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ABSTRACT In recent years, adversarial attack methods have been deceived rather easily on deep neural
networks (DNNs). In practice, adversarial patches cause misclassification that can be extremely effective.
However, many existing adversarial patches are used for attacking DNNs, and only a few of them apply to
both the DNN and its explanation model. In this paper, we present different adversarial patches that misguide
the prediction of DNN models and change the cause of prediction results of interpretation models, such as
gradient-weighted class activation mapping. The proposed adversarial patches have appropriate location and
perturbation ratios, which comprise visible or less visible adversarial patches. In addition, image patches
within small arrays are localized without covering or overlapping with any of the main objects in a natural
image. In particular, we generate two adversarial patches that cover only 3% and 1.5% of the pixels in
the original image, while they do not cover the main objects in the natural image. Our experiments are
performed using four pre-trained DNN models and the ImageNet dataset. We also examine the inaccurate
results of the interpretation models throughmask and heatmap visualization. The proposed adversarial attack
method could be a reference for developing robust network interpretation models that are more reliable for
the decision-making process of pre-trained DNN models.

INDEX TERMS AI security, explainable AI (XAI), gradient-weighted class activation mapping (Grad-
CAM), adversarial patch, image classification, pre-trained model.

I. INTRODUCTION
The have become state-of-the-art models compared to tra-
ditional methods in the image recognition field and even
obtained human-like results [1]. Nevertheless, noise on orig-
inal images easily makes DNN models misclassify by gener-
ating adversarial images as shown in previous studies [2]–[5].

To generate adversarial images, an excellent concept is
adding a small amount of pixel perturbation into a natu-
ral image as human imperceptibility. Such modification can

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

cause deception of the classification model in predicting
a different class using an adversarial image. However,
previous methods did not focus on minimal modification,
but modified a large number of pixels such that they may
be perceptible to human eyes. For example, for adversar-
ial images generated with the Jacobian-based saliency map
approach [5], 4% perturbation of the total number of pixels
is conducted and can be visible to the human eye. Hence,
an expert can easily recognize abnormal noise, which is
generated by adversarial large-pixel perturbation. In contrast,
an attack on DNN models by modifying only one pixel on
an image is proposed in the research study presented in [6].
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The method was based on generating one-pixel adversarial
perturbations using differential evolutions to create low-cost
adversarial attacks against DNNs.

Recently, explainable artificial intelligence (XAI) has
become a trend in AI research because it contains reliable
interpretation models that explain the underlying decisions
of machine learning and deep learning models. For instance,
several research studies [7]–[9] have focused on describ-
ing a local explanation of the models’ outputs for a given
input [10]. Meanwhile, the explanation model and adversarial
learning have a relationship between them [11], [12]. There-
fore, XAI is also used to defend the AI model [13]. However,
recent studies proposed several attack methods showing that
some XAI models have also been easily attacked. Some
examples are the input gradient [14], meaningful perturba-
tion [15], fooling network interpretation [16], adversarial
model manipulation [17], deceiving the local interpretable
model-agnostic explanations (LIME), and Shapley additive
explanations (SHAPs) [18].

One of the most well-known interpretation algorithms
in DNN-based image classification task is the gradient-
weighted class activation mapping (Grad-CAM) that per-
forms well and outperforms state-of-the-art interpretation
algorithms used in [9], [19]. Hence, we choose the Grad-
CAM algorithm to mislead the explanation decision of
pre-trained DNN models upon the proposed attack model.
However, the challenge for misguiding an interpretable
model is different for Grad-CAM due to the different archi-
tectures of pre-trained models. Each pre-trained DNN clas-
sification model has a different quality of Grad-CAM on
the image. Figure 1 shows the results of Grad-CAM on
two examples of image classification using four interpreted
classification models.

FIGURE 1. Grad-CAM results on the two examples of pre-trained
classification models.

The two issues in adversarial attack research methods are
(1) the generation of adversarial examples using noise that
is indistinguishable to the human eye and covers the entire
image [2], [3] and (2) visible noise that covers noteworthy
feature of the main object in the natural image; for example,
a face identification task has noise due to the existence of
glasses with a specific pattern around a person’s eyes [20].
Hence, in this study, we examine cases of visible or less
visible noise localized to small areas of the image, such as

a bounding box with up to 3% or 1.5% of the pixels, which
do not cover the main objects of the image.

In this study, we create an adversarial attack algorithm that
deceives the interpretation network, such as Grad-CAM and
different architectures of classification networks. Our main
contributions are as follows:
• We propose a robust adversarial image patch (AIP)
by analyzing and determining its important factors,
i.e., effective location, size, and perturbation ratio with
different features from the adversarial patch in [16].

• We propose a general framework and algorithm for
adversarial Grad-CAM, along with two types of the pre-
trained DNN model architectures (i.e., feature module
and no feature module). Additionally, we create two
scenarios: (1) deceiving pre-trained model and making
a heatmap of Grad-CAM on only AIP with full pertur-
bation ratio and (2) deceiving the pre-trained model and
Grad-CAM while highlighting both the main object and
AIP with a part of perturbation ratio.

• We perform four experiments related to our proposed
method on the ILSVRC image dataset. Two different
types of pre-trained models are used (i.e., feature and
no feature layer). Specially, we examined our proposed
method on two pre-trained models: Visual Geometry
Group 19-Batch Normalization (VGG19-BN) and Wide
Residual Networks (Wide ResNet 101). Another two
pre-trained models, i.e., Visual Geometry Group 19
(VGG19) and Residual Network (ResNext 101 32×8d),
are used for testing our method.

• We explain the Grad-CAM misinterpreted results using
mask and heatmaps from Grad-CAM results to assess
the results obtained using our method.

The remainder of this paper is structured as follows.
Section II describes the related work. Section III presents the
background of our proposed method. The proposed method
is described in detail in Section IV. Section V presents the
results and discussion, and finally Section VI concludes the
paper.

II. RELATED WORK
An adversarial example (AE) is a small instance in which
intentional feature perturbations cause machine learning or
deep learning models to make an incorrect prediction [21].
Later, Goodfellow et al. [3] proposed Fast Gradient Sign
Method (FGSM) to improve AE with only one iteration of
optimization.

Recent studies show that a DNN classification model is
vulnerable to adversarial examples in different applications,
e.g., AE against DNN-based network intrusion detection
system (IDS) [22], DNN-based privacy leakage for Internet
of Things (IoT)-based invisible AE [23], attack DNN-based
wireless communication system [24], attack for medical
image classification [25], [26], and so on. These results
imply that the target model is attacked to reduce accuracy
performance regardless of a white-box model or a black-box
model.
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A. ADVERSARIAL PATCHES AGAINST DNN MODELS
An adversarial patch (AP) has been introduced first in the
study presented in [27]. We can add an AP in any fig-
ure and scene, among others. In recent years, the AP is
widely used against DNN-based applications. Recently, some
researchers proposed several types of AP, such as DPatch,
AP on attacking person detection, and IPatch. In partic-
ular, Liu et al. [28] and Zhao et al. [29] proposed attacking
object detection using DPatch. DPatch is a black-box AP
with a small patch in the input image. It can perform attacks
against mainstream modern detectors, such as two-stage
detector faster region-convolutional neural network and one
stage detector you only look once (YOLO). Thys et al. [30]
proposed APs to attack person detection, and the proposed
method was successful in hiding people from a person detec-
tor. IPatch was a remote AP used in [31]. This patch could
generate new scenes and impact other semantic models, such
as object detectors.

B. ADVERSARIAL METHODS AGAINST
INTERPRETABLE DNN MODELS
Previously, researchers have concentrated on attacking inter-
pretation models, and especially pre-trained DNN models.
In [14], the proposed method focused on misleading the
adversarial interpretability of DNN using input gradient.
In [15], a deceiving interpretable model using meaningful
perturbation was proposed. In addition, misguiding NN inter-
pretation via adversarial model manipulation is proposed
in [17]. This method has modified the model parameters;
however, the adversary might not modify the model param-
eters in a practical setting. The researchers in [16] proposed
a deceiving method for network interpretation in image clas-
sification by modifying only the pixels in a small image area
without adjusting the model. However, the fooling success
rate (FSR) of AP attacked results in some cases is not really
high because the heatmap results are not highlighted reso-
lutely or incorrectly in the AP target.

In this paper, we use an AP with a small area, and the
reasons are explained as follows. First, Grad-CAM is based
on extracting the last convolution layer (class activation map-
ping) that contains the important feature of an object or image
to make the DNN’s decision. The Grad-CAM results are
highlighted by a heatmap with a determined mask. Hence,
to mislead Grad-CAM on DNN models, we should make
Grad-CAM highlight on the fixed target location that we
want to deceive. Second, we control the settings using AP,
where the adversary modifies the network interpretation and
prediction through manipulating only a small region of the
original image. Hence, the AP is suitable for fooling the
Grad-CAM interpretation aswell as the classificationmodels.
A consistent perturbation ratio was found, whichmade theAP
invisible to ensure not losing the attack effect.

Recent work in [32] proposed a Wasserstein generative
adversarial network (WGAN), which is a training framework
to denoise blurriness to generate clean images. On the one

hand, other researchers [33], [34] proposed their approaches
against adversarial attacks on image and camera applica-
tions, respectively. These approaches are different viewpoints
against adversarial attacks on DNN-based interpretation
models. On the other hand, Veeraiah et al. [35] suggested
a trust-based energy-efficient navigation in Mobile ad hoc
networks (MANETs) that selects the best jumps in advanc-
ing the routing in securing MANETs. Other work such
as [36] proposed DNN and Gaussian filtering for accurate
magnetic resonance image super-resolution in the station-
ary wavelet domain. Nevertheless, these approaches protect
the network and image domain. Otherwise, our scope is to
mislead the interpretable pre-trained DNN model using the
original image.

III. BACKGROUND
A. PRE-TRAINED DNN MODELS FOR
IMAGE CLASSIFICATION
One of the major factors for the rapid advances in computer
vision research is pre-trained models. Rather than developing
everything from scratch, researchers can use these state-of-
the-art models as a convenience. Pre-trained DNN models
are neural networks trained on large benchmark datasets such
as ImageNet. These models are used as target models for
classification tasks and bring great benefits in developing
open-source models for the deep learning community.

The major issue in training a model is to classify images
into 1,000 separate object categories. We come across these
1,000 image categories in our day-to-day lives; they represent
cars, cats, dogs, humans, and so on. Through transfer learn-
ing, the pre-trained network models can strongly generalize
to images outside the ImageNet dataset and then transfer the
learning of pre-trained models into our specific problems.
The issue is how to determine the correct weights for the
network through multiple forward and backward iterations.
Indeed, we can directly use the architecture and weights of
pre-trainedmodels previously trained on large datasets. Then,
the learning can be applied to our problem.

Recently, pre-trained models have been built using dif-
ferent libraries, such as Keras, TensorFlow, and PyTorch.
Researchers used the ImageNet dataset to build these models
because of the large image data size (1.2 million images).
Pre-trainedmodels for image classification on ImageNet have
two main architectures. One has a feature module, and the
other one has no feature module. Figure 2 shows the archi-
tecture of the pre-trained DNN models with the two types of
architectures. In Figure 2, the pre-trained models have a fea-
ture module that consists of convolution block, max-pooling,
and fully connected layers. Moreover, the pre-trained models
with no feature module consist of convolution block layers,
max-pooling layer, layer 1, layer 2, layer 3, layer 4, and a fully
connected (FC) layer.

In this study, we selected two pre-trained models
with a feature module and two pre-trained models with
no feature module provided by the Torchvision library
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FIGURE 2. Architecture of pre-trained DNN models with and without feature module.

for our experiments. VGG19 with Batch normalization
(VGG19-BN) and VGG19 are representatives selected as
pre-trained models with a feature module. Two pre-trained
models were selected with no feature module, such as Wide
ResNet 101 and ResNet 101 (32× 8d).

B. GRAD-CAM EXPLANATION OF PRE-TRAINED
DNNs MODELS
Class activation mapping (CAM) is a useful tool for explain-
ing DNN models (such as the CNN model). It is based on
replacing the fully connected layer attached to the convo-
lution layer of the pre-trained model using global average
pooling (GAP) and then by performing fine-tuning. CAM is
possible to know which part of the image the neural network
saw and make a judgment with a specific label. Despite the
advantages, CAM has inherent disadvantages. Full connected
layer (FC) must be replaced with GAP, which can use only
the convolutional layer just before GAP, and the weight
information of the dense layer behind the GAP is required.
Hence, it is necessary to go through the process of fine-
tuning or re-training. Due to this problem, it is not easy to
apply CAM to CNNs that perform various purposes, such
as visual question answer (VQA) or captioning in addition
to object detection. The general idea behind Grad-CAM is
similar to CAM. To understand which parts of an input image
are important for a classification task, Grad-CAM uses the
feature maps produced by the last convolution of pre-trained
DNN models.

We first assume that we have some feature map FM1,
FM2, . . . ,FMi that are weighted to create the final heatmap.

Feature maps were weighted using alpha values that are based
on gradients in Grad-CAM. Therefore, we can measure by
gradients by using any neural network layer that does not
require a particular architecture. The output of Grad-CAM is
a class discrimination and localization map, e.g., a heatmap
where the important feature part corresponds to a particular
class. Figure 4 shows the concept of Grad-CAM with two
types of architecture for pre-trained DNN models.

We have the score for class c (yc), which is the output for
class c before the softmax function. Grad-CAM was applied
to a neural network that has finished training. The weights
of the neural network are fixed. We feed an image into the
network to calculate the Grad-CAM heatmap for that image
for a selected class of interest. Grad-CAM [9] has three steps:
• Step 1: Compute gradient. The gradient of yc with
respect to feature map activation FM k of a convolution
layer is

wk =
∂yc

∂FM k (1)

• Step 2: Calculate alpha by average gradients. Apply the
GAP for the gradients over the width dimension (i) and
the height dimension (j) to obtain neuron importance
weights gck calculated as follows:

gkc =
1
Z

∑
i

∑
j

∂yc

∂FM k (2)

where a number of pixels in the feature map Z satisfies
the equation Z =

∑
i
∑

j 1; and the average gradient g
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FIGURE 3. Grad-CAM interpretation of pre-trained DNN models.

for classes c and feature map k is going to be used in the
next step as a weight applied to the feature map FM k .

• Step 3: Calculate final Grad-CAM heatmap (H ).
Performing a weighted combination of the feature map
activation FM k where the weights are the αck just
calculated:

H c
g = ReLU

∑
k

gckFM
k (3)

where the heatmap color is calculated using applyCol-
orMap function in cv2 with COLORMAP_JET.

C. ADVERSARIAL PATCHES AND LOCATION
Most adversarial patches of deep learning-based image clas-
sifiers use noise that does not cover the entire image.Wemust
consider a region of interest (RoI) of the image to avoid
overlapping APs on the main features of the image. RoI
is an important portion of an image that contains the main
object(s) that we want to filter or perform other operations.
For example, we define a RoI by creating a binary mask that
is the same size as an image to process pixels that define the
RoI set to 1 and all other pixels set to 0.

The AP is not RoI, such as a top-left or top-right corner.
We locate the patch on the top-left or top-right corner of
the image without overlap with the main objects of interest.

FIGURE 4. ROI and AP localized at the top-left corner and top-right
corner in an image size of 224 × 224.

We assume that the input image size is 224 × 224 and the
patch sizes are 64 × 64 and 32 × 32, which occupy almost
3% and 1.5% of the image area, respectively.

The AP size is a predetermined factor that could affect the
effectiveness of the patch. There is a tradeoff between smaller
patches that are harder to detect and defend, while larger
patches provide a better attacking effect. In our experiment,
we produced two different sizes of AP, namely, 32 × 32 and
64× 64 to test the efficiency of their attacks. In this manner,
we can better understand the relationship between AP size
and its attacking effects to find the minimum size of a patch
for a meaningful attack.
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IV. THE PROPOSED METHOD
In this work, we have built our method upon the Grad-
CAM interpretation method and APs. Figure 5 shows an AP
attached to an image with an input label as the ‘‘elephant’’
example. The pre-trained model has misclassification with
the classified label ‘‘bird.’’ Further, Grad-CAM interpretation
results are misguided by highlighting the main feature of the
misclassification result.

The heatmap has highlighted the patch quite strongly,
disclosing the cause of the attack. The adversary attacks
only the patch area, and the patch is the cause of the final
misclassification toward the target category

The general proposed framework for deceivingGrad-CAM
of the pre-trained DNN models is depicted in Figure 5.
Its three main components are initialization of adversarial
image patches, adversarial Grad-CAM attack, and explana-
tion of Grad-CAM results. The proposed method is processed
through three main components as well as three main steps
described as follows:
• First, we need to create AIP in two cases from the
original input image. The first case is AIP at a top-right
location with patch size 64 × 64 and full perturbation
ratio (i.e., 100%). The second case is AIP at the top-
right location with patch size 32 × 32 and deduced
perturbation ratio by 20%.

• Next, these patches will pull in pre-trained DNNmodels
to extract feature maps with the last layer used to com-
pute the heatmap of Grad-CAM in the second compo-
nent. We will adjust and update gradient weights based
on loss update. Then, we can find the final best AIP to
fool the pre-trained model successfully, and Grad-CAM
can attack the image.

• Finally, we can explain the Grad-CAM attacked results
by generating mask and heatmap from fooling those
results.

The proposed algorithm 1 generated an AP following the
standard adversarial noise generation setup. In particular,
we explored the generated localized APs as visible or less vis-
ible with noise to a single image in the first setup. We assume
access to a pre-trained model (pM ) that assigns adversar-
ial image patch (aiP), Grad-CAM image perturbation (giP),
mask fooled explanation (mfE), and heatmap fooled explana-
tion (hfE) to the original input images (oiI ). We computed the
gradient total loss based on theGrad-CAM lossmeasurement.
We seek aiP that is calculated by the network based on
perturbation ratio P, image, and gradient total loss. In other
words, the aiP comprises the original image with additive
noise (N ). This causes an optimization problem, i.e., seeking
and adjusting a gradient total loss value to find the suitable
aiP. We can find the gradient total loss using a stochastic
gradient-based algorithm. We want noise N to be limited
to a small area over the image oiI and to replace this area
rather than be added to it. This is achieved by setting a mask
perturbation value P to be 1, if the patch size pS is 64 × 64,
or 0.2 if the patch size pS is 32 × 32, and considering the

noised image as aiP to be

(1− P)� oiI + P� N (4)

where � is element-wise multiplication.
To attach and hide aiP in the network interpretation from

the final prediction, we supplemented the loss function for
optimizing until the heatmap of Grad-CAM interpretation
is highlighted at the patch location. Hence, from the aiP,
we optimized loss using the following equation:

argmin
[∑

(G(aiP)� P)+ α × loss(aiP; yt )
]

(5)

where yt is the target output and α is the hyper-parameter
learning rate to handle the effect of two-loss terms, such as
cross loss and total loss. G is the interpretation (heatmap),
defined as the weighted sum of activations of the convo-
lution layer discarding the negative values. In Eq. 5, there
are two-loss components. The first loss is Grad-CAM loss,
which computes the loss for the patch location pixels in the
Grad-CAM tensor. For a 224 × 224 image, the AP sizes are
64 × 64 and 32 × 32. The second one is cross-entropy (CE)
loss. We added CE loss if the target category is not the top
predicted category.

In a pre-trained DNN model for image classification,
we fed the original image to this network and obtained the
final output decision. Further, we can explain the model
decision result by generating a heatmap for the convolution
layer to highlight the regions of the image that cause the
predicted output of the network model as follows:

G =
∑∑ ∂(output_Adv)

∂(feature_Adv)
(6)

where output_Adv is the predicted result of pre-trained DNN
model, pM ; and feature_Adv is the feature adversarial which
is extracted from pM with original input image, oiI .
In particular, we extracted the output of the last layer from

the pre-trained models (line 12). Then, we computed the
gradient of the loss corresponding to the last layer for the
image adversarial (line 13). We also computed the gradient
weighted class activation for perturbed images (line 14).
Thereafter, we computed Grad-CAM for perturbed images
(line 15). In lines 16–19, we computed the loss for the patch
location pixels in Grad-CAM tensors. If the patch size is
64 × 64, the distribution is a ratio of 4:4, otherwise, if the
patch size is 32 × 32, the distribution is a ratio of 2:2. If the
target category is not the top predicted category, we calculated
the CE loss (line 21).Weminimized both Grad-CAM loss and
CE loss (line 22) and computed the gradient of the total loss
concerning the perturbed image (line 23). Lines 24–25 per-
form gradient ascent using a gradient of total loss with a learn-
ing rate of 0.05. From lines 29–32, we calculate GradCAM
using AIP to visualize the Grad-CAM image perturbation
result (giP):

First, we must calculate Grad-CAM as mask adversarial
(mask_Adv) as follows:

mask_Adv = G(aiP) (7)
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FIGURE 5. Proposed framework for deceiving Grad-CAM pre-trained models.

where the G function is calculated based on the gradient and
features with input is the aiP following Eq. 6.
Then, we use mask_Adv to calculate giP:

giP = mask_Adv+ aiP (8)

Subsequently, we interpreted the fooled Grad-CAM result
through a mask fooled explanation (mfE) and heatmap fooled
explanation (hfE). In lines 34–36, we explain the Grad-
CAM fooled results; that is, the mask and heatmap using
transpose (T ) of mask adversarial following will provide the
equations below:

mfE =
mask_AdvT − min(mask_AdvT )

max(mask_AdvT )
(9)

hfE = ReLU (
∑

α × mask_Adv) (10)

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTS SETUP
1) DATASET
We performed our experiments using ImageNet
ILSVRC2012 [37] with different patch sizes and noise ratios.
The images were resized into 224×224, and the noise square

patches have the sizes of 64×64 and 32×32 (approximately
3% and 1.5% of the image pixels, respectively). We consid-
ered choosing a patch location around the corners, especially
at the top-left or top-right corner, because these places do
not cover the original image’s main object(s). We made APs
with noise until the desired confidence is reached or the loss
in 1,000 iterations and a learning rate of 0.05 is minimized.

2) PRE-TRAINED MODELS
We used the provided PyTorch pre-trained VGG19 [38],
VGG19-BN [38], Wide ResNet 101 [39], and RestNext 101
(32 × 8d) [40] trained on ImageNet. We used VGG19 and
VGG19-BN as pre-trained DNN models that have feature
module structure. Further, we used Wide ResNet 101 and
ResNext 101 (32× 8d) that has no feature module structure.
To generate the Grad-CAM value, we must extract the target
layer of the pre-trained model. Table 1 shows four pre-trained
models on the ImageNet dataset along with their module and
target layer name information.

3) LOSS FUNCTION
As mentioned in Section IV, we have two loss parts; the
Grad-CAM loss and CE loss are described as follows:
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Algorithm 1 Fooling Interpretable Pre-Trained DNN
Classification Models and Explanation

input : Original Input Image (oiI ),
Pre-trained Models (pM ),
Top-right Position (trP),
Patch Size (pS),
Perturbation Ratio (pR)

output: Adversarial Image Patch (aiP),
Grad-CAM Image Perturbation (giP),
Mask Fooled Explanation (mfE),
Heatmap Fooled Explanation (hfE)

1 Preprocess original image
2 img← resize(oiI , (224, 224, 3))
3 img_T ← tensor(img)
4 Initialize perturbation on image
5 trP← (150, 0)
6 P← torch_Zero(img)
7 P[0, trP+ pS]← pR
8 interation_Fool ← 1000
9 α← 0.05
10 Create adversarial image patch
11 while i < interation_Fool do
12 feature_Adv, output_Adv← pM (img_T )

13 g_Adv←
∑∑ ∂output_Adv

∂feature_Adv
14 g_Weight ← g_Adv× feature_Adv
15 G← ReLU (

∑
g_Weight)

16 if pS ← 64 then
17 g_Loss←

∑
(G[0 : 4, 0 : 4])/16

18 else
19 g_Loss←

∑
(G[0 : 2, 0 : 2])/16

20 end
21 ce_Loss← crossLoss(output_Adv, y_target)
22 total_Loss← G(g_Loss+ α × ce_Loss)
23 g_total_Loss← G(total_Loss, img_T )
24 N ← N − α × g_total_Loss
25 aiP← (1− P)× img+ P× N
26 i← i%10
27 end
28 Calculate Grad-CAM image perturbation
29 mask_Adv← G(aiP)
30 hM ← applyColorMap(255× mask_Adv)/255
31 giP← hM + aiP
32 giP← giP/max(giP)
33 Explain Grad-CAM fooled results
34 mfE ← transpose(mask_Adv)

35 mfE ←
mfE − min(mfE)

max(mfE)
36 hfE ← applyColorMap(255× mask_Adv)/255
37 return (aiP, giP,mfE, hfE)

• The CE loss equation was used for optimizing loss of
fooling pre-trained DNN models:

ce_Loss = −
C∑
i

y_targeti × log(output_Advi) (11)

where C is categorical output.

TABLE 1. Pre-trained models with module information and
corresponding target layer name.

FIGURE 6. Grad-CAM attacked results on AP at top-right corner of
VGG19-BN with full perturbation.

FIGURE 7. Grad-CAM attacked results on AP at top-right corner of Wide
ResNet 101 with full perturbation.

FIGURE 8. Grad-CAM attacked results on AP at top-right corner with
size 32 × 32) of VGG19-BN with 20% perturbation.

FIGURE 9. Grad-CAM attacked results on AP at top-right corner with
size 32 × 32) of Wide ResNet 101 with 20% perturbation.

• The Grad-CAM loss equation was used for optimizing
loss of fooling interpretation model:

g_total_Loss = G(feature_Adv+ α × ce_Loss) (12)

where G is Grad-CAM function calculation.

B. EXPERIMENTS RESULTS
In this section, we perform four experiments. The first exper-
iment was performed by creating an AIP at the top-right
location with the size of 64 × 64 and full perturbation ratio
on two pre-trained models: VGG19-BN (feature module) and
Wide ResNet 101 (no feature module). The next experiment
was performed by creating AIP at top-right location with the
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FIGURE 10. Grad-CAM attacked results using AIP at top-right corner with
size 32 × 32 and 20% perturbation ratio on VGG19.

size of 32 × 32 and by reducing perturbation ratio by 20%
to deceive the two pre-trained models, namely, VGG19-BN
andWide ResNet 101, along with interpretable Grad-CAMof
these models. The third experiment validated our proposed
method by deceiving two other representative pre-trained
models: VGG19 (feature module) and Resnex101 32 × 8d
(no feature module). Experiment 4 explains how the Grad-
CAM attacked the results when four pre-trained models are
used.

• Experiment 1: In this experiment, we used two trained
models, namely, VGG19-BN and Wide ResNet 101,
to attack both classification and interpretable results.
We generated AIP at the top-right corner of the image
with size 64 × 64 and full perturbation ratio 100%.
Figures 6 and 7 show the fooling classified and inter-
preted Grad-CAM results on VGG19-BN and Wide
ResNet 101, respectively.
In summary, the interpretable Grad-CAM of two pre-
trained models was completely deceived, and heatmaps
were highlighted at the AIP target (Figs. 6b and 6d
(VGG19- BN) and Figs. 7b and 7d (Wide Resnet 101)).
However, these Grad-CAM results do not remain in the
part of interpretable on the main object. Hence, we must

FIGURE 11. Grad-CAM attacked results using AIP at top-right corner with
size 32 × 32 and 20% perturbation ratio on ResNext 101 (32 × 8d).

adjust features of AIP that can fool Grad-CAM while
keeping a part of Grad-CAM results on the main object.

• Experiment 2: In summary, the interpretable Grad-CAM
of two pre-trainedmodels are fully fooled with heatmaps
that are highlighted at AIP target (Figs. 8b and 8d
(VGG19-BN) and Figs. 9b and 9d (Wide Resnet 101)).
However, these Grad-CAM results do not remain in the
interpretation part of the main object. Hence, we must
adjust the features of AIP that can fool Grad-CAMwhile
keeping a part of Grad-CAM results on the main object.
The main features of AIP that can fool Grad-CAM
results are adversarial patch size and its perturbation
ratio.
In addition, we still attacked the Grad-CAM success-
fully even though we reduced the AIP size and perturba-
tion ratio. It makes AIP less visible in the image, and it is
not easy to discriminate against adversarial attacks to the
human eye. However, the heatmap of Grad-CAM high-
lights a part of the main object. Additionally, the accu-
racy of the pre-trained DNN classification model is high
even now.

• Experiment 3: To validate our proposed algorithm,
we test the proposed attack model on two representative
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FIGURE 12. Explanation results on AP at top-right corner with size
32 × 32 and 20% perturbation on VGG19.

pre-trained models, including feature module and no
feature module. For the feature module, we chose the
VGG19 model as one family of VGG19-BN, and in
the case of no feature module, we chose ResNext 101
(32 × 8d) model. Figures 10 and 11 show the Grad-
CAM attacked with adversarial image at the top-right
AIP size 32 × 32 and perturbation ratio 20% on two
pre-trained models. In comparison to the ground truth
of Grad-CAM results from two pre-trained classification
models, the attacked Grad-CAM results show that both
pre-trained models have been attacked with highlighted
heatmap at the top-left corner with the AIP target.
In summary, the Grad-CAM attacked results show that
the proposed fooling method can highlight the main
object’s part and top-right AP location target.

• Experiment 4: In this experiment, we explained our fool-
ingGrad-CAM results based on calculating and visualiz-
ing the mask and heatmap of Grad-CAM attacked image
based on XAI. Figures 12 and 13 present the explana-
tion results using mask and heatmap corresponding to
Grad-CAM attacked results with the AIP size of 32×32
and 20% perturbation ratio.

In summary, we obtained the fooling Grad-CAM results
on two cases: more visible AIP (with the size of 64 × 64

FIGURE 13. Explanation results on AP at top-right corner with
size 32 × 32 and 20% perturbation on ResNext 101 (32 × 8d).

and 100% perturbation ratio) and less visible AIP (with the
size of 32 × 32 and 20% perturbation) on four pre-trained
DNN models: VGG19-BN, Wide ResNet 101, VGG19, and
ResNext 101 32× 8d.

C. DISCUSSION
1) WHY NOT TOP-LEFT LOCALIZED ADVERSARIAL
IMAGE PATCH
This section provides evidence to illustrate that AIP with
top-left localization fails to fool several images from several
pre-trained models when we applied previous adversarial
attack methods [16]. For example, to pre-train VGG19-BN,
Figure 14 shows the Grad-CAM attacked results are unsuc-
cessful because the heatmap is only highlighted in the main
object and not highlighted at the AIP target (shown in
Figures 14d and 14h).

In addition, although the pre-trained model has feature
modules, such as the VGG19-BN model, AIP cannot fool
Grad-CAM of VGG19-BN at a top-left location with a patch
size of 64 × 64, and a full perturbation ratio. For pre-
trained models that have no feature modules such as Wide
ResNet 101, the AP at the top-left location with 100% per-
turbation is also unsuccessful to fool Grad-CAM (shown
in Figure 15).
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FIGURE 14. Examples of unsuccessful implementation for fooling
Grad-CAM of pre-trained VGG19-BN model when applied [16].

FIGURE 15. Examples of unsuccessful implementation for fooling
Grad-CAM of pre-trained Wide ResNet 101 model when applied [16].

Hence, to deceive Grad-CAM completely and make high-
lights at the AIP location only, we created an AIP with the
size of 64×64 and 100% perturbation ratio. Figure 16 shows
the Grad-CAM attacked results only at the AIP target of four
pre-trained models.

In another case for fooling part of the Grad-CAM and
keeping part of the correct Grad-CAM result from the pre-
trainedmodel explanation, we useAIPwith the size of 32×32
and 20% perturbation ratio. Figure 17 shows the result of
fooling part of four explained trained models.

In summary, depending on the purpose of attacking Grad-
CAM interpretable, we can generate and adjust the AIP with
certain size and perturbation ratio. If we create and use AIP
with a size of 64 × 64 and a full perturbation ratio, AIP
is more visible and easier to recognize APs with the naked
eyes. However, the Grad-CAM attacked obtained a full-on
AIP target. If we create and use AIP with a size of 32 × 32
and a perturbation ratio of 20%, AIP is less visible and hard to

FIGURE 16. Grad-CAM attacked of four trained models with 100%
perturbation.

recognize APs with the naked eyes. However, the Grad-CAM
attacked was obtained on both parts: a part of the remaining
main object and a part of the AIP target.

2) EVALUATION PROPOSED METHOD VIA
LOSS MEASUREMENT
To evaluate our proposed method, we measured two types of
loss: Grad-CAM loss and CE loss. Figure 18 shows the Grad-
CAM loss and CE loss of the proposed method on four pre-
trained models in two cases. The first case is with the AIP
size of 64 × 64 and a full perturbation ratio. In this case,
the Grad-CAM loss (Fig. 18a) and CE loss (Fig. 18b) have
their error value minimized. The second case is with the AIP
size of 32×32 and reduced perturbation ratio by 20%. In this
case, the Grad-CAM loss (Fig. 18c) and CE loss (Fig. 18d)
are less accurate in fooling than the first case.

In conclusion, if we generate a top-right AIP with a size of
64×64 and full perturbation, attacking both DNN classifica-
tion models and Grad-CAM interpretation is more accurate,
but the drawback of AIP is more visible. In the case of
creating a less visible AIP, we must adjust and reduce the
patch size and perturbation to 32× 32 and 20%, respectively.
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FIGURE 17. Grad-CAM attacked of four trained models with 20%
perturbation.

FIGURE 18. Grad-CAM loss and CE loss with adversarial patch sizes
64 × 64 and 32 × 32.

However, we obtained less FSR (fooling success rate) on both
pre-trained classifications and Grad-CAM interpretation.

VI. CONCLUSION
In this paper, we proposed an adversarial algorithm to deceive
both pre-trained classifications and Grad-CAM interpreta-
tion. The obtained results show that it is possible to learn
visible and less visible AIP covering only 3% and 1.5% of
pixels in an image. Further, localized adversarial patches at
the top-right, along with different perturbation ratios, cause

misclassification with high fooling success rates. Therefore,
we introduce adversarial patches (small areas (3% and 1.5%)
with restricted perturbation ratios of 100% and 20% respec-
tively), which fool both the DNN classification models and
their explainable model by the Grad-CAM algorithm. In sum-
mary, we successfully designed two cases attacking with
different adversarial patches. The first AIP with the size of
64 × 64 and full perturbation ratio obtains the highlighted
interpretation at the top-right, and the AIP is localized with
a high fooling accuracy rate. In this manner, the Grad-CAM
interpretation algorithm highlights the evident cause of the
wrong prediction corresponding to misclassification results.
In the second AIP with the size of 32 × 32 and perturbation
ratio of 20%, the highlighted interpretation is obtained not
only at the top-right AIP but also as part of the highlight
is kept for the prediction with less fooling accuracy rate.
However, this case provides a less visible AIP attached to
the image. Moreover, either CE loss or the Grad-CAM loss
of the second AIP case is more than that our attack method
affects various settings of localized AIP at the top-right based
on different sizes and perturbation ratios for different goals in
visible or invisible AIP to the original image. In future work,
we could consider applying several approaches in defensive
system (e.g, WGAN) to build a robust defend method, which
against adversarial learning on interpretable models.
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