED (Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of New South Wales (UNSW) Canberra, Aus-
tralia, in 2012. He is currently a Senior Lecturer
with the School of Engineering and Information
Technology, UNSW. His research interests include
evolutionary computation and scheduling and
swarm control using computational intelligence.
He served as the Chair for the IEEEComputational
Intelligence Society (ACT Chapter), from 2019 to

2020. He also serves as an associate editor for one international journal and
an organizing committeemember of different conferences in the evolutionary
computation field.

LUKE MARSH received the bachelor’s degree
in computer science from Newcastle University,
in 2001, and the master’s degree in sciences
from The University of Adelaide, in 2008. He is
currently a Discipline Leader with the Defence
Science and TechnologyGroup, with over 15 years
of experience applying AI and computational
intelligence to real world problems. His main
research interests include the application of com-
putational intelligence and machine learning algo-

rithms to military simulations for tactics learning.

DARYL ESSAM received the B.Sc. degree in com-
puter science from the University of New England,
Australia, in 1990, and the Ph.D. degree from
the University of New South Wales, Australia,
in 2000. Since 1994, he has been with UNSW at
Canberra, where he is currently a Senior Lecturer.
His research interests include genetic algorithms,
with a focus on both evolutionary optimization and
large-scale problems.

MADELEINE COCHRANE received the degree
(Hons.) in robotics and mechatronics engineering
from Swinburne University of Technology and
the bachelor’s degree in computer science from
Swinburne University of Technology, in 2018. She
is currently a Researcher with the Defence Science
and Technology Group, Australia. Her current
research interest includes distributed multi-agent
decision making.

BRENDAN SIMS received the Bachelor of
Mechatronic Engineering degree (Hons.) fromThe
University of Adelaide, in 2008. He has been
employed with DST Group, since 2009, and in
that time has worked as part of the Land Divi-
sion (formerly, Land Operations Division). His
research interests include agent-based distributed
decision-making methods and their application to
autonomous systems in scenarios of interest to the
Australian Defence Force.

RUHUL SARKER (Member, IEEE) received the
Ph.D. degree from Dalhousie University (former,
TUNS), Canada. He has been a Professor with
the School of Engineering and IT (SEIT), and the
Director of Faculty PGResearch, UNSWCanberra
(located at ADFA), since May 2015. He served
as the Deputy Head for the School (Research)
of SEIT, from 2011 to 2014. His research inter-
ests include decision analytics, CI/evolutionary
computation, operations research, and applied
optimization.

VOLUME 9, 2021 136665


