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ABSTRACT Many heterogeneous sensors exhibit strong spatio-temporal correlations that can be used to
enhance the abnormal node detection problem in a wireless sensor network (WSN). Corruption in these
correlations has been shown effective in detecting false data injection attacks. In this paper, we adopt a
new cross-correlation-based method to extract the sensor relationships. It utilizes the observed spatiotem-
poral (ST) and multivariate-attribute (MVA) sensor correlations to decide whether the sensor is subject to
abnormalities or represents actual events. Based on the ST correlations, the cross-correlation is extracted in
both space and time by conducting shape-based logical subclustering and two-phase analysis methods. In the
first analysis phase, the system uses a variable-size sliding window and a median absolute deviation (MAD)
measure. If the collected sensor data streams output a certain percentage of anomalous points, the MADwill
flag these points as anomalous measurements, and all the sensor data and the window size will be passed
to the second analysis phase. The latter performs both tumbling-window and sliding-window analyses to
extract multicriteria cross-correlation measures. Finally, all the extracted sensor time-series features will be
fed to the shape-based clustering to generate a sensor similarity-like graph. The latter reflects the similarity
degree of the sensor with the other nodes. The nodes with a low similarity degree below the threshold will
be identified as candidate abnormal nodes. Based on the observed MVA correlations, a set consisting of
a few rules is introduced to check whether the detected candidate abnormal nodes represent actual events.
Finally, if abnormal nodes exist, then such nodes are reported. Our experiments using two real-world datasets
demonstrate that our proposed approach detects abnormal nodes with an average accuracy of 96.50%,
an average precision of 88.69%, and a recall rate of 93.00%.

INDEX TERMS Anomaly detection, Internet of Things, sensor data correlations, wireless sensor networks,
false data injection attacks.

I. INTRODUCTION
Since the emergence of the Fourth Industrial Revolution,
there has a growing trend to use elements of the Internet of
Things (IoT), such as mobile phones, Bluetooth low-energy
beacons, and wireless sensor networks (WSNs). The IoT
can be described as a dynamic and distributed networked
system that uses wireless connectivity and comprises a
wide range of uniquely identifiable embedded computer-like
devices. Such devices’ primary requirements are to moni-
tor their environmental conditions, report sensor data, and
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perform appropriate actions in response to the surrounding
circumstances [1].

A. MOTIVATION
However, the accuracy of such decisions depends upon the
reliability and trustworthiness of the collected sensor data.
Unfortunately, the environment of sensor networks makes
these issues more challenging. Indeed, the primary defect
with IoT security lies in the fact that the sensors are some-
what basic, and their operational software or firmware is
usually poorly coded [1], [2]. The accelerated deployment
of IoT technology has often resulted in postponing security
issues and relegating them to secondary importance, and
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some devicemanufacturers have concentrated on profitability
at the expense of security. It has been stated [3] that 85.00%
of IoT developers are urged to bring a product to market
before adequate security can be implemented. Moreover,
some studies [4]–[10] have shown that attackers can manip-
ulate sensor data in real deployments and cause catastrophic
damage because of the lack of security consciousness in these
systems. Because of their exposure to hostile environments
and their inherent limitations, sensors are often subject to
failure and exhibit various vulnerabilities. It is then easy
for attackers to compromise some sensor nodes’ reliability
and manipulate the integrity of the sensed data through false
data injection attacks (FDIAs), for instance. Such failures
and compromised sensors hamper the system’s functionality,
leading to inappropriate decisions by operators and possibly
leading to catastrophic effects.

To guarantee a safe and reliable IoT system, the secu-
rity around its constituent devices should be examined more
closely. This is where anomaly detection is becoming a neces-
sity. Detecting anomalies in sensor data streams is an impor-
tant area of research and has been a subject of much interest.
It aims to uncover abnormal yet interesting knowledge that
does not conform to normal behavior and may therefore indi-
cate suspicious behavior. Various sensor anomaly detection
algorithms have been proposed [11]–[14], but few are able
to address the problem of FDIAs. Most anomaly detection
methods proposed for the IoT, particularly for WSNs, focus
only on specific types of network attacks.

One traditional way to detect these kinds of attacks is
to deploy an estimator and a detector in the system con-
troller [15]. The job of the estimator consists of estimating
and calculating the possible future readings and comparing
them with the actual readings. The detector then triggers an
alarm whenever there is a significant difference between the
estimated and actual readings.

However, FDIAs are not directly detectable by such a tra-
ditional approach [15]–[17]. The attacker can recognize the
usual conditions of the monitored environment and can easily
inject false data into the regular sensor readings without being
detected by the system, thereby misleading operators into
making inappropriate decisions. Moreover, the current prim-
itive data detection and analysis techniques were designed to
deal only with faults and failures rather than those associated
with malicious activity. In addition, most current techniques
for anomaly detection only consider the content of the data
source itself without considering the correlation context of
the data. Heterogeneous sensor data tend to exhibit a strong
correlation in both space and time that can be used to enhance
the abnormal node detection problem inWSNs. Corruption in
these correlations is very likely to be affected by the presence
of anomalies.

B. CONTRIBUTIONS
The present paper is an extended version of our prior
work [18], in which the spatiotemporal (ST) andmultivariate-
attribute (MVA) correlations of heterogeneous sensor

readings are considered in the detection process. The
collected sensor data were analyzed by computing the
cross-correlation between heterogeneous sensor streams.
The cross-correlation helps align two time series when one is
lagged with respect to others. The computed lag correlation
is then compared against two predefined thresholds: the lag
threshold and the correlation threshold.

However, there are two minor issues in the method pre-
sented in the original paper. These issues lie in the assumed
naive threat scenario and the ST correlation extraction
method. There is a possibility that the attacker may inject
measurements different from the observed ones, but this will
not be easily detectable because the data describe wrongmea-
surements that are still within the customary circumstances.
Under such conditions, experiments have shown that our prior
work could not detect the attack and correctly characterize the
compromised sensors. Moreover, experimental results have
shown that the detection accuracy is sensitive to the choice of
threshold parameters. The cross-correlation function (CCF)
estimation accuracy on the sensor data streams’ correlations
increases when the analyzed time series is long.

To tackle these limitations, we aim to extract the ST
correlations between the sensor nodes that can effectively
detect abnormal nodes while reducing the false alarm rates.
To achieve this aim, in this paper, we extend our prior work
by adding additional processing to the original ST correlation
extraction process. We also introduce a new threat model
that generates various attack patterns, which allows us to
test the detection algorithm and evaluate its performance
against different threat severity levels. We also added detailed
descriptions of the proposed detection method, evaluations,
and further discussion, which complement our prior work.
The main contributions of this paper are as follows.
1) We introduce a new ST-based correlation extraction

method to efficiently detect the abnormal sensor nodes
generated from the newly considered threat model.

2) We propose a new attack strategy to generate amalicious
dataset from the original sensor data, which allowed us
to test the detection algorithm and evaluate its perfor-
mance against different threat severity levels. We create
evaluation data, including various FDIA patterns and
missing data, based on the initially collected dataset.

3) We demonstrate the effectiveness of our proposed
method by conducting a variety of performance evalu-
ations. Compared with our prior work, we also augment
our evaluation with an additional larger-scale dataset.
Our experiments using the two real-world datasets
demonstrate that our proposed method detects abnormal
nodes with an average accuracy of 96.50%, an average
precision of 88.69%, and a recall rate of 93.00%.

C. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. In Section II,
we review the prior methods of anomaly detection in WSNs.
Section III describes some essential background character-
istics before introducing our proposed method. Section IV
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presents the detailed architecture and design of our proposed
method to detect abnormal nodes.We then describe the exper-
imental setup in Section V and present an analysis of the
results and an evaluation in Section VI. Finally, Section VII
contains some concluding remarks and perspectives.

II. RELATED WORKS
Sensor anomaly detection has received a considerable amount
of attention in the literature. It refers to identifying instances
or unusual events or observations that raise suspicions.
Nevertheless, it is often difficult to discern the sensor nodes’
anomalies from the actual anomalies that emerged from the
monitored environment.

In this context, the type of deployed WSN, the adopted
anomaly detection methodology, and the type of anomalies
of interest may significantly impact the design methodology.
In this paper, we categorize existing related works into three
orthogonal research directions related to anomaly detection
in WSNs.

• Sensor node types: HomogeneousWSNs (i.e., one-type
sensors) vs. heterogeneous WSNs (i.e., multitype
sensors).

• Detection methods: Methods directly running on sens-
ing devices (i.e., distributed methods) vs. methods run-
ning on the cloud (i.e., centralized methods)

• Anomaly types: Anomalies spanning a short period of
time (i.e., short-term anomalies) vs. anomalies spanning
a long period of time (i.e., long-term anomalies)

A. SENSOR NODE TYPES
Anomaly detection in homogeneous WSNs has received
much attention in the literature. Most of these methodolo-
gies [19]–[25] deploy multiple one-type sensors to detect
abnormal nodes. In this case, the homogeneous device is
analyzed based on the fact that neighboring same-type
sensors are often correlated and tend to generate similar
measurements. For instance, [19] proposed a method of
neighborhood data fusion in decentralized anomaly detection.
In [20], the authors proposed a trust evaluation model that can
detect the state of a node according to the data trust. In [21],
the authors combined both statistical and machine learning
techniques to detect anomalies in the network behavior of
IoT devices. The solution is based on constructing behavioral
device templates. In [22], the authors compared the sensor
measurement against the predicted measurements by using
the time-series forecasting method to detect faulty sensors.

All of the presented works only consider homogeneous-
based anomaly detection approaches. Furthermore, these
approaches are usually based on complex mathematical anal-
ysis and statistical methods applied to sensor data and tailored
to the specific numerical characteristics of the considered
type of sensor. Thus, applying suchmethods to heterogeneous
sensors may not be straightforward.

All of the presented works only consider a homogeneous-
based approach to resolving sensor failure problems or

detecting intrusions.Moreover, the cost of deployment is high
because of the redundancy of using the same type of sensors
spatially close to each other.

More recently, a new wave of research driven by het-
erogeneous WSN paradigms has emerged and gained rapid
uptake. The concept behind the heterogeneous-based detec-
tion approach is when the sensor network combines different
types of sensor data to detect anomalies. Nevertheless, this
concept is still regarded as not mature, and some challenging
issues need to be addressed before deploying it in actual
WSN environments. An approach for monitoring heteroge-
neous WSNs and identifying hidden correlations between
heterogeneous sensors was proposed by [23]. This approach
can identify the hidden correlation between heterogeneous
sensors but has not been specifically conceived for anomaly
detection.

The proposed approach in [24] detects and identifies
faulty devices proposed for smart homes. The authors used a
context-based method to detect faulty heterogeneous nodes.
Their experiments showed that their proposed approach suc-
cessfully detects and identifies faulty devices in a short detec-
tion time. However, they do not consider the fact that sensor
nodes can be subject to attacks and cause abnormal nodes in
the network. In [25], SMARTwas proposed as a sensor failure
detection system based on classifier outputs. The classifier
is trained to recognize the normal activity patterns based on
different subsets of sensors. In [26], 6thSense is a proposed
context-aware intrusion detection system for heterogeneous
sensors. It monitors the changes in sensor data by creating a
contextual model to distinguish normal and malicious sensor
nodes.

While these heterogeneous-based approaches efficiently
detect anomalies, they require additional development.
Most of these data detection and analysis techniques were
designed to only deal with faults and failures and not
coordinated malicious activity. Moreover, many rely on
background knowledge and labeled training data. In this
paper, we develop a framework to detect anomalies in het-
erogeneous WSNs.

B. DETECTION METHODS
Anomaly detection in WSNs can be classified as either
methods directly running on sensing devices (i.e., dis-
tributed methods) or methods running on the cloud (i.e.,
centralized methods). Performing anomaly detection in a
central processing system allows us to adopt complex
algorithms and, consequently, to obtain accurate results.
In [18], a centralized-based approach is proposed where all
heterogeneous sensor streams are collected and controlled in
a centralized base station. The proposed solution evaluates
the intensity of the correlation between the sensor streams
by calculating the lag correlation between them. In [26],
the authors propose a centralized failure detection approach
where the base station aggregates the network sensor read-
ings and detected failures by finding an insufficient flow of
incoming data.
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TABLE 1. Comparison between approaches.

In contrast, distributed methods run directly on sensor
nodes equipped with light computation capability. Most of
these approaches require historical data samples to be kept
in the sensor node, which has limited memory storage.
In [27], [28], a rule-based distributed fuzzy inference system
for WSNs was proposed that combines both local and neigh-
boring observations to identify the occurrence of events. In
this paper, our framework is centralized-based to overcome
the drawbacks of the distributed method and guarantee good
detection accuracy.

C. ANOMALY TYPES
Another essential aspect to consider regarding sensor
anomaly detection is the time span covered by the anomaly
itself. Most of the works mentioned [18]–[28] effectively
detect short-term anomalies or long-term anomalies, but not
both. For instance, in [18], a time-lagged cross-correlation
analysis was used to extract these relationships. The corre-
lation between the sensor data streams is captured by com-
puting the CCF between them. However, the CCF estimation
accuracy on the sensor data streams’ correlations increases
when the analyzed time series is long. Indeed, the method is
more effective for detecting anomalies spanning a long period
of time. Anomalies spanning a short period of time cannot
be detected, as their occurrence does not affect long-term
scale correlation. It is well known that the length of the
analyzed sensor data streams may influence the correla-
tion between the sensors and lead to false alarms. In other
words, the method in [18] depends considerably on the sensor

FIGURE 1. A typical WSN architecture.

TABLE 2. Comparison between approaches in terms of requirements.

streams’ length and the period of anomaly records, which
often varies between the sensors.

Table 1 recapitulates the characteristics of each mentioned
related work, including the proposed method in this paper.
To summarize the works, while they can efficiently detect
anomalies, they require further development.

First, most of these data detection and analysis techniques
were designed to deal only with short-term anomalies or
long-term anomalies. Second, many techniques rely on user
intervention for labeling training data or supplying additional
background information, which is a time-consuming and
challenging task in itself. A solution claiming to be adequate
should satisfy the following requirements.
• R1) Practicability is the requirement for the system
to consider the use of various types of heterogeneous
sensors in the deployed network.

• R2) Multitarget anomaly detection is the require-
ment for the system to consider the detection of both
short-term and long-term anomalies to guarantee a reli-
able IoT system.

• R3) Feasibility is the requirement whereby the monitor-
ing system does not require training data to undertake the
anomaly detection process.

Table 2 summarizes the extent to which each of the previously
mentioned works meet these requirements, together with our
proposed method in this paper.

With these identified requirements, in this paper, we pro-
pose a new cross-correlation-based method to decide whether
the sensor is subject to anomalies (both short-term and
long-term anomalies) or represents actual events. In partic-
ular, the ST and MVA correlations of heterogeneous sensor
readings are considered in the detection process. Our pro-
posed method satisfies all the requirements listed in Table 2.

III. PRELIMINARY BACKGROUND
This section provides the essential background characteris-
tics used in our proposed framework and discusses some
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assumptions about the monitoring environments considered
in this paper.

A. SYSTEM AND SENSOR DATA MODEL
An environmental monitoring application in a WSN is
defined as an application that monitors the real world and
issues a report whenever an event of interest occurs during
a certain period in a specific location. The typical WSN
architecture we consider (Figure 1) consists of heterogeneous
sensor nodes, a base station (BS), and a network connect-
ing all sensor nodes. The BS is a server for collecting and
processing sensor data. All the sensor nodes in the WSN are
connected to this BS directly or indirectly.

This paper addresses the network scalability issue by
adopting a cluster-based network topology. Indeed, we adopt
the clustering method as a network architecture not only
because it saves the sensor nodes’ energy but also because
it allows the capturing of the correlation between the sensors,
enhances the trustworthiness of the system, and improves the
detection rate. Certainly, a cluster-based routing algorithm
in WSNs is another approach that allows sensor data aggre-
gation to reduce the overall communication cost. However,
in this paper, we do not aggregate the collected data. The
sensor data are collected from each cluster in the WSN and
forwarded to the BS. Indeed, the objective of this paper is
to detect abnormal nodes in WSNs. Thus, we need to col-
lect every sensor stream in the centralized node and analyze
whether there is corruption in their correlation.

To implement a thorough monitoring system, n sensor
nodes (S1, S2, . . . , Sn) are geographically grouped into phys-
ical clusters, each covering a certain area. In each physical
cluster, one elected node is chosen to be a cluster head node
(CH). Other nodes in the cluster are called sensor nodes
(SNs), and they report their sensed readings to their CH. Once
all the sensed data within the cluster are collected, the CH
forwards the messages directly to the BS.

Depending on the application, a CH node can be a special
sensor with more potential than other sensor nodes in terms
of energy, bandwidth, and memory. However, most of the
proposed systems for WSNs based on environmental mon-
itoring in the literature assume that all the sensor nodes in
WSNs are inexpensive and equal in terms of computation,
communication, and power. In addition, it has been stated
that the existence of sensors with different capacities raises
many technical issues, especially in terms of data routing.
Therefore, to guarantee a domain-independent application,
in this paper, we consider that all the sensor nodes in the
network have the same performance characteristics. In other
words, even though the CH acts as a particular node within
the physical cluster, it still acts as an SN. This implies that
apart from its role in forwarding readings from SNs to the
BS, its readings are also included in the computations for
its own cluster. Besides, the role of the CH is periodically
rotated among all nodes in order to balance the energy con-
sumption and the traffic load in the network. We assume
that each sensor sends its reading to the CH, and then CH

resends the reading to the BS. As a result, each reading is
sent twice, except for the CH’s readings. Furthermore, each
cluster should include heterogeneous sensors for sensing and
collecting data about a variety of attributes, such as tempera-
ture, humidity, and light intensity.

Each sensor node (i.e., SN and CH) Si has a unique iden-
tifier, where i ∈ [1, n]. Each Si is characterized by five
attributes, L, T , Cp, Cl, and an output stream O.

• Let L(Si) be the location of sensor Si, specified by its
geographic coordinates xi, yi, and zi.

• Let D be the set of sensor types, where D includes
Temperature, Humidity, Light , Smoke, etc.

• Let T (Si) be the node’s sensor type, where T (Si) ∈ D.
• As mentioned, the clustering concept is adopted for
the network topology. Although several complex and
innovative clustering techniques have been proposed
for WSNs, this paper considers a very simple cluster-
ing technique for environmental monitoring in WSNs.
In addition, the role of the CH is periodically rotated
among all nodes to balance the energy consumption and
the traffic load in the network. We denote size(Cp) as
the number of sensors deployed in the physical cluster
Cp. Let Cp(Si) be the physical cluster within which Si is
located. The clustering formation is based on a defined
distance threshold, thd . Two sensors, Si and Sj, belong to
the same cluster Cp if and only if Cp(Si) = Cp(Sj) and
the distance between L(Si) and L(Sj) is less than thd .

• This paper adopts a subclustering procedure based on
the sensor’s spatial correlation to separate the physi-
cal clustering further and guarantee accurate correlation
extraction. SNs within a physical cluster having similar
structural patterns are then grouped into a subcluster
identified as a logical cluster. We denote size(Cl) as the
number of sensors deployed in the logical subcluster
Cl. Let Cl(Si) be the logical subcluster of Cp(Si) within
which Si is located. Two sensors, Si and Sj, belong to the
same logical subcluster Cl if and only if Cl(Si)= Cl(Sj),
Cp(Si) = Cp(Sj), and Si and Sj have strong spatial data
correlations.

• Finally, let EO(Si) be sensor Si’s data stream, where
EO(Si) = {O(Si, 1), . . . ,O(Si, t), . . . ,O(Si,m)}. O(Si, t)

is the node’s output data stream with every Si sensing
data at time t , and m is the length of the sensor data
stream.

B. SENSOR DATA ANOMALIES
Wireless SNs have limited resources and are often exposed
to a hostile environment. Therefore, the collected sensor
data may be distorted by anomalies, which can be classified
into two categories. Some anomalies correspond to fail-stop
anomalies, where the sensor stops generating values after
failure (e.g., the device completely shuts down). The sec-
ond category corresponds to nonfail-stop faults, which occur
unpredictably and appear when a device exhibits abnormal
behavior and generates and reports incorrect values. In this
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case, we describe the sensor readings as a combination of real
value and error terms. The error terms can be either a ran-
dom error or systematic error. Random errors are errors that
fluctuate around the real value because of noise or because
of limitations of the sensor in terms of precision. The second
type is systematic error, which has a nonzero mean. It usually
shifts the value away from the real value. Such errors emerge
because of different causes, such as faults or nodes that are
compromised by external attackers.Moreover, in a real-world
sensor network, the sensor data streams are nonstationary
time series that may frequently change over time due to events
in the observed environment. Thus, the generated sensor data
may also differ significantly from its standard value.

A sensor reading is considered to be ideal when there are
no systematic errors and can be described by the following
equation:

O(Si, t)′ = O(Si, t)+ ε, (1)

where O(Si, t)′ is the collected sensor measurement, O(Si, t)
is the real value and ε is the random error, with ε ∼ N (0, σ 2).
Figure 2 displays the different anomalies that frequently
occur in real-world sensor data.
• Anomaly 1: This is a short-term high anomalous value.
• Anomaly 2: This is a sequence of values that are unaf-
fected by the input and remain the same.

• Anomaly 3: This is a continuous sequence of anomaly
one.

• Anomaly 4: This represents missing values because of
the absence of generated or reported sensed data.

• Anomaly 5: This is a short-term high value that goes
beyond the expected degree of the normal measurement
range.

• Anomaly 6: This is a sequence of multiple values of
anomaly five that are greater than the expected range of
normal measurements.

All these anomalies in the WSN data provide insight into
what kind of anomalies may appear in the sensor data. How-
ever, the six defined anomalies are not comprehensive for all
anomalies that may appear in sensor data. Furthermore, these
types of anomalies can either span over a short or span over
a long period of time in the collected sensor data streams.

Anomalies with different causes may have different char-
acteristics. From the collected sensor data in Figure 2, we can
observe that anomalies are abnormally generated values that
spatially or temporarily differ from the standard values.
Therefore, it is helpful to classify anomalies based on specific
features.

Such features may contain howmuch the data deviate from
standard data instances, the frequency of occurrences, and
the time and location of anomalies within the WSN. The
next section explains the rationale of identifying the cause
of anomalies based on their correlation with other SNs.

C. SENSOR DATA CORRELATIONS
One approach to determining whether a particular sen-
sor measurement is normal and identifying abnormal

FIGURE 2. Possible sensor data anomalies in real-world sensor data.

measurements is to explore the similarity relationships
between the sensor measurements. These similarities are
what we call sensor correlations that can be derived from
the local sensor measurement with respect to other SNs in
the network. In the presence of anomalous data, the correla-
tions between the sensor measurements would be corrupted.
‘‘When’’, ‘‘where’’, and ‘‘what’’ are three key points for
distinguishing abnormal SNs from normal SNs. By provid-
ing answers to these three questions, we can distinguish
three types of sensor correlations: temporal, spatial, and
multivariate-attribute correlations.

1) WHEN: TEMPORAL CORRELATION
Temporal correlations occur between each consecutive obser-
vation of a sensor node. In other words, the sensed data
tend to be the same as or similar to the readings observed
at previous times. Moreover, the degree of change between
consecutive sensor measurements is usually constrained by
the temporal variation characteristics of the observed physical
phenomenon. Sensed data that do not vary according to the
observed environmental patterns imply that there are anoma-
lous data.

2) WHERE: SPATIAL CORRELATION
Typical WSN applications require high-density sensor
deployment to maintain good area coverage within the spatial
domain. Thus, the measurements from multiple homogenous
sensors located in the same field and monitoring the envi-
ronment at the same time tend to show a high degree of
similarity. As a result, neighboring sensor observations are
highly correlated with the degree of correlation increasing
with decreasing internode separation.

3) WHAT: MULTIVARIATE-ATTRIBUTE CORRELATION
Homogeneously sensed data usually contain both time and
space information. However, the data generated by hetero-
geneous sensors are not independent, and we can obtain
additional valuable information that may lead to better
insights into the monitored environment. We may call this
the ‘‘observed MVA.’’ In normal situations, when there is no
interference from events or abnormal nodes, heterogeneous
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FIGURE 3. Workflow of the abnormal node detection framework overview.

sensor streams located in the same cluster tend to be corre-
lated in both intracluster and intercluster senses, whereas the
occurrence of events usually appears in specific observations.
For example, a particular change in sensor data caused by
an event will exhibit temporal and spatial correlation. This
change will continue for a period of time after the event
occurs. Moreover, if the event occurs in a specific cluster,
then heterogeneous sensors located in the same cluster will
show a high degree of correlation, unlike sensors located in
other clusters. For instance, in a fire detection system, light
intensity, temperature, and smoke density are all necessary
elements of the information used to identify that a fire has
been detected [18].

D. ASSUMPTIONS
Using correlations between heterogeneous sensor properties,
our aim is to detect the abnormal nodes that generate anoma-
lies to the collected sensor data streams. Our research is based
on the following assumptions:
• To reduce the complexity of the problem, we assume
that every sensing environment is characterized by its
environmental conditions, such as temperature, light
intensity, and relative humidity.

• All clusters must be composed of both homogeneous
and heterogeneous SNs to maintain high event-detection
accuracy.

• While some SNs may be compromised and considered
abnormal nodes, we assume that the majority of the
sensors will remain trustworthy.

IV. PROPOSED APPROACH
Our objective in this paper is to differentiate false alarms from
valid alarms and guarantee the trustworthiness of the system
by detecting abnormal nodes. This problem can be expressed
as follows:
Problem: Given n coevolving correlated sensor-stream
sequences provided by n heterogeneous sensors collected at
the same time, determine, at any point in time, which SNs
are abnormal, and report all such nodes.
We propose a novel framework to detect abnormal nodes

in sensor network environments with heterogeneous sensor
data to achieve our objective. The proposed framework is
illustrated in Figure 3. To achieve our objective, we follow

a four-step process. First, heterogeneous sensor data are col-
lected from the various physical clusters. Before analyzing
the sensor data stream cross-correlations between the sensors,
there is a need for a preprocessing step. Afterward, the sys-
tem extracts the ST correlation for each physical cluster by
analyzing the cross-correlation between homogeneous sensor
streams. Next, based on the background knowledge of the
monitored environment and the observed MVA correlations,
a number of rules are introduced to check whether abnormal
nodes or real events have been detected. Finally, if abnormal
nodes exist, then such nodes are reported.

A. STEP 1: DATA ACQUISITION
The first step involves collecting heterogeneous sensor
streams from the various clusters deployed in the monitored
area. After the data are collected, preprocessing can begin.

B. STEP 2: DATA PREPROCESSING
Before analyzing the sensor data stream cross-correlations
between the sensors, there is a need for a preprocessing step.
The measurements from homogenous sensors located in the
same cluster and simultaneously monitoring the environment
tend to show high observation similarity. Nevertheless, there
are some exceptions that we should consider. Some sensor
types are more sensitive to the observed environment than
others. The interval scale of the measurements depends on
the sensor location itself. For instance, the light intensity of
the sensor located next to the window tends to be higher
than that of the sensor located away from a light source.
Such a difference in magnitude would corrupt the correlation
information we would want to extract, as the introduced scale
difference alters the true sensor cross-correlation to varying
extents.

Therefore, there is a need to standardize the sensor data
streams to make the magnitude and time scale uniform.
To handle the different scales in amplitude, the sensor data
streams are first standardized using z-normalization, also
known as normalization to zero mean and unit of energy [29].

Let EO(Si) = {O(Si, 1), . . . ,O(Si, t), . . . ,O(Si,m)} be an Si
data stream with m data points, and z-normalization of EO(Si)
is defined as follows:

z-( EO(Si)) =
O(Si, t)− µSi

sdSi
, (2)
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FIGURE 4. z-Normalization of sensor data streams deployed in our
laboratory.

where

µSi =

∑T
t=1O(Si, t)

m
, (3)

sdSi =

√∑m
t=1

∣∣(O(Si, t)− µSi )2∣∣
m

, (4)

where µSi is the arithmetic mean of Si’s measurements from
O(Si, 1) to O(Si,m) and sdSi is the standard deviation of all
the Si measurements in the given data stream EO(Si).
Normalization will cause the sensor data streams to be

invariant to scale and offset. Figure 4 illustrates a real-world
situation observed in a WSN deployed in our laboratory.
Sensors six, seven, and eight are three light sensors located
in the same physical cluster. However, because sensor eight
is located near the window, the raw recorded light intensity
is higher than that for the other two sensors. Nevertheless,
sensor eight still maintains the same structural pattern as the
other two sensors. After applying normalization to the raw
light data streams, we can observe that their z-normalized
versions are highly similar. Overall, this preprocessing is
an essential step, as it will allow the anomaly detection
method to focus on the structural similarities rather than on
the amplitudes. To simplify notation in the rest of the paper,
we shall write ( EO(Si)) in place of z-( EO(Si)). This means that
we do not refer to the rawmeasurements but the z-normalized
measurements.

C. STEP 3: SPATIOTEMPORAL CORRELATION EXTRACTION
In our prior work [18], a novel approach was proposed to
extract the ST and multivariate attribute correlations between
heterogeneous sensors. The collected sensor data were ana-
lyzed by computing the cross-correlation between homoge-
neous sensor streams both within clusters (intracluster) and
between clusters (intercluster). However, there are two minor
issues in the method presented in the original paper. These
issues lie in the assumed naive threat scenario and the ST
correlation extraction method.

To tackle these limitations, we aim to extract the ST corre-
lations between the SNs that can effectively detect abnormal
nodes while reducing the false alarm rates. In this paper,
we extend our prior work by adopting new methods to extract

FIGURE 5. Spatiotemporal correlation extraction.

the ST correlation between the sensor streams to achieve this
aim. The proposed detectionmethods learn how each sensor’s
data correlate within the sensor network, and abnormal nodes
are identified by exploiting the anomalies in these correla-
tions. Figure 5 illustrates the workflow of the ST correlation
extraction. For each physical cluster, the system conducts
shape-based logical subclustering. Each logical subcluster
consists of homogeneous sensors sharing the same sensor
patterns from the sensor data stream. Then, the system pro-
ceeds to the two-phase sensor data stream analysis. In the
first analysis phase, the system uses a variable-size sliding
window and an MAD measure to detect short-term anoma-
lies. If the collected sensor data stream outputs a certain per-
centage of anomalous points, the MAD will flag these points
as anomalous measurements, and all the sensor data and the
window size will be passed to the second analysis phase. The
latter performs both tumbling-window and sliding-window
analyses to extract multicriteria cross-correlation measures
to detect long- and short-term anomalies. Finally, all the
extracted sensor time-series features will be fed to the
shape-based clustering to generate a sensor similarity graph.
The latter reflects the similarity degree of the sensor with
the other nodes. The nodes with a low degree of similarity
below the threshold will be reported as abnormal nodes. In the
following sections, we will look at each step in more detail
and the reason behind the choice of each adopted technique.

1) STEP 3-A: SHAPE-BASED SUBCLUSTERING
As mentioned in the previous subsection, it is assumed that
neighboring sensors in the same physical cluster share similar
dynamic environmental characteristics, but some may have
events within their respective sensing range. Such a differ-
ence in timescale and magnitude would corrupt the corre-
lation. Thus, the objective here is to divide the SNs within
the physical cluster into logical subclusters having similar
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structural patterns. We use the k-shape [30] method for evalu-
ating the sensor-stream data similarity to tackle this problem.
This is a clustering method based on an iterative refine-
ment similar to the one used in k-means. However, unlike
k-means, it groups the time series into clusters based on
their shape similarity, regardless of the amplitude and phase
difference. Moreover, it is domain-independent, as it uses a
distance based on coefficient-normalized cross-correlation,
named shape-based distance (SBD)

Let EO(Si) = {O(Si, 1), . . . ,O(Si,m)} and EO(Sj) ={
O(Sj, 1), . . . ,O(Sj,m)

}
be two sensor data streams of length

m of sensors Si and Sj, respectively (i 6= j), and T (Si) = T (Sj)
and Cp(Si) = Cp(Sj). To determine the similarity between
EO(Si) and EO(Sj), we use the SBD measure, which is defined

as follows:

SBD( EO(Si), EO(Sj))

= 1− maxw

× (
CCw( EO(Si), EO(sj))√

R0( EO(Si), EO(Si)) · R0( EO(Sj), EO(Sj))
), (5)

which takes a value between 0 and 2, with 0 indicating a high
similarity between the sensor data streams. In every iteration,
the method k-shape performs two steps in its centroid com-
putation. First, in the assignment step, the algorithm updates
the cluster membership by aligning each sensor data stream
to all the computed centroids. Each sensor data streamwill be
assigned to the cluster with the closest centroid. In this step,
the k-shape relies on the distance measure of Equation (5) to
compare the sensor data stream with the centroids. Second,
in the refinement step, the cluster centroids are recalcu-
lated whenever new sensor data streams join the cluster. The
k-shape method iterates the calculation of the centroid until
the cluster membership does not change. Similar to the clus-
tering method k-means, k-shape requires the specification
of the number of clusters. However, the correlation between
the sensors differs over time, and it is not easy to guess the
number of clusters and assign a fixed value. Therefore, in this
paper, we use the elbow method to determine the number of
clusters.

2) STEP 3-B: CORRELATIONS ANALYSIS
One of the challenges of anomaly detection is reducing
the number of false alerts. One essential aspect to consider
when developing appropriate sensor anomaly detection is
the time span covered by the anomaly itself. Anomalies can
span over long periods or short ones. This section intro-
duces the proposed method for an abnormal node detec-
tion method that combines a two-phase analysis in ways
that can be used to reduce false alerts and detect various
attack patterns. It combines median absolute deviation-based
analysis to identify short-term anomalies and multicriteria
cross-correlation-based analysis to identify and validate both
short- and long-term anomalies. This combined detection
method aims at mitigating the drawbacks that each of these

two methods would have when used separately while making
the most of each one’s strength.

a: FIRST ANALYSIS PHASE
The first analysis phase provides the first line of the abnormal
node detection process to detect short-term anomalies. It uses
temporal correlation to extract the temporal changes in the
sensor data. Figure 6 illustrates the workflow of the first
analysis phase.

The method is based on the MAD measure. In this paper,
we use the median MAD instead of the simple mean to
avoid assuming that sensor streams are normally distributed.
In addition, MAD, which is similar to the mean, computes
the median over the absolute deviations from the median
but is more robust to point and short-term anomalies. If the
collected sensor data streams output a certain percentage
of anomalous points with a significant deviation from the
median, the MAD will flag these points as anomalous mea-
surements. However, the MAD measure is immune to the
length of the sensor data stream. Moreover, the sensor data
streams are nonstationary time series that change over time.
Therefore, using the MAD as a stand-alone method to detect
anomalies may not be effective, as it relies only on a stable
median to detect anomalies. Thus, it may mistake nonsta-
tionary behavior as misbehavior. Hence, an appropriate time
window for the temporal segmentation of sensor streams
may be valuable. The aim is to conduct a windowed TC
by splitting the sensor data into hourly, daily, weekly, and
monthly timespans, and the MAD-based analysis should be
monitored at the specifiedwindow (Figure 6: 1). Indeed, if we
set the window size to a short period, such as one minute,
two minutes, or five minutes, we will qualitatively obtain the
same results, approximately corresponding to patterns on
the minute scale. Of course, at widely different time scales,
the sensor correlation may be different. Thus, it is desirable
to plan the TC at multiple scales, e.g., hour, day, and month
(Figure 6: 2). The system calculates the MAD (periodical
check) after each specified TC (Figure 6: 3).

MADSi = k medi |O(Si)− medi O(Si)| , (6)

where O(Si) is the sensor’s collected measurement within the
window,medi O(Si) is themedian in themeasurements across
the sensor data stream, and k = 1.482 is the factor scale linked
to the assumption of normality of the data, disregarding
the abnormality induced by anomalies. The initial window
size initSize is given by the user; next, the window size is
automatically adjusted based on the concept of MAD-based
anomaly detection. The TC determines the boundary point of
the sliding window, and TCinit = intiSize.
As shown in Figure 6, if there is no deviation from each

individual sensor data stream (Figure 6: 4), the median
indicates that the streams are normal, and the window size
will continually increase w + w′ until the next planned TC
(Figure 6: 5.a). The TC determines the boundary point of the
sliding window. On the other hand, if the collected sensor
data streams output a certain percentage of anomalous points,

135274 VOLUME 9, 2021



N. Berjab et al.: ST and MVA Correlation Extraction Scheme for Detecting Abnormal Nodes in WSNs

FIGURE 6. First analysis phase using median absolute deviation.

the MAD will flag these points as anomalous measurements,
and all the sensor data streams and the window size will be
passed to the second analysis phase (Figure 6: 5.b). When an
anomaly is detected, the sensor data stream before the TC
is completely removed from the window, and a new w′ is
formed. Therefore, the TC is moved to the new point where
the anomaly is detected. For the mean and standard deviation,
it is necessary to define a level of decision. Thus, we must
define the rejection criterion of a measurement. O(Si, t) =
O(Si, t)anomalous when

|O(Si, t)− medi · O(Si, t)|
MADSi

> threshold, (7)

where O(Si, t)anomalous is the suspicious measurement and
threshold is the predefined cutoff. In determining how strict
the threshold should be, one study [31] proposes values of 3
(very conservative), 2.5 (moderately conservative), or even 2
(poorly conservative). In this paper, we choose a threshold
of 2.5 as a reasonable choice.

The first detection method does not aim at high accuracy
because it relies on individual sensor measurements and does
not exploit spatial correlation data between the sensors. Thus,
it is difficult to detect long-term anomalies at the first anal-
ysis phase, so detecting long-term anomalies is performed in
the second analysis phase.

b: SECOND ANALYSIS PHASE
The detection method takes advantage of correlation in the
measurement observation between SNs to increase the detec-
tion accuracy. Figure 7 illustrates the workflow of the second
analysis phase. In this paper, we propose another practical
choice to identify the cross-correlation between two sensor
data streams to detect both long- and short-term anomalies.
The first step toward capturing the correlation between the

sensor data streams over time is to segmentize each sensor
data stream to a specific duration of time by using two time
window types: the tumbling window and the sliding window
(Figure 7: 1).
(a) Tumbling window: This is a fixed window that does

not overlap, and it is aligned to the next epoch by
moving for as long as the window size. The sen-
sor measurements are exclusive for each window.
With this method, we can obtain the cross-correlation
between the sensor streams from one epoch to another.
Thus, we can capture the change in long-term scale
correlation.

(b) Sliding window: The sliding window, on the other
hand, slides ahead one time period across time. New
sensor measurements are gradually added at the front,
and the older sensor measurements become invisible as
the window slides ahead. Note that compared with tum-
bling windows, the sliding windows overlap between
successive epochs. We can obtain the cross-correlation
between the sensor streams from one epoch to another
with this method. Thus, this will allow us to capture
the change in short-term scale correlation. We segment
the sensor data stream into a sliding window of p sam-
ples with overlapping samples. For instance, as shown
in Figure 8, in this paper, we consider 50% overlaps.

Both types of windows move across the sensor data stream,
splitting the data into finite subsequences. Overall, the two
methods described will help us capture the changes between
two sensor data streams over time, making anomaly detection
even more accurate. In short, if the length of the time series
is long enough and when we are dealing with long-term
anomalies, the obtained moving cross-correlation score with
a tumbling window may perform better. However, if the
length is short and we are dealing with short-term anomalies,
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FIGURE 7. Second analysis phase.

then the obtained moving cross-correlation score with a slid-
ing window may be a better choice. After completing the
data stream segmentation according to each time window,
we proceed to the cross-correlation calculation step. For each
sensor data stream segment, the detection system proceeds
to the multicriteria cross-correlation calculation as part of
the decision-making process to identify anomalies. Heteroge-
nous sensor data tend to exhibit a strong correlation in both
space and time that can be used to enhance the abnormal node
detection problem in WSNs. Corruption in these correlations
is very likely to be affected by the presence of anomalies.
To estimate the correlation between sensor data streams, one
promising idea is to use the concept of lag correlation given
by the CCF time [32]. Two sensor streams have a lag corre-
lation of l if they look very similar when one is delayed by
l time ticks. The Pearson formula is adopted as the criterion
for the lag correlation:

Xcorr( EO(Si), EO(Sj), l) =

∑n
t=l+1(O(Si, t)− EO(Si))√∑n
t=l+1(O(Si, t)− EO(Si))2

×

∑n
t=l+1O(Sj, t − l)− EO(Sj)√∑n−l

t=1(O(Sj, t)− EO(Sj)2

(8)

where EO(Si) =
1

n−1

∑n
t=l+1O(Si, t) and EO(Sj) =

1
n−1

∑n
t=1−O(Sj, t). Here, Xcorr( EO(Si), EO(Sj), l) represents

the correlation coefficient when one stream is delayed by l.
Based on Equation (8), we can now define how we evalu-
ate the correlations between homogeneous sensor streams.
The homogeneous intracluster correlation is defined formally
as follows. Given two numerical same-type sensor streams

located in the same cluster and observed at the same time t ,
let Cp(Si) = Cp(Sj) and T (Si) = T (Sj). For all Si and Sj with
(i 6= j), Si and Sj sensor streams are considered correlated if:

(a) the score (|Xcorr( EO(Si), EO(Sj), l)|) between O(Si, t) and
O(Sj, t − 1) is actually a local maximum, and

(b) is the earliest such maximum if additional maxima
exist.

The reason for the second condition relates to the case
where the two sequences are periodic with the same period
T (for real sequences, this will be daily or yearly).

We will then obtain more than one local maximum (e.g., l,
l + T , and l + 2 × T ). Clearly, the earliest lag is the most
important to consider. In this paper, when extracting the hid-
den correlations between the sensor data streams and decid-
ing whether the sensors are abnormal, multicriteria Xcorr
need to be accounted for. Using Equation (8), we proceed
to extract the pairwise Xcorr with all other sensors within
the same cluster for each sensor. For this, we compute two
kinds of multicriteria Xcorr , namely, intra-subcluster Xcorr
and inter-subcluster Xcorr . As explained in subsection IV. C,
each cluster is divided into logical subclusters of sensors with
similar structure patterns. For each sensor, we proceeded to
extract the intrapairwise Xcorr (Figure 7: 3.a) with all other
sensors within the same logical subcluster (Figure 7: 2.a).

Once all the intrapairwiseXcorr are extracted, we calculate
the average intra-subcluster Xcorr of each sensor data stream
to other sensors (Figure 7: 4.a). The average intra-subcluster
Xcorr is calculated as follows:

Corr(Si)intra =
1

size(Cl(Si))

∑
i6=j

Xcorr( EO(Si), EO(Sj))intra,

(9)
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FIGURE 8. Sensor data stream segmentation with two time-based
windows.

where size(Cl(Si)) is the size of the logical cluster Cl
where Si belongs. Xcorr( EO(Si), EO(Sj))intra is the correlation

between Si and Sj. Here, Sj runs over all sequences in the

set except for Si itself. Corr(Si)intra is the intra-average
correlation. Thus, each sensor calculates the intra-average of
the correlation.

This also applies to the second criteria of Xcorr . The inter-
pairwise Xcorr (Figure 7: 3.b) is extracted for each sensor
with all other sensors belonging to other logical subclus-
ters (Figure 7: 2.b). Once all the interpairwise Xcorr are
extracted, we calculate the average inter-Xcorr of each sensor
data stream to other sensors (Figure 7: 4.b). The average
inter-Xcorr is calculated as follows:

Corr(Si)inter =
1

size(Cp(Si))

∑
i6=j

Xcorr( EO(Si), EO(Sj))inter ,

(10)

where size(Cp(Si)) is the size of the physical cluster Cp
where Si belongs. Xcorr( EO(Si), EO(Sj))inter is the correlation

between Si and Sj. Here, Sj runs over all sequences in the

set except for Si itself. Corr(Si)inter is the interaverage cor-
relation. Thus, each sensor calculates the interaverage of the
correlation.

Afterward, the weighted average of the observed aver-
age of both Corr(Si)intra and Corr(Si)inter is calculated to
obtain Si’s correlation score for the n analyzed segments
(Figure 7: 5.):

Corr(Si) = wintra · Corr(Si)intra + winter · Corr(Si)inter ,

(11)

where wintra =
size(Cl(Si))
size(Cp(Si))

and winter = 1 − wintra are the
assigned weights to the intra-average correlation and interav-
erage correlation, respectively.

The motivation for weighting the intra-average correlation
and interaverage correlation is to give more importance to
the intracorrelation between the sensors while also taking
into consideration the intercorrelation between them. Imagine

TABLE 3. MVA correlation extraction.

that we only consider inter-average correlation or assign a
very large weight (for example, 0.9) to interaverage corre-
lation; the final sensor correlation score will be similar to
the interaverage correlation. Thus, to assign the appropriate
combination weight for each average correlation, we refer to
the sizes of both the physical cluster and the logical cluster of
each sensor Si.

In the experimental section, we show that combining
relevant observations from both average correlations by dis-
criminative weighting provides a possible way to improve
the detection accuracy. Once all the segments of each time
window have been analyzed, we finally obtain two types of
moving correlation scores: the tumbling-window-based mov-
ing correlation score and the sliding window-based moving
correlation score (Figure 7: 6).

3) STEP 3-C: SENSOR SIMILARITY DEGREE
AND STATE IDENTIFICATION
The final step involves collecting all the extracted features
of each sensor to calculate its similarity degree with other
sensors located in the same cluster (Figure 3).
1) Let Ef1(Si) be Si’s z-normalized time series.
2) Let Ef2(Si) be Si’s moving MAD time series.
3) Let Ef3(Si) be Si’s tumbling-window-based moving Xcorr

time series.
4) Finally, let Ef4(Si) be Si’s sliding-window-based moving

Xcorr time series.
When all these extracted features are integrated, valu-

able insight can be obtained, which makes abnormal node
detection even more accurate. Therefore, the four observed
features of the time series are fed into the shape-based clus-
tering process. Then, we calculate the degree of similarities
between the different SNs for each extracted feature fo, o ∈
[1, 4]. Let Efo(Si) = {fo(Si, 1), . . . , fo(Si,m)} and Efo(Sj) ={
fo(Sj, 1), . . . , fo(Sj,m)

}
be two extracted time-series fea-

tures of length m of sensors Si and Sj, respectively (i 6= j),
and T (Si) = T (Sj) and Cp(Si) = Cp(Sj). To determine the
similarity between Efo(Si) and Efo(Sj), we use Equation (5).
If the two time series share similar characteristic patterns,
then they will be classified in the same cluster. Let Wti,j be
the weight that represents the number of times when Si and Sj
share similar characteristic patterns for each extracted feature
fo. The similarity degree of sensor Si is calculated as follows:

SimDeg(Si) =

∑
i6=jWti,j

(sizeCp(Si)− 1) · nbfeature
, (12)

where it takes a value between 0 and 1, with 0 indicating no
similarity between the sensors. For the analysis of anomalies,
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FIGURE 9. Sensors deployed in the Intel berkeley research lab.

FIGURE 10. Raspberry Pi 2 equipped with four types of sensors.

the correlation state of sensor node Si is considered to be
uncorrelated if sensor similarity degree SimDeg(Si) is less
than threshold = 0.5.

D. STEP 4: MULTIVARIATE-ATTRIBUTE
CORRELATION EXTRACTION
Homogeneously sensed data usually contain both time and
space information. However, the data generated by hetero-
geneous sensors are not independent, and we can obtain
additional valuable information that may lead to better
insights into the monitored environment. We may call this the
‘‘observed MVA.’’ All multivariate attributes sensed directly
by heterogeneous sensors and analyzed in the previous steps
will be used in forming a final decision; however, they may
not be sufficient to guarantee an accurate decision. In typi-
cal situations, when there is no interference from events or
abnormal nodes, heterogeneous sensor streams located in the
same cluster tend to be correlated, whereas the occurrence of
events usually appears in specific observations.

For example, a particular change in sensor data caused
by an event will exhibit temporal and spatial correlation.
This change will continue for a while after the event occurs.
Moreover, if the event occurs in a specific cluster, then hetero-
geneous sensors located in the same cluster will show a high
degree of correlation, unlike sensors located in other clusters.
For example, in a fire detection system, light intensity, tem-
perature, and smoke density are all necessary elements of the
information used to indicate that a fire has been detected.
By taking into account such heterogeneous observations,
we can be confident about the accuracy of the event detection
without it being mistaken for abnormal node behavior. The
occurrence of abnormal nodes tends to involve uncorrelated
singular nodes within a cluster. Based on the observed MVA

TABLE 4. List of abbreviations and acronyms.

TABLE 5. Symbols and notations.

correlations, a set of a few rules can be devised to check if an
abnormal sensor exists while also identifying actual events.

Table 3 defines the set of rules. Each rule has three
inputs (antecedents) called the node value, the ST correla-
tion results obtained from the previous step (ST-Cr), and the
heterogeneous sensor average (HSAV), and one output (the
consequent) is termed the decision. The node value and ST-Cr
are properties of the node to be analyzed, and HSAV is a
vector that represents the average values of the heterogeneous
sensor data {H1,H2, . . . }, whereHi is the average value of all
the same-type sensors located in cluster i. An average value
is considered abnormal if the value is outside a predefined
range. The output, i.e., the decision, will indicate whether
the sensor node is normal, abnormal, or an event is detected.
If abnormal nodes exist, then such nodes are reported.

The final decision is based on these predefined rules. For
each rule, if all the antecedents are satisfied, then the conse-
quent is true.

TABLE 6. Experiment environment.
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TABLE 7. Sensor types.

V. EXPERIMENTAL SETUP
This section describes the datasets used to evaluate our pro-
posed approach and the details of the sensor network that we
have implemented, including the deployment setting and the
experimental scenario design.

A. DATA ACQUISITION
To show that our proposed approach is applicable to
real-world WSNs deployed with heterogeneous sensors,
we use two datasets that have different types of sensor deploy-
ment. The summary of the datasets is shown in Table 8. The
first dataset is the publicly available Intel Berkeley Research
Lab dataset [33]; the second dataset is the data collected from
our deployable WSN in our laboratory.

1) INTEL BERKELEY RESEARCH LAB (INTEL LAB)
In this dataset, the data were collected from 54 SNs deployed
in the Intel Berkeley Research Lab between February 28 and
April 5, 2004 [33]. To effectively monitor the whole lab
environment, 54 sensors are unevenly distributed in differ-
ent locations in the research lab. Mica2Dot sensors with
weatherboards are used to collect time-stamped topology
information, along with temperature (in degrees Celsius),
humidity (temperature-corrected relative humidity ranging
from 0–100%), light (Lux) (a value of 1 Lux corresponds
to moonlight, 400 Lux to a bright office, and 100,00 Lux
to full sunlight), and voltage values (in volts ranging from
2 to 3). The batteries, in this case, were lithium-ion cells
that maintained a reasonably constant voltage over their life-
time. A new reading was collected almost every 31 seconds.
In total, 2.3 million readings were collected from these
sensors. The sensors were dispersed in the lab, as shown
in Figure 9.

2) OUR LAB DATASET (YOKOTA LAB)
In addition to the Intel Lab dataset, we also collected sen-
sor data streams from 27 SNs in our laboratory between
January 24 and July 25, 2018. The real-world sensor data
were collected periodically while performing our usual daily
activities. The SNs were deployed using the Raspberry
Pi 2 and 3Model B microcontroller platforms, as we consider
the Raspberry Pi to be the best IoT hardware platform in terms
of performance and flexibility (see Figure 10). Each physical
sensor node is equipped with one temperature sensor module,
one humidity sensor, one smoke-density sensor, and one dig-
ital light-intensity sensor, yielding a total of 64 sensors. The
technical characteristics of the Raspberry Pi platforms, sen-
sors, and server used in our experimental setting are described

in Figure 9, Table 6, and Table 7, respectively. As shown
in Figure 11, the SNs were divided into five clusters separated
from each other and with different environmental conditions.
Two clusters comprised five SNs each and were located in
our laboratory room. The third consisted of six physical nodes
located in a kitchen corner and exposed to sunlight, the fourth
consisted of six physical nodes located in a seminar room and
the fifth consisted of five physical nodes located in a server
room. Each sensor transmits data approximately every 1 min,
giving a total of 20.9 million readings.

B. DATA PREPROCESSING
Three main steps must be performed to prepare the dataset
for the evaluation: cleaning the raw sensor data, injecting
false sensor data, and physically separating the SNs into
clusters. Cleaning the data is necessary to ensure that the
proposed abnormal node detection is only executed on known
FDIAs, allowing for consistent evaluations. After that, new
false sensor data may be injected. The clustering process is
also considered a necessary process in this paper to capture
the sensor data correlation adequately. In the following sub-
sections, we explain the three main steps in more detail.

1) DATA CLEANING
The main challenge in cleaning the dataset is the fact that the
process cannot be fully automated, as no general appropriate
method of detecting faulty sensor data exists. Although sev-
eral automated preprocessing techniques have been proposed
for sensor data, this paper considers a manual technique for
preprocessing the two datasets. To use the Intel Berkeley
Research Lab dataset, we faced some challenges during pre-
processing. The main issue encountered was the data related
to the notion of time variation (i.e., epoch). Indeed, the usage
of the epoch is necessary to build a baseline that works on
sensor data streams such as our collected dataset or Intel
dataset. However, for the case of the Intel dataset and even
our dataset, the notion of the epoch is loosely defined.

Indeed, even though SNs are commanded to collect a new
reading in every defined epoch, the fact of having multi-
ple values or missing values for different epochs cannot be
escaped (because of failures or communication problems).
For the WSNs deployed at the Intel Lab, the reasons behind
the failures were communication problems and the sensor
battery condition. In addition, we found that readings of
sensor node five in the Intel Lab data were not recorded.
Consequently, it was removed from the dataset.

With regard to our deployedWSNs, some SNs had missing
data for different epochs because of SD card corruption. The
concept of the epoch is necessary to establish a baseline while
working on sensor streams such as our collected dataset or the
Intel Lab dataset. However, because of the sensor constraints,
we found that the epoch was not strongly defined in either
dataset. Thus, we needed to standardize the concept of epoch
and set it to a well-defined size. To unify the size, we split the
readings into epochs of two minutes each.
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TABLE 8. Datasets.

FIGURE 11. Heterogeneous SNs deployed in our laboratory.

FIGURE 12. An example of collected temperature sensor data in one
cluster with sensor 1 being an abnormal node.

The value of the last obtained reading was used to substi-
tute for each missing sensed value in an epoch. Moreover, if a
sensor had more than one reading during the epoch, we took
the average of these measurements.

2) FALSE SENSOR DATA INJECTION
Given the lack of sensor datasets with malicious data for
WSNs and the need to test our approach’s accuracy, we pro-
pose an FDIAmodel to create an attack strategy. An attacker’s
goal in the context of FDIA is to evoke or hide events without
triggering the detection alarm. The primary challenge is to
maintain a balance between the outcome of the attack and the
risk of being detected. In [18], the proposed attack models are
unsophisticated and not comprehensive enough to support the
claims in the paper. We only considered three trivial cases
where the attacker deliberately either randomly changes a
sensor reading or selects the minimum or the maximum
possible value.We carefully chose the type of attacked sensor,
insertion time, and attack period. With such a proposed attack
strategy, it is impossible to guarantee a variety of attack

patterns, which results in uninteresting attack outcomes that
are easy to detect. WSNs are subject to various threats where
we cannot simply anticipate the attacker’s actual attention.

To tackle this issue, in this paper, we propose an attack
strategy to generate a malicious dataset from the original
sensor data, which allowed us to test the detection algo-
rithm and evaluate its performance against different threat
severity levels. We create evaluation data, including FDIA
and missing data based on the initially collected dataset. Let
the occurrence probability of missing data depend on the
exponential distribution.

f (e) =
1
ε
exp(−

e
ε
), (13)

where (500 ≤ ε ≤ 1000). In addition, we defined nine
types of false data and one incidence of missing data. The
false injected data difference between the real data and the
evaluation data depends on a Gaussian distribution.

f (e) =
1

√
2πσ 2

exp
{
−
(e− O(Si, t))2

2σ 2

}
, (14)

where (0 ≤ σ 2
≤ 10).We referred to both Equations (13) and

(14) and injected false sensor data readings into the initially
collected sensor data. The sensor type, FDIA type, and inser-
tion time were chosen randomly.With such an FDIA strategy,
the attack can be very stealthy and deceive the detection
mechanism without being easily detected. Moreover, we can
expect to have various attack patterns that span over a long
or short period (Figure 2). In this paper, we assume that an
attacker cannot compromise many SNs, as it is challeng-
ing and difficult to achieve without being detected. Thus,
we consider one abnormal sensor node in each cluster at a
time in our experiment. Figure 12 illustrates an example of
collected temperature data from the Yokota Lab dataset, with
sensor one being under the proposed FDIA. Figure 13 illus-
trates an example of the extracted features of each sensor
after conducting the ST correlation extraction explained in
Section IV.C. The results show that the shape of the extracted
time-series features of sensor one significantly differs from
its neighbors. The correlation state of sensor one will be
considered uncorrelated. Thus, sensor one will be identified
as an abnormal node.

3) PHYSICAL CLUSTERING
The clustering method we used is simple k-means clustering.
We used geographic coordination (i.e., Euclidean distance) as
clustering parameters. Other proposed clustering techniques
can also be applied.
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FIGURE 13. An example of all the extracted features of neighboring temperature sensors in one cluster.

FIGURE 14. Detection accuracy of the two datasets.

VI. EVALUATION
Each conducted experiment was repeated five times, and we
took the average results.

A. DETECTION ACCURACY
To evaluate our proposed method in terms of abnormal node
detection, three performance metrics were used, namely,
accuracy, precision, and recall. We used precision and recall
to quantify the detection accuracy. Accuracy is the degree
to which the detection results confirm the actual values.
Precision is the percentage of the actual abnormal SNs among
the identified SNs. Recall is the percentage of the identi-
fied abnormal nodes among the actual abnormal sensors.
Figure 14 shows the evaluation results of the two datasets
that measure the extent to which our proposed method and
the prior method proposed in [18] detect abnormal SNs.

Even though the environmental conditions for each clus-
ter in the two datasets were different, the proposed method
in this paper achieved high detection accuracy with a low
false-positive rate for the task of analyzing the sensor read-
ings to determine whether the SNs were behaving normally
or had been exposed to FDIAs. The results show that our new
method achieved an average accuracy of 96.50%, an average
precision of 88.69%, and a recall rate of 93.00%. Moreover,
the proposed method in this paper achieved better detection
results than the detection results achieved using the prior
method proposed in [18]. The results show that our proposed

method achieved an average accuracy improvement of over
22.25%, an average precision improvement of over 70.53%,
and a recall rate improvement of over 36.20%. Therefore,
we conclude that the proposed method in this paper detects
abnormal nodes with high accuracy.

Relatively, the Intel Lab dataset showed slightly lower
precision and recall than the Yokota Lab dataset; the rea-
son is shown in Figure 15 and Figure 16. We calculated
the correlation degree, which indicates how much correla-
tion exists between each pair of sensors. In Figure 15 and
Figure 16, we show the overall Yokota Lab temperature
and Intel Lab temperature correlation between all sensor
pairs using a heatmap. To quantify the degree of correlation,
we calculated the rate of pairs of sensors with high correlation
degrees regarding the total number of sensors. In the Yokota
Lab dataset, the rate of pairs of temperature sensors with
high correlation degrees was 76.92%, while in the Intel Lab
dataset, the rate of pairs of temperature sensors with high
correlation degrees was 61.59% and had more deployed SNs.
This explains why the number of deployed SNs and the
correlation degree are not directly proportional. Alternatively,
the detection accuracy was more dependent on the correlation
degree between the SNs in each dataset.

1) IMPACT OF MULTIABNORMAL NODE
In this paper, we considered one malicious sensor in each
cluster during our experiment at a time, but multiple mali-
cious sensors may co-occur inWSNs in real-world situations.
Note that such sophisticated attacks require a sound and
well-planned strategy and thus are difficult to automate. How-
ever, even though such a case is unlikely to occur, we injected
false data in one to three sensors in a cluster to generate
multiple malicious sensors simultaneously and examine the
result. The evaluation results are shown in Figure 17. The
average accuracy, recall, and precision for detecting multiple
malicious sensors (two and three abnormal nodes) per cluster
were 83.10%, 64.20%, and 76.34%, respectively, within a
reasonable range. The purpose of the experiments is to show
that even with a sophisticated multiabnormal node strategy,
our proposed method can detect the attack and correctly
characterize the abnormal sensors under certain conditions.
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FIGURE 15. Sensor correlation degree in the Yokota lab dataset.

FIGURE 16. Sensor correlation degree in the intel lab dataset.

FIGURE 17. Effect of the number of neighbors per cluster on the
computation time.

B. COMPUTATION TIME AND IMPACT OF
DIFFERENT PARAMETERS
In addition to evaluating the detection accuracy, we also
measured the effect of the number of neighbors per cluster
on the computation time. We used the Intel dataset for this
experiment, as it has more SNs than the Yokota Lab dataset.

FIGURE 18. Evaluation results under different attack intensities.

FIGURE 19. Effect of the number of neighbors per cluster on the
detection accuracy.

FIGURE 20. The advantage of using multicriteria Xcorr.

The average computation time for our method is the time
to analyze the newly collected sensor streams (sampling once
per 100 rounds) and execute the shape-based subclustering
module, abnormal node detection module, and sensor simi-
larity module. The evaluation results are shown in Figure 18.
As shown in the figure, the proposed method in this paper
was approximately four times slower than the prior method
in [18].

This is because the newly proposed method requires addi-
tional processing to enhance the detection accuracy, as shown
in Figure 16. The newly proposed method performs 30.29%
better than [18] in terms of detection accuracy, and the
computation time increases with the increased number of
neighbors per cluster.

However, we do not need to group a large number of
sensors in one cluster. As shown in Figure 16, the detection
accuracy declines with an increased number of neighbors per
cluster. The reason for this phenomenon is the effect of the
correlation degree between the sensors. If we group a large
number of sensors in one cluster, there is no guarantee that
they will be under the same dynamic environmental charac-
teristics. The clustering process can reduce the computational
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complexity of the proposedmethod and improve the detection
accuracy of abnormal SNs. For this reason, we need to have
more clusters rather than to group many SNs into a few
clusters.

Figure 19 shows that a cluster should include from three to
10 SNs for better detection accuracy. Moreover, Figure 19
shows that compared with the prior method, the detection
accuracy proposed method in this paper decreases slightly
with an increasing number of clusters. The reason behind
this phenomenon is that in this paper, apart from physical
clustering, we also perform logical subclustering to guarantee
a better extraction for the correlation between the sensors
and improve the detection accuracy. Figure 20 shows the
evaluation results when considering shape subclustering.

VII. CONCLUSION
This paper explores the challenges faced by environment
monitoring applications using WSNs and presents a new
approach to address these issues. The proposed method
detects abnormal nodes in WSNs by considering both ST and
MVA correlations.

The cross-correlation between the sensor data streams is
extracted in both space and time using shape-based logi-
cal subclustering and a two-phase analysis method. In the
first analysis phase, the system uses a variable-size sliding
window and the MAD measure. If the collected sensor data
streams output a certain percentage of anomalous points,
the MAD will flag these points as anomalous measure-
ments, and all the sensor data and the window size will be
passed to the second analysis phase. The latter performs both
tumbling-window and sliding-window analyses to extract
multicriteria cross-correlation measures. Both types of win-
dows move across the sensor data stream, splitting the data
into finite subsequences. Thus, it will help us capture the
changes between two neighboring sensor data streams over
time, making anomaly detection even more accurate. Finally,
all the extracted sensor time-series features will be fed to
the shape-based clustering to generate a sensor similarity-like
graph. The latter reflects the similarity degree of the sensor
with the other nodes. The nodes with a low similarity degree
below the threshold will be reported as abnormal nodes.
The nodes with a low similarity degree below the threshold
will be identified as candidate abnormal nodes. Based on
the observed MVA correlations, four rules are introduced to
check whether the detected candidate abnormal nodes repre-
sent actual events. Finally, if abnormal nodes exist, then such
nodes are reported. We also propose a new attack strategy
to generate malicious datasets from the original sensor data,
allowing us to test the detection algorithm and evaluate its
performance against different threat severity levels.We create
evaluation data, including various FDIA patterns and missing
data, based on the initially collected dataset.

Our experiments using two real-world datasets demon-
strate that our proposed method detects abnormal nodes
with an average accuracy of 96.50%, an average precision
of 88.69%, and a recall rate of 93.00%.

Although many studies have reported addressing the
abnormal node detection problem in WSNs, it is difficult
to compare their performance. As introduced in the previ-
ous sections, the design assumptions and the experimental
environments are very different. In particular, the lack of a
comparable benchmark thwarts a meaningful comparison of
the detection results.
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