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ABSTRACT In this paper, the H∞ output-feedback controller for a nonlinear overhead crane system with
external disturbances was developed. Firstly, the Takagi-Sugeno fuzzy model was used to represent the
overhead crane system nonlinearity. A fuzzy-based state observer was then built to estimate the values
of immeasurable variables. Secondly, a novel control design called virtual-desired variable synthesis was
used to converting the tracking control into a stabilization problem. It was primarily used to define the
internal desired states, making the design procedure clear and easy. The H∞ performance criterion was used
to attenuate external disturbances, and the closed-loop model stability was investigated using the quadratic
Lyapunov function. Finally, three simulations were conducted to verify the feasibility and effectiveness of the
proposed method. The results have shown that there is practically no positioning error and residual payload
swing. Thus, in theory, any type of bounded external disturbances can be eliminated using the proposed
method. Additionally, the convergence time is half of its model predictive control method counterpart and
one-third of the standard H∞ controller. Hence, it provides a reference for actual control of the overhead
crane systems, mostly due to its good performance.

INDEX TERMS Overhead crane, output feedback, T-S fuzzy model, virtual-desired variable synthesis.

I. INTRODUCTION
The crane systems are widely used due to their advantages,
including the low energy consumption, simple mechanical
structure, and high load capacity. Thus, both the safety and
work efficiency of overhead crane systems must be guar-
anteed. The anti-swing and fast positioning properties in
particular are considered to be the most important industrial
crane characteristic. However, fast trolley positioning and
small payload swing are conflicting requirements mostly due
to the high coupling between the payload swing and the
trolley acceleration or deceleration. Such systems include but
are not limited to: inverted pendulum, gymnast robot, and
offshore crane, among others, are underactuated mechanical
systems [1]–[5]. They have fewer control inputs than degrees
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of freedom, which makes their control significantly more
challenging.

During the crane system transportation, payload oscilla-
tions may cause safety hazards, reduce the working effi-
ciency, or make unloading more difficult. Furthermore,
since cranes are generally used in the outdoor environment,
external disturbances are hard to avoid. For this reason,
the development of suitable control techniques aiming to
reduce the payload sway and improve the system efficiency
in the presence of external disturbances is a topic of great
interest for both academia and industry.

One of the more widely utilized methods is the input
shaping technique [6], which is an effective open-loop control
method for swing reduction and crane system positioning.
Many other open-loop strategies were also proposed for
crane control [7], [8]. However, the base assumption in
open-loop methods is that the system information must be
known, meaning that their control performance can be easily
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influenced by nonlinearity, initial conditions, and external
disturbances. The feedback control method was proven to be
more robust regarding the modeling errors, parameter uncer-
tainties, and extraneous disturbances compared to open-loop
control. Recently, various control approaches were proposed
based on feedback control. A study was carried out aiming
to find the optimal motion planning solution in terms of
overhead crane energy efficiency [9]. Moreover, a swing con-
straint guaranteed model predictive control (MPC) algorithm
was proposed for use in under-actuated overhead cranes [10].
Next, a continuous robust control method was designed for
the crane system trajectory tracking control was presented
in [11]. However, in thesemethods themathematical model of
the overhead crane system was linearized to an approximate
model, meaning that the system non-linearity was neglected
during the control process.

An enhanced coupling control scheme based on the crane
system passivity property was proposed in [12], guaranteeing
similar payload swing amplitudes for various transportation
tasks. In [13], an emergency braking method was devised
to avoid undesired accidents of the overhead crane system.
Furthermore, a finite-time trajectory tracking control method
was proposed for overhead crane systems in [14]. In [15],
the authors proposed a fault-tolerant control strategy based on
the T-S fuzzy model, which was applied in overhead cranes.
Additionally, many other techniques were used in the crane
control, such as partial feedback linearization [16],MPC [17],
and independent joint control strategy [18], among others.
However, external disturbances are neglected in all the listed
methods.

After carefully reviewing the existing crane control stud-
ies, the authors found that the crane system control prob-
lem remains a fairly open topic. There are two issues that
need to be solved: (1) For the control design convenience,
several existing approaches were based on the linearized
dynamic model or making approximation operations to the
crane dynamic model when performing stability analysis.
(2) The existing fuzzy control methods for the crane control
were utilized to deal with the model non-linearity, however,
external disturbances were not considered.

Aiming to address the above-presented issues, inspired by
the existing literature [10] and [15], in this paper the authors
studied the anti-swing control based on H∞ output-feedback
design. The T-S fuzzy approach was used to approximate
the crane non-linearity. The internal part states, includ-
ing premise variables, were assumed to be immeasurable
and were estimated by a fuzzy observer. Further, the new
concepts, virtual desired variables, and in turn generalized
kinematic constraint were used to make the design proce-
dure clear and easy. Based on the newly developed con-
troller, external disturbances were eliminated by applying
H∞ criterion.

To sum up, the scientific contribution of the paper is as
follows:

1) A novel concept of virtual desired variables was used in
this paper to make the design procedure clear and easy,

which transferred the tracking problem into the stability
issues and relaxed the need for a real reference model.

2) Combining with T-S fuzzy model, the H∞ crite-
rion were applied to eliminate external disturbances,
which improved the transient control performance and
enhanced the system robustness.

3) Not only the proposed method obtained better perfor-
mance under different disturbances, but also it had a
simpler structure and fewer variables to be measured
due to the application of the parallel distributed com-
pensation (PDC) law with a fuzzy observer, which
better fitted the demands of actual control of the crane
and provided a feasible idea for the crane control.

The paper at hand is structured as follows: the nonlin-
ear model for the overhead crane was shown in Section 2.
The controller design using a T-S fuzzy model, along with
the closed-loop system stability conditions were given in
Section 3. Finally, the simulation verification was shown in
Section 4, while the conclusions were given in Section 5.
Notations: In this paper, Rn and Rn×m represent the

n-dimensional Euclidean space and the set of all n × m real
matrices, respectively. Further, (P > 0(≥ 0)) denotes that
matrix P is real symmetric and positive definite (semidefi-
nite). Superscripts ‘−1’and ‘T ’ represent the matrix inverse
and transpose, respectively. I is the identity matrix with
appropriate dimensions, (∗) is the symmetric part in the
symmetric matrix. The symbols ‖·‖ denotes the Euclidean
norm (for vectors) and induced 2-norm (formatrices). Finally,
if their dimensions are not explicitly defined, matrices are
assumed to have appropriate dimensions.

II. OVERHEAD CRANE MATHEMATIC MODEL
The main component of overhead crane plant is the trolley,
on which the payload is suspended by a rope. The typical
overhead crane is shown in Figure 1. The significant param-
eters used in this section are:

1) M : the total trolley mass (unit: kg),
2) m: the payload mass (unit:kg),
3) l: the rope length (unit:m),
4) g: the gravitational acceleration (unit:m/s2),

FIGURE 1. The two-dimensional overhead crane system schematics.
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5) θ : the load swing angle with respect to the vertical line
(unit: rad),

6) x̄: the trolley position with respect to the original point
(unit:m),

7) u: the driving force acting upon the trolley (unit: N),
8) Ct : the viscous friction coefficient of trolley

(unit: Ns/m),
9) d : the external disturbance term (unit: N).
The dynamical 2-D model of the overhead crane plant can

be formulated as follow:

(M + m) ¨̄x + ml
(
θ̈cosθ − θ̇sinθ

)
= u− Ct ˙̄x + d (1a)

m ¨̄xcosθ + mlθ̈ + mgsinθ = 0 (1b)

Aiming to find the state space expression of (1), the state
vector x = [x1x2x3x4]T = [x̄θ ˙̄xθ̇]

T
is chosen, where u is the

control variable. The state-space representation of the over-
head crane is written as follows. For the detailed derivation
process of the expression, please see Appendix A. ẋ1ẋ2ẋ3
ẋ4



=



0 0 1
0 0 0

0
mgcosx2sinx2(
M + msin2x2

)
x2

−Ct
M + msin2x2

0
1

mlx4sinx2
M + msin2x2

0
− (M + m) gsinx2
l
(
M + msin2x2

)
x2

Ctcosx2
l
(
M + msin2x2

) −mx4sinx2cosx2
M + msin2x2



+



0
0
1

M + msin2x2
−cosx2

l(M + msin2x2)

 u+


0
0
d

M + msin2x2
−dcosx2

l(M + msin2x2)

 (2)

Assuming that angle θ is small and the expression
lim
x2→0

sinx2
x2
= 1, the state equation (2) can be written as

follows: ẋ1ẋ2ẋ3
ẋ4



=



0 0 1
0 0 0

0
mgcosx2

M + msin2x2

−Ct
M + msin2x2

0
1

mlx4sinx2
M + msin2x2

0
− (M + m) g

l
(
M + msin2x2

) Ctcosx2
l
(
M + msin2x2

) −mx4sinx2cosx2
M + msin2x2



+



0
0
1

M + msin2x2
−cosx2

l(M + msin2x2)

 u+


0
0
d

M + msin2x2
−dcosx2

l(M + msin2x2)

 (3)

Equation (2) can also be rewritten as:

ẋ (t) = Ax (t)+ Bu (t)+ D (t) (4a)

y (t) = Cx (t)+ υ (t) (4b)

where:

A

=



0 0 1
0 0 0

0
mgcosx2

M + msin2x2

−Ct
M + msin2x2

0
1

mlx4sinx2
M + msin2x2

0
−(M + m)g

l(M + msin2x2)

Ctcosx2
l(M + msin2x2)

−mx4sinx2cosx2
M + msin2x2

 ,

B =



0
0
1

M + msin2x2
−cosx2

l(M + msin2x2)

 ,D(t) =


0
0
d

M + msin2x2
−dcosx2

l(M + msin2x2)

 ,

C =


1 0 0
0 1 0
0 0 0

0
0
0

0 0 0 0


It should be noted that υ(t) represents the measurement

noise.
Assumption 1: D(t) is the unknown bounded disturbance

and ‖D(t)‖ ≤ ϑ , ϑ is a positive constant.

FIGURE 2. Overall H∞ output-feedback controller block diagram.

Please note that (4) is a general non-linear model with a
four state variables and one control input. In the following
paragraphs, our purpose is to design an H∞ output feedback
control method so that the state variables tracked the desired
trajectory. The controller block diagram is given in Figure 2.
In the next step, the simulation was carried out on the existing
overhead crane plant.

This paper aims to design a control input u so that the
output x1 converges to a specified constant as accurately as
possible, which represents the trolley position. Furthermore,
the output x2 converges to zero, which represents the swing
angle of the load, despite the disturbance and non-linearity.

III. H∞ OUTPUT-FEEDBACK CONTROLLER DESIGN
A. T-S FUZZY MODELS
T-S fuzzy models are utilized to approximate the non-linear
system by expressing it as a set of linear time-invariant
(LTI) models. The LTI models are connected by a set of
non-linear functions. Each rule associates an LTI model
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(as a concluding part) to a weight function obtained using
premises given in [19]. In this paper, the authors focused on
the T-S fuzzy models with external disturbances which was
unknown but bounded. The disturbances were included in
each of LTI models [20].

Therefore, the i-th rule can be expressed as:

Rule i : if z1 (t) is F1i and z2 (t) is F2i and z3 (t) is F3i

then
{
ẋ (t) = Aix (t)+ Biu (t)+ D (t)
y (t) = Cx (t)+ υ (t)

(5)

where z (t) = [z1 (t) , z2 (t) , z3 (t)], are the premise variables
consisting of the system states; Fji(j = 1, 2, 3) are the fuzzy
sets; i = 23 is the number of the fuzzy rules, and Ai,Bi are
system matrices with appropriate dimensions. µi (z (t)) =
wi(z (t))/

∑r
i wi(z (t)) with wi (z (t)) =

∏3
j=1 Fji, Note that∑r

i=1 µi (z (t)) = 1 for all t , where µi (z (t)) ≥ 0, for
i = 1,2,3 are the normalized weights. For sake of simplicity,
µi (z (t)) is denoted as µi.

FIGURE 3. Establishment flowchart of the T-S Fuzzy models.

Using a standard fuzzy-inference approach (i.e., a single-
ton fuzzifier), product fuzzy inference, and weighted average
defuzzifier, the calculation yields the following compact pre-
sentation of Equation (5):{

ẋ (t) = A (µ) x (t)+ B (µ) u (t)+ D (t)
y (t) = Cx (t)+ υ (t)

(6)

where: 
A (µ) =

∑8
i=1 µiAi

B (µ) =
∑8

i=1 µiBi
µ := µ (t) = [µ1, . . . , µ8]

(7)

The establishment flowchart of the T-S Fuzzy models is
shown as Figure 3:

An additional observer is included to estimate the immea-
surable variables, such as the velocity x3 and angular
velocity x4. It is based on the nominal model and has the
general form as follows:{
˙̂x (t) = A(µ)x̂ (t)+ B(µ)u (t)+ L(µ)(y (t)− ŷ(t))]
ŷ (t) = Cx̂ (t)

(8)

where x̂ (t) is the estimated state and L (µ) =
∑r

i=1 µiLi is
the observer gain for the i-th LTI model.

B. H∞ OUTPUT-FEEDBACK CONTROLLER
In order to convert the tracking problem into the stability
issues, we introduce a set of virtual desired variables xd
which will be tracked by the state variable x [21]. Define
ed (t) = x (t)−xd (t) to describe the tracking error of the state
variables. Then, by combining it with Equation (6), the time
derivative of ed (t) can be obtained:

ėd (t) = ẋ − ẋd (t) = A (µ) x (t)+ B (µ) u (t)

−ẋd (t)+ D (t) (9)

It is assumed that the control input u (t) satisfy the follow
equation:

B(µ)uk (t) = B(µ)u (t)+ A(µ)xd (t)− ẋd (t)) (10)

where uk (t) is a new controller to be designed, then the
tracking error system (9) can be rewritten as the following
form: {

ėd (t) = A(µ)ed (t)+ B(µ)uk (t)+ D(t)
y (t) = Cx (t)+ υ(t)

(11)

For the error system (11), we can find that the design of the
new control uk (t) is similar to solve a stabilization problem.
Our control purpose is to steer ed (t) to zero, which means that
the state x (t)−xd (t) converges to zero. The classical structure
of a PDC law [22] employed to design the new control law
sharing the same nonlinear functions as the T-S model:

uk (t) = K (µ)(xd (t)− x̂(t)) (12)

where K (µ) =
∑r

i=1 µiKi represent feedback gains.
Combining the Equation (12) and Equation (11), the fol-

lowing closed-loop error model can be obtained after some
simple calculations:

ėd (t)=(A (µ)−B (µ)K (µ)) ed (t)+B(µ)K (µ)e(t)+D(t)

(13)

Here, the state estimation error was defined as e (t) =
x (t)− x̂ (t). Taking the derivative of e (t), we obtain:

ė (t) = ẋ (t)− ˙̂x (t)

= A (µ) x (t)+ B (µ) u (t)+ D (t)

−(A(µ)x̂ (t)+ B(µ)u (t)+ L(µ)(y (t)− ŷ(t))])

= (A(µ)− L(µ)C) e (t)− L (µ) υ (t)+ D(t) (14)
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Combining (13) and (14), the augmented error of the
closed-loop system was obtained as follow:

˙̃x =
∑r

i=1

∑r

j=1
µi (z (t)) µj (z (t)) [Ãijx̃ + S̃ω̃(t)] (15)

with

x̃ (t) =
[
ed (t)
e (t)

]
Ãij =

[
A (µ)− B (µ)K (µ) B (µ)K (µ)

0 A (µ)− L (µ)C

]
S̃ =

[
I 0
I −L(µ)

]
, ω̃ (t) =

[
D (t)
υ(t)

]
Actually, ω̃ (t) represents the comprehensive disturbances

that will deteriorate the control performance and even lead
to instability of the closed-loop system. Due to H∞ criterion
is an efficient tool to eliminate the effect of ω̃ (t) on the
control system, so that it will be used to improve the control
performance in (15).

The comprehensive disturbances was attenuated by con-
sidering the H∞ criterion related to the tracking error x (t)−
xd (t) as follow [23], [24]:∫ tf

0

(
[x (t)− xd (t)]T Q [x (t)− xd (t)]

)
≤ γ 2

∫ tf

0
(D (t)TD (t)+ υ (t)Tυ (t)) (16)

where tf represents the final time, Q = QT > 0 denotes a
positive definite matrix, and γ is the attenuation level.
By combining (15), the inequality(16) can be written as:∫ tf

0
x̃ (t)T Q̃x̃(t) ≤ γ 2

∫ tf

0
ω̃(t)T ω̃(t) (17)

where Q̃ = diag[Q0]T , ω̃T ω̃ = υ (t)T υ (t)+ D (t)T D (t)
Theorem 1: For all t > 0, µi (z (t)) µj (z (t)) 6= 0. If P̃ =

P̃T > 0, positive constants γ and ε exist, such that the
following matrix inequalities hold [25]:

ϒii < 0
2

r − 1
ϒii + ϒij + ϒji ≤ 0, i 6= j

with

ϒij =

[
ÃT P̃+ P̃Ã+ Q̃ P̃

(∗) −γ 2I

]
≤ 0 (18)

Then the closed-loop system asymptotic stability (15) and
H∞ control performance was guaranteed with an attenuation
level γ .

Proof: The following candidate Lyapunov function was
considered:

V (x̃, t) = x̃ (t)T P̃x̃ (t) with P̃ = P̃T > 0

Using Equation (15), the corresponding time derivative of
V (x̃, t) was obtained as follow:

V̇ (x̃, t) =
∑r

i=1

∑r

j=1
µi (z (t)) µj (z (t))[x̃T P̃Ãijx̃

+x̃T ÃTij P̃x̃ + x̃
T P̃S̃ω̃ + ω̃T S̃T P̃x̃] (19)

By combining (17), if the following inequality holds, the
augmented system (15) is asymptotically stable and satisfies
the H∞ requirement with an attenuation level γ :

V̇ (x̃, t)+ x̃T Q̃x̃ − γ 2ω̃T ω̃ ≤ 0 (20)

Based on (20), we write:
r∑
i=1

r∑
j=1

µi (z (t)) µj (z (t))(x̃T P̃Ãijx̃ + x̃T ÃTij P̃x̃

+x̃T P̃S̃ω̃ + ω̃T S̃T P̃x̃ + x̃T Q̃x̃ − γ 2ω̃T ω̃) ≤ 0

and then, the following inequality is obtained:
r∑
i=1

r∑
j=1

µi (z (t)) µj (z (t))[x̃ (t)T (P̃Ãij + ÃTij P̃+ Q̃)x̃

+x̃T P̃S̃ω̃ + ω̃T S̃T P̃x̃ − γ 2ω̃T ω̃] ≤ 0 (21)

and (21) can be rewritten as:[
x̃ (t)
ω̃ (t)

]T r∑
i=1

r∑
j=1

µi (z (t)) µj (z (t))[
P̃Ãij + ÃTij P̃+ Q̃ P̃S̃

(∗) −γ 2I

]
×

[
x̃(t)
ω̃(t)

]
≤ 0 (22)

After applying Lemma 2 on inequality (21), Theorem 1
conditions hold.
The object was to obtain a solvable LMI problem so that

will the gain matrix Ki can be found. In addition, it is nec-
essary to prove the closed-loop stability (finding P̃ > 0)
while guaranteeing that the predefined attenuation level γ is
achieved.

C. SOLUTION
To find the main results, the following lemmas must be
covered.
Lemma 1 [26]: For the given matrices X , Y , S =

ST > 0 with compatible dimensions and positive constant
β, the following inequalities satisfy:

XTY + Y TX ≤ αXTX + α−1Y TY

and

XTY + Y TX ≤ XTβX + Y Tβ−1Y

Lemma 2 [27]: For a given symmetric matrix:

S =

[
S11 S12
ST12 S22

]
the following three are equivalent:

(i) S > 0;
(ii) S22 < 0, S11 − S12S

−1
22 S

T
12 < 0;

(iii) S11 < 0, S22 − ST12S
−1
11 S12 < 0;

Lemma 3 [28]: If X <0 be a matrix with compatible
dimensions such that XT�X ≤ 0 hold, and α is a scalar.
In this situation, the following inequality satisfies:

XT�X ≤ −α
(
XT + X

)
− α2�−1
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Finally, Theorem 2 gives a solution of the tracking problem
for the augmented system (15) with external disturbances.
Theorem 2: For all t > 0, µi (z (t)) µj (z (t)) 6= 0, if the

matrices P2 = PT2 > 0,N = NT > 0,Yi,Zi, positive con-
stants α, and γ exist, such that the following LMI conditions
hold: 

ϒii < 0
2

r − 1
ϒii + ϒij + ϒji ≤ 0, i 6= j

with

ϒij

=



3(2, 2) −Zi P2 αI 0 0 Y Tj B
T
i N

(∗) −γ 2I 0 0 αI 0 0 0
(∗) (∗) −γ 2I 0 0 αI N 0
(∗) (∗) (∗) −2αN 0 0 0 0
(∗) (∗) (∗) (∗) −2αN 0 0 0
(∗) (∗) (∗) (∗) (∗) −2αN 0 0
(∗) (∗) (∗) (∗) (∗) (∗) 3̃ (1, 1) 0
(∗) (∗) (∗) (∗) (∗) (∗) (∗) −Q−1


3̃ (1, 1) =

(
Ai − BiKj

)
N + N

(
Ai − BiKj

)T
3(2, 2) = P2Ai − ZiCj + A

T
i P2 − C

T
j Z

T
i (23)

Then the augmented system (15) is asymptotically stable
and satisfies theH∞ requirement with an attenuation level γ :

Furthermore, if a solution exists, we can obtain the gain Ki
and Li by using: Ki = YiN−1,Li = P−12 Zi.

Proof: To simplify the design of controller, P̃ =

diag[P1,P2] was utilize into the calculation. Inequality (22)
was then rewritten as:∑r

i=1

∑r

j=1
µiµj2̃ ≤ 0 (24)

with 2̃, as shown at the bottom of the page.
Inequality (24) holds if:

∑r

i=1

∑r

j=1
µiµj


3(1, 1) P1BiKj P1 0
(∗) 3(2, 2) P2 −P2Li
(∗) (∗) −γ 2I 0
(∗) (∗) (∗) −γ 2I

 ≤ 0

(25)

with:

3(1, 1) = P1
(
Ai − BiKj

)
+
(
Ai − BiKj

)T P1 + Q
3(2, 2) = P2

(
Ai − LiCj

)
+ (Ai − LiCj)TP2

We carry out a simple elementary transformation on
matrix (25) to rearrange its order. Firstly, the first and the sec-
ond row are exchanged, followed by the exchange of the first
and the second column. In the next step, the second and the

4th row are switched, followed by the switching of the second
and fourth columns. Thus, equation (25) is equivalent to:

∑r

i=1

∑r

j=1
µiµj


3(2, 2) −P2Li P2 KT

j B
T
i P

T
1

(∗) −γ 2I 0 0
(∗) (∗) −γ 2I P1
(∗) (∗) (∗) 3(1, 1)

≤0
(26)

In the next step, a bijective change of variables followed
by a pre-post multiplication of inequality (26) was carried out
by diag[N ,N ,N ,N ] with Yi = KiN ,N = P−11 ,Zi = P2Li.
In that case, the inequality (26) was equivalent to:

r∑
i=1

r∑
j=1

µiµj



Y Tj B
T
iN 0 0

0 N 0
0 0 N

 4

N 0 0
0 N 0
0 0 N

 0

N
(∗) (∗) (∗) 3̃ (1, 1)

≤0
(27)

with

4 =

3(2, 2) −Z i P2
(∗) −γ 2I 0
(∗) (∗) −γ 2I

 (28)

3̃ (1, 1) =
(
Ai − BiKj

)
N + N

(
Ai − BiKj

)T
+ NQN (29)

According to Inequality (27) and Equation (29), it can be
known that major requirement for an LMI formulation can be
obtained as the product of:[

N 0 0
0 N 0
0 0 N

]
4

[
N 0 0
0 N 0
0 0 N

]
(30)

Furthermore, by using Lemma 3 to (30), we obtain:[
N 0 0
0 N 0
0 0 N

]
4

[
N 0 0
0 N 0
0 0 N

]

≤ −2α

[
N 0 0
0 N 0
0 0 N

]
− α24−1 (31)

By applying Lemma 2 (Schur’s complement), (31) can be
rewritten as:

3(2, 2) −Zi P2 αI 0 0
(∗) −γ 2I 0 0 αI 0
(∗) (∗) −γ 2I 0 0 αI
(∗) (∗) (∗) −2αN 0 0
(∗) (∗) (∗) (∗) −2αN 0
(∗) (∗) (∗) (∗) (∗) −2αN

≤0
(32)

2̃ =


P1
(
Ai − BiKj

)
+ (Ai − BiKj)TP1 + Q P1BiKj P1 0
KT
j B

T
i P

T
1 P2

(
Ai − LiCj

)
+ (Ai − LiCj)TP2 P2 −P2Li

P1 P2 −γ 2I 0
0 LTi P

T
2 0 −γ 2I
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After substituting (32) into (27), it is possible to obtain the
following inequality:

r∑
i=1

r∑
j=1

µiµj

3(2, 2) −Z i P2 αI 0 0 Y Tj B
T
i

(∗) −γ 2I 0 0 αI 0 0
(∗) (∗) −γ 2I 0 0 αI N
(∗) (∗) (∗) −2αN 0 0 0
(∗) (∗) (∗) (∗) −2αN 0 0
(∗) (∗) (∗) (∗) (∗) −2αN 0
(∗) (∗) (∗) (∗) (∗) (∗) 3̃ (1, 1)


≤ 0 (33)

with

3̃ (1, 1) =
(
Ai − BiKj

)
N + N

(
Ai − BiKj

)T
+ NQN

3(2, 2) = P2Ai − ZiCj + ATi P2 − C
T
j Z

T
i

After applying Lemma 2 (Schur’s complement) to diagonal
blocks 3̃ (1, 1) and 3(2, 2), Theorem 2 conditions hold.
Such results ensure the augmented system (15) is asymptoti-
cally stable, satisfying the H∞ requirement with an attenua-
tion level γ , therefore completing the proof.

The design steps of the proposed H∞ output-feedback
controller were summarized as follow:

Step 1: Establish the T-S fuzzy models and observer
(1) Establish the T-S fuzzymodels according to the number

of the premise variable vector z (t).
(2) Establish the fuzzy observer using the T-S fuzzy

models.
Step 2: Specify the design parameters
(1) Specify the parametersQ and α to obtain the smallest γ .
(2) Specify the parameters P2,N ,Zi,Yi, by solving the

LMI (23) and P2 > 0,N > 0 using a classical LMI toolbox.
(3) Specify the crane parameters according to [15]
Step 3: Chose the T-S membership functions.
Step 4: Calculate µiKi using the parameters obtained from

Step 2 (2).
Step 5 Obtain the H∞ output feedback controller u (t) =

uk (t) − B−1(µ)(A (µ) xd (t) − ẋd (t)) and apply it in
Equation (4).

Step 6: Return to Step 5 and continue from the second
procedure.

In the following section, a series of simulations will be car-
ried out to evaluate the performance of the proposed control
scheme.

IV. SIMULATION VERIFICATION
Finally, the simulation was carried out on the existing over-
head crane system (4) aiming to illustrate the effectiveness of
the present control method. The MATLAB installed on the
Windows 10 operating system (i9-9400f processor core and
16GB of RAM) was used to complete the simulation. The
control period T was set to 5 ms.

For simulation, the same crane parameters were used
as [15]: M = 10kg,m = 4kg,l = 0.5m,Ct = 0.1Ns/m, and
g = 9.8m/s2. The payload swing angle was assumed to be
from the interval−π/12 ≤ θ (t) ≤ π/12, and the angle veloc-
ity was selected from the range −π/4 ≤ θ̇(t) ≤ π/4. Fur-
thermore, z1 (t) = 1

M+msinx2
, z2 (t) = cosx2, z3 (t) = x4sinx2

were premise variables; also, z1,max = 1/M , z1,min = 1/(M+
msin2(π/12), z2,max = 1, z2,min = cos(π/12), z3,max =
π
4 sin(π/12), z3,min = −

π
4 sin(π/12). Thus, the non-linear

system (4) was represented by the following T-S fuzzymodel:

Rule i : if z1 (t) is F1i and z2 (t) is F2i and z3 (t) is F3i

then
{
ẋ (t) = Aix (t)+ Biu (t)+ D (t)
y (t) = Cx (t)+ υ (t)

for i = 1, . . . , 8.

Therefore, the non-linear model (4) was rewritten as:{
ẋ (t) =

∑8
i=1 µi (t) [Aix (t)+ Biu (t)]+ D (t)

y (t) = Cx (t)+ υ (t)
(34)

where

Ai =


0 0 1 0
0 0 0 1
0 mgz2z1 −Ctz1 mlz3z1

0
−(M + m)gz1

l
Ctz2z1
l

−mz3z2z1

 ,

Bi =


0
0
z1
−z2z1
l

 ,D(t) =


0
0

z1d(t)
−z2z1d(t)

l


To approximate the Ai,Bi, and D(t) non-linarites, the T-S

membership functions (35) were obtained following the pro-
cedure presented in [29]:

F1,max =
z1,max − z1

z1,max − z1,min
,F1,min =

z1 − z1,min
z1,max − z1,min

(35a)

F2,max =
z2,max − z2

z2,max − z2,min
,F2,min =

z2 − z2,min
z2,max − z2,min

(35b)

F3,max =
z3,max − z3

z3,max − z3,min
,F3,min =

z3 − z3,min
z3,max − z3,min

(35c)

where z1,max , z2,max , z3,max , z1,min, z2,min, and z3,min, are
maximum and minimum z1 (t) , z2 (t) , z3 (t) values, and
Fji(j = 1, 2, 3, i = 1, . . . , 8) can be found by the functions
given above. TheFi value can be calculated through eight (23)
combinations of F1i,F2i and F3i.

Then,Q and α are chosen to obtain the smallest γ . Accord-
ing to the actual calculation, the closed-loop system dynamics
were fixed by selecting

Q = 10−3 ×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The parameter α was chosen as: α = 0.001. The solu-

tions for P2,N ,Zi,Yi, and η = γ 2 can be obtained by
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solving the optimization problem (36) using a classical LMI
toolbox:

minη

s.t. LMI (23) andP2 > 0,N > 0 (36)

Finally, the Ki and Li were obtained using: Ki =
YiN−1,Li = P−12 Zi.

Hence, the Theorem 2 solution was obtained by solving the
Matlab LMI toolbox (23). The controller gains K1, . . . ,K8
and observer gains L1, . . . ,L8 are as follows:

K1 = [0.6114,−7.3588, 11.2966, 53.2799] ,

K2 = [0.1925, 57.7908, 10.2724, 50.1246] ,

K3 = [0.5921,−4.0429, 11.2681, 53.1426] ,

K4 = [0.1866, 56.1327, 10.2679, 50.1220] ,

K5 = [4.8013, 89.7548, 13.2276, 59.8104] ,

K6 = [4.6847, 88.9252, 12.5420, 58.3462] ,

K7 = [4.6590, 89.6210, 12.8123, 59.5888] ,

K8 = [4.5711, 88.7100, 12.1259, 58.1584] ,

L1 = 103 ×


0.3499 −0.0138 −0.1162
0.0360 0.0009 0.0083
−0.1125 0.0141 0.1277

0.8058
−0.0614
−0.8801

0.8034 −0.1015 −0.9007 6.3310

 ,

L2 = 103 ×


0.0124 −0.0001 −0.0004
0.0004 0.0003 0.0134
0.0018 0.0004 0.0364

0.0175
−0.0876
−0.1791

0.0029 −0.0031 −0.1977 1.3665

 ,

L3 = 103 ×


0.1347 −0.0047 −0.0391
0.0108 0.0009 0.0088
−0.0375 0.0083 0.0803

0.2766
−0.0598
−0.5342

0.2738 −0.0584 −0.5461 3.7487

 ,

L4 = 103 ×


0.0117 −0.0001 −0.0002
0.0003 0.0002 0.0124
0.0018 0.0004 0.0354

0.0153
−0.0792
−0.1697

0.0028 −0.0028 −0.1857 1.2504

 ,

L5 =


109.4636 8.3492 96.4093
139.1790 17.6907 142.3755
109.6152 12.0443 109.9386

−129.9774
−252.0236
−183.6378

−97.6762 −24.0384 −136.6776 371.7241



L6 =


93.2208 6.3503 81.9925
108.7553 15.0148 116.6131
93.3202 10.2465 96.0683

−83.3706
−186.2015
−136.9906

−58.2519 −20.9469 −102.2200 305.0796



L7 =


105.3770 7.9641 93.5615
133.3056 16.9890 138.1884
106.1543 11.7292 108.0437

−124.1583
−241.3728
−178.8302

−92.8286 −23.2643 −133.4601 359.8527



L8 =


62.5890 2.9403 52.3876
65.4404 9.0816 71.8423
59.8406 5.9791 62.4447

−42.2253
−113.4604
−85.1251

−27.4757 −14.9652 −66.0875 230.2727



To complete the process, the viscous friction was consid-
ered in the MPC controller and the standard H∞ controller to
ensure that the simulations have equal parameters. The two
methods were given as follow:

A. THE STANDARD H∞ CONTROLLER
To design the standard H∞ controller, Equation (A.1) from
Appendix A had to be linearized around the equilibrium point
as:

¨̄x =
mg
M
θ −

Ct
M
˙̄x +

1
M
u+

1
M
d (37a)

θ̈ = −
(M + m) g

lM
θ +

Ct
lM
˙̄x −

1
lM

u−
1
lM

d (37b)

It should be noted that the linearized model (37) was
accurate enough, and was widely used in crane control
design [9], [10]. An integral term was used to eliminate the
steady-state error, whichwas expressed as:

∫
(xd − x) dt . The

authors have selected the state vector x = [x1x2x3x4x5x6]T =
[x̄θ ˙̄xθ̇

∫
(xd1 − x1)dt

∫
(xd2 − x2)dt], where xd1, xd2 are the

desired value of x1, x2. Thus, the system was rewritten as: ẋ = (Ah +1Ah) x + B1d + B2u
z = C1x
y = x

(38)

where

Ah =



0 0 1 0 0 0
0 0 0 1 0 0

0
mg
M

−
Ct
M

0 0 0

0 −
(M + m) g

lM
Ct
lM

0 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0


B1 = B2 =

[
0 0

1
M

−1
lM

0 0

]T
1Ah = E

∑
(t)F is the uncertain term,

∑
(t) is an

unknown matrix satisfying
∑T ∑

≤ I . In this paper, the
following values were selected: E = B1,F = C1, C1 ∈ R6×6

is a weighted coefficient matrix, which was chosen as an
identity matrix.

The standard H∞ controller was chosen as:

u = Khx (39)

where Kh is gain matrix with the appropriate dimensions.
Kh was obtained by solving Riccati inequalities:
ATX + XA− X

(
1
ε2
B2BT2 − B1B

T
1

)
X + CT

1 C1 < 0

X > 0

Kh = −
1
2ε2

BT2 X

where ε is a positive constant (value ε = 0.1 was used in this
paper). Finally, the gain matrix Kh is obtained:

Kh = [−15.9761, 52.3214,−11.1328,

−9.8746, 5.6637, 20.5438]
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B. THE MPC CONTROLLER
The viscous friction was considered in [10], it was found that
the mathematical model has the same form with (37). The
system can be rewritten as:

ẋm = Amxm + Bm1d + Bm2u

y = Cmxm (40)

where

Am =


0 0 1 0
0 0 0 1

0
mg
M

−
Ct
M

0

0 −
(M + m) g

lM
Ct
lM

0


Bm1 = Bm2 =

[
0 0

1
M

−1
lM

]T
In [10], a swing constraints guaranteed generalized pre-

dictive control (GPC) method (a type of MPC) is proposed,
which converts the swing limit requirement into a restric-
tion for the control input, and uses following optimization
approach to deal with the input restrictions:

min
1U

J =
1
2
1UT91U +1UT�

s.t. M1U ≤ γ and |F | ≤ Mamax − mgθmax (41)

where

M =
[

1 0 · · · 0
−1 0 · · · 0

]
2×Nc

, γ =

[
umax − u(ki − 1)
umax + u(ki − 1)

]
9 = 2φTφ,� = −2φT (Rs − Fxe(ki))

amax =
√
lg
T

(θmax −

√
θ2(0)+

l
g
θ̇
2
(0))

Rs(ki) =
[
rT (ki) · · · rT (ki)

]T
∈ R4N p×1

r = cy (k − 1)+ (1− c) yf , c = c0exp(−λ(kT )2)

Other parameters such as F ∈ R4N p×4, φ ∈ R4N p×Nc were
not list here due to space limitation, which can be obtained
from Am, Bm, and Cm.

The swing angle constraint was written as |θ(t) | ≤ θmax ,
where θmax = 6◦. Moreover, the constant is c0 = 0.7, λ = 1,
T = 5ms, and the initial crane system state is selected as
xm,0 = [0000]T . The target trolley position is xd1 = 0.4m.
Np and Nc (Nc ≤ Np), representing the prediction and the
control horizon, respectively, are chosen as : Nc = 2,Np = 5
by multiple trials.

The Hildreth’s quadratic programming procedure in [30]
was utilized to solve the constrained optimization
problem (41), so that the optimal 1U at sampling time ki
can be obtained. Therefore, according to follow equation,
the actual change of the system control input can be obtained.

1u (ki) = KT1U ,K = [1, 0, . . . , 0]T ∈ RNc×1

Repeat these steps and trolley can be driven to destination
with practically no positioning error and no residual payload,

FIGURE 4. Comparison of the proposed method, existing MPC method,
and standard H∞ controller for case 1. Black dashed lines represent the
reference, blue solid lines show the results obtained by the proposed
method, red solid lines show the results by the MPC method. Finally,
green solid lines show the results obtained using the standard H∞

controller. (a) position. (b) swing angle. (c) control input using the three
methods. (d) observed state of velocity. (e) observed state of swing
angular velocity.

while the input amplitude constraints at each sampling time
are also ensured.
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Aiming to evaluate the proposed method, it was com-
pared to the MPC controller and the standard H∞ controller.
The comparison was used to illustrate the effectiveness of
the proposed control method in the disturbance elimination.
Now, simulation and comparison were provided in three
different cases: 1) the simulation was conducted without
any disturbances to illustrate the positioning performance
and the anti-swing ability; 2) a synthesised external distur-
bance was chosen to evaluate the performance under gen-
eral disturbance condition; 3) two disturbance inputs were
imposed on the crane to assess the performance under the
transient pulse disturbance; 4) two disturbance inputs were
imposed on the playload; 5) a comprehensive disturbance sig-
nal was used, in which the synthesised external disturbance in
Case 2 was imposed on crane and the two disturbance inputs
in Case 4 was imposed on playload simultaneously.

In Case 1, the trolley travels with a load from 0 to 0.4m.
The υ (t) was selected as a normal disturbance, with mean
zero and variance one, d (t) was chosen as d (t) = 0.

The closed-loop overhead crane outputs and the corre-
sponding control efforts for three approaches were illustrated
in Figure 4. Based on the obtained results, it is evident that
the trolley can be driven to a specific point with practically
no positioning error and no residual payload swing under both
the existingMPCmethod and the proposed method; however,
the higher swing angle oscillation was found during the first
20s when using standard H∞ controller.

By comparing three methods (see Figure 4), it was
observed that the existing MPC method drives the cart
approximately 10 s from the initial point to the desired point.
The standard H∞ controller reached it in roughly 18s. For
the same transportation task, only considering the proposed
control method, it required 5 s to drive the cart to the desired
location. Additionally, the control input amplitude of the
proposed method was the smallest of the three observed
methods. The oscillation was also the smallest when the
proposed method was used. The results of this case show
that the transient-response performance of the proposed con-
trol method was better compared to the other two methods.
Figure 4(d) and (e) illustrate the observed state of velocity
and swing angular velocity.

In Case 2, in addition to keeping the original settings, with-
out loss of generality the unknown but bounded disturbances
was taken as follow [31], [32]:

d (t) = 20 cos (0.25t)+ 20 sin (0.125t)

+20 exp (−0.5t)+ 10N.

Based on the obtained results (Figure 5), it was observed
that there were practically no positioning errors and no resid-
ual payload swing when using the proposed control method.
Unfortunately, the highest residual payload swing exists dur-
ing the whole simulation process by using the standard H∞
controller. The comparison results in this case show that
the proposed method has the best disturbance elimination

FIGURE 5. Comparison of the proposed method, the existing MPC
method, and the standard H∞ controller for case 2. Black dashed lines
represent the reference, blue solid lines show the proposed method, and
red solid lines results using the MPC method. Finally, green solid lines)
are results using the standard H∞ controller. (a) position. (b) swing angle.
(c) control input using the three methods. (d) observed state of velocity.
(e) observed state of swing angular velocity.
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FIGURE 6. Comparison of the proposed method, existing MPC method,
and standard H∞ controller for case 3; black dashed lines represent the
reference, while the blue solid lines show the proposed method results.
Red solid lines show the MPC method results, and the green solid lines
results are representing the standard H∞ controller. (a) position.
(b) swing angle. (c) control input using the three methods. (d) observed
state of velocity. (e) observed state of swing angular velocity.

FIGURE 7. Comparison of the proposed method, existing MPC method,
and standard H∞ controller for case 4; black dashed lines represent the
reference, while the blue solid lines show the proposed method results.
Red solid lines show the MPC method results, and the green solid lines
results are representing the standard H∞ controller. (a) position.
(b) swing angle. (c) control input using the three methods. (d) observed
state of velocity. (e) observed state of swing angular velocity.
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FIGURE 8. Comparison of the proposed method, existing MPC method,
and standard H∞ controller for case 5; black dashed lines represent the
reference, while the blue solid lines show the proposed method results.
Red solid lines show the MPC method results, and the green solid lines
results are representing the standard H∞ controller. (a) position.
(b) swing angle. (c) control input using the three methods. (d) observed
state of velocity. (e) observed state of swing angular velocity.

TABLE 1. MSE comparison of the three controllers in different cases.

performance and the lowest convergence time (compared to
the existing MPC method and the standard H∞ controller).
Figure 5(d) and (e) illustrate the observed state of velocity
and swing angular velocity.

In Case 3, two disturbance inputs, which are stochastic
disturbances with the same amplitude, form, and duration,
were manually imposed on the crane during the control pro-
cess. The external disturbance was set to d (t) = ±10N,
when t = 16s and t = 32s, meaning that twice transient
disturbances with different directions were imposed on the
crane during the control process.

The simulation results for each of the three methods in
this group are shown in Figure 6. Figure 6(a) shows that the
positioning error can be eliminated more quickly by using
the proposed method compared to the existing MPC method.
However, the highest oscillation and the longest convergence
time were found there by using standard H∞ controller.
As shown in Figure 6(b), although there is no residual payload
swing by using the existing MPC method and the proposed
method, the latter had smaller angle oscillation. The largest
angle oscillation was found in the standard H∞ controller.
Unlike the two described methods, the proposed method, not
only removes the disturbances quickly but also eliminates
the larger payload swings. Figure 6(d) and (e) illustrate the
observed state of velocity and swing angular velocity.

In Case 4, two disturbance inputs were manually imposed
on the playload during the control process. The external
disturbance was set to θ (t) = ±10◦, when t = 16s and
t = 32s, meaning that these disturbances were imposed on
the payload during the control process.
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The simulation results for each of the three methods in
this group are shown in Figure 7. It was observed that the
positioning error can be eliminated more quickly by using
the proposed method compared to the existing MPC method
in Figure 7(a). As shown in Figure 7(b), the proposed method
had smallest angle oscillation and smallest convergence time.
Figure 7(d) and (e) illustrate the observed state of velocity and
swing angular velocity.

In Case 5, a comprehensive disturbance signal was
used to evaluate the comprehensive performance for distur-
bance eliminating, in which the disturbance in Case 2 and
Case 4 were imposed on the crane system simultaneously.

Based on the obtained results (Figure 8), although the
disturbances were imposed on the crane and the playload at
the same time, the proposed method has the best positioning
performance and the anti-swing ability. Figure 8(d) and (e)
illustrate the observed state of velocity and swing angular
velocity. Table 1 gives a general overview of the comparison
results from the three methods based on MSE. It can be seen
that all the MSE of the proposed method are smaller than
other two controllers in all five Cases.
Remark 1: Theoretically, it should be noted in Case 2 and

Case 3 any type of unknown but bounded external distur-
bances can be attenuated by the proposed method. The design
parameter values, such as disturbance attenuation coefficient
γ , should be chosen properly to deal with larger disturbances.
Remark 2: It was shown in [33] that the double-pendulum

crane systems with disturbances can be mathematically
described as:

M (q) q̈+ C (q, q̇) q̇+ G (q) = u+ d (42)

where M (q) denotes the inertia matrix, C (q, q̇) is the
centripetal-coriolis matrix, G (q) represents the gravity vec-
tor, and u is the control input vector. Due to M (q) being
invertible and positive definite, equation (40) could be
rewritten as:

q̈ = −Mc (q)−1C (q, q̇) q̇+Mc (q)−1u

+Mc (q)−1 (d − G (q)) (43)

Expression (41) can be rewritten as:

ẋ = Ax + Bu+ D(t)

According to the above-presented analysis, it was predicted
that the approach proposed in this paper can be applied
to double-pendulum crane systems with disturbances. The
authors aim to solve that problem in their future work.

V. CONCLUSION
In this paper, a novel H∞ output-feedback control approach
was developed and applied to deal with the non-linear
overhead crane control problem with external disturbances.
The non-linear system was expressed as a weighted sum
of eight linear subsystems using the T-S fuzzy model.
The virtual-desired variable synthesis was used to convert
the tracking control into a stabilization problem, making

the design procedure rather clear and easy. External dis-
turbances were reduced by the H∞ performance criterion.
Furthermore, the simulation with three different case studies
demonstrated the effectiveness of the proposed method in
disturbance elimination. The results have shown in addition
to quickly removing the disturbances, the proposed method
has practically no positioning error with a smaller residual
payload swing. The convergence time was 50% shorter com-
pared to the MPC method, and one-third of the standard H∞
controller convergence time. It should also be noted that,
in theory, any type of bounded external disturbance can be
reduced by using the proposed method. Thus, due to the good
performance and simple structure, the proposed method can
be easily used to actual control of the overhead crane systems.
Meanwhile, the work in this paper provides a feasible idea
for the crane control. Lastly, in the future work the authors
aim to extend the proposed method to enable solving of
the double-pendulum crane system with disturbances, which
has a similar mathematical model with the overhead crane
system.

APPENDIX A
The state vector was selected as x = [x1x2x3x4]T = [xθ ẋθ̇ ]T ,
where uwas the control variable. Next, model (1) was rewrit-
ten as:

(M + m) ẋ3 + ml
(
ẋ4cosx2 − x24sinx2

)
= u− Ctx3 + d

(A.1a)

mẋ3cosx2 + mlẋ4 + mgsinx2 = 0 (A.1b)

Firstly, the authors calculated the value of (A.1a)−(A.1b)×
cosx2 to obtain the following equation:(
M+msin2x2

)
ẋ3=mgcosx2sinx2−Ctx3+mlx24sinx2+u+d

(A.2a)

In the next step, we calculate (A.1b)−(A.1a) ×
mcosx2/(M + m) to obtain:

l
(
M + msin2x2

)
ẋ4 = − (M + m) gsinx2 + Ctcosx2x3

−mlx24sinx2cosx2−ucosx2−dcosx2
(A.2b)

By combining (A.2a) and (A.2b), state-space representa-
tion of the overhead crane was obtained (2).
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