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ABSTRACT Automatic modulation classification (AMC) is a method that supported different wireless
communication systems for modulation type classification. Currently, orthogonal frequency division multi-
plexing, multiple-input, multiple-output systems are widely using this technique. Recent AMC methods are
designed for a single-carrier system identifying a fewmodulation types. To motivate the AMC for the current
communication systems, we present an intelligent pyramid model for automatic multi-carrier modulation
classification (AMC2-pyramid) which alleviates the existing works challenges such as high degradation of
accuracy for higher order modulation schemes, inefficient feature extraction and lack of effectiveness in low
SNR environments. The proposed work contains three significant operations, namely, signal fortification,
feature engineering and modulation classification. First, signal quality is estimated to reduce the complexity
in classification because some signals are affected by noise and other environmental or channel artefacts.
Hence, before pre-processing the signal, the quality is assessed according to the channel state information,
signal to inference plus noise ratio, received signal strength indicator and spectral efficiency. For low
quality, quality augmentation is applied. Then, quality augmentation is implemented with noise elimination,
equalisation, quantisation and channel frequency offset compensation. In the feature engineering step, feature
extraction and clustering are presented using the Gated Feature Response Pyramid Network (GaFP), and
a twin-functioned human mental search algorithm is used. The modulation classification is implemented
using a multi-distance-based nearest centroid classifier, and improved Q-learning is used to identify signals
as any of 16QAM, 32QAM, 64QAM, 128QAM, QPSK, BPSK, DPSK, ASK and FSK. The performance
of the proposed AMC2-pyramid is implemented using MatlabR2017b, where accuracy (6.8% - 23.15%)
high when compared to sample size and (14% - 46%) high when compared to SNR at −10 dB, precision
(4.96% - 29.5%) high when compared to sample size and (16.5% - 48.5%) high when compared to SNR
at −10 dB, recall (2- 29.76%) high when compared to sample size and (14% - 45%) high when compared
to SNR at −10dB, F-score (2- 30%) high when compared to sample size and (15.5%- 46.5%) high when
compared to SNR at−10 dB, error rate (0.7% - 11.5%) low when compared to sample size and (4.5%- 17%)
low when compared to SNR at−10 dB, computational time (170ms - 400ms) low when compared to sample
size is computed for the proposed work including previous well-known methods. The proposed work proves
that this method outperforms the previous ones.

INDEX TERMS Automatic modulation classification, multi-carrier system, signal quality assessment, gated
feature pyramid network, distance-based classifier, multi-modulation type detection.
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I. INTRODUCTION
Automatic modulation classification (AMC) is an emerg-
ing field that has great attention from various signal
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processing applications. However, the transmitter can choose
any modulation type of signal freely, but the receiver
must know the modulation type for demodulating it. Thus,
the transmission between the transmitter and receiver is suc-
cessful. The modulation process is essential for the commu-
nication system, which is used to transmit the high-frequency
carrier wave to a low-frequency signal. In this way, the trans-
mitted signal contains all the information of the origi-
nal message signal [1]. The communication system needs
modulation because the low-frequency signals cannot be
transmitted over long distances as such signals need to modu-
late high-frequency signals. Multi-carrier modulation is used
to transmit the data by dividing it into multiple compo-
nents, which send to the individual carrier signals [2]. This
signal has a narrow bandwidth, whereas the multiple sig-
nals have a wide bandwidth. The benefits of multi-carrier
modulation include relative protection for fading affected
by transmission over multiple paths at a particular time,
with less susceptibility compared with a single-carrier
system. In traditional modulation classification, the signal
features are classified manually through time-frequency fea-
tures, high-order statistics features and others, which are
not suitable for all conditions. As the signal characteris-
tics are not captured manually through various modulations,
the inappropriate feature selection leads to poor classification
accuracy [3]. In addition, the manual modulation is com-
plex and inaccurate when the number of modulation types
increased in the environment. These issues are addressed
by AMC, which is more effective than manual modulation.
AMC is vital in recognising the modulation algorithm used
by the transmitter to the receiver. AMC has wide appli-
cations in the military and civilian fields [4]. Typically,
AMC is performed for single- and multi-carrier modulation
techniques with no spectrum efficiency. Moreover, AMC
uses two techniques, that is, multiple-input multiple-output
(MIMO) and orthogonal frequency division multiplexing
(OFDM). The former provides multiple channels with the
independent transmission, which is under a definite condition
that increases the reliability and limited frequency resources
of the systems. Then, the latter is used to reduce inter-carrier
interference (ICI) and inter-symbol inference (ISI) because
of the use of multi-carrier modulation in the frequency-
selective channel. These techniques are used to achieve a
high data rate and reliability in AMC. The digital modula-
tion recognition schemes often come under the feature-based
technique [5] or likelihood ratio [6]. The maximum like-
lihood technique provides optimal solutions in AMC. The
threshold-based classification scheme is presented under an
AMC architecture [7].

Figure. 1 depicts the process of AMC, which includes
two blocks, namely, a transmitter and receiver. In the
transmitter, the input data are collected and send to the
automated modulator and then fed into a conversion. Then,
the data are transmitted to the receiver through the addi-
tive white Gaussian noise (AWGN) channel. The modu-
lated data are demodulated using a demodulator. Finally, the

FIGURE 1. Automatic modulation classification.

modulation type is classified and sends into the automatic
modulator for feedbacks.

Initially, machine learning (ML) algorithms are used for
feature engineering in AMC, which needs essential expert
experience. However, during complex functions learning,
ML is highly complex. Hence, a deep learning (DL) algorithm
is introduced in AMC. The main AMC works focus on the
use of growing DL approaches [7]. Many works developed
CNN for feature extraction and classification [8]. In CNN,
the extracted features may belong to statistical, spectral,
transform-based and others as CNN has learned the features
for modulation classification, which helps in addressing the
dimensionality issues [8]–[10]. Furthermore, the decision
may be made through direct voting, weighty voting, direct
averaging or weighty averaging. The CNN structure can be
modified (e.g. CNN is combined with a multi-stream net-
work) [11], [12]. Each approach is dedicated to different
works, and the final classification is performed by CNN.
However, the CNN has a high signal loss in the max-pooling
layer, which reduces the accuracy of AMC [13], [14]. How-
ever, the communication channel may be corrupted by addi-
tive noise, which cannot be handled by many AMC works,
and the low-order features are not suitable for classifying
higher-order modulation schemes [15]–[17]. Table 1 presents
a comparison of single- andmulti-carrier modulations param-
eters. For instance, single-carrier modulation has no subcar-
riers, whereas multi-carrier modulation has 2048 subcarriers.

TABLE 1. Comparison between single- and multi-carrier modulations.
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A. RESEARCH MOTIVATION
In recent times, AMChas received attention from researchers.
Many research works presented single-carrier modulation
systems. However, the growing communication systems,
such as LTE, use OFDM, which is a multi-carrier sys-
tem [18]. That is, AMC for a multi-carrier system is an
emerging topic. Most of the research works focused on
multi-carrier AMC in the presence of white noise or no
noise. However, in practice, the channel may be corrupted
by many more issues. All AMC works have been devel-
oped and tested in the ideal channel condition, which is
not possible in real-time applications. With the low-quality
modulated signal, the classification accuracy is too low even
for single-carrier AMC. Multi-carrier OFDM, which is an
emerging candidate for future generation networks (like 5G),
receives limited attention. Considering limited features often
decreases accuracy, and calculating these features in each
signal relatively increases time consumption. The AMCmust
handle all types of modulation schemes. In classification,
time consumption is high because of sequential feature learn-
ing and predictions. Motivated by these issues, we design a
novel AMC system for multi-carrier AMC for a more realistic
environment [19]. Hence, we designed some of the research
objectives as follows:
• To develop AMC for multi-carrier OFDM systems in a
non-ideal channel environment

• To perform feature engineering to support multiple mod-
ulation schemes with high discrimination

• To achieve high classification accuracy through the
feedback-based decision making

B. CONTRIBUTIONS
Tomeet the issues in previous works of single carrier modula-
tion classification, in this study we focus on the multi carrier
modulation classification scheme using deep learning algo-
rithms which can identify many signals and our contributions
are as follows,
• We propose an automatic multi-carrier modulation clas-
sification (AMC2) model for modulation classification
using an intelligent pyramid model, which is shortly
defined as AMC2-pyramid. In this model, three opera-
tions of work are deployed, namely, signal fortification,
feature engineering and modulation classification.

• Firstly, the (AMC2) model enhances the signal quality,
and such process is known as a fortification, which
includes two processes, that is, quality evaluation and
quality augmentation, using the Bi-Fold signal forti-
fication Bfsf) approach. The fairness score is calcu-
lated for quality enhancement. If the score is low,
then quality augmentation is performed by considering
noise removal, equalisation, quantisation and channel
frequency offset (CFO) compensation, to improve the
AMC accuracy.

• Secondly, we propose the gated feature pyramid net-
work (GaFP-Net) for feature extraction that extracts
all features (spectral, statistical, transformation and

constellation domains) from the signal. Through this
way of effective feature extraction, the proposed
AMC method achieves high classification accuracy.

• Thirdly, we clustered the extracted features using
an intelligent twin-functioned human mental search
(TF-HMS) optimiser to improve classifier accuracy and
also minimise classification complexity. TF uses clus-
ter purity and cluster entropy functions to update the
clusters.

• Finally, we propose the multi-distance-based nearest
centroid classifier (MdNC2) algorithm, and improved
Q-learning (IQL) is presented to classify the exact
modulation type for the received signal. Further-
more, GaFP-Net outperforms CNN, and the proposed
decision-making by Q-learning increases the accuracy
of the overall system.

The performance of the proposed work is compared in
terms of accuracy, precision, recall, f-score, error rate and
computational time with respect to two different scenarios,
namely, number of samples and SNR variations. The analysis
indicates that the proposed work has reached a peak perfor-
mance than the existing methods.

The rest of this paper is structured as follows. Section II
describes the literature review of AMC for single-carrier
and multi-carrier systems. Moreover, this section further dis-
cusses the classificationmethods, modulation types identified
and in detail. Section VI is dedicated to the investigation of
deficiencies for each work. Section III summarises the signif-
icant problems with the multi-carrier-based AMC methods.
Section IV discusses the signal model for multi-carrier sys-
tems. Section V shows the proposed AMC2-pyramid model
the performance analysis of the proposed and previous works
in terms of numerical evaluation. Section VII concludes the
paper and discusses future remarks.

II. RELATED WORK
This section reviews the most significant works established
for AMC and includes two subsections, namely, AMC
with DL and AMC without DL. Research gaps are also
determined.

A. AMC WITHOUT USING DL
The Kalman filter is integrated with adaptive interact-
ing multiple models (IMM) [20] to estimate the chan-
nel state information (CSI). The channel is decomposed
using singular-vector decomposition (SVD) by adding up
square root singular values. For AMC classification, a
quasi-likelihood ratio test and expectation-maximization
(EM) algorithm is proposed. All proposed algorithms are
working together for CSI estimation and AMC. However,
this work increases complexity, and the accuracy is also low
because of the presence of noise. AMC is presented in [21] on
5G unmanned aerial vehicle systems. This work aims at AMC
for the signals without prior knowledge of multipath chan-
nels. This work usesmean, variance, skewness and kurtosis of
wavelet transform as optimal features. To select the optimal
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feature subset, principal component analysis (PCA) is pro-
posed. In the end, a neural network classifier is employed
to identify the modulation scheme. Before feature extrac-
tion, the signals are pre-classified based on the threshold
value. The lack of important features and pre-processing
minimises the classification accuracy. To improve accu-
racy, this research proposed the K-nearest neighbor (KNN)
algorithm and genetic programming (GP) [22]. This work
uses eighth-order cumulants to classify the M-QAM and
M-PSK modulation schemes. From the cumulant features,
a single-stage super-feature set is generated by using GP
and then classified by the KNN algorithm. The overall work
is tested under AWGN channel conditions. In KNN, the
Euclidean distance measure is employed for M-PSK and
M-QAM classification. Considering instantaneous features
alone is not suitable to achieve better accuracy. To improve
classification accuracy, this research completely focuses on
the M-QAM signal classification [23]. In particular, this
work aims to classify the higher-order QAM techniques,
such as 128-QAM, 256-QAM, 512-QAM and 1024-QAM.
To achieve this, this work extracts the higher-order HOC
features from the input data. The entire work is tested under
the Gaussian noise channel. The extracted features and the
signal are fed into a logarithmic classifier to determine the
modulation scheme. The Gaussian noise is a common noise
that frequently occurs. In addition, the received signal may
be corrupted by various factors. However, this work is only
suitable for the AWGN noise (i.e. not suitable to handle other
noises).

Reference [24] uses the fourth-order cumulants for mod-
ulation classification. In this work, ASK, PSK and QAM
signals are analysed and classified. Firstly, the constellation
characteristics of each signal are analysed to reduce the
distance between two constellation points (i.e. constellation
size). This work considers the weighted fractional Fourier
transform (WF-RFT) system. From the first-order derivatives
of fourth-order cumulants, the optimalWFRFT order is deter-
mined. Then, classification is performed. This work is only
limited to PSK, ASK and QAM schemes. The lower-order
cumulant is not suitable for accurate classification. However,
to increase classification accuracy, authors [25] presented
a revised architecture for AMC. This work considers
analogue and digital modulation modes. The analogue mod-
ulation, such as amplitude modulation, frequency modu-
lation, phase modulation, single-sideband modulation and
double-side band-suppressed carrier techniques, are consid-
ered. Similarly, digital modulation techniques, such as ASK,
FSK, QAM and VSB, are considered. For classification,
instantaneous amplitude and phase features are extracted and
analysed. For each modulation scheme, a separate threshold
value is computed. Upon the threshold value, the modulation
scheme is classified. However, static threshold-based classi-
fication is not suitable to handle real-time noisy data because
it has large variations. However, the noises are removed by
the cepstrum-based pre-processing algorithm, which elim-
inates the multipath channel coefficient and noise [26].

A logarithmic functional fitting method is used to classify the
modulated signals. The cepstrum is a multipath signal pro-
cessing methodology that estimates the multipath parameters
effectively. The logarithmic functional fitting method clas-
sifies the signals by computing Euclidean distance between
features and logarithmic function values. Furthermore, this
work estimates the SNR value using the SVD method. This
work is tested under ideal channel conditions, which is not
practical.

Authors [27] jointly focused on radio-frequency identi-
fication (RFID), tag recognition and AMC. The hierarchi-
cal RFID recognition consists of blind source separation
(BSS), graph-based AMC and direct sequence spread spec-
trum (DSSS). Firstly, the multiplexed signal is separated
by BSS, which is initiated in the AMC for modulation iden-
tification. In the graph-based AMC, the graph is constructed
for all received signals. Then, the features are extracted from
the graph. Finally, graph-domain classification is performed
for AMC. The initial graph construction is a complex and
time-consuming process.

B. AMC WITH USING DL
To overcome the issues in ML, most of the researchers
use a convolutional neural network (CNN) for AMC, which
is under the DL model that provides high accuracy and
also solves the large-scale environment issues [28]–[34].
Author [28] a performed signal analysis by using the
DL method. In wireless signal processing, the following
processes are considered: signal pre-processing, feature
learning, classification and decision-making. In particular,
AMC becomes an interesting area of wireless signal clas-
sification. The CNN is utilised for modulation classifica-
tion. In the hidden layers, high-level features are extracted.
In recent times, multi-carrier modulation schemes are used
in many communication systems. Thus, multi-carrier mod-
ulation detection will be a better future research direction.
Here, the InceptionResNetV2 is combined with the transfer
adaptation [29]. Initially, the received signal is pre-processed,
and the constellation diagram is generated. The integrated
InceptionResNet2-TA is used to extract the features, and the
SVMclassifier is used to identify themodulationmode. Here,
PSK signals (QPSK, BPSK and 8PSK) are considered for
identification. However, SVM is a slow classifier, which takes
a huge time to classify the signals by matching the features
individually. In addition, the pre-processing step is unable to
fully eliminate the noise, which degrades the classification
accuracy. However, CNN is also used for cooperative AMC
in the MIMO system [30]. The receiver is equipped with
multiple antennas, and the modulation classification deci-
sion is made cooperatively. Each receiving antenna classifies
the signal by using CNN and provides the sub-results to
the decision-maker. On receiving results from all antennas,
the decision is made through direct voting, weighty voting,
direct averaging and weighty averaging methods. Further-
more, various decision-making rules are deployed to accurate
identification. In general, CNN has a high loss function,
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which degrades performance. The loss functions are reduced
by the proposed lightweight AMC (LightAMC), which is
proposed by [31] based on the DL approach. Here, the CNN
algorithm is used for feature extraction and classification.
Firstly, a scaling factor is introduced at each neuron. To pro-
vide the scaling factor, the compressive sensing concept is
introduced. The CNN parameters are tuned as per the SNR
estimated from the signals. The stochastic gradient descent is
preferred as the optimiser to train the CNN. Here, the fourth-
order cumulants are extracted as the features. Typically,
CNN has a high-loss function, which degrades the classifica-
tion accuracy. The considered features are limited, which are
insufficient for AMC. To improve the classification accuracy,
this work used combined features of CNN and handcraft [32].
In this work, the signal is converted into the images through
smooth pseudo-Wigner–Ville distribution and Born-Jordan
distribution. Then, a fine-tuned CNN model extracts the fea-
tures from the signals. Next, joint features are formed by
combining CNN and handcrafted features. To fuse these fea-
tures, a multimodality fusionmodel is proposed. The received
signal is analysed in both distribution methods, and then,
the features are fused for classification. This work has the
ability to classify the lower-order modulation schemes but is
not suitable for higher-order modulation schemes.

A DL-based multi-stream structure is proposed for mod-
ulation classification [33]. The CNN architecture is enriched
by introducing themulti-stream structure, which increases the
classification performance. The multi-stream network uses
the superposition of a small convolution kernel with fewer
parameters. The involvement of a multi-stream enriches each
feature. The multi-stream structure in the CNN also han-
dles the varying signal lengths. However, in the presence of
noise, the classification accuracy is poor. Nevertheless, to
increase the classification accuracy, this research designs a
cooperative classifier for AMC [34]. For cooperative classi-
fication, CNN, recurrent neural network (RNN), generative
adversarial network (GAN), cyclic-connected CNN (CCNN)
and bidirectional RNN (BRNN) are working cooperatively
to detect the modulation scheme. GAN is used to extend the
training data. CCNN is used to obtain the spatial features, and
BRNN is used to obtain the temporal features. To fuse the fea-
tures, global average and max pooling are proposed. In addi-
tion, the attention mechanism is presented for recalibration.
The consideration of multiple deep structures increases the
overall complexity of the system.
Synthesis of Related Work: From the prior research work

analysis, we have identified that the following research issues
still need to be resolved in the AMC: (1) AMC under a
noisy environment often leads to lower accuracy, (2) the
lack of effective feature extraction progress leads to higher
time consumption and complexity, (3) existing solutions are
unable to handle the noises other than AWGN, (3) CFO
and I/Q imbalance, which affects the classification severely,
are less focused, (4) overall, the accurate identification of
the modulation scheme is still challenging because of noise,
ineffective features and the poor classification algorithm.

III. PROBLEM STATEMENT
The current AMC classification techniques only use a few
modulation steps and generally focus on the single-carrier
signal-based AMC. However, recent research applications
demand multi-carrier modulations (e.g. OFDM). For that,
a classifier should be designed to classify a vast num-
ber of modulations. In earlier works, the following four
steps are frequently used for multi-carrier signal modulation
classification:
• Pre-processing
• Feature extraction
• Feature clustering
• Modulation type classification
In the following, the research gaps determined in the

previous works for the above steps are given, and the cor-
responding research solutions taken in the proposed model
are highlighted. The feature extraction, clustering and clas-
sification have been developed by [35], [36], and [37].
The multi-carrier modulation schemes, such as ASK, FSK
and PSK, are classified [35]. For modulation classification,
the time and frequency domain features are extracted. The
research problems identified in this work are as follows:
• In the presence of noise, the classification accuracy is too
low. However, communication channels often have high
noise, CFO and I/Q imbalance, which severely affect the
performance of the classifier [35]–[39].

• The spectral features (time and frequency domain) work
well only in the high SNR scenario, and the discrimina-
tion is also poor even for three modulation schemes.

• The Neutrosophic can handle only liner signals that can
be suitable for single-carrier AMC. However, Neutro-
sophic produces overlapped clusters for multi-carrier
AMC with multiple features. Thus, the feature process-
ing is ineffectual.

• This work summarises that the RF tree outperforms in
the classification process. However, the RF tree con-
sumes higher time for decision tree construction and has
large complexity.

Authors [36] proposed the OFDM modulation classifica-
tion algorithm based on the deep neural network. A blind
digital modulation classification method is presented for
OFDM systems [37]. The research problems are defined as
follows:
• Although HOS features work in a noisy environment,
such features fail when dealing with higher-order mod-
ulation techniques. Thus, the signals modulated with
higher-order modulation techniques will have a large
false-positive rate.

• In particular, lower-order HOS and HOC features are
extracted and are unable to classify even lower-order
modulations schemes. Furthermore, the computation
of all features from each signal increases the train-
ing and testing time (as the system uses multi-carrier
modulation).

The pre-processing-based modulation type is identified
by [38] and [39]. An AMC method is proposed for
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TABLE 2. Research summary.

multi-carrier OFDM transmission systems. This work mainly
focuses on future 5G networks [38]. The major problems of
this research are discussed as follows:
• In general, PCA leads to large signal loss, which affects
classification accuracy. Here, PCA only suppresses the
Gaussian noise and is not able to fully eliminate the noise
from signals. Other noises, such as CFO and impulse
noise, are still presented in the signal even after pre-
processing.

• The moment-based features help only for low-order
modulation schemes. Such features fail for higher-order
modulation schemes, such as 64-QAM and 128-QAM.

• Using CNN also tends to information loss because of the
presence of a max pool. Thus, signal loss by PCA and
CNN degrades the detection accuracy.

Authors [39] aimed to reduce the complexity of AMC sys-
tems. Three different classification algorithms are presented
for modulation classification. The problems in this work are
as follows:

• Here, the complexity is avoided by using simple DNN
structures. However, the feature learning and classifica-
tion process are still complex because the classification
has to learn multi-carrier signals.

• The extracted features are insufficient to classify the
various modulation schemes.

Figure 2 shows the research work plant at a low
SNR environment. Recent researchers focused on address-
ing the problems of the low SNR environment. Our work
focuses on four problems, such as CFO/IQ imbalance, inef-
ficient feature extraction, high complexity and low classi-
fication accuracy, which are solved by our proposed work.
Signal fortification solves the problem of CFO/IQ imbal-
ance, which increases classification accuracy and reduces
complexity because of the balance of the CFO/IQ. Ineffi-
cient feature extraction is solved through feature engineering,
which extracts the important features that increase classifi-
cation accuracy and reduce complexity. Here, signal fortifi-
cation provides equalise and noise-removed signals, which

VOLUME 9, 2021 137565



D. H. Al-Nuaimi et al.: AMC2-Pyramid: Intelligent Pyramidal Feature Engineering and Multi-Distance Decision Making

FIGURE 2. Research work plan.

reduce complexity. Moreover, the features are clustered by
intelligent feature clustering, which also reduces the com-
plexity of feature extraction from individual signals. Low
classification accuracy is solved by proposing an accurate
classification model and feature engineering.
Research Solutions: (1) We presented a signal fortifica-

tion phase with multiple pre-processing steps that eliminate
noise and compensate CFO and I/Q. This phase enhances
the quality of the received signal based on the channel con-
dition. (2) We extract instantaneous, statistical, transform
and constellation features to handle a noisy environment
and improve the classification accuracy. All these features
are learned by GaFP-Net, which is fast and accurate.
(3) For feature clustering, a novel twin-functioned-based
human mental search optimiser is proposed. The proposed
algorithm considers the clustering problem as an optimisa-
tion problem and solves it by considering bi-factors. This
algorithm can handle non-linear signals and resolves the
overlapping problem through cluster purity and entropy fac-
tors. (4) A dual distance-based classifier is presented with
two distance measures, which is accurate and has less com-
plexity. For modulation identification, a Q-learning-based
decision-making procedure is introduced. Fig. 2 depicts the
work plan of research work

IV. SIGNAL MODEL
Multi-carrier modulation is a type of modulation technique
that aims to perform data transmission by the source to
the destination through multiple carriers. Compared with
single-carrier modulation, multi-carrier modulation provides
significant advantages, such as high aggregated bit rate,
improved bandwidth rate, cost minimised power efficiency,
resilience to interference and narrowband fading.
Theorem: For a given measurement X (T) , 0 ≤ T ≤ τ ,

a modulation classifier is a system to classify the type of
modulation for X (T) from the set ofm possible modulation
as {i1, i2, . . . im}.

Proof: The received signal r (T) is considered a mod-
ulated signal transmitted through the communication signal

and corrupted by AWGN, which consists of intrinsic infor-
mation about the signal.

r (T) = X (T) ∗ H (T)+N (T) (1)

where X (T) represents the originally transmitted signal,
∗ represents the convolution andH (T) represents the impulse
response for the overall signal path, which contains Trans-
mit Pulse Shaping, Communication Channel and Receiver
Antenna before the demodulation steps. Moreover, N (T) is
the AWGN. The X (T) is expressed by follows:

X (T) =M
∑

N
SSEG (T − NTS) cos [2π (fc + fm)T

+ϕ0 + ϕm] (2)

where M is the modulation amplitude, SSE is the symbol
sequence, TS is the symbol time period, fc is the carrier
frequency at IF, fM is the modulation frequency, ϕ0 repre-
sents the initial phase and ϕM denotes the modulation phase.
G (T) represents the gate function, which is computed as
follows:

G (T) =
{
1 if 1 ≤ T ≤ TS
0 Other

(3)

For example, if M-QAM can be written as,

X (T) = A(1) +A(2) (4)

A(1) = M
∑

N
SSEG (T − NTS) cos [2π fcT + ϕ0] (5)

A(2) = M
∑

N
PSEG (T − NTS) cos [2π fcT + ϕ0] (6)

where SSE and PSE are the carriers modulated, which denotes
the

[
2M− 1−

√
M
]
and M represents the signal values of

QAM, that is, 16, 32, 64 and 128. Fig. 3 illustrates the
multi-carrier modulation.

V. PROPOSED AMC2 Pyramid MODEL
A. SYSTEM OVERVIEW
The proposed work aims to classify the modulated signals in
multi-carrier systems. Thus, we design a novel AMC2 system
by using a new signal fortification, pyramidal-based fea-
ture engineering and multi-distance decision-making phases.
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FIGURE 3. Multi-carrier modulation (e.g. OFDM).

Figure 4 shows the overall proposed work, in which we intend
to classify the received signal into the following classes:
16QAM, 32QAM, 64QAM, 128QAM,QPSK, BPSK,DPSK,
ASK and FSK.

B. SIGNAL FORTIFICATION
As we stated earlier, the signal received by the receiver may
be corrupted by different noises and CFO, I/Q imbalance.
Sometimes, the communication channel may be in ideal con-
ditions. However, the presence of noise often affects clas-
sification accuracy. Therefore, we first fortify the received
signal based on the signal quality by introducing the BfSf
approach. We perform Fairness Score fs-based quality eval-
uation at a first fold, which is described in follows:

For the transmitted signal, fs is computed by three input
parameters, namely, signal to inference plus noise ratio
(SINR), spectral efficiency δε and received signal strength
indicator (RSSI). Each input parameter is defined by follows:

SINR is defined as the ratio of signal power and the pres-
ence of noise in the received signal. Owing to interference to
other signals, interference is presented, which is expressed as
follows:

SINR =
PS

PN +
∑I

i=0 Pi
(7)

The SINR is computed in terms of signal power (PS ),
interference power because of ith channel (Pi) and noise
power (PN ). The core idea behind the consideration of the

SINR metric is that if the code is selected by the RSS, then
the code must have a better SINR range.

The performance of δε measures for the obtained sig-
nal is forwarded through transmission medium successfully.
Hence, the estimation of δε is performed as follows:

E =
r

B
(8)

where r is the information rate and B is the channel band-
width. The value of RSSI is measured by the power of the
received signal, and its value is computed by the amount of
power transmitted and received through a particular channel,
which is computed as follows:

RSSI =
PTx

PRx
(9)

where PTx represents the transmitted power and PRx repre-
sents the received power. A significant factor in the received
signal quality prediction is CSI. Most of the existing AMC
works have assumed that CSI is known at the receiver, which
results in less effective real-time wireless communication
systems. The EM estimator is used to estimate the channel
conditions with the Gaussian mixture model (GMM). The
number of signal samples, δ(1), δ(2), δ(3), . . . δ(n), in which the
nth sample belongs to the m component of GMM model,
is computed as follows:

(δ [n] ,m) =
1

2πσ 2
m
exp

−(δ[n]−θm)2

2σ2m (10)

where σm represents the variance and the corresponding soft
membership, computed as follows:

z (n,m) =
(δ [n] ,m)∑M
m=1 δ [n] ,m

(11)

where θm represents the mean component that contains a
structure, which is expressed as the transmitted symbols and
channel gain. This component is computed by channel coeffi-
cientH and modulation symbolMs and expressed as follows:

θm = H ∗Ms (12)

For the above derivative functions, the channel coefficient
and noise variance are computed as follows:

∂ log (δ, k)
∂H

=

∑M

m=1

∑N

n=1
z (δ(n),m)γm

(
−2δ [n] ·Ms + 2H ·M2

s

σ

)
(13)

∂ log (δ, k)
∂σ 2

=

∑M

m=1

∑N

n=1
z (δ(n),m)γm

(
−1
σ 2 +

(δ [n]− H .Ms)
2

σ 4

)
(14)

where γm represents the mixture proportion of the mth com-
ponent. By setting the above equation to zero, the functions
that received the channel gain and variance are computed as:

Hi+1 =

∑M
m=1

∑N
n=1 z (δ(n),m)γmδ[n]Ms∑M

m=1
∑N

n=1 z (δ(n),m)γmδ[n]M2
s

(15)

σi+1 =

∑M
m=1

∑N
n=1 z (δ(n),m)γmδ [n]− HiMs∑M
m=1

∑N
n=1 z (δ(n),m)γm

(16)

whereHi+1 and σi+1 are the estimation of the updated param-
eters for i+ 1 iterations. These functions update the expecta-
tion/condition maximisation.

fs is the linear combination of the four components,
namely, SINR, δε, RSSI and CSI. Based on the SINR, δε,
RSSI and CSI, fs is computed as follows:

fs = a · SINR+ b · δε + c · RSSI+ d · CSI (17)
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FIGURE 4. System model.

where a, b, c and d are the weights of SINR, δε, RSSI and
CSI, respectively. When SINR, δε, CSI and RSSI of the
received signal is high, fs is high. If the quality of the signal
is too low, then the signal is augmented in the next fold. For
the signals not satisfied by the fs, augmentation operations
are used. Three kinds of operations are used. In the next
set of the fold, we present the L1-Norm Filter (for noise
removal), Multi-Rate Equaliser (for equalisation), One-bit
Quantiser (for quantisation) and Fast Iterative Method (for
CFO compensation). At the end of this fold, the signal is
enriched. If the signal quality in the first fold is high, then
the signal is fed into the next phase. Otherwise, the signal is
fortified and then fed into the next phase.

1) NOISE REMOVAL
If the transmitted signal consists ofN (T), then the probability
density function (PDF) of N (T) is computed by follows:

fw (x) =
1

2π
√
6
e
|x|2

2
√
6 (18)

where 6 is the covariance of noise. The IQ component,
that is, in-phase and quadrature components, is considered
separately. Hence, the noise level of both components should
be discussed [40]. The covariance σ 2 for the IQ component

is derived as follows:

6 =

[
σ 2
I pσIσQ

pσIσQ σ 2
Q

]
=

[
σ 2 0
0 σ 2

]
(19)

where σI and σQ are the variance of in-phase and quadrature
components, respectively. For the in-phase and out-phase
components, the PDF is obtained.

IQ (PDF) =
1

2π
√
6
e
|x|2

2
√
6 (20)

L1-norm is a simple noise filter that defines the sum of
absolute values of each element in the vector [41], [42]. For a
given arbitrary vector of sample n, the L1-norm filter applied
for n is as follows:

‖L‖1 =
∑n

j=1
vj(n), (21)

where vj is the jth element vectors of n. Based on the above
equation, the L1-norm filter removes the noises in the signal.

2) EQUALISATION
The most significant property of equalisation is choosing the
receiver’s filter for compensating the radio channel frequency
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FIGURE 5. Feature extraction using GaFPNet.

selectivity completely. This is achieved by the receiver’s
filter impulse response, which must satisfy the following
constraints:

W = 1 (22)

where W is the equaliser impulse response, is the channel
impulse response and is the linear convolution. The objec-
tive of the receiver is to reduce the mean square error (MSE)
for equalising the transmitted signal, which is derived as
follows:

MSE = ε
{
| t − t |

2
}

(23)

where t and t are the estimated and actual transmitted
signals, respectively.

3) QUANTISATION
In this study, we use one-bit quantiser, which is also known
as an asymptotically adaptive optimiser for performing quan-
tisation. The cumulative distribution function is defined as
the f (w) and is computed as follows:

f (w) = D ∗ C/
2 (1/C)e

−(D/w)C (24)

where (.) is the Gamma Function, and D−1 > 0 and C > 0
represent the scale and shape parameters [43]. In this case,
notably, the value of C ranges from 1, 2 to∞.

4) CFO COMPENSATION
Assuming that the FC and F′C are the carrier frequency of the
transmitter and receiver respectively, which is expressed as,

CFO = FC − F′C (25)

The normalised CFON (CFO) can be computed by,

N (CFO) =
CFO
1SS

(26)

where 1SS represents the subcarrier spacing and N (CFO)
is adaptively address the loss of signal amplitude infor-
mation at the frequency domain. Therefore, the transmit-
ter and receiver have obtained better performance through
CFO compensation [44].

C. FEATURE ENGINEERING
In this phase, we extract the important features from the
enriched signals, and then, we group the features to minimise
the complexity of classification. The following processes are
performed in this phase.

1) PYRAMID-BASED FEATURE EXTRACTION
We present a novel GaFP-Net to learn features from the
received signals. The GaFP-Net is the new Pyramid network
model that learns the features rapidly without degradation
in efficiency [45], [46]. In GaFP-Net, we learn Spectral
(like time and frequency domain), Statistical (e.g. HOS,
HOC), Transform (like FFT) and Constellation features.
Recently, signals are complex in nature and consist of back-
ground noises caused by channel environments and fluctua-
tion in signals. For instance, statistical features represent the
higher-order properties of the signal.

In this study, GaFP-Net is presented, which adaptively
extracts features from the signal at any frequency and ampli-
tude. Four components are used in GaFP-Net to extract fea-
tures, such as gate, channel level and global level attention,
identity mapping and feature reuse. Figure 5 present the
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working of GaFP-Net. Each component used in GaFP-Net is
as follows:

(i) Gate: Gate is a significant function in the feature pyra-
mid network, which is denoted as f that converts input fea-
ture maps to output, that is, ot (fm→ ot ) represents the set of
filter maps as fm (1) , fm (2) , fm (3) . . . fm (n). Thus, the output
function for feature maps in gate is computed as follows:

ot = f (fm) (27)

(ii). Global and Channel Level Attention: The goal of
channel level attention is to model the relationship between
the global level feature to enrich the network to scale well
for different signals. In the channel level attention, squeeze
and excitation block consist SQUEEZE stage SQ for global
feature embedding operation, and EX is used for channel
feature excitation. Finally, fm by SQ and EX is utilised as
follows:

f̀m = EX ( SQ (fm)) (28)

The SQ and EX stages are used for all feature maps, and
the global and channel level attention is performed in the
backbone network (BN).

(iii) Identity Mapping: In this step, the Element-Wise
addition operation is used for the final output, which is for-
mulated as follows:

ot = f ⊕ V (29)

where ⊕ is the elementwise addition operation.
(iv). Feature Reuse: In GaFP-Net, this step plays a signif-

icant role before and after completing the gating operation.
A dense feature connection is evaluated in feature reuse for
accurate feature extraction.

GaFP-Net automatically generates higher-order features
by computing the weights and thresholds in training. Firstly,
the modulated signals are sent to the GaFP-Net for training.
In this step, feature vectors are obtained, and then, the loss
function is computed by the target vectors. The loss function
L is computed as follows:

L =
1
2

∑n−1

k=0
(dk − yk)2 (30)

where L derives the standard derivation, yk represents the out-
put vector and dk represents target vector. The threshold and
weight values of feature vectors are updated simultaneously
by L, and the update function is derived by follows:

1 jk (n) = 1+ l
∗ (1 jk (n− 1)+ 1) ∗ BN j ∗ Ik (31)

where is the learning rate, j is the neural unit of BN layer
units, k is the output layer unit, n is the number of output neu-
ron units, BN j is the output vector of the BN, is the weight
value which updated by L and I represents the threshold value,
which is computed as follows:

Ik = BN j
(
1− BN j

)∑n−1

k=1
Ik jk (32)

Each signal varies in terms of wavelength and frequency,
and hence, Ik and 1 jk is updated accordingly.

Figure 5 describes the work of the proposed feature extrac-
tion method. This method is constructed and guided by vari-
ous fields of a gated feature pyramid model that exploits the
discriminative information for different types of input signals.
The proposed feature extraction network is widening and in
depth instead of maximising the length of network construc-
tion. At the end of this step, the features are extracted from
the signals. Considering all significant features improves the
classification accuracy and provides better discrimination
between modulation techniques. Table 3 presents the list of
extracted features.

2) INTELLIGENT FEATURE CLUSTERING
After feature extraction, we perform a feature clustering
process to minimise the complexity during classification.
To form feature clusters, we propose a novel TF-HMS
algorithm, which provides a better-clustered result than the
Neutrosophic C-Means clustering algorithm [1]. HMS is a
Meta-heuristic population-based optimisation algorithm that
works by bid space search. Similar to other population-based
approaches, HMS is performed by creating a set of candidate
solutions randomly. A form of each solution is called ‘‘Bid.’’
To search a bid over the dimensional space, the population
is defined as follows:

Bid = {x1, x2 . . . x } (33)

Each bid in equation (33) is accessed by the specific
objective function OF(), which is evaluated by the candidate
solution quality:

OF (bid) = OF (x1, x2 . . . x ) (34)

Based on the mental search operation, bids in are
grouped for a maximum number of iterations. In the
proposed TF-HMS, a form of a bid is feature vectors JV,
which encode the cluster centre. An array length is repre-
sented as K , which is a number of clusters [48]. The upper
and lower bound values are computed for each bid, which is
represented as L = min(JV),U = max(JV), where the upper
and lower bounds are the minimum- and maximum-based
feature vectors. For that, our objective function is computed
by three parameters: (1) expressing error, (2) intra-cluster
distance and (3) inter-cluster distance. The weight value of
these parameters is as follows:

OF (Bid, JV) = C1dmax (Z ,Bid)

+C2
(
Zmax − dmin (JV,Bid)+ C3Ie

)
(35)

where Bid represents the [x1, x2 . . . xk ] with xi representing
the ith cluster centre, Zmax is the maximum data value and
C1, C2 and C3 are the weight values of JV.
The algorithm procedure for TF-HMS is as follows:
Step 1 (Initialise Parameters): A set of input parameters

are initialised in this step, and the parameters are number of
clusters K , number of bids N , the number of clusters for bid

137570 VOLUME 9, 2021



D. H. Al-Nuaimi et al.: AMC2-Pyramid: Intelligent Pyramidal Feature Engineering and Multi-Distance Decision Making

TABLE 3. List of extracted features.

grouping KBG and the mental searches (Min and Max) Mmin
and Mmax
Step 2 (Population Initialisation): For the set of bids N ,

population P is defined as follows:

P =

 Bid1
. . . .

BidN

 (36)

Step 3 (Objective Function Calculation): For each Bid i,
the objective function is computed.

Step 4 (Choose the Best Bid): Choose the best bid that
consists of better objective values.

Step 5 (Select Random Number): For every Bid i, select
the random value betweenMmin andMmax .
Step 6 (Mental Search Operator): Make the new bids in

the vicinity of existing bids by levy function, which is carried
out as follows:

NPOS = Bid i + S (37)

where S is the number of steps, which is computed by the
maximum number of iterations and random values and is
expressed as follows:

S =
(
2− I ∗

(
2

MaxI

))
∗ ⊕ Levy (38)

where MaxI represents the maximum number of iterations,
I represents the current iteration, is the random variable and

the symbol ⊕ is the element-wise multiplication. Then, the
step size S is written as follows:

S =
(
2− I ∗

(
2

MaxI

))
∗ 0.01 ∗

U

V
1
β

∗

(
x i − x∗

)
(39)

where x∗ represents the best position andU and V are the two
random variables, which represent the normal distribution.

Step 7 (Replacement Operator): In this step, the new bid
is replaced with its previous bid when it is better.

Step 8 (Bids Grouping): This step groups the bid popula-
tion into a number of clusters.

Step 9 (Compute Objective Function):This step com-
putes the objective function value for each cluster member.
A cluster within the minimum mean objective function is
chosen as the final cluster. Then, the remaining bids move
towards the best bid available in the winner group.

Step 10 (Terminate Conditions): Do until the stop crite-
rion is satisfied; otherwise, go back to step 2.

For JV, the k number of feature clusters are formed, such
as C1,C2 . . .Ck . Each cluster must be related to the two
functions: Cluster Purity and Cluster Entropy ε. Their
computations are illustrated below:

=
1
Ni

∑n

xj∈cj
d(xj,mj) (40)

ε =
xi + xj
d(mi,mj)

(41)
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FIGURE 6. Feature clustered result.

where Ni is the number of samples in the ith cluster, and
d(xj,mj) is the distance between sample xj and center value
mj. The TF-HMS optimiser improves the clustering perfor-
mance based on and ε functions.

D. MODULATION IDENTIFICATION
In this phase, we propose classification and decision-making
processes to achieve accurate modulation identification. Both
processes are explained as follows:

1) MULTI-CARRIER MULTI-LEVEL CLASSIFICATION
The received multi-carrier signals are fed into the classifica-
tion module, in which we present a multi-level classification.
Thus, we design the MdNC2 algorithm. In the MdNC2 algo-
rithm, the received multi-carrier signals (clustered feature
vectors) are classified in parallel by using efficient distance
measures, such as Hassanat Distance (HasD), Lorentzian
Distance (LoD), Canberra Distance (CanD) and Divergence
Distance (DivD). The distance between feature clusters are
formulated as follows:

HasD(X ,Y ) =
∑N

i=1
D (Xi,Yi) (42)

where,

D (Xi,Yi)

=


1−

1+Min (Xi,Yi)
1+Max (Xi,Yi)

Min(Xi,Yi) ≥ 0

1−
1+Min (Xi,Yi)+ |Min (Xi,Yi)|
1+Max (Xi,Yi)+ |Min (Xi,Yi)|

Min (Xi,Yi) < 0

(43)

The distance value will be in the range of 0 to 1.
LoD represents the natural log of the absolute difference
between two feature vectors, and when the distance value
is smaller, the result will be sensitive. Owing the log scale

expands the low range and compresses to a higher range. The
LoD is computed as follows:

LoD (X ,Y ) =
∑N

i=1
ln (1+ |Xi − Yi|) (44)

where ln is the natural log value and ensures the non-
negativity property and that log value zero is avoided by
adding the distance with 1. The CanD is adopted for
high-dimensional and non-linear space, which is another ver-
sion of Manhattan Distance, where the absolute difference
between two feature clusters is computed in this study. The
CanD is also highly sensitive to small changes. Therefore,
the CanD is defined as follows:

CanD (X ,Y ) =
∑n

i=1

|Xi − Yi|
|Xi| + |Yi|

(45)

Finally, the DivD is defined as follows:

DivD(X ,Y ) = 2
∑N

i=1

(Xi − Yi)2

(Xi + Yi)2
(46)

Before computing the weight by all distance measures,
the range of the distance value for each metric is normalised.
However, the range of the distance metric is obtained by
different measurements, which leads to the imbalance in the
weight computation and nearest centroid assignment. Hence,
we normalise the distance value as follows:

NormalizeD(xy) =
[Jk(µ)−δ(x,y)]

2

3σ(x,y)
(47)

where Jk represents the feature clusters and δ(x,y) and 3σ(x,y)
are the mean and standard deviation, respectively, of the
similarity between the distance values. The NormalizeD(xy)
function ensures that all distances have an equal amount of
importance. The weight value wi is computed by all distance
values as follows, which is the sum of all distance measures.

wi =
µ1(x, y)+µ2(x, y)+µ3(x, y)+µ4(x, y)

4
0 ≤ µi ≤ 1

(48)

where µ1, µ2, µ3 and µ4 are the distance values of
HasD,LoD, CanD and DivD between x and y clusters,
respectively. Based on wi, the nearest centroid NC is com-
puted for the particular signal. Subsequently, NC is forward
to the next step for the type of modulation identification.

2) REINFORCED DECISION-MAKING
Typically, the accuracy of an AMC system completely
depends on the demodulation process. If the signal is
demodulated successfully, then the AMC works accurately.
Otherwise, the performance of the AMC system is poor.
By considering this fact, we present an IQ-L procedure for
accurate MC-AMC. The IQ-L algorithm takes the classifica-
tion results and identifies the modulation schemes as QAM
(16, 32, 64, 128), PSK (QPSK, BPSK, DPSK), ASK and
FSK. The IQ-L algorithm takes an action by learning the
environment (demodulation error).
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Algorithm 1 Algorithm for IQL
Initialize: Q-table, State st , sinit , control variables a and b, number of

feature clusters Fc, learning rate α, discount factor γ and transmitted signal

1: Loop for each episode

2: Initialize Fc = 1 and st = sinit
3:While (η < ηc) // ηc = threshold

4: Choose action at according to ε greedy policy

5: Take action at and observe rt+1 and st+1
6: Compute Q value

Q (st , at )← Q (st , at )+ α[rt+1 + γmaxaQ
(
St+1, a

)
− Q (st , at )]

7: st = st+1;

8: End While

In the proposed AMC2-pyramid method, to classify mod-
ulation types, the IQL elements are defined as follows:
• Environment:The perceived environment considered in
this study is transmitted signal, feature vector clusters
and distance between true and estimated feature vectors.

• Agents: The modulation type decision-making step is
denoted as an agent. Concurrently, the agent interacts
with the perceived environment over time.

• States: A list of states for an agent consists of the
following observations:
– A vector of feature values and assigned cluster
– Transmitted signal
– Distance between feature vector clusters

• Actions:A list of actions for the corresponding transmit-
ted and trained signals 16-QAM, 32-QAM, 64-QAM,
128-QAM, QPSK, BPSK, DPSK, ASK and FSK.

• Reward:Reward represents the reciprocal classification
error. If the reward function has a positive value, then the
classification result is less than the threshold value. Oth-
erwise, the agent received a negative reward. Whenever
the agent is close to the target, the agent gains additional
rewards. Therefore, the reward function is computed as
follows:

Rt =


1

‖ot − ρt‖
if 0 < | ‖ot − ρt‖ ≤ δ

−‖ot − ρt‖ Otherwise
(49)

where ot and ρt are the observed and target results,
respectively. The procedure of IQL is given as follows:

VI. EXPERIMENTAL RESULTS
This section investigates the experimental results of the pro-
posed AMC2-pyramid method. To provide a brief analysis
of the proposed AMC2-pyramid method, this section is fur-
ther divided into three subsections, namely, simulation setup,
comparative analysis and results and discussion.

A. SIMULATION SETUP
The simulation setup for the proposed AMC2-pyramid
method is presented in this section. The simulation environ-
ment is created and analysed using MATLAB R2017b. The
total number of training and testing signals is 1024 samples.

TABLE 4. Modulated signal settings.

TABLE 5. Algorithm parameter setting.

Table 4 shows each sample simulation setting, and the signals
are classified into 16QAM, 32QAM, 64QAM, 128QAM,
QPSK, BPSK, DPSK, ASK and FSK. Fig 8 illustrates some
samples generated for evaluation.

To test and train the number of signals, AWGN is added
with the SNR rate between −10 and 10 dB. Proving a better
performance is significant when modulated signals consist of
noisy values.
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FIGURE 7. Working of IQL.

FIGURE 8. (a) FSK modulation, (b) ASK modulation, and (c) PSK modulation.

B. COMPARATIVE ANALYSIS
To compare the proposed AMC2-pyramid method, four sets
of performance metrics are used, that is, accuracy, preci-
sion, recall and F-score. The simulation results of the pro-
posed AMC2-pyramid method is compared with the existing
methods, namely, NCA [35], PSO-DNN [36], OFDM [37]
and RBF-DNN [39]. The concepts of those previous works
are related to the proposed AMC2-pyramid method with
the core intention of modulation type identification for the
multi-carrier system. The processes undertaken by the pre-
vious works are preprocessing, feature extraction, clustering
and classification. Furthermore, Table 6 shows a qualitative
comparison of the proposed AMC2-pyramid method and the
previous methods. The performance metrics are evaluated
for two different cases, namely, the sample size and SNR
variations from low to high. The definition, mathematical
formulations and the comparison of the proposed AMC2-
pyramid method are defined as follows:

1) ACCURACY
Accuracy is a significant metric for measuring the modu-
lated signal performance. Moreover, accuracy is estimated by
successfully predicting the modulation types to the sum of
true values of the received signal at the receiver, which isr
computed as follows:

Accuracy =
# of correct predictions

Total number of predictions
(50)

(or) =
TP+ TN

TP+ TN + FP+ FN
(51)

where TP is the true positive, TN is the true negative, FP is
the false positive and FN is the false negative.
Accuracy is computed for the proposed AMC2-pyramid

method by different distance measures, such as Lorentzian,
Canberra, Divergence, Hassanat and Multi-Distance, which
is shown in Figure 9(a) and (b). A distance-based classifier
is a non-parameter method, where its performance is higher
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TABLE 6. Comparative analysis.
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FIGURE 9. (a) Accuracy for different distance measure vs. sample size.
(b) Accuracy for different distance measure vs. SNR.

than parameter-based methods. A similarity between feature
vectors is measured by distance functions. In multi-distance,
the mean value gives a better modulation result.

It is computed by the distance weighting in all distance
measures. For each test feature vector, the non-parametric
method computes the distance to all trained feature vectors.
Compared with multi-distance, other distance metrics pro-
duces less accuracy. When the feature dimension is very
large, then a single-distance function is not sufficient to pre-
dict the true values. Hence, the mean value computation by
multiple distance functions provides an accurate modulation
type for the obtained signal.

For different SNR values (−10 to 10 dB), the performance
of accuracy is computed, which is shown in Figure. 9 (b).
Computing a single-distance function using feature vectors
result in a problem in a modulation type classification, that
is, it leads to misclassification. From the graphical results,
the multi-distance function represents the best outcome than
other distance functions. Furthermore, the performance of

FIGURE 10. (a) Sample size vs. accuracy. (b) SNR vs. accuracy.

extracted feature vectors under different SNR values pro-
duces a higher accuracy.

The overall classification accuracy is computed in terms
of sample size and SNR variations, which are given in
Figure. 10(a) and (b), respectively. The sample size represents
the sum of instances considered for classification. The overall
classification accuracy is defined as the probability of correct
classification (PCC) rate. The most significant open issue in
AMC is how to improve the overall classification accuracy
for different modulation types in multi-carrier/single-carrier
systems. This study is based on the above statement. Thus,
the proposed AMC2-pyramid method fix this open issue by
proposing novel contributions, such as noise level reduc-
tion, signal quality quantisation, CFO compensation,multiple
feature extraction, and distance-based classification. These
contributions help to improve the accuracy. As a result of
optimised parameters (noiseless environment, adequate fea-
ture vectors for different SNR ranges), the overall classifica-
tion accuracy for the proposed AMC2-pyramid method has
obtained a better outcome.

To conclude the performance of accuracy with respect
to the size, the proposed model has used more effective
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FIGURE 11. (a) Confusion matrix for OFDM. (b) Confusion matrix for NCA.
(c) Confusion matrix for PSO-DNN. (d) Confusion matrix for RBF-DNN.
(e) Confusion matrix for AMC2N. (f) confusion matrix for
AMC2-pyramid.

FIGURE 11. (continued.) (a) Confusion matrix for OFDM. (b) Confusion
matrix for NCA. (c) Confusion matrix for PSO-DNN. (d) Confusion matrix
for RBF-DNN. (e) Confusion matrix for AMC2N. (f) confusion matrix for
AMC2-pyramid.

features and algorithms for each processing, which pro-
vides better results than previous works. When the sample
size is getting increased the accuracy of our proposed work
is 98.8% which gives better results than AMC2N (92%),
RBF-DNN (84.3%), NCA (80.9%), PSO-DNN (78.7%) and
OFDM (75.65%). Thus, the proposed model obtained better
accuracy although the number of samples increases. Form
the comparison it is said that our proposed work achieve
(6.8% - 23.15%) high accuracy in terms of sample size than
existing works

In Figure. 10 (b), the overall classification accuracy is
given for SNR variations, and the analysis defines that the
proposed model obtains higher classification accuracy than
previousworks. Themajor reason behind this higher accuracy
is feature extraction, clustering and distance computation. All
these processes are significant in a signal modulation clas-
sification. For example, spectral features not only improve
the classification but also help in reducing the demodulation
error. The previous works are better when the SNR is greater
than 0 dB but is worse when SNR is less than 0 dB. The
reason is the lack of feature extraction for a modulated signal.
Different modulation modes are defined with different prob-
ability rates, which are different based on the signal sampling
point and a data frame. Under the low SNR (e.g. −10 dB),
the proposed work obtains 86% of accuracy, whereas the
previous works have obtained 72%, 69%, 48%, 45% and
40% for AMC2N, RBF-DNN PSO-DNN, NCA and OFDM
respectively. Form the comparison it is said that our proposed
work achieves (14% - 46%) high accuracy in terms of SNR
at −10 dB level than existing works.
A result of the confusion matrix for accuracy is computed

for SNR at 10 dB. A confusion matrix is a N × N matrix
that aims to evaluate the performance of a classifier, in which
N represents the number of classes to be classified. This
matrix compares the true value of the class in the train-
ing to the predicted value in testing. For our case, that is,
multi-modulation type classification problem, the size of the
confusion matrix is 9 × 9. The TP, TN, FP and FN for each
modulation are computed by adding the cell values.
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The value of the confusion matrix is evaluated to the pro-
posedAMC2-pyramidmethod and previous works as OFDM,
NCA, PSO-DN, RBF-DNN and AMC2Nwhich are shown in
Figure. 11(a)–(f). For all modulation types, namely, 16QAM,
32QAM, 64QAM, 128QAM, QPSK, BPS, DPSK, ASK and
FSK, the AMC2-pyramid method exhibits better results than
previous works. In detail, the AMC2-pyramid method has
obtained ∼= 99% of accuracy under 10 dB SNR value.

2) PRECISION
Precision is defined as the measure of percentage for true pos-
itive count (predicted accurate modulation types) to the total
number of obtained types of modulations and is computed as
follows:

Precision =
TN

TN + FP
(52)

Figure 12(a) shows the result of precision in terms of
sample size. The use of spectral-domain information helps
in improving the performance of precision than the HOS and
HOC features. Previous works used a raw set of features for
classification, which is not effective even under high SNR
values. Furthermore, previous works established the classifi-
cation model with the addition of white Gaussian noise. As a
result of these effects, the precision is greatly reduced in pre-
vious works. The precision with respect to the overall sample
size (N = 200) for proposed is 97.52% and for existing works
are 92.56%, 82.25%, 79.6%, 72.22% and 68% for AMC2N,
RBF-DNN, PSO-DNN, NCA, OFDM respectively. Form the
above results it is shown that the proposed work precision
rate in terms of sample size is (4.96% - 29.5%) higher than
existing works.

By considering the demodulation error in IQL, the reward
is accurately computed, and action is taken based on
the current reward. In addition, the precision of the
AMC2-pyramid model increases rapidly with SNR from low
to high. The proposed AMC2-pyramid model is highly capa-
ble of classifying the modulation type with good precision.
Under low SNR ranges, previous algorithms are constrained
by AWGN noise and also poor CFO compensation. Thus,
the performance of precision has not reached the extent.
When the SNR is 10 dB, the proposed method can reach
above 99% when compared to existing works which has pre-
cision in terms of SNR at −10 dB for proposed is 88.5% and
for existing works are AMC2N (72%), RBF-DNN (69.5%),
PSO-DNN (42.5%), NCA (41.5%) and OFDM (40%).
Figure 12(b) depicts the simulation results with respect to
SNR variation. From the above results it is shown that the
proposed work precision rate in terms of SNR at −10 dB is
(16.5% - 48.5 dB) higher than existing works.

3) RECALL
To better explain the efficiency of the proposed work, recall
is evaluated with respect to the number of samples and SNR

FIGURE 12. (a) Sample size vs. precision. (b) SNR vs. precision.

variations. Recall is described as the computation of the sum
of accurate modulation type identified samples from the total
number of positive predictions. This metric describes the
comprehensiveness of any classification system as it indicates
the missed positive predicted result, which is computed as
follows:

Recall =
TP

TP+ FN
(53)

Figures 13(a) and (b) shows the recall of the proposed
work and previous works with respect to sample size and
different SNR levels. From the analysis, the performance of
the proposed work in terms of recall outperforms the existing
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FIGURE 13. (a) Sample size vs. recall. (b) SNR vs. recall.

works. However, signal features, such as spectral domain, sta-
tistical, transform and constellation features, are used in the
classification step. For any high-order modulation scheme,
the proposed work has obtained a higher recall than that of
previous works. Owing to the inefficiency in pre-processing
steps, namely, denoising, equalising, quantisation and
CFO compensation, and limited set of features, the recall
performance is lower in terms of sample size and
SNR variations.

As shown in Figures 13(a) and (b), the proposed work per-
formance in terms of sample size vs recall 99% which shows
the better performance than the existing works AMC2N
(97%), RBF-DNN (87.8%), PSO-DNN (80%), NCA (73%)
and OFDM (69.23%). The proposed work performance in

terms of SNR at−10 dB vs recall is 85% which shows better
performance than existing works AMC2N (71%), RBF-DNN
(68.5%), PSO-DNN (46.5%), NCA (42%) andOFDM (40%).
From the above results it is shown that the recall rate in
terms of sample size is (2 – 29.76) high and recall rate in
terms of SNR at −10 dB is (14% - 45%) high than existing
works.

4) F-SCORE
F-score is a harmonic mean of the precision and recall values,
and f-score is computed through the precision and recall of
the weighted value. When F-score reaches a value of 1, the
classification model performance is high, which is expressed
as follows:

F − Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(54)

The simulation result of the f-score is computed for two
cases: sample size and SNR variations. Fig. 14(a) and (b)
shows the representation of graphical plots for f-score.
According to the results depicted in Fig. 14(a) and (b),
the proposed work in f-score obtains higher values than
the previous methods. In 14 (a) the comparison of F-score
with sample size which shows the proposed method f-score
is 98.5% weather the existing methods such as AMC2N
(96.5%), RBF-DNN (85%), PSO-DNN (82%), NCA (78%)
and OFDM (68.5%). In 14 (b) the comparison of F-score
with SNR at −10 dB which shows the proposed method
F-score is 88% weather existing methods such as AMC2N
(72.5%), RBF-DNN (68%), PSO-DNN (46%), NCA (42%)
and OFDM (41.5%). From the above results it is shown that
F-score value in terms of sample size is (2%- 30%) high
and F-score value in terms of SNR at −10 dB is (15.5%-
46.5%) high than existing works. When the modulation type
class is similar to the trained result, the F-score has a better
value when imbalancedmodulation type predictions exist and
then the f-score is lower. In most real-world communication
systems, such as MIMO and OFDM, F-score is a bet-
ter metric to analyse the performance of modulated sig-
nals and addressed imbalanced type classification prob-
lems. For our proposed AMC2-pyramid model, no sample
size or SNR values are worse than those of the existing
methods.

Furthermore, we obtain a higher precision and recall, and
the combination of the f-score obtains a better outcome
where we predict positive classes for all modulated signals
received at the receiver by ∼=98.56%. Hence, we say that the
proposed work is better for any sample size and any SNR
variations.

5) ERROR RATE
On any classification system, the error rate must be lower to
prove better performance, which is defined as the proportion
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FIGURE 14. (a) Sample size vs. F-score. (b) SNR vs. F-score.

of samples misclassified over the whole set of samples.

Error Rate =
# of Errors
# of Samples

(55)

=
FN + FP

TP+ TN + FP+ FN
(56)

When the trained set is much optimistic or imbalanced,
the classification error rate is high. However, estimating the
total error or loss as once for an average computation is not
effective in error rate computation.

Figure 15(a) and (b) shows the performance of the error
rate for sample size and SNR, respectively. Given the uncer-
tainty condition prediction in a gated feature pyramid net-
work, the expected loss is estimated. From that analysis,
the error rate is reducedmuch in the proposed work compared

FIGURE 15. (a) Sample size vs. error rate. (b) SNR vs. error rate.

with the previous methods. Furthermore, the proposed work
provides an optimistic estimate of the true error probabil-
ity. Notably, all the previous methods require a number of
operations that increase with n order, where a large num-
ber of samples utilised in the classification system requires
additional excessive computational efforts. To address this
issue, a loss of information is computed in training and
also clusters similar feature vectors to the sample class,
which results in a less error rate. As the number of samples
increases, the classification error rate is lesser in the pro-
posed work and is obtained by minimum value in the pro-
posed work when the SNR range is reached from minimum
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FIGURE 16. Computational time vs. sample size.

to maximum. In 15 (a) the error rate is compared with
the sample size which shows the proposed work error rate
at samples (N=200) is 8% when compared to the exist-
ing works such as AMC2N (8.7%), RBF-DNN (13.8%),
PSO-DNN (14.9%), NCA (17.5%) andOFDM (19.5%). In 15
(b) the error rate is compared with SNR at −10 dB is 25%
when compared to existing works such as AMC2N (21.5%),
RBF-DNN (15.8%), PSO-DNN (14.9%), NCA (12%) and
OFDM (8%). From the above results it is shown the error
rate in terms of sample size is (0.7%- 11.5%) low and in
terms of SNR at −10 dB is (4.5%- 17%) high than existing
works.

6) COMPUTATIONAL TIME
Computational time is a time duration, which is measured
by increasing the sample size considered in the classification
step. The computational time of the proposed work is lesser
as compared with the previous methods.

As given in Fig. 16, the proposed work minimises the
computational time compared with the previous methods.
The proposed work uses fast and lightweight algorithms
that require a minimum number of iterations, and also, this
work requires minimum training and testing time. In par-
ticular, a feature clustering operation reduces the time in
classification, and also, preprocessing tasks reduce the com-
putational overhead for modulation type classification. The
previous methods consume a considerable amount of compu-
tational time to implement preprocessing, feature extraction
and classification. In figure.16 proposed work computation
time at samples (N=200) is 380 ms as the number of sam-
ple size increases which is lesser than the existing works
that has computation time of AMC2N (550ms), RBF-DNN
(650ms), PSO-DNN (680ms), NCA (720ms) and OFDM
(780ms). From the results it is shown that the computational
time in terms of sample size is (170ms-400ms) lower than

the existing works. The existing method requires more than
100 ms for 10 signals and is 50% greater than the pro-
posed work because the proposed work obtains 52 ms for
10 signals.

C. RESULTS AND DISCUSSION
The proposed AMC-pyramid model uses an intelligent gated
feature network for feature engineering, and thus, the pro-
posed work obtains the best performance. Furthermore, this
model sacrifices the complexity, and multiple features are
trained over time, that is, the spectral domain, transforma-
tion domain, constellation and statistical features. Therefore,
the PCC, that is, the overall classification accuracy is reached
to the peak and also outperforms for different cases as low
to high sample size and low to high SNR range. Then,
based on the result of computation time in the simulation,
the pyramid-based system model has a fast velocity because
determining the optimum results in a minimum number of
iterations.

VII. CONCLUSION AND FUTURE WORK
Considering the increasing rate of applications in wireless
communication systems, AMC has been developed dramat-
ically. On the receiver side, an accurate and fast modulation
type detection method is in high demand to demodulate the
transmitter signal. Obtaining a high modulation classifica-
tion accuracy in a multi-carrier system with low to high
SNR variations is a more hindering task. In this study, we
aim to develop the AMC2-pyramid system, which aims to
classify modulated signals as any of the following classes:
16QAM, 32QAM, 64QAM, 128QAM,QPSK, BPSK,DPSK,
ASK and FSK. The proposed AMC2-pyramid model con-
sists of four operations to obtain the above performance,
namely, pre-processing, feature extraction, feature clustering
and classification. Firstly, pre-processing is executed first
to improve the quality of the signal. If the received signal
consists of good quality, then the feature extraction step is
performed. Quality testing for all kinds of signals introduces
complexity, and thus, the signal quality enrichment step is
presented after the quality assessment. In the signal quality
augmentation process, noise is eliminated, and quantisation,
equalisation and CFO compensation are performed. Subse-
quently, multiple features are extracted using GFPN, which
extract spectrum, statistical, transform and constellation fea-
tures. Then, the twin function-based human mental search
algorithm is used to form clusters by similar feature vectors.
For modulation type classification, the MDNC2 algorithm is
used, and the final classification is implemented by the IQL,
in which the demodulation error is updated in reward com-
putation. The obtained results of all performance metrics are
compared with the several existing methods, such as OFDM,
RBF-DNN, NCA and PSO-DNN. Finally, the proposed work
outperforms the existing methods in all performance metrics
in terms of high precision, recall, low error rate and low com-
putation time. The main advantage of this work is efficient
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classification accuracy of multi carrier modulation with low
error rate. Only limited number of modulation scheme is
classified. In future more signal modulation types will be
considered and will be classified using enhanced methods.
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