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ABSTRACT This paper investigates a patrol problem based on air-ground cooperation between multiple
UAVs and police vehicles. Facing the uncertainty of patrol environment and patrol resources, the model
guarantees the deterrence and emergency response capability of the patrol mission by optimizing the
allocation strategy of patrol points and patrol routes. Relying on genetic algorithms, we encode patrol
points and UAV launch/recovery points together to enhance the local search ability and convergence of
the algorithm. Based on the real case of the D police station in Beijing, we explore the interactions among
patrol elements and the impact on patrol tasks in different patrol environments. The results show that the
Patrol missions formulated by Air-Ground Cooperative Patrol Optimization Model can be used to develop
patrol tasks with better environmental adaptability. By analyzing the relationship between multiple groups
of patrol elements, controlling the number of UAVs in future missions can improve the security of the area.
And raise the ratio of hovering time in medium-risk areas to low-risk areas can improve the efficiency of
patrols.

INDEX TERMS Air-ground cooperative, patrol elements, genetic algorithm, crime deterrence, emergency
response.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been widely used in
military, agriculture, transportation, communication, security
and other fields because of their small size, high mobility/
flexibility and low cost [1]. In recent years, with the expan-
sion of using low-energy rotary-wing UAVs with airborne
cameras and voice equipment, police work has gradually
become an important field of UAV application [2]. The addi-
tion of UAVs in the police force helps with problems existing
in police departments at this stage, such as insufficient police,
low-tech police equipment, and weak synergy of multiple
polices.1 According to the UAV use survey report released
by the Center for the Study of the Dragon at Bard College
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1The representativemodels of police drones are ewz-s8, aee f100, a8-h and

others. These drones are lightweight, easy to hover and capable of carrying
police equipment.

in 2018, at least 910 state and local public security agencies
in the United States have purchased drones, two-thirds of
which are used by law enforcement agencies [3]. In China,
the earliest involvement of drones in policing activities can
be traced back to the 2008 Beijing Olympics, in which the
Beijing and Qingdao police took the lead in acquiring sev-
eral sets of UAV systems for patrols in large-scale events.
From 2017 to 2018, Guangzhou Tianhe police UAVs carried
out more than 570 security tasks and conducted more than
8355 UAV inspections [4]. During the COVID-19 pandemic,
the cooperation of UAV use and police vehicles can better
carry out noncontact law enforcement patrol and monitoring
work, and the model has been adopted in many countries
around the world [5].

The routing strategies of UAVs are quite different in differ-
ent application backgrounds, such as cargo transportation [6],
disaster rescue [7] and patrol [8], and the challenges faced
by their routing problems are different. Police patrols are the

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 134503

https://orcid.org/0000-0002-5044-0480
https://orcid.org/0000-0002-5559-5756
https://orcid.org/0000-0002-7952-0038


J. Yang et al.: Programming Model of Air-Ground Cooperative Patrol Between Multi-UAV and Police Car

FIGURE 1. Percentage of patrol time by activity.

foundation of public security management and community
policing, as shown in Fig. 1 [9], and they take up the most
time in policing. Police patrols are often conducted around
‘‘hot areas of crime’’ because ‘‘hot spots’’ can point out the
possible risks for the police in the future. Many scholars have
also found that increased police presence in hotspots reduces
crimes and disorderly conduct [10]. Additionally, police
patrols play an important role in public service by respond-
ing to incidents and deterring and preventing crimes [11].
By assigning limited police presence to more critical areas,
patrols can be made more efficient and crime prevention can
be enhanced. The patrol problem for air-ground cooperation
involves the drones and police vehicles’ patrol line, and the
achievement of patrol objectives——the deterrence of crime
and the response of emergencies. In the following, we provide
an overview of the air-ground cooperation elements and UAV
patrols.

A. OVERVIEW OF AIR-GROUND COOPERATION
The air-ground cooperation concept was first proposed and
widely adopted by the U.S. military, which is initiative, sen-
sitivity, deep and coordinated [12]. It is important for the
police work of key target protection, three-dimensional space
confrontation, mid-low altitude patrol and other tasks. The
problem of air-ground cooperation belongs to the research of
‘‘two-level routing,’’ and many scholars focus on the ‘‘last
mile’’ of logistics [13]. They consider UAVs as an exten-
sion of vehicles and optimize UAV delivery by considering
factors such as delivery paths, radar detection and terrain
conditions [14]. A number of articles on two-echelon rout-
ing problems have been published in recent years, they are
deformed on the vehicle routing problem (VRP) by contin-
uously enriching the relationship between route and loca-
tion [15]. Since the performance of drones differs from that
of cars, researchers tend to use physical tracking, obstacle
avoidance and surveillance coverage as UAV flight objec-
tives [16]. Li et al. [17] demonstrated the impact of UAV
turning on the completion of cruise missions in terms of
route length, duration and energy and then carried out a path
planning design targeting the least number of turns for a UAV.

With the development of UAV technology, most police drones
are multi-rotor drones at present, which have low takeoff and
landing environment requirements and are more flexible in
hovering and turning. New technologies allow UAVs to adapt
to patrol work as well as resupply work, and some scholars
have optimized patrol lines for public safety and emergency
work in terms of patrol coverage capabilities [18], [19].

To realize the remote application of multiple UAVs, assis-
tance with delivery vehicles is the most straightforward
option [20]. The vehicle and UAVs perform tasks at the same
time, where the vehicle is defined as a moveable interme-
diate depot to release/recycle UAVs and serve other sets of
customers. The selection of this point is also part of the
line optimization, but considering the efficient use of police
resources, we will select a suitable release/recovery point
in the patrol target area. With the depth of research, multi-
UAV systems are the trend of future application; at the same
time, flight stability, effectiveness, endurance and mission
management will be more challenging [21]. When the patrol
mission is formulated, most scholars use a regional subdivi-
sion approach to simplify the problem [22]. However, with
multiple UAVs involved in patrol missions, the distribution
of individual patrol points and the interaction between UAVs
are still issues we need to focus on. The establishment of an
air-ground cooperative strategy is more complex in terms of
patrol target allocation and route planning issues that closely
match the actual situation [23].

B. POLICE PATROLS INVOLVING UAVs
Effective scheduling of drone patrols maximizes the chances
of apprehending criminals [24]. The increasing use of drones
in policing [25] has also increased the complexity of the
problem, and the first thing to consider is where to release
and retrieve the drone. By setting the release/recovery points,
distance and time constraints, the problem is expressed as
mixed integer programming and solved by a heuristic algo-
rithm [26], [27]. In practice, this technology has been carried
out by large e-commerce companies such as Amazon and
Jingdong. However, through the detailed review of drone-
truck combined operations by Chung et al. [28], future
research needs to focus on the uncertainty of the task envi-
ronment, especially the robustness and dynamics of the task
design. This is what drones and police vehicles need to con-
sider when performing patrol duties.

In addition, patrolling missions involving UAVs are dif-
ferent from logistics dispatch [29] and communication [30]
systems; they focus on the environmental worthiness and con-
frontation strategies against potential perpetrators. According
to environmental criminology theory, crimes are based on the
intersection of criminals, targets, and the lack of supervisors
in the same space and time [31], as shown in Fig. 2. The
significance of police patrols is to compensate for the lack of
supervision to curb criminals, a visible police presence can
increase the public’s certainty of punishment, and a frequent
police presence enhances potential criminals’ perceptions of
risk in the local area [32]. The current patrol approach is
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FIGURE 2. The occurrence of crime in environmental criminology.

divided into ‘‘hotspot patrolling’’ and ‘‘random patrolling,’’
the latter of which greatly increases the unpredictability of
police operations, but more empirical studies [33], [34] have
proven the effectiveness of ‘‘hotspot patrolling’’ in reducing
crime. The successful operation of air-ground cooperative
patrolling to cover ‘‘hotspots’’ requires a detailed routing
strategy—specifically, defined and targeted patrol routes. The
intensity and location of crime affect the spatial allocation
of police, and a uniform standard for patrolling would be a
waste of police resources. Here, we consider the difference in
patrol resources—patrol time commitment—under different
risks. However, focusing on hot spots alone is not sufficient
either, as they omit the peculiarities and challenges of police
daily patrols. In the process of patrolling, police officers are
faced with various possible emergencies and need to send the
nearest patrol officer to deal with the incident in time [35].
On the other hand, to reduce crime, patrols need to focus on
patrol targets with a high risk of crime, including offender
deterrence [36] and emergency disposal [37]. When the num-
ber of patrol subjects and patrol hours change, the crime
deterrence and emergency response of the jurisdiction will
also be affected. Therefore, by adjusting the hovering time
at different patrol points, more robust and resilient patrol
planning can be explored to better meet the requirements of
police patrols.

In this work, we breakdown the patrol task into differ-
ent constituent elements based on the characteristics and
challenges of actual police patrols (Figure 3). After that,
we establish the connection between the patrol tasks and each
individual patrol element. We build a relational model with a
multisubject task balance, police resource input, crime deter-
rence and emergency response capabilities. Traditional patrol
problems are categorized as TSP problems, and their algo-
rithms mostly focus on the behavior-based algorithm (BBA)
and the optimization method, e.g., genetic algorithm (GA)
and particle swarm optimization (PSO) [38]. By sorting out
the problems of air-ground cooperative patrols, we contribute
an efficient algorithm called the UAV-Police Vehicle Coop-
erative Patrol Algorithm (U-PVCPA). This algorithm can
solve the data flow clustering efficiency problem effectively.
In the solution process, the patrol routes, deterrence capa-
bility and emergency response capability are optimized as a
whole. The algorithm relies on the vehicle speed in different

FIGURE 3. Research-oriented chart of air-ground cooperative patrol.

environments and the hovering time for different crime risk
points to simulate the impact of changes between different
patrol elements on the overall optimization of the patrol.

This paper is organized as follows. In section 2, we analyze
and deconstruct the air-ground cooperative patrol mission
and sort out the relationship between each patrol element.
In section 3, the air-ground cooperative patrol planningmodel
and UAV-Police Vehicle Cooperative Patrol Algorithm are
proposed. In section 4, the model and algorithm are validated
using the real precinct environment of the D police station to
discuss the influence relationships among patrol elements in
different patrol environments and to develop an optimal patrol
plan for a limited number of patrol subjects with different
hovering times. Finally, in section 5, we summarize prospects
of the study.

II. ANALYSIS AND DECONSTRUCTION OF THE
AIR-GROUND COOPERATIVE PATROL MISSION
A. AIR-GROUND COOPERATIVE PATROL MISSIONS
UAV and police vehicle collaboration points in patrol mis-
sions are not the same as logistics or ship-based aircraft
operations. According to the definition and mission planning
of modern police patrols by Gaines and Kappeler [39], a com-
plete air-ground cooperative patrol mission includes four
elements, as shown in Fig. 3, including developing mission
objectives, patrol resources, target points and specific plans
in a logical sequence of mission conduct; these four elements
are interdependent and supportive.We need to consider all the
elements and the impact between them when setting patrol
missions.

1) Compared to the ‘‘multi traveler problem,’’ the key point
of air-ground patrols is ‘‘cooperation.’’ The speed and routes
of police vehicles determine the number of target points they
can patrol, which affects the number of UAVs, the assignment
of mission points, and the candidates for UAV launch/recycle
points. Meanwhile, the duration of the UAV constrains the
distance of the police car, and the police car driving routes
need to be adjusted to the distribution of drone patrol target
locations to ensure that the loss of each drone is balanced.

2) At present, patrol issues focus on a single scenario
frequently. However, the reality of the patrol environment
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FIGURE 4. Flow chart of air-ground cooperative patrol mission.

is more complex when the police vehicle and UAVs work
together on missions. Faced with a large number and variety
of patrol target points, changes in the objective environ-
ment will have a greater impact on the investment of patrol
resources, patrol route planning and patrol point allocation.
In this regard, we compare the relationship between patrol
elements at different vehicle speeds in the various environ-
ments to simulate the impact of different environments on
overall patrol planning.

3) Patrol is a police activity aimed at the suppression
of crime in the jurisdiction, including controlling responses
to emergency situations and threat deterrence to potential
offenders [39], [40]. A successful patrol mission ensures
the deterrence of criminal activities in the precinct, rapid
disposal of emergencies and protects that subsequent patrol
missions are conducted properly. Therefore, the objectives of
the patrol mission can be summarized as the ability to deal
with emergencies and crime deterrence in the jurisdiction.

B. PROBLEM FORMULATION
Based on the description of the air-ground cooperative patrol
problem, this paper will examine the patrol mission as a
whole. Based on the allocation of target points in the police
patrol area, the linkage between the patrol elements is ana-
lyzed. A multivariate relationship model was established
between the patrol subject, target point, patrol deterrence,
and emergency response capability, as shown in Fig. 4. The
specific assumptions used in the model are as follows:

1) CLASSIFICATION AND CATEGORIZATION OF
PATROL TARGET POINTS
To carry out patrol work accurately, the police divided the
precincts into different levels of risk control, identified key
areas and set patrol targets based on the crime rate. Police
patrols are targeted on the basis of the above work to
patrol key areas [40]. Each patrol target area is divided into

FIGURE 5. Mimic diagrams of air-ground cooperative patrol routes.

three categories: high-risk areas, medium-risk areas and low-
risk areas. These crime risk points constitute the patrol tar-
get set for patrol missions. Since police vehicles have a
stronger ability to dispose of and deter criminals compared
to drones, we put areas with higher risk levels on police car
patrol.

2) SETTING OF UAV LAUNCH/RECOVERY LOCATION
After completing the patrol of the assigned target point within
the endurance time, the UAV goes to the landing site and
waits for the recovery of the police vehicle, and this patrol
constitutes a loop. We disregard the time consumption of
the police vehicle to launch the UAV and retrieve it. The
launch/recovery points shall be selected among the target
points for police vehicle patrols to increase the police visibil-
ity in medium- to high-risk areas. In this way, we can ensure
the efficiency of air-ground patrols and improve the security
level of the district.

3) DISTRIBUTION OF PATROL STATUS AND
PATROL SUBJECTS
According to environmental criminology theory [41], areas
with high crime rates are patrolled by police officers with
police cars, assuming that the police cars have enough fuel
storage to complete the patrol tasks. Areas of low crime risk
are patrolled by UAVs of the same type, all of which are fully
charged before the mission. Some medium-risk targets are
handed over to police vehicles for patrols, provided that they
can safely launch and recover the drone, as shown in Fig. 5.
To make patrol missions more targeted, UAVs differ in their
time invested in patrolling low- and medium-risk points.
Here, we set the patrol stop time to 0.1 h and 0.2 h for
medium-risk areas and 0.01 h, 0.03 h, and 0.05 h for low-
risk points. The number of UAVs carried by police vehicles
is not capped, the number of drones carried by one police
vehicle can meet the patrol of all points of one mission, and
all subjects are patrolled at a constant speed.

4) SETTING OF PATROL MISSION TARGET
Historically, visibility was believed to repress crime, and
patrol strategies were developed in an attempt to better

134506 VOLUME 9, 2021



J. Yang et al.: Programming Model of Air-Ground Cooperative Patrol Between Multi-UAV and Police Car

TABLE 1. Model symbols and definitions.

respond to service calls, deter crime, or apprehend criminals
once crimes have occurred [42]. A police force with good
emergency response capabilities can deter crime in a timely
manner and achieve a deterrent to other potential crimes.
Crime deterrence and emergency response capabilities com-
plement each other. The deterrent effect of patrols is reflected
in the visibility of police vehicles and UAVs at key target
points. The emergency response capacity of the patrol is
mainly reflected in the efficiency of the nearby patrol police
force to dispose of the incident after the occurrence of an
emergency, as well as the patrol stability of the whole task.
The increase in the number of UAVs can prolong the patrol
time and improve the police visibility and disposal efficiency,
but it also increases police expenditures. To better reflect
the relationship between them, we set the number of UAVs
to 3, 5, and 7.

C. NOTATION AND TERMINOLOGY
According to the description and assumptions of the real
problem, the air-ground cooperative patrol task involves the
number of patrol subjects, the allocation of target points,
the planning of patrol routes, the determination of the
launch/recovery points and the allocation of UAV hovering
time in different risk level patrol points. The model notation
is defined as shown in Table 1.

Cc
xij =

{
1 Police car Cc arrives at patrol site oj from oi
0 Otherwise

Cc
yi =

{
1 Police car Cc arrived at patrol place oi
0 Otherwise

Uu
xij =

{
1 UAV Uu arrives at patrol site oj from oi
0 Otherwise

Uu
yi =

{
1 UAV Uu arrived at patrol place oi
0 Otherwise

Uu
zi =

{
1 UAV Uu released and recovered at point oi
0 Otherwise

nu =

{
1 UAV Uu (u ∈ U) was sent to patrol
0 Otherwise

nc =

{
1 Police car Cc (c ∈ C) was sent to patrol
0 Otherwise

It should be noted that O = OH ∪ OM ∪ OL = OC ∪ OU

and O = {oi, i = 1, 2, . . . , o} , o is the total number of patrol
areas. OM = OMC ∪ O

M
U , OMC , and OMC are the medium-risk

areas for police vehicle patrols, and OMU are the medium-risk
areas for UAV patrols.

Maximum drone endurance T � tM > tL > 0.

OC = OH ∪ OMC =
{
oCi | i = 1, 2, · · ·, oC

}
;

P = {Pm |m = 1, 2, . . . , p} , P ⊆ OH ∪ OMC ;

OU = OL ∪ OMU =
{
oUi | i = 1, 2, · · ·, oU

}
In reality, UAVs are faster than police cars, and the flight

time of the UAV between patrol points is much less than the
hovering time at the target point. To make the problem closer
to the real situation, we set each UAV to perform the task
with flying time between points as (1− α)T , where α is the
influence factor of the objective environment, 0.6≤ α ≤0.8.

III. AIR-GROUND COOPERATIVE PATROL OPTIMIZATION
MODEL AND ALGORITHM
The vehicle UAV collaboration problem can be referred to
as the two-echelon location and routing problem (2E-LRP),
but the air-ground optimization cannot be decomposed into
two subproblems to be solved separately [15]. We need
to analyze the relationship between multiple subjects and
multiple task objectives and consider the sustainable use of
each patrol subject from the perspective of police resource
optimization.

A. OBJECTIVE FUNCTIONS AND CONSTRAINTS
When setting the patrol tasks, the police officer sets the goal
of optimizing the minimum investment of police resources
and balancing the tasks of each patrol unit while ensuring
crime deterrence and emergency response capability in the
precinct. The crime deterrence index and emergency response
capability are important indicators of precinct security, and
they are set as constraints of the air-ground cooperative opti-
mization model.

1) OBJECTIVE FUNCTION

f1 = min
∑

c∈C
(SC × nC )+

∑
u∈U

(SU × nU )

+

∑
c∈C

∑
i,j∈OC

(
sC × dcij × C

c
xij

)
+

∑
c∈C

∑
i,j∈OC

(
sU × dcij × C

c
xij

/
VC
)

(1)
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f2 = minα

√∑
i∈OU

[
tU
/
nu −

(
OMU + O

L
)
× Uu

zi

]2/
nu

(2)

f3 = min

√∑
i,j∈OC

(
dC
/
nc − d

c
ij × Ux

c
ij

)2/
nc (3)

Objective function (1) consists of four components, which
are minimizing the assignment cost of police vehicles,
the patrol cost of police vehicles, the assignment cost of UAVs
and the patrol cost of UAVs; objective function (2) represents
minimizing the distribution difference of each UAV task;
objective function (3) represents minimizing the distribution
difference of each police vehicle task.

2) CONSTRAINT CONDITION∑
i,j∈OC

(
dcij × C

c
xij

)
≤ 1/2VCT (4)∑

i∈OM

(
tM×Uy

u
i

)
+

∑
j∈OL

(
tL×Uy

u
j

)
≤αT , ∀u∈U

(5)∑oC

i=1
Cc
xij = Cc

yj , ∀j ∈ O
C (6)∑oC

j=1
Cc
xij = Cc

yi , ∀i ∈ O
C (7)∑P∪OU

i=1
Uu
xij = Uu

yj , ∀j ∈ O
U (8)∑P∪OU

j=1
Uu
xij = Uu

yi , ∀i ∈ O
U (9)∑

c∈C
Cc
yi = 1, ∀i ∈ OC (10)∑

u∈U
Uu
yi = 1, ∀i ∈ OU (11)∑

j∈OC ,a6=j
Cxaj = 1, ;

∑
i∈OC ,i6=a

Cxia = 1, c ∈ C

(12)∑
j∈OU

Uu
xpj = 1,

∑
i∈OU

Uu
xip = 1, p ∈ P, u ∈ U

(13)∑
i∈P

Uu
zi = 1 (14)∑

i,j∈OC
Cc
xij ≤

∣∣∣OC ∣∣∣− 1, 2 ≤
∣∣∣OC ∣∣∣ ≤ oC (15)

Condition (4) indicates the constraint of the UAV
endurance on the patrol distance of a single police vehicle;
condition (5) indicates the constraint of the UAV endurance
on the UAV patrol time invested; condition (6) indicates that
the patrol location on the police car patrol line is directly
accessible from only one of the remaining patrol locations;
condition (7) indicates that each patrol location on the police
car patrol line reaches only one of the remaining patrol loca-
tions; condition (8) indicates that each patrol location on the
UAV patrol line is directly accessible from only one of the
remaining patrol locations; condition (9) indicates that each
patrol location on the UAV patrol line reaches only one of the
remaining patrol locations; condition (10) indicates that each
point can only be patrolled once by a police car; the condition;

constraint (11) indicates that each point can only be patrolled
once by one UAV; constraint (12) ensures that the police
car still returns to point a after starting patrol from point a
(point a is set as a police station); constraint (13) ensures
that the UAV returns to the launch/recovery point after taking
off from that point; constraint (14) specifies that only one
UAV is released at each launch/recovery point; constraint
(15) indicates that the police car patrol route can only form a
closed loop containing all patrol points.

3) PATROL TARGET CONSTRAINT
a: PATROL DETERRENCE INDEX
As we discuss above, visibility has been a major element in
police crime control strategies and practices. As medium- to
high-risk areas of UAV launch/recovery points, they are the
basis for quantifying patrol deterrence. The hovering time
of the drone can objectively reflect the police visibility of
key locations in the precinct. Considering the deterrence of
patrol points as energy diffusion, the patrol deterrence index
is positively correlated with the dispersion of P points and the
hovering time.

The average hovering time at point P is assumed to be
t̄ = αTu− tM × oMU − t

L
× oL/

u; S is the global disper-
sion of P points, which can be expressed by the propor-
tion of P points to OC and the distribution of each P
point: S = u/(

maxd ij − mind ij
)
oC , ∀i, j ∈ P,P ≥ 3.

The deterrence index for air-ground cooperation is β t̄S =

β
αTu−tM×oMU −t

L
×oL

(maxd ij−mind ij)oC
, where the number of patrol points is

a known initial value. Therefore, the patrol mission deter-
rence index curvilinear equation can be expressed as 8 =
u
/
maxd ij − mind ij. When the UAV launch/recovery points

have been established, the trend of the patrol deterrence index
is γ u

tM+tL .

b: EMERGENCY RESPONSE CAPABILITY
In case of an emergency during the patrol, the available
police resources need to be deployed to the scene of the
incident as soon as possible, and the remaining patrol points
are patrolled by other drones. To avoid excessive changes
or termination of patrol tasks, the patrol plan tries to make
minimal changes to the overall UAV patrol line while ensur-
ing that all patrol points are patrolled by UAVs under emer-
gency conditions. For this study, we refer to the supply
chain flexibility problem, the min-max strategy, which reas-
signs the largest number of tasks to the UAV closest to the
contingency.

Let tu be the patrol time of drones u, tu =∑
i∈OMU ,j∈O

L Uu
yi × t

M
+Uu

yj × t
L , ∀u ∈ U , and tmax = maxtu,

which is indicated as the longest patrol time among the patrol
drones, tmax ≤ αT . The emergency response capacity of the
patrol mission is set to � =

∑
u∈U

αT−tu
nU×tmax

. From the above
equation, we can see that � ∈ [0,+∞), and the emergency
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response capability is positively correlated with the ability of
patrol missions to respond to emergencies.

B. UAV-POLICE VEHICLE COOPERATIVE
PATROL ALGORITHM
The air-ground cooperative patrol needs to arrange the routes
of police vehicles and UAVs, which involves the site selec-
tion of UAV launch/recovery points and vehicle path plan-
ning. Both of them are NP-hard combination optimization
problems, and most problems are solved by heuristic algo-
rithms [43]. Currently, genetic algorithms have been proven
to be an effective algorithm for solving combinatorial opti-
mization problems. For this study, the ‘‘target constraint’’
does not affect the data convergence time but rather the flex-
ibility of the patrol task in different environments. Because
the patrol environment is complicated and variable and polic-
ing has certain subjective decision-making attributes, they
are difficult to represent by a particular constraint. The
UAV-police car collaboration problem requires multiobjec-
tive patrol point calculation. When planning a police car
patrol route, the overall search for UAV launch/recovery
points and patrol points needs to be carried out step by
step, with continuous iterative optimization until the results
converge, which is consistent with the solution logic of the
genetic algorithm. In this paper, an alternative iteration algo-
rithm based on genetic ideas is proposed to efficiently solve
the problem.

1) PATROL POINT ALLOCATION FOR DRONES
AND POLICE VEHICLES
The patrol task is influenced by the patrol environment, and
the change in environment directly affects the speed of the
vehicle and then affects the vehicle patrol routes and the
allocation of UAV patrol points. When the patrol road is
clear, police cars can cover more patrol points with higher
speed, and the air-ground cooperative patrol will become
more complicated. Besides, we screened the medium-risk
points and handed them over to police car patrols (Fig. 6).
When the existence of oMi ∈ OMC causes 1dcij × sC ≤∣∣∣−1duij∣∣∣× sU + |−1U | × SU , this point is set as a car patrol
point. There are three patrol point allocation optimizations as
follows:

Scenario 1 changes the attribution ofOM points by increas-
ing the travel distance, thus affecting the number of UAV
patrol missions, as shown in Figure 7.

Scenario 2 changes the choice of P points by increasing the
travel distance, which affects the number of drones, as shown
in Figure 8.

Scenario 3 changes the attribution of OM points and the
selection of p points at the same time by increasing the
travel distance, which affects the number of patrol missions
of UAVs and the number of UAVs demanded, as shown
in Figure 9.

FIGURE 6. Logic diagram of patrol points and patrol routes.

FIGURE 7. Change of single mid-risk points to police vehicle paths.

FIGURE 8. Change of single launch/recovery point to police vehicle paths.

FIGURE 9. Change of multiple mid-risk points to police vehicle paths.

2) HEURISTIC ALGORITHM
Due to the linkage and interactive relationship between the
subjects of the air-ground cooperation, when a superior indi-
vidual emerges in the genes of the offspring, the influence
of the optimal genes of the previous generation is added
in the transmission as a new ‘‘parent.’’ By improving the
algorithm in this way (Fig. 10), it ensures the convergence of
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FIGURE 10. Genetic manipulation logic diagram.

the new generation optimal solution while taking into account
the influence of the police vehicle patrol points and the
launch/recovery points on the optimization of the UAV patrol
routes. To better describe the influence of ‘‘cooperative’’ in
the algorithm, we construct the interconnection of UAVpatrol
points, UAV launch/recovery points and police vehicle routes
during the iteration of the operation. The article introduces
the concept of information-carrying factor and constructs a
three-level genetic operation of gene, information factor and
chromosome. This algorithm selects high-frequency genes
and optimal genes in the parent generation, iterates the gene
transmission direction of the new generation together with
the optimal individuals of the parent, and then screens the
new generation of individuals. Compared with simulated
annealing, neighborhood search, and particle swarm algo-
rithms, the improved genetic algorithm is more convergent,
and the offspring individuals are more robust. The air-ground
cooperative patrol optimization model algorithm is described
in Table 2.

IV. CASE STUDY OF THE D’S CONSTABLE WICK
IN BEIJING
A. CASE PRESENTATION AND DATA PREPROCESSING
In this study, a police station precinct in city Beijing was
selected as the research object, with a total area of 17 square
kilometers, involving 165 units and covering a population
of nearly 250,000. The average number of daily alerts in
this jurisdiction is more than 50, and there are more semi-
closed communities with high population density. The speed

of police vehicles is as low as 35 km/h during peak hours
and up to 45 km/h when the roads are open. In this special
security environment and complex road situation, to ensure
the patrol of risk points and the handling of emergencies in the
district, patrol tasks need to have a certain degree of flexibility
and reliability. Based on the distribution of crime hotspots in
the jurisdiction, combined with environmental criminology
theory, 5 high-risk patrol targets, 9 medium-risk patrol targets
and 11 low-risk patrol targets were simulated on the map by
criminologists and front-line officers (Figure 11). The star in
the picture shows the location of the police station, which is
the place of origin for the police vehicles.

Police jurisdictions are based on street distribution, pop-
ulation density, location of key units and police force con-
figuration. In reality, there is no cross-regional patrol task,
so the scope of patrol objects in this paper is controlled within
a police precinct, and only one police car is dispatched in a
single task.

B. EXPERIMENTAL RESULTS AND OPTIMIZATION SCHEME
To study the impact of different patrol situations on patrol
task formulation, according to the congestion of the road at
different times, we set the police car speed to three stages:
V 1
C = 35km/h,V 2

C = 40km/h andV 3
C = 45km/h. As vehicle

speed increases, the number of vehicle patrol points will
increase, which will slow down the pressure on the UAV
patrol points, but the vehicle patrol distance will be increased.
Figures 12-20 represent the calculation results of the patrol
deterrence index and emergency response capability as tM
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TABLE 2. Air-ground cooperative patrol optimization model algorithm.
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TABLE 2. (Continued.) Air-ground cooperative patrol optimization model algorithm.

FIGURE 11. Patrol targets distribution map.

FIGURE 12. Variation relationship between each patrol element when the
police vehicle speed is 35 km/h.

and tL change at different vehicle speeds and in different
numbers of UAVs. Due to the limitation of the UAV flight
range, the task requires at least 3 UAVs to patrol an area.

As seen from the above figures, when police vehicles are
traveling at higher speeds, there is a significant increase in
the deterrence index as police resources are invested and then

FIGURE 13. Variation relationship between each patrol element when the
police vehicle speed is 35 km/h.

FIGURE 14. Variation relationship between each patrol element when the
police vehicle speed is 35 km/h.

level off. As the number of UAVs increases, it delays the
overall trend of increasing the deterrence index. When the
number of UAVs is constant, the increase in vehicle speed
has an overall increase in the deterrence index. Compared to
the trend in the patrol deterrence index, emergency response
capabilities show a trend of high at the ends and low in the
middle in all graphs. With the increase in police resources,
emergency response capability is increasingly influenced by
the hovering time. The increase in drones has an overall
improvement in emergency response capability.

For the air-ground cooperative patrol tasks in this juris-
diction, the following patrol plan is developed to ensure
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FIGURE 15. Variation relationship between each patrol element when the
police vehicle speed is 40 km/h.

FIGURE 16. Variation relationship between each patrol element when the
police vehicle speed is 40 km/h.

FIGURE 17. Variation relationship between each patrol element when the
police vehicle speed is 40 km/h.

robustness in the allocation of police resources, considering
the limited police patrol resources.

1)When the road is congested, the police car is slow, with a
moderate ratio of tM to tL , which can ensure a strong deterrent
strength at each patrol point with a small number of drones,
and the emergency response capability falls short.

2) When the road is clear, the police car is fast, the invest-
ment of patrol resources has a greater impact on the deterrent
index and emergency response capability, and the patrol task
can increase the hovering time of medium- and low-risk
points to make the deterrent strength and emergency response
capability optimal under the limited investment. The patrol
program is shown in Table 3.

3) When police resources are limited, police vehicles need
to patrol at lower speed and shorten the hovering time of

FIGURE 18. Variation relationship between each patrol element when the
police vehicle speed is 45 km/h.

FIGURE 19. Variation relationship between each patrol element when the
police vehicle speed is 45 km/h.

FIGURE 20. Variation relationship between each patrol element when the
police vehicle speed is 45 km/h.

medium- and low-risk points to ensure a higher deterrent
index and emergency response capability.

4) When police resources are sufficient, the number of
drones can meet the disposal requirements of all emergencies
in the jurisdiction, and patrol tasks can reduce the ratio of tM

to tL while increasing the speed of police vehicles to improve
patrol efficiency.

C. ANALYSIS OF THE RELATIONSHIP BETWEEN
PATROL ELEMENTS
1) ANALYSIS OF THE RELATIONSHIP BETWEEN THE PATROL
ENVIRONMENT AND POLICE RESOURCE INPUT
The patrol environment directly determines the speed of the
police vehicle and constrains the choice of the police vehicle
patrol points, which in turn affects the UAV patrol points
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TABLE 3. Air-ground cooperative patrol program (1—2).

TABLE 4. Air-ground cooperative patrol program (3—4).

and patrol route selection, which are related to the input of
police resources. Without regard to the range of the police
vehicle, different cruising speeds determine the lower limit
of the patrol distance of the police vehicle, but as the speed

FIGURE 21. Diagrams of the relationship between patrol environment
and police resource input.

FIGURE 22. Diagrams of the relationship between patrol environment
and police resource input.

FIGURE 23. Diagrams of the relationship between drone load and crime
deterrence index.

of the vehicle increases, the length of the patrol distance will
increase. The number of drones on the patrol determines the
lower limit of police vehicle resources. When the constraint
on the number of police vehicles in a single jurisdiction is not
considered, a larger number of police vehicles are available
for patrol duties, leading to a reduction in UAV participation,
so that more medium-risk point tasks will be assigned to
police vehicles. When UAV resources are plentiful, the pres-
sure on vehicle patrols decreases significantly.
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FIGURE 24. Diagrams of the relationship between drone task load and
crime deterrence index.

FIGURE 25. Diagrams of the relationship between drone task load and
emergency response capability.

2) ANALYSIS OF THE RELATIONSHIP BETWEEN DRONE TASK
LOAD AND CRIME DETERRENCE INDEX
As the patrol volume of UAVs increases, the overall trend of
crime deterrence by air-ground cooperative patrols decreases
first and then increases slightly, with an overall trend in
the shape of a ‘‘U’’. The reduction in drone patrol points
indirectly leads to an increase in hovering times, and as
drone patrol points increase, hovering time will decrease,
so a smaller allocation of UAV patrol points can maintain a
higher deterrent index. However, if the police resources of
the jurisdiction are limited, to ensure a higher crime deterrent
index, it is necessary to increase the number of drone patrol
tasks. In addition, devoting too much hovering time will lead
to a decrease in the average level of deterrence. Therefore,
to ensure crime deterrence, the number of drone patrol points
should be controlled while increasing the ratio of A to B
and reducing the hovering time for the medium- and low-risk
points.

3) ANALYSIS OF THE RELATIONSHIP BETWEEN DRONE TASK
LOAD AND EMERGENCY RESPONSE CAPABILITY
Similar to the crime deterrence-UAV patrol point relationship
chart, with the increase in UAV tasks, the overall emer-
gency response capability first declined and then gradually
increased in a ‘‘U’’ shape. To achieve the highest emergency

FIGURE 26. Diagrams of the relationship between drone task load and
emergency response capability.

response capability, it is required that the hovering time at
medium-risk points is much longer than that at low-risk
points, and more UAVs are required to participate in the
mission. However, crime deterrence will decrease as the num-
ber of UAV patrol points increases while maintaining a high
level of emergency response capability. The analysis shows
that increasing the hovering times in key areas, especially in
the high-risk areas at the launch/recovery points, is the key
to determining crime deterrence, while too many hovering
times in low-risk areas contribute less to the deterrence index
but cause a waste of resources. However, by excessively
increasing the total hovering times in the medium-risk points
for UAVs, the emergency response capability will decrease,
and there is no relationship with the number of UAVs.

V. CONCLUSION
With the development of artificial intelligence, cloud comput-
ing, the Internet of Things and other technologies, indirect
contact between people or between people and objects is
gradually coming into realization. ‘‘Contactless’’ services
have been widely used in intelligent logistics, intelligent
retail, intelligent security and other fields. The global out-
break of COVID-19 has accelerated the application of ‘‘con-
tactless’’ technology. As a ‘‘contactless’’ convenient aircraft
that can carry a variety of instruments, UAVs play an impor-
tant role in anti-terrorism resource dispatch, criminal inves-
tigation and police patrols. In the first half of 2020, the
Shenzhen police dispatched more than 1800 sorties of police
UAVs [44], which effectively reduced the work pressure and
work risk of police officers.

Patrol task optimization is a key task in policing, and
the addition of UAVs makes the patrol task arrangements
more challenging. This paper takes the resource input and
task allocation of police vehicles and UAVs as the patrol
task optimization objectives, takes the patrol deterrence index
and emergency response capability as the target constraints,
discusses the patrol task plan of a police station in Beijing
under different patrol situations, and innovatively refines the
elements of the patrol task. Furthermore, the interrelation-
ships between the elements and the objectives are identified
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through the analysis of actual cases to provide the decision
makers in different situations with a Pareto task plan for air-
ground cooperation cooperative patrol.

Resource dispatching under emergencies such as terrorist
attacks and major epidemics has been the focus of schol-
ars [45], but there are few researches on the siting, scheduling
and air-ground cooperation of patrol subjects. Police orga-
nizations, while undertaking daily patrol tasks, also need
to deal with emergencies, victim relief and temporary duty,
future research will coordinate the police resource dispatch
system that combines human-vehicle-machine to optimize
public management resources.
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