IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 22, 2021, accepted September 18, 2021, date of publication September 24, 2021, date of current version October 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115523

SmartX Multi-Sec: A Visibility-Centric
Multi-Tiered Security Framework for
Multi-Site Cloud-Native Edge Clusters

JUN-SIK SHIN“'" AND JONGWON KIM?, (Senior Member, IEEE)

I'School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
2 Al Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Jongwon Kim (jongwon@nm.gist.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant
funded by the Korean Government [Ministry of Science and ICT (MSIT)], Artificial Intelligence Graduate School Program [Gwanju
Institute of Science and Technology (GIST)], under Grant 2019-0-01842, and in part by the Development of Cloud-Native Key
Technologies to Collect and Provide Integrated Training Dataset for Autonomous Driving System under Grant 2021-0-01176.

ABSTRACT Recently, to match the emerging demands for multi-site edge clouds, the cloud-based infor-
mation and communication technology (ICT) infrastructure is rapidly expanding. To protect distributed
edge-based cloud assets from networking-based threats by recognizing suspicious traffic, cloud operators
should monitor the overall underlying topology to categorize and identify diversified networking packet
traffic, flowing through various paths among virtualized and containerized cloud nodes. Perimeter-based
networking security, which employs security appliances in fixed locations, cannot address this visibility
challenge. As a result, in this paper, we propose the SmartX Multi-tier Security (Multi-Sec) framework,
which aims to provide intuitive and systematic visibility for multi-site edge-cloud security. SmartX Multi-Sec
abstracts the underlying networking topology among multi-site edge clusters as multiple onion-ring-based
tiers of physical, virtualized, and containerized cloud nodes. It also provides collective DevSecOps automa-
tion features for monitoring, visualizing, and filtering targeted networking traffic from the respective tiers of
the abstracted networking topology. The resulting flow-centric visibility using SmartX Multi-Sec can be fea-
tured with extended Berkeley Packet Filter and eXpress Data Path (eBPF/XDP)-leveraged lightweight flow
capture and filtering, three-dimensional onion-ring visualization, and automated deployment of DevSecOps
functions. By integrating these features, the Proof-of-Concept (PoC)-version of the SmartX Multi-Sec
framework is realized to verify the flexible and scalable flow-centric security for multi-site cloud-native
edge clouds.

INDEX TERMS Automated function deployment, lightweight flow capture and filtering, multi-site

cloud-native edge clouds, security-oriented flow-centric visibility, three-dimensional visualization.

I. INTRODUCTION

With the rapid growth of the Internet of things and 5G mobile
networks, edge computing is widely adopted to address
demanding resource requirements for Al-leveraged edge ser-
vices such as high networking bandwidth, low latency, and
security improvement [1]-[4]. Along with this technology
trend, by intensively adopting virtualization and container-
ization, cloud-native-style clouds are becoming popular for
emerging information and communication technology (ICT)
infrastructure [5], [6]. Thus, to maximize resource efficiency

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh

134208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and flexibility while satisfying the intense requirements of
diversified services, edge clouds are dominantly adopting
open-source-based cloud-native computing [7].

Typically cloud-native edge clouds are built over-
complicated networking topology because of geographical
separation and network isolation (i.e., virtualization) for vir-
tualized and containerized application services. In addition,
distributed edge clouds, interconnected with numerous end
things and people, are exposed to potentially dangerous
external devices via many vulnerable access points. Conse-
quently, the complicated underlying topology naturally leads
to diversified edge-cloud networking paths, which can be
abused as wide attack surfaces by suspicious behavior flows.

VOLUME 9, 2021

https://orcid.org/0000-0003-1069-2592
https://orcid.org/0000-0003-4704-5364

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

In addition to the north-south traffic with hidden external
attacks, east-west traffic among internal entities (e.g., phys-
ical, virtualized, and containerized nodes) can compromise
the multi-site edge clouds from inside.

Detecting suspicious behaviors of malicious flows and
estimating their impact coverage could be overwhelmingly
difficult in distributed clouds over complicated networking
topology. For flow-based detection, the whole networking
traffic sent from (or received by) peering networking ports
should be captured, collected, and processed by exploiting
the limited resources of edge clouds. Then, to estimate the
impact coverage and effectively block the attacking threats,
the collected packet traffic data and the status of respective
peering ports should be intuitively visualized for the DevSec-
Ops operators of multi-site edge clouds.

Without systematic visibility supports, timely reactions
against attacking threats cannot be made, and belated reaction
incurs resource wastes. Actually, K-ONE Playground trial
has been a real-world testbed example for networking-based
security threats since 2015 [8], as preliminary multi-site
cloud-native edge clouds. Due to the complexity of under-
lying networking topology, we have wasted time and human
resources to identify specific victims and block them from the
attack attempts. From this long-term miniaturized experience,
the main lesson for the continuous operation of multi-site
edge clouds is to maintain the well-designed systematic vis-
ibility and apply the organized visibility for flow-centric
protection of multi-site edge clouds.

Typically security approaches for edge-cloud clusters are
quite diverse since the security for cloud inherently touches
the multiple layers of physical, virtualized, and containerized
cloud nodes. The resulting security options for protecting
edge-cloud infrastructure and services are thus ranging over
various concepts, tools, and schemes [9]-[17]. The conven-
tional perimeter-based defense, relying on dedicated security
appliances at the infrastructure boundary, does not effec-
tively address attacks originating inside the perimeter. As an
alternative, Linux-native flow management features, such as
iptables (i.e., netfilter) and traffic control, are widely adopted
to protect physical/virtual/container-layer networking inter-
faces (e.g., ports). These flow management tools typically
manage a shared long list of filtering rules for all ports of
edge-cloud cluster nodes, which is subject to the burden of
effectively sharing the long list. This burden and other limita-
tions reduce its usefulness for multi-site edge clouds, where
the management complexity and resource consumption are
not trivial due to scalability challenges.

Meanwhile, many novel security schemes for detection
accuracy and management effectiveness have been pro-
posed [9]-[13]. Some of the suggested schemes are touching
the use of edge as defense belts for a centralized cloud by
mitigating DDoS (distributed denial of service) attack or
proactive ML (machine learning)-based IDS (intruder detec-
tion system). The flexibility of security function chaining,
SmartNIC-accelerated security functions, and a hierarchi-
cal architecture with security protocols are also introduced.

VOLUME 9, 2021

However, leveraging these schemes directly to the multi-site
edge clouds for acquiring systematic visibility is not practi-
cally affordable due to the wide-range differences in target
scenarios and users, underlying networking topology, and
cluster node assets to be protected.

In summary, to overcome the topological complication of
distributed edge clouds and maintain their continuous opera-
tion, it is essential to establish organized and systematic visi-
bility over the targeted cloud infrastructure. Our initial effort,
named SmartX MVF (multi-view visibility framework)
[18]-[23], has targeted establishing multi-layer visibility over
software-defined networking-enabled multi-site cloud-based
nodes. SmartX MVF attempts to organize unified multi-layer
visibility of the underlay network, physical and virtualized
nodes, inter-connecting flows, and application workloads.
However, due to the inherent complexity of attempted up to
5 layers of visibility, the achieved multi-layer visibility has
been limited to basic-level framework validation emphasizing
layered visibility collection and two-dimensional onion-ring
visualization. Also, the issue of how to leverage the collected
visibility toward the secured operation of multi-site clouds is
not yet explored.

Thus, this paper explores an intuitive and systematic
solution for a visibility-centric and multi-tiered security
framework that can be further customized and scaled for com-
plicated multi-site edge-cloud security. By focusing on the
systematic protection for multi-site cloud-native edge clouds,
we propose SmartX Multi-tier Security (Multi-Sec) frame-
work as a unique visibility-centric and multi-tiered frame-
work. The main contributions behind the proposed SmartX
Multi-Sec can be summarized as follows:

o We list the SmartX Multi-Sec framework requirements
for visibility-centric simplification and multi-tiered scal-
ability. The proposed SmartX Multi-Sec framework
abstracts the underlying networking topology among
multi-site edge clusters as several layers of physical,
virtualized, and containerized cloud nodes to meet the
requirements. The adopted abstraction simplifies the
complicated underlying topology and associated virtu-
alization/containerization of cluster nodes into hierar-
chical multiple tiers of onion-style rings. It effectively
categorizes and identifies diversified networking packet
traffic by associating them with the peering network-
ing ports of physical/virtualized/containerized cluster
nodes.

o The proposed framework also provides collective
DevSecOps automation features that can monitor, visu-
alize, and filter targeted networking traffic from the
respective tiers of the abstracted networking topol-
ogy. The resulting flow-centric visibility employing
SmartX Multi-Sec can be featured with lightweight
eBPF(extended Berkeley Packet Filter)/XDP(eXpress
Data Path)-leveraged flow capture and filtering, three-
dimensional (3D) onion-ring visualization, and auto-
mated deployment of DevSecOps functions. That
is, based on the abstracted visibility visualization,

134209

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

the framework can flexibly capture and filter network-
ing traffic by associating eBPF/XDP-based tiny-sized
DevSecOps functionalities with the targeted peering
ports. In addition, the framework provides three-
dimensional onion-ring-style visualization that directly
depicts the simplified underlying networking topology
along with the security status of respective peering ports.
With these features, the proposed framework supports
the easy and semi-automated repetition of DevSecOps
coordination steps, which spans the widely-scoped mon-
itoring, visualization, and filtering of networking traffic.
« By integrating the proposed framework and prototyping
the above features, the PoC(Proof-of-Concept)-version
of the SmartX Multi-Sec framework is realized to ver-
ify the flexible and scalable flow-centric protection for
multi-site cloud-native edge clouds. The recognized pro-
totype implementation over K-ONE Playground and
its verification results highlight the effectiveness of
the proposed framework design and the feasibility of
the proposed framework equipped with the respective
DevSecOps features for multi-site edge-cloud security.

The rest of this paper is organized as follows. Section II
explains our real-world testbed implementation for multi-
site cloud-native edge clouds, followed by functional require-
ments for protecting them. In Section III, to satisfy the given
requirements, the overall design of the SmartX Multi-Sec
framework and its key components are detailed. Then,
the prototype implementation of the proposed framework is
explained in Section IV, together with feasibility verification
results. In Section V, we discuss the potential use cases of the
proposed framework and related work on securing multi-site
edge clouds. Finally, we conclude this paper in Section VI.

Il. BACKGROUND AND REQUIREMENTS

Edge clouds can be typically constructed in different
configurations due to the various resource requirements
of target Al-leveraged edge services. Thus, this section
describes K-ONE Playground as our miniaturized real-world
testbed of multi-site cloud-native edge clouds to assume
the underlying networking topology for flow-centric visi-
bility. We list functional requirements to monitor, visualize
effectively, and filter networking traffic among distributed
physical/virtualized/containerized cloud nodes based on the
assumption.

A. K-ONE PLAYGROUND: A MINIATURIZED TESTBED FOR
MULTI-SITE CLOUD-NATIVE EDGE-CLOUDS

Motivated by the increasing interest in cloud-native edge
clouds, we have operated K-ONE Playground since 2015 to
support domestic researchers to realize cloud-based DevSec-
Ops services [8]. K-ONE Playground consists of three infras-
tructure tiers: a centralized core cloud, distributed edge
clouds, and diversified end-things (Fig. 1). The core and edge
clouds are built as clusters of physical cloud assets (i.e., phys-
ical servers and networking switches). To orchestrate cloud

134210

openstack.kubernetes ceph kubernetesKubef flow
VAR, S A Vi, — Vi, a—

Provisioning Visibility Intelligence .[.l .[.l A Centralized
et e Center Center Center Y R)
.[.[-’ I I I l Core-cloud

K-ONE Cluster

SmartX Intelligence
DataLake Cluster

NetCS

Playground Tower
Cloud Cluster

KREACNET v

= <Ko @qm I$qm §>|/|m
K-Fabric K-Fabric K-Fabric K-Fabric ks) | Distributed
Edge-cloud
K-Cube K-Cube K-Cubel K-Cube K-Cube Clusters
GIST Korea Univ. Soongsil Uniy. POSTECH KAIST
Access Access Access Access
Networks Networks Networks Networks

End-Things

FIGURE 1. The hierarchical networking topology of K-ONE playground.

assets and services effectively, K-ONE Playground employs
the systematic structure for operations of SmartX Play-
grounds [24], which contains a centralized playground tower
and distributed security posts. K-ONE Playground tower at
the centralized location manages the entire infrastructure by
employing SmartX automation centers that are respectively
DevSecOps-based software collections for provisioning, vis-
ibility, orchestration, and intelligence tasks. Security posts
monitor and control adjacent cloud nodes and services in
respective edge clusters by utilizing open-source DevSec-
Ops automation tools. By coordinating the security posts,
the playground tower can expand its management coverage
to all edge clusters.

The K-ONE Playground was also refined based on the
concept of composable playground to effectively support
multiple tenants who may demand different networking
topologies, software packages, and resource requirements.
K-ONE Playground contains feature components such as
networking plane separation, a box deployment tool, and a
resource-centric visibility tool to provide customized testbeds
from the limited resources. K-ONE Playground employing
these features allow cloud operators to flexibly deploy and
monitor physical/virtualized/containerized cloud nodes over
distributed clusters.

B. REQUIREMENTS FOR PROTECTING MULTI-SITE
CLOUD-NATIVE EDGE CLOUDS

In addition to geographical separation among edge-cloud
clusters, adopting virtualization and containerization, which
create many networking ports for virtual overlay networking
to interconnect among virtualized/containerized cloud nodes,
can incur the networking topology. Monitoring, visualizing,
and filtering networking traffic of respective networking ports
for protecting cloud assets are overwhelmingly difficult in
multi-site cloud-native clusters over the complicated net-
working topology. Cloud nodes with networking ports that
are not properly protected can be easily vulnerable targets.
Furthermore, once security threats successfully compromise
cloud nodes through the vulnerable ports, the attackers can

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

exploit the nodes as internal bases for attacking internal cloud
assets and services from inside.

Zero-trust security can be a promising conceptual approach
to protect the complicated networking of multi-site cloud-
native edge clouds from networking-based threats. The
zero-trust concept assumes all entities can be suspicious.
So DevSecOps operators should monitor, verify, and control
all entities all the time. This concept may look straightfor-
ward, but its realization can be varied depending on target
entities and attacking threats. When it comes to multi-site
cloud-native edge clouds, we can consider all physical, vir-
tualized, and containerized cloud nodes as suspicious enti-
ties. DevSecOps operators demand scalable and flexible
flow-centric visibility that monitor and filter networking
packet traffic sent from (received by) cloud nodes. Further-
more, visualization is also significant to timely react against
threats because a reaction can begin only after estimating
areas affected by the detected threats.

Inspired by the zero-trust concept, we can consider func-
tional requirements of a visibility-centric framework to effec-
tively monitor, visualize, and block networking traffic for
multi-site cloud-native edge clouds as follows:

o R1 (Requirement #1). Providing scalable flow-centric
visibility with an abstracted visualization: A central-
ized place should collect, store, and process massive
amounts of monitoring data for flow-based visibility.
The visibility workloads can exploit huge portions of
limited computing, storage, and networking resources in
multi-site edge clouds. In addition, a security framework
should uniquely identify respective peering ports, and
collect networking traffic from them. Furthermore, visu-
alizing the security status of peering ports in text formats
such as lists and tables cannot help DevSecOps operators
intuitively estimate attacking areas by security threats.
Drawing the complicated topology in the forms of trees
or graphs can easily increase their sizes and complexity.
Therefore, flow-centric visibility for multi-site cloud-
native edge clouds should employ a systematic abstrac-
tion that simplifies the underlying networking topology
among virtualized and containerized cloud nodes to
cope with the increasing scale. Edge-cloud security
should distribute visibility workloads to edge clusters
to alleviate the centralized resource consumption. Also,
an intuitive visualization for edge-cloud security should
depict the abstracted topology and the security status of
respective peering ports on the same screen for DevSec-
Ops operators to recognize and understand suspicious
behaviors.

o« R2 (Requirement #2). Supporting a flexible and
semi-automated deployment of DevSecOps func-
tions: To monitor and filter packet traffic from cloud
nodes, DevSecOps operators need to flexibly deploy
software functions that can capture and block net-
working packets. Because of the topology compli-
cation, manual and script-based configuration may
waste human resources and be susceptible to human

VOLUME 9, 2021

errors. Thus, the visibility-centric framework should
support flexible and automated monitoring and filtering
functions on the intended peering ports of physical/
virtualized/containerized cloud nodes. For this feature,
the framework should provide a unified interfacing
method for flexible and easy function deployment.
In addition, based on the input, the framework should
conduct multiple configuration steps for remote cloud
nodes, such as installation/configuration of basic soft-
ware packages and functions, executing functions, and
updating option values.

« R3 (Requirement #3). Utilizing lightweight DevSec-
Ops functions for networking traffic capture and
filtering: DevSecOps functions associating with peer-
ing networking ports should directly handle massive
packets in real-time. Furthermore, physical cloud nodes
can internally contain many virtualized and container-
ized cloud nodes. Under massive networking traffic,
packet capture and filtering from networking ports
of these nodes can waste huge compute and storage
resources, which results in disturbing legitimate ser-
vices. Thus, the visibility-centric framework demands
tiny-sized software functions that can be flexibly applied
to various networking ports whereas consuming small
computing resources.

To satisfy these requirements, we propose the SmartX
Multi-Sec framework as a flow-centric visibility framework
with collective DevSecOps features that can correspond
to respective monitoring, visualization, and reaction steps
for edge-cloud security. Furthermore, SmartX Multi-Sec
suggests a systematic approach for edge-cloud security and
supports further research on intelligent security (e.g., AI/DL-
based intrusion detection systems, resource-aware security
orchestration) that demands flow-centric visibility data and
the DevSecOps features. Even though edge-cloud security
may have various technical challenges not listed, SmartX
Multi-Sec focuses on addressing the functional requirements.

IIl. DESIGN OF SmartX MULTI-TIER SECURITY
FRAMEWORK AND KEY COMPONENTS

In this section, we design the SmartX Multi-Sec framework in
a top-down approach. The overall design includes the concept
of SmartX Multi-Sec framework based on onion-ring-style
topology abstraction, and its framework architecture with
collective DevSecOps components. We also design the details
of these components to address the requirements described in
Section II-B.

A. OVERALL DESIGN OF SmartX MULTI-SEC FRAMEWORK
Fig. 2 depicts the overall concept of SmartX Multi-Sec.
SmartX Multi-Sec can abstract the underlying topology
among virtualized/containerized cloud nodes as multiple tiers
of onion-ring-style rings. Respective networking ports of the
nodes can uniquely correspond to the segments on the rings.
Based on this abstraction, we can assume that security attacks

134211

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

(3D Onion-ring Automated Function DeYS§COp5
Visualization Deployment Coordination Steps
i el —e—— — Monitoring
: ‘2’3“‘“}“\«‘ J — Visualization
‘A centralized — . — Filtering
Core cloud M \1[1){\\:{“ ‘ DevSecOps
o S~ Functions
. Flow-based w Remote Software) Measurement
% {_ Traffic Monitoring | Configuration . @ Filtering

o
A4 openstack kubernetes -

Multi-site Cloﬁd—‘natiye O
Edge clouds 2

FIGURE 2. The overall concept of SmartX Multi-Sec.

attempt to find vulnerable networking ports to compromise
services and cloud nodes. To detect and react to the attempts,
SmartX Multi-Sec can deploy DevSecOps functions, such as
measurement and filtering functions, on the respective tiers
for flow capture and filtering. Using monitoring data col-
lected from the measurement functions, the visibility center
provides 3D onion-ring visualization that can depict both
the abstracted topology and security status of respective net-
working ports on a single graph. The provisioning center
can support template-based function deployments to monitor
and block targeted networking traffic. SmartX Multi-Sec can
allow DevSecOps operators to effectively repeat the security
cycle such as monitoring, visualization, and filtering with
these features.

When it comes to topology abstraction, we define two
types; infrastructure tiers and box tiers. Infrastructure tiers
represent a hierarchical relationship of distributed cloud clus-
ters and their operational elements. A playground tower,
clusters for core cloud, security posts, and clusters for edge
clouds can correspond to the respective tiers in order from
the center to the edge. In this relationship, the inner tiers can
typically monitor and control the outer tiers. For example,
the playground tower can manage all edge clusters, the posts
can manage adjacent cloud nodes, and DevSecOps services in
a core cloud can coordinate distributed edge services. Thus,
inner entities tend to have higher significance than outer enti-
ties in DevSecOps operations, so DevSecOps operators may
ensure higher-level protection for inner entities by deploying
more functions along the networking paths.

Box tiers represent a nested structure of physical, virtu-
alized, and containerized cloud nodes. Notice that SmartX
Multi-Sec uses the term boxes, defined in SmartX Play-
grounds, to refer to cloud nodes. In typical cloud-native-
style clouds, virtual and container boxes (e.g., virtualized and
containerized cloud nodes) can be nested together depending
on operation policies and service requirements. However,
handling these indefinite combinations can be impractical.
Therefore, in this paper, SmartX Multi-sec only considers
networking ports visible in operating systems of physical

134212

Edge Boxes -
- Virtualized &
Containerized Nodes
- Physical Nodes
X — Edge Clouds
Security Posts
- Virtualized &
Containerized Nodes
- Physical Nodes .

A Core-cloud
Cluster

- Virtualized &
Containerized Nodes — A Core Cloud
- Physical Nodes

- Playground Tower

FIGURE 3. An onion-ring-style multi-tiered topology of K-ONE
playground.

cloud nodes. Fig. 3 shows the multi-tiered topology of cloud-
native edge clouds for SmartX Multi-Sec, which combines
the definitions of infrastructure and box tiers.

In addition, we define a dot notation <cluster>.<physical
box>.<networking port>.<function> to uniquely identify
the respective tiers and functions. For example, gj.kl-gjl-
cubel.enol.measure can point out a DevSecOps function
measure deployed on the networking port enol in the phys-
ical box kl-gjl-cubel in the gj cluster. Using this notation,
SmartX Multi-Sec can deploy and update DevSecOps func-
tions on exact networking ports.

In the following subsections, we detail the design of essen-
tial components of SmartX Multi-Sec framework such as vis-
ibility center, provisioning center, and eBPF/XDP-leveraged
DevSecOps functions.

B. VISIBILITY CENTER FOR SCALABLE FLOW-CENTRIC
MONITORING AND VISUALIZATION

SmartX Multi-Sec framework can employ the visibility cen-
ter to support flow-centric visibility tasks for multi-site cloud-
native edge clouds. For the visibility center, we design a 3D
onion-ring graph structure for the visualization as depicted
in Fig. 4. The horizontal surface of the graph can show
the multi-tiered topology that looks like the cross-section
of an onion. Also, the graph can be vertically rotated to
show vertical heights of the ring segments that correspond
to vulnerability scores of the respective ports.

The visibility center should internally collect, store, ana-
lyze, and stage monitoring data to continuously supply data to
the visualization. The respective tasks can be implemented as
software-based visibility modules. The data collection mod-
ule can acquire monitoring data captured by measurement
functions. The storing module can modify the obtained data
to be compatible with a pre-defined schema and store them
into databases. The data analysis module mainly focuses on
generate security-oriented information such as vulnerability
levels of cloud nodes, services, and tenants by clustering,
classifying, and identifying networking traffic flows. The
staging module can prepare the visibility data for other mod-
ules (e.g., the visualization module for 3D onion-ring-based
graph) to instantly utilize.

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

Horizontal View (Resource-centric Multi-tiered View)
Edge Boxes (K-Cube)

- Virtual Ethernet Ports
(Virtualized &
Containerized Nodes)
- Physical Ports _J

Security Posts (K-Post)

- Virtual Ethernet Ports
(Virtualized &
Containerized Nodes)

- Physical Ports

Sites O
<«
(Wide Area Networks)

A Core-Cloud Cluster

- Virtual Ethernet Ports
(Virtualized &
Containerized Nodes)

- Physical Ports

<«

Playground Tower
- Provisioning Center
/ Visibility Center

Critical —

Vulnerability Score

(Security level) Warning

Normal

Vertical View (Security-centric Multi-level View)

FIGURE 4. Design of 3D onion-ring visualization.

Header fields of raw packets cannot directly represent
time-related networking patterns such as the duration of
flows, packets/bytes per second, and inter-packet arrival
time. Thus, typical intrusion detection systems (IDS) employ
flow-based monitoring that obtains flow features from cap-
tured raw packets to detect suspicious patterns based on
signature and policies. Likewise, public IDS datasets such
as UNSW NB-15 [25], CICIDS-2017 [26] provide collec-
tions of flow features rather than raw packet data. For flow-
based monitoring, SmartX Multi-Sec should manage flow
caches to maintain flow expiration and generate additional
features.

By employing these modules, the visibility center can
continuously supply the collected data into the visualiza-
tion module. Then, the 3D onion-ring graph can highlight
impacting areas affected by suspicious traffic over the multi-
tiered topology. Consequently, operators can easily recognize
security threats and estimate the scopes for further inspection
and reaction.

C. PROVISIONING CENTER FOR FLEXIBLE AND
AUTOMATED FUNCTION DEPLOYMENT

To design function deployment for SmartX Multi-Sec,
we should define where eBPF/XDP-leveraged DevSecOps
functions can be associated for flow capture and filtering.
Linux kernel has several candidates: utilities (e.g., Netfilter
and traffic control) and kernel functions (e.g., ip_rcv() and

VOLUME 9, 2021

ip_send()). These Linux-native features can handle all net-
working traffic visible in the kernel, regardless of packets’
sources and destinations. However, these features manage
security rules of networking ports in a lengthy list (or several
lists). Thus, they can be susceptible to a single-point-of-
failure and the management complexity of security rules. For
that reason, they can reveal limitations in scalability, resource
efficiency, and processing performance. Therefore, SmartX
Multi-Sec can directly associate DevSecOps functions with
Ethernet interfaces of cloud nodes. Filtering rules directly
bind to respective ports decreasing the average number of
inspection rules for filtering packets.

However, the increasing number of DevSecOps functions
in multi-site cloud-native edge clouds can increase the com-
plexity in terms of deployments. Manual and script-based
deployment should manually configure and verify each step
such as access to remote cloud nodes, finding exact peer-
ing ports, installing DevSecOps functions with dependent
packages, and modifying the detailed configuration. This
approach can be error-prone and waste a huge amount of
human resources.

To address the complication, the provisioning center
of SmartX Multi-Sec can support template-based function
deployment. As an input to describe the desired function
topology, a provisioning template for SmartX Multi-Sec
should contain three attributes of DevSecOps functions: iden-
tifiers of networking ports, function types, and types of
deployment tasks. Firstly, the identifiers follow the dot nota-
tion defined in Section III-A, which helps the provision-
ing center identify networking peering ports. Next, we can
choose between measurement (i.e., capture) and filtering as
a function type, as both functions require different setups.
Finally, there are three types of deployment tasks: compose,
update, and release. For the compose task, the provisioning
center newly deploys functions on specified ports. The update
task can change options and filtering rules of functions. The
release task removes functions working on specified ports.
By listing functions with these attributes, a provisioning tem-
plate can depict a desired topology of functions.

SmartX Multi-Sec can automatically conduct a series
of provisioning (i.e., installation and configuration) steps
based on the template. To effectively implement the auto-
mated deployment feature for the provisioning center, we can
define provisioning steps such as template interpretation,
DevSecOps tool selection, DevSecOps tool execution, and
installation/configuration. In the template interpretation step,
the provisioning center can understand the desired result of
deployment by reading a given template. In the tool selection
step, the provisioning center can select DevSecOps automa-
tion tools among available candidates. The provisioning cen-
ter can call the interfaces of the selected tools and pass
parameters to execute configuration tasks. Then, the invoked
tools conduct the configuration step by remotely installing
and configuring software such as kernels, libraries, packages,
and function source codes. DevSecOps operators only need
to describe functions in a provisioning template for flexible

134213

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

monitoring and filtering on targeted networking ports thanks
to the template-based function deployment.

D. LIGHTWEIGHT DevSecOps FUNCTIONS FOR FLOW
CAPTURE AND FILTERING

After deployment by the provisioning center, SmartX
Multi-Sec DevSecOps functions associated with peering
ports can capture or filter networking packet traffic. To imple-
ment tiny-sized DevSecOps functions for flow capture and
filtering, we can leverage Linux eBPF and XDP. Linux eBPF
provides a set of libraries that allows dynamic injection of
codes from userspace into various kernel events (i.e., hooks)
such as kernel functions, system calls, tracepoints, and sock-
ets [27], [28]. Meanwhile, XDP provides special hooks and
libraries for eBPF kernel programs to rapidly forward, drop,
and redirect packets received at networking ports [29]. XDP
hooks include the very early point in the kernel network-
ing stack, device drivers, and SmartNIC. SmartNIC is a
short expression of a smart networking interface card that
can offload networking-related workload, such as packet
en(de)capsulation, monitoring/filtering, shaping, and routing,
from CPU to its networking processors. Also, eBPF functions
associated with XDP hooks can be executed in one of XDP
modes such as generic, native, and hardware offload modes,
depending on the type of peering ports. In XDP generic mode,
the kernel programs can be freely associated with standalone
Linux networking devices such as physical networking ports
and virtual Ethernet (i.e., veth) interfaces, but processing
performances are significantly lower than other modes. The
kernel programs in XDP generic mode can be only associ-
ated with device drivers of physical NIC, thus they inspect
before packets enter the kernel networking stack. And XDP
offloaded mode supports the kernel programs that can directly
handle raw packets inside the receiving queue in SmartNIC.

An eBPF program for kernel older than 5.2 can contain
at most 4096 instructions without loops. The restriction can
ensure the DevSecOps functions quickly to finish packet
processing within a finite period, consuming small comput-
ing resources. SmartX Multi-Sec can deploy eBPF/XDP-
leveraged DevSecOps functions for both flow capture and
filtering in the same way. Also, thanks to veth interfaces
in the Linux kernel, a single eBPF/XDP-based function
can be flexibly utilized for physical, virtual, and container
boxes. Therefore, SmartX Multi-Sec employing eBPF/XDP-
leveraged lightweight DevSecOps functions can satisfy the
flexibility to handle different networking ports in typical
cloud-native-style clouds.

Fig. 5 depicts the basic design of DevSecOps functions.
Both measurement and filtering functions can be divided
into userspace codes and kernel codes. In addition to kernel
code injection, userspace programs can interconnect kernel
programs with external entities. The userspace programs can
get kernel-captured data and send it to the visibility center
for monitoring purposes. Inversely, the userspace programs
for the filtering functions can update filtering rules received
from the provisioning center into the kernel programs.

134214

v

Data Transfer Exposing APIs
R Kernel Code |
Data Injection

Formatting Updating Rules

Measured Data Filtering Rules

i [

Yoo
Flow Capture Logic Flovx]:Fll_terlng
ogic

{ f
&}
Raw Sockets

XDP Hooks
(SmartNIC, Device Drivers, Sockets)

FIGURE 5. Design of SmartX Multi-Sec DevSecOps functions for
networking flow capture and filtering.

When it comes to kernel programs, working procedures of
the measurement and filtering functions can be straightfor-
ward. These functions can be executed when a packet hits
the associated networking ports. The kernel programs of the
measurement functions can take pre-defined header fields
from the packet and send the data to the userspace programs.
Inversely, the kernel programs of filtering functions can look
up filtering rules written by userspace programs, match the
header fields against the rules, and drop the matched packet.
These functions can employ eBPF maps that are data struc-
tures shared between eBPF-based userspace and kernel pro-
grams for communications.

Even though eBPF-based functions are lightweight, cap-
turing respective packets can consume huge computing and
storage resources and even incur significant networking
delays. Among various factors, a considerable amount of raw
packet data transferred from kernel to userspace can be a
significant factor that incurs the performance limitation. For
that reason, SmartX Multi-Sec can directly generate flow
features from raw packets in the Linux kernel using eBPF
maps as kernel-level flow caches. In the perspective of the
userspace program, huge traffic can be summarized as a few
entries of flow features. Therefore, flow-based capture can
reduce the amount of monitoring data. And the reduction can
alleviate the performance limitations and resource wastes,
resulting in improving the scalability.

IV. PROOF-OF-CONCEPT IMPLEMENTATION AND
FEASIBILITY VERIFICATION

This section implements a PoC prototype of the SmartX
Multi-Sec framework for the K-ONE Playground. Based on
a scenario, we describe how the respective components of
the SmartX Multi-Sec framework can address the functional
requirements for the feasibility verification.

Fig. 6 depicts an example scenario. The dots, drawing on
the multi-tiered underlying topology of the K-ONE Play-
ground, correspond to the networking ports of cloud nodes.
For simulation, we simultaneously generate ICMP flood DoS
attack traffic traversing different networking paths. Flood

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

(1) An external attack on
north-south traffic

An external device 2
pNIC (of a K-Cube in
the GJ edge cluster)

(2) An internal attack
on east-west traffic
in a physical node

VvNIC < vNIC
(both in a security post)

(3) An internal attack over
multi-site physical nodes

VvNIC (in a security post
in the POSTECH edge cluster)
>

vNIC (in a physical node
in the core-cloud cluster)

FIGURE 6. An example attack scenario to verify the feasibility of SmartX
Multi-Sec. (GJ: GIST, KU: Korea university, SSU: Soongsil university, PO:
POSTECH, KA: KAIST).

DoS attacks are very challenging for monitoring and filtering
networking-based threats. Massive attacking traffic can easily
exhaust computing, storage, and networking resources for a
visibility-centric security framework to capture, process, and
store respective packets. The red arrows represent the paths of
the respective attacks. The first path at the top corresponds to
availability attacks from external dangerous devices. The sec-
ond path represents internal attacks between virtual boxes in
a physical box. And the third one at the bottom corresponds
to attacks traversing multiple tiers of distributed clusters.

When it comes to testbed configuration, we utilize the
minimal number of boxes (i.e., cloud nodes) to clearly show
how respective DevSecOps features of the SmartX Multi-Sec
framework work. In addition to the boxes involving in the
attacks, the provisioning/visibility centers, the core-cloud
cluster, and security posts should always be in working sta-
tus for continuous operations. We utilize hping3 to send
huge ICMP packet traffic having 65000 bytes of payload,
which forces victims to waste more computing resources for
reassembling fragmented packets. A physical CPU core can
approximately generate 2-3 Gbps ICMP traffic using hping3
at most, so we adjusted the traffic size of attacks with the
number of cores and nodes.

Based on the scenario, we verify the respective features to
show the feasibility of SmartX Multi-Sec with its flexibility
and scalability as a basic visibility-centric framework for
edge-cloud security.

A. THE FLOW-CENTRIC MULTI-TIERED VISIBILITY
FRAMEWORK WITH 3D ONION-RING VISUALIZATION
Based on the design of the visibility center, we imple-
ment visibility modules such as data collection, storing,

VOLUME 9, 2021

analysis, staging, and visualization modules. Notice that
SmartX Multi-Sec employs the software structure of SmartX
MVF with its leveraged open-source software for effective
implementation of flow-centric visibility.

T

Security-centric Visualization
0 mongoDB (3D onion-ring)
Topology Data Staging
Boxes
) Data Analysis
Security Lev el\
ants influxdb
JiEnanis Flow Classification @ infl
o S MVF Flows with
Visibility Data Store Features
Center

. Expired Flows
Feature Generation REEESSES

Active Flows
Data Collection (& Storing) Flow cache

[§g kafka
Data (Formatting &) Transfer @ influxdb
Flow Cache Management Expired Flows
Expired Flow Management
Active Flows
- Active Flow Management

Securlty Raw Flows
Posts) o
. : ow cache

Data Collection (& Storing)

X§3 kafka

FIGURE 7. The working procedure of the visibility center.

Fig. 7 depicts the structure of visibility modules in detail.
The arrows represent a data path where visibility data are
transferred, stored, and processed. The visibility center lever-
ages Apache Kafka for message queues, MongoDB for an
MVF data store, and InfluxDB for a flow cache. The MVF
data store contains management information such as physical
infrastructure topology, login credentials, and a tenant list.
Also, it stores resource-centric visibility data such as lists
of physical, virtual, and container boxes with their resource
status. The data collection module takes flow data from
message queues, where measurement functions transfer the
captured data continuously. The data storing module mod-
ifies the format of the collected data and stores them in
the flow cache. Notice that DevSecOps functions identify
respective networking flows in a physical node with a 5-tuple
identifier that consists of source/destination IP addresses,
source/destination ports, and protocol. However, the 5-tuple
identifier cannot be used to uniquely identify flows in multi-
site cloud-native edge clusters since virtual overlay networks
in different physical nodes and clusters can have duplicated
private IP addresses. Thus, the visibility center and the secu-
rity posts use the 6-tuple identifier that contains the additional
where field written in the dot notation.

The flow cache management module manages active and
expired flows as separated tables in the flow cache for flow-
centric visibility. The module combines the collected flow

134215

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

features into entries matching the 6-tuple in the active flow
table. The module also expires active flows by moving the
entries into the expired flow table. In this implementation,
expired flows are idle for 60 s from the last received packet
or include a connection termination message (i.e., TCP FIN
packet). The feature generation module then develops 9 time-
related features of the active flows, such as flow duration,
packet per second, and byte per second. The visibility center
finally acquires the 6-tuple identifier and 22 features of each
uni-directional flow used for intrusion detection.

Due to the modular design of SmartX Multi-Sec, security
posts accommodate the collection module and flow man-
agement module to distribute the centralized visibility work-
loads, as depicted in Fig. 7. Security posts pre-process flow
features collected from adjacent cloud nodes so that the
visibility center can alleviate resource consumption for flow
management and data transfer. The data analysis module
calculates the security levels of networking ports using the
processed flow features. In this PoC, we employ a simple
method for the data analysis module to quantify vulnerability
scores of the flood DoS attack flows based on flow bytes
per second: 10 Gbps equals 100 and O bps equals zero, and
a more significant score means the flow is more suspicious.
The analysis module stores the quantified results in the MVF
data store.

The data staging module combines different monitoring
data stored in the MVF data store into a single data object
for the visualization module. After finishing the data anal-
ysis, the MVF data store contains the underlying topology
among physical cloud nodes, a list of virtual/container boxes,
their resource status, and their vulnerability scores. The stag-
ing module firstly adds the list of virtual/container boxes
into the underlying topology. It then updates resource status
(i.e., normal, failed, shutdown), owners (tenants), and vul-
nerability scores of the respective boxes. Consequently,
the staged object is the underlying networking topology
among physical, virtual, and container boxes embedded with
vulnerability scores and other information.

The visualization module draws a 3D onion-ring graph by
using the staged object. We leverage three.js, an open-source
graphic library specialized for 3D visualization, to implement
the data visualization module. The module finally illustrates
a 3D onion-ring graph on a web-based dashboard, as depicted
in Fig. 8. The graph intuitively visualizes the topology
of the K-ONE Playground on the onion-ring surface. The
gray-colored ring segments correspond to idle boxes that are
not used for the example scenario. On the other hand, ring
segments for active boxes have different colors and vertical
heights, based on their vulnerability scores calculated by the
data analysis module.

We generate flood DoS attack traffic based on the sce-
nario and show the visualization changes for the feasibility
verification. Fig. 9 shows the 3D onion-ring graph under
the traffic. All networking ports on the attack paths are
highlighted with their colors and heights. The vulnerability
score of the red-colored segment is around 90 (i.e., 9 Gbps),

134216

SMARTX MULTI-VIEW
FRAMEWORK

Dashboard

3D Onion-ring Visualization for Multi-tier/-level Security

FIGURE 8. A web dashboard of SmartX Multi-Sec for 3D onion-ring
visualization.

the orange-colored segments are around 70 (i.e., 7 Gbps),
and the yellow-colored segments are around 50 (i.e., 5 Gbps).
The visibility center of SmartX Multi-Sec intuitively visual-
izes the networking ports affected by suspicious networking
flows. Thus, we can estimate the impacting areas where
we should carefully check to detect suspicious traffic. Once
operators react to the threat by deploying filtering functions,
the vertical height of the corresponding segments also auto-
matically decreases.

To compare packet-based monitoring with the proposed
scheme in terms of scalability, we consider our previous
version of an eBPF function that selectively captures 7 header
fields and transfers monitoring data in CSV format [20]. For
a networking port receiving a uni-directional 10 Gbps flow
in 1500-byte MTU, this function should copy 83000 records
from kernel to userspace every second. Then, the userspace
program should rewrite the records to 80 bytes of a message
in CSV string format with additional metadata (e.g., times-
tamps and node names). Without packet sampling, a uni-
directional 10 Gbps flow generates 6.6 MB monitoring data
every second. On the contrary, the proposed flow monitoring
transfers a 600-byte JSON message for 17 features of each
uni-directional 10 Gbps flow.

Employing flow-centric visibility can significantly reduce
the usage of WAN resources for edge-cloud monitoring.
In addition, the elapsed time from the beginning of an attack
to a change on 3D visualization takes 4.81 s in this PoC
implementation. The elapsed time and the monitoring traf-
fic reduction show the scalable and continuous monitoring
capability of SmartX Multi-Sec.

B. DISTRIBUTED SECURE PROVISIONING TOOL FOR
TEMPLATE-BASED DevSecOps FUNCTION DEPLOYMENT
To react against suspicious activities highlighted by the vis-
ibility center, DevSecOps operators utilize the provisioning

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

FIGURE 9. The implemented result of security-centric 3D onion-ring
visualization for the example scenario.

center of SmartX Multi-Sec to deploy measurement and
filtering functions. For template-based automation, the pro-
visioning center employs Distributed Secure Provisioning
tool [30] with additional implementation for deploying
SmartX Multi-Sec DevSecOps functions. Fig. 10 depicts the
software structure of the provisioning center with a working
procedure. The provisioning center covers high-level coordi-
nation and then distributed security posts conduct the actual
configuration using DevSecOps automation tools. In multi-
site edge clouds, respective clusters are typically configured
with different L2 (layer 2) networks. The separation of the
provisioning capability allows SmartX Multi-Sec to support
some DevSecOps automation tools requiring broadcast-based
L2 networking, such as DHCP (dynamic host configuration
protocol) and PXE (preboot execution environment), with
physical boxes. The tool separation also has the advantage
of workload distribution and reduction of operation traffic in
wide area networks.

The provisioning center receives a template, written in the
YAML-based format depicted in Fig. 11, from DevSecOps

VOLUME 9, 2021

l

An Interface for Provisioning Center
[receiving a provisioning template]

Template
Interpretation

Provisioning
Coordination

Provisioning API clients for

Center respective clusters
RESTful APIs for Security Posts
[(status_check,) compose, update, and release]
Provisioning
Parallelization
‘-':::::ﬁ:__.—:-":Parallelize
Rf?—q_— Task conductors for
v | Return the references respective physical boxes
Security Tool Inventory
Posts Management

Tool Interfaces
[install, uninstall, and update]

|

MAAS DevOps
Installation Tools

FIGURE 10. The working procedure of template-based function
deployment.

- tenant: <tenant name>
task: [compose | update | release]

boxes:
- name: <box name>
where: <cluster.box>
type: [physical.box | virtual.box]
software:
- name: <software name>
installer: <software installer name>
option:
- <detailed options>

functions:
- name: <function name>

where: <cluster.box.networking_ port>
type: [multi-sec.measure | multi-sec.filter]
option:

mode: [generic | native | offload]

rule:

- <filtering rules>

FIGURE 11. The basic format of the provisioning template.

operators to request function deployment. Function descrip-
tion contains four fields which are name, where, type, and
option fields. The where field specifies peering ports where
the functions are deployed in the dot notation, and the
name field identifies functions on the same port. SmartX
Multi-Sec assigns a unique identifier to each function by
appending the name field to the where field (i.e., clus-
ter.box.networking_port.function_name). Also, the type field
defines function types, and the option field brings additional
parameters for the functions such as filtering rules. A tem-
plate describes a desired topology of functions by listing the
description of functions.

134217

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

The template interpretation module of the provisioning
center reads the desired topology from the template. It adds
access information of the physical boxes (i.e., IP addresses
and SSH credentials) where these functions will be deployed.
Then, the provisioning center sends deployment requests
through RESTful APIs of distributed security posts. When
receiving requests, security posts create multiple processes
as much as peering ports listed in the request. The processes
select appropriate API clients for DevSecOps automation
tools. We also implement playbooks for Redhat Ansi-
ble, a popular open-source DevSecOps automation tool for
remote software configuration, to automate configuration
steps for function deployment. Selecting and calling the API
client for Ansible executes Ansible to automate the function
configuration steps based on the playbooks. The configu-
ration steps are accessing target cloud nodes through SSH,
installing software packages, copying the source codes of
SmartX Multi-Sec DevSecOps functions, and associating the
functions with peering ports.

In typical cloud-native operations, cloud operators can
access physical cloud nodes but cannot access the inside
of virtualized/containerized nodes owned by users. Thus,
in terms of function deployment, associating the DevSecOps
functions with Ethernet ports of physical cloud nodes is very
straightforward. When creating virtualized node, the host
operating system (OS) in a physical node creates virtual
Ethernet (i.e., veth) interfaces that bridge external networks
with the networking ports inside virtualized nodes. Likewise,
host OS creates veth interfaces that peer with internal net-
working ports of containerized nodes. In host OS, both phys-
ical ports and veth interfaces are considered as standalone
networking devices with which eBPF-leveraged DevSecOps
functions can be associated in the same way. Furthermore,
all networking traffic going into/coming from the virtual-
ized/containerized nodes must go through the veth interfaces.
Thanks to the veth interfaces, the provisioning center employ-
ing template-based DevSecOps function deployment sup-
ports the flexibility for cloud operators to monitor and filter
networking traffic of physical, virtualized, and containerized
cloud nodes.

We show how SmartX Multi-Sec easily and flexibly deploy
DevSecOps functions to block the DoS attack traffic regard-
ing feasibility verification. By the visibility center, the ring
segments of victim boxes were highlighted with heights and
colors. To block the traffic, we describe the topology of
three filtering functions into a template, as shown in Fig. 12.
The option field contains initial matching rules and XDP
modes. Notice that gj.kl-gjl-cubel.eno7 is a physical net-
working port of SmartNIC. The filtering function for this
port is executed in hardware offloaded mode, so its filter-
ing performance is highly accelerated without using CPU
resources. The rules in the option field are injected into
eBPF maps for the filtering functions. Using this template as
input, the provisioning center automates the configuration of
filtering functions to the exact peering ports. Regardless of
locations and types of peering ports, deploying functions was

134218

- tenant: admin
task: compose
functions:
- name: filter_kpvlvnetl
where: ku k1-kul-post.
ku-post-vbox1.vnetl
type: multi-sec.filter
option:
mode: generic
rule:
- src_ipaddr: 172.30.92.101
dest_ipaddr: 172.30.92.102

- name: filter_cnc5eno3
where: core-cloud.
netes-cloud-5.eno3

type: multi-sec.filter
option:

mode: native

rule:

- src_ipaddr: 172.30.90.201
dest_ipaddr: 172.30.90.202

- name: filter_gcleno7
where: gj.kl-gjl-cubel.eno7
type: multi-sec.filter
option:

mode: offload
rule:

- dest_ipaddr: 172.30.91.3

FIGURE 12. A provisioning template to filter the attack traffic in the
example scenario.

finished within 30 s. It is worth mentioning that the provision-
ing center for K-ONE Playground can support the automated
deployment of physical/virtual boxes, so we can also remove
the boxes causing internal attacks by writing a provision-
ing template. Consequently, SmartX Multi-Sec employing
template-based function deployment supports easy and flex-
ible flow capture and filtering.

C. LINUX eBPF/XDP-LEVERAGED LIGHTWEIGHT
MEASUREMENT AND FILTERING FUNCTIONS

To implement SmartX DevSecOps functions for flow cap-
ture and filtering, we leverage BPF compiler collection that
provides Python libraries and utilities for developers to effec-
tively implement eBPF-based programs for monitoring, net-
working, and security.

When deploying a measurement function to a networking
port, its eBPF kernel program is associated with the kernel
function (i.e., sock_queue_rcv_skb() kernel function) for the
networking port. Thus, the kernel program is executed to
handle raw packets when the packets enter the kernel func-
tion. The program firstly records the arrival timestamp of the
packets in nanoseconds. It selectively takes header fields from
layer 2 to layer 4 headers: destination/source IP addresses,
destination/source ports, protocol, TCP flags, header length,
packet length, etc. The software takes an entry of flow fea-
tures with the same key from an eBPF map and changes
the matching entry using a 5-tuple (i.e., destination/source 1P
addresses, destination/source ports, protocol) as a key. If the
flow is new, then the program stores the new entry to the map.
By repeating these steps for every packet, the kernel program
generates the 5-tuple identifier and 13 features (e.g., packet
sizes, inter-packet arrival time, TCP flags) and 4 additional
data (e.g., timestamps) for each uni-directional flow. Mean-
while, the userspace program of the measurement function
operates asynchronously after associating the kernel program
with the target peering port. The userspace program repeat-
edly takes the flow features from the eBPF map every second.
Then, the userspace program packs the flow features into a

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

400
350

300

CPU Usage (%)
- N N
a o o
o & o

1 1 1

[Juser
‘ [__Isystem
" user: 163.76 user: 159.16
. sys: 121.12 sys: 126.32
user: 131.84
sys: 95.64

100 . user:0.2 USS(;; 17516 user: 0.08 :
] . sys: 63.96 : sys: 59.88 :
501 user:0.24 user: 0.24 user: 0.2 user: 0.24 :
1 sys:04 sys: 2.44 sys: 1 sys: 0.48 :

0 T f T T T T T T T T T T r T T T T T 1
Normal L yomp Flood Multi-Sec hei-Sec Multir-Sec Multi-Sec Linux Native oo ooy yyifi-gee MUMt-Sec
(without Attack Monitorin Filtering Filtering Filtering Filtering Attack Monitorin Filtering
Attacks) 9 (Generic) (Native) (Offloaded) (iptables) 9 (Generic)

External attack
(external -> a physical node)

Internal attack in a physical node
(between virtualized nodes)

FIGURE 13. CPU utilization of DevSecOps functions under external and internal ICMP flood DoS attacks.

message and transfers it to a message queue of an adjacent
security post.

Regarding filtering functions, the userspace program
injects kernel programs with one of the XDP modes. Then,
the userspace program receives rule update messages from
the provisioning center through its RESTful APIs. The rules
are converted into C struct (i.e., structure for C language)
compatible with eBPF maps for filtering rule lists. Each
filtering rule contains 5-tuple of traffic flows. An empty
element in the tuple is considered as a wildcard value. The
kernel program is invoked when the associated port receives a
packet, firstly takes 5-tuple of the packet and compares it with
the rule lists. if a matching rule exists, the packet is instantly
dropped by the kernel program, and if not, the packet is passed
to the normal kernel networking path.

The flexibility of the DevSecOps functions enables
fine-grained protection for diversified networking paths in
multi-site cloud-native edge clouds. Also, the measurement
and filtering functions directly handle packets in the Linux
kernel without copying to userspace, which enables rapid
packet processing in a resource-efficient way. To verify these
advantages, the function deployment by the provisioning cen-
ter showed the flexibility of measurement and filtering func-
tions in Section IV-B. Also, the performance and resource
efficiency of using eBPF/XDP-leveraged packet capture and
filtering have been evaluated and discussed in other research
works. For example, [14], [31] evaluated the overwhelming
performance of Linux eBPF/XDP-leveraged packet capture
and filtering compared to iptables.

In addition, we evaluate CPU usages of the DevSecOps
functions under external attack and internal attack to verify
scalability. We utilize the K-Cube box, a physical edge node
with 4 CPU cores of Intel Xeon-D processor in K-ONE
Playground for both attack cases. In addition, for the internal
attack, we create two virtualized nodes having 4 virtual

VOLUME 9, 2021

CPUs respectively. Fig. 13 depicts the experiment results. The
Y-axis means the average usage percent of four physical cores
during each experiment case. For example, 200% means two
cores are fully utilized on average.

In the external attack, the physical victim node receives
10 Gbps attack traffic that occupies 97% utilization of a
physical port. This attack basically increases 63.5% CPU
usage. Associating a monitoring function with the physical
port additionally consumes 12% of a core. This result shows
that the CPU overhead for monitoring functions can be rea-
sonable under DoS attacks. We deploy filtering functions
in different XDP modes. The CPU usages are significantly
reduced because the filtering functions drop the attacking
packets at the early point of the kernel networking path before
assembling the fragmented ICMP packets. Furthermore,
filtering functions utilize very small computing resources
compared to the normal status. Also, SmartX Multi-Sec
employing eBPF-based DevSecOps functions can satisfy
the higher scalability than the Linux-native filtering scheme
(i.e., iptables).

The attacker node continuously sends 2.4 Gbps DoS traffic
to the victim node when it comes to the internal attack.
Notice that resource usages for networking between virtual-
ized nodes can fluctuate over time. This experiment shows
the sudden decrease in 20% CPU usages and 400 Mbps
networking bandwidth at most, so we measure the aver-
age results of 20 successful repetitions that show consistent
CPU usage without networking bandwidth decrease for 60 s.
Unlike the external case, we associate DevSecOps functions
with the virtual Ethernet interface of the attacker node, not
the victim node. An internal attack can quickly drain a
physical edge node’s limited processing capabilities, as the
attack consumes around 285% of CPU consumption. The
addition of a monitoring function boosts CPU utilization by
about 1%. A filtering function also decreases the CPU usage

134219

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

of a physical node since the victim node does not utilize
the CPU to receive and reassemble the attacking traffic of
fragmented packets.

In summary, the CPU usages of various use cases showed
that deploying multiple monitoring and filtering functions in
a physical cloud node can be feasible. This result guarantees
the feasibility as well as scalability of SmartX Multi-Sec
employing eBPF-based fine-grained monitoring and filtering.

V. DISCUSSION AND RELATED WORK

In this section, we discuss use cases where SmartX Multi-Sec
can aid in protecting multi-site cloud-native edge clouds.
We describe related work that proposes similar approaches
for edge-cloud security. And we clarify the differences with
SmartX Multi-Sec that focuses on flow-centric visibility for
protecting multi-site cloud-native edge clusters.

A. DISCUSSION ON USE CASES

The featured advantages of SmartX Multi-Sec can be flow-
centric visibility based on the simplified underlying topology
of multi-site cloud-native edge clouds, and fine-grained flow
capture and filtering by deploying lightweight DevSecOps
functions. Based on the advantages, SmartX Multi-Sec can
be utilized as a complementing feature to implement several
use cases such as micro-segmentation and multi-perimeter
defense.

Inspired by the defense-in-depth (DoD) strategy [32],
the multi-perimeter defense maintains multiple defense belts
over multi-site edge clouds by deploying micro security func-
tions. Multi-perimeter defense focuses on adjusting the acces-
sible coverage of networking traffic and protection levels of
cloud assets, based on traffic sources and the importance of
destination cloud assets. These perimeters are logically built
with DevSecOps functions on the same tiers of multi-site
edge clouds. We can apply different policies on the respective
perimeters based on the importance of cloud assets and typ-
ical attack patterns of the tiers. For example, the red-dashed
lines in Fig. 2 can be infrastructure-scale multi-perimeters.
We can configure the bottom perimeter, built over physical
SmartNICs of cloud nodes, to handle flood DoS attacks
from external devices. Among cloud nodes in edge clusters,
the midst perimeter can mainly block networking traffic of
detected attacks based on blacklists. The top perimeter can
restrict tenants and services not registered in whitelists from
accessing core clouds and the playground tower for the most
important assets. The multi-perimeter defense can be the
main application for K-ONE Playground, where gives tenants
enough freedom to realize their services over edge clouds
whereas highly protecting core clouds and the playground
tower.

SmartX Multi-Sec can also be utilized to realize micro-
segmentation. Micro-segmentation separates cloud nodes
into logical segments based on tenants and services and
applies different security policies to the segments by
coordinating security functions. Thanks to the fine-grained
networking monitoring and filtering, SmartX Multi-Sec can

134220

create logical segments by using different security policies to
respective sets of security functions. Micro-segmentation and
the multi-perimeter defense are conceptually similar in terms
of separating edge clouds and applying different policies.
Multi-perimeter defense basically assumes the multi-tiered
underlying topology among distributed cloud nodes, and
builds defense belts to separate the segments based on the
tiers. Then, this application controls the number of defense
lines that networking traffic should traverse depending on
its sources and destination, to enforce higher protection for
important ICT assets. On the contrary, micro-segmentation
can flexibly separate edge clouds depending on logical enti-
ties such as tenants and services, and focuses on applying
different security policies to respective segments.

B. RELATED WORK ON SECURING MULTI-SITE

EDGE CLUSTERS

To effectively protect multi-site edge clouds, various
approaches have been proposed based on the concept of
software-defined security. The authors of [9] proposed a
framework to protect a centralized cloud by employing fog
devices (corresponding to edge-boxes) as DDoS defense
lines. [10] proposes autonomous security edge-boxes that can
detect suspicious behaviors of end-things using ML algo-
rithm for IDS. On the other hands, [11] and [12] suggest
service function chaining-based security. The authors of [11]
configure chains of containerized security functions in front
of web servers for flow measurement and filtering. UniSec
framework [12] implements physical security functions
accelerated with FPGA (field programmable gate array)-
based SmartNIC implementation. However, these works do
not focus on the flexibility and scalability required to pro-
tect the complicated topology of multi-site cloud-native edge
clouds effectively. Also, the visibility and semi-automated
deployment features to cope with the increasing scale of dis-
tributed clusters are not clearly proposed in the work. On the
other hand, SDSec [13] proposes a hierarchical architecture
with protocols to effectively manage security rules across
multi-site edge-boxes. Even though this work has similar
focuses in managing rules of security functions, its targets are
limited to physical and virtual boxes. Also, it does not fully
address visibility for edge-cloud security.

Meanwhile, Linux eBPF and XDP, which have strong
advantages in terms of usability, flexibility, lightweight, and
performance, are widely used as an alternative technology of
Linux internal security features such as iptables and traffic
control [14], [15], [27]. In addition to example use cases pro-
vided by XDP [29], security orchestration actively leverages
eBPF and XDP for securing distributed edge-cloud clusters.
[16] employs eBPF-based functions to collect system-related
information for security-oriented visibility to cover up to
L7 networking traffic filtering. The proposed technology
combines system visibility data of users, processes, and
application containers measured by eBPF programs, with
networking visibility data measured by nfopng. The authors
of [17] replace iptables-based filtering functions with XDP

VOLUME 9, 2021

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

IEEE Access

programs in the existing DDoS mitigation system, GateBot,
for performance benefits and flexibility. When compared
to these works, SmartX Multi-Sec attempts to propose a
systematic flow-centric visibility framework with collective
DevSecOps automation features, allowing DevSecOps oper-
ators to easily repeat monitoring, visualization, and filter-
ing networking-based threats for multi-site cloud-native edge
clouds.

VI. CONCLUSION

This paper proposes the SmartX Multi-Sec framework that
attempts to provide a systematic structure of flow-based
visibility and collective DevSecOps features for protecting
multi-site cloud-native edge clouds. The SmartX Multi-Sec
framework abstracts the underlying networking topology
among virtualized and containerized cloud nodes as a multi-
tiered onion-ring-style topology to address the topology intri-
cacy in multi-site cloud-native edge clouds. Based on the
topology abstraction, the collective DevSecOps functions
such as visibility center, provisioning center, and eBPF-based
DevSecOps functions support cloud operators to monitor,
visualize, and filter networking-based threats. The visibility
center supports scalable flow-centric visibility that collects,
stores, analyzes, and stages networking packet traffic flowing
over distributed edge clouds. Using the staged flow data,
the visibility center provides 3D onion-ring visualization
that can intuitively depict the multi-tiered topology together
with the security status of respective networking ports. The
provisioning center supports template-based deployment of
DevSecOps functions for flexible flow capture and filter-
ing on the targeted peering ports of physical, virtualized,
and containerized cloud nodes. Linux eBPF/XDP-leveraged
lightweight DevSecOps functions associated with physical,
virtual, and container networking ports can directly gener-
ate flow features from networking packets in a flexible and
resource-efficient way. We implemented the PoC-version of
the SmartX Multi-Sec framework for K-ONE Playground for
feasibility verification, which is our miniaturized testbed of
multi-site cloud-native edge clouds. Based on an example
scenario, we also showed the PoC-version of the SmartX
Multi-Sec framework could successfully provide an intuitive
3D Onion-ring visualization, template-based easy function
deployment, and resource-efficient flexible flow capture and
filtering.

In the future, we will improve the data analysis module
of SmartX Multi-Sec to address various attack scenarios by
leveraging intelligent intrusion detection schemes based on
machine learning and deep learning. In addition, with the
flexibility of Linux eBPF, the framework will utilize hetero-
geneous events regarding computing and storage resources,
to monitor and block system-oriented security threats.

REFERENCES

[1] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the
cloud to the edge,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, Apr. 2014, pp. 346-351.

VOLUME 9, 2021

[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

J. Pan and J. McElhannon, ‘““Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet Things J., vol. 5, no. 1,
pp. 439-449, Feb. 2018.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-
based cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14-23, Oct./Dec. 2009.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. Ist Ed. MCC Workshop Mobile
Cloud Comput., Helsinki, Finland, 2012, pp. 13-15.

M. O. Keefe. (2018), Edge Computing and the Cloud-Native Ecosystem.
Accessed: Sep. 1, 2020. [Online]. Available: https://thenewstack.io/edge-
computing-and-the-cloud-native-ecosystem

S. Kumar and J. Du. (2019). KubeEdge, a Kubernetes Native Edge
Computing Framework. Accessed: Sep. 1, 2020. [Online]. Available:
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro
CNCF Community. (2018). CNCF Cloud Native Definition VI1.0.
Accessed: Aug. 31, 2018. [Online]. Available: https://github.com/cncf/
toc/blob/master/DEFINITION.md

J.-S. Shin and J. Kim, “K-ONE playground: Reconfigurable clusters for a
cloud-native testbed,” Electronics, vol. 9, no. 5, p. 844, May 2020.
Deepali and K. Bhushan, ““DDoS attack defense framework for cloud using
fog computing,” in Proc. 2nd IEEE Int. Conf. Recent Trends Electron., Inf.
Commun. Technol. (RTEICT), Bangalore, India, May 2017, pp. 534-538.
D. Zissis, “Intelligent security on the edge of the cloud,” in Proc. Int.
Conf. Eng., Technol. Innov. (ICE/ITMC), Funchal, Portugal, Jun. 2017,
pp. 1066-1070.

E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and
R. Boutaba, “A security orchestration system for CDN edge servers,” in
Proc. 4th IEEE Conf. Netw. Softw. Workshops (NetSoft), Montreal, QC,
Canada, Jun. 2018, pp. 46-54.

J. Yan, L. Tang, J. Li, X. Yang, W. Quan, H. Chen, and Z. Sun, “UniSec:
A unified security framework with SmartNIC acceleration in public
cloud,” in Proc. ACM Turing Celebration Conf. China, Chengdu, China,
May 2019, pp. 1-6.

M. Compastie, R. Badonnel, O. Festor, R. He, and M. Kassi-Lahlou,
“A software-defined security strategy for supporting autonomic security
enforcement in distributed cloud,” in Proc. IEEE Int. Conf. Cloud Comput.
Technol. Sci. (CloudCom), Luxembourg City, Luxembourg, Dec. 2016,
pp. 464-467.

M. Bertrone, S. Miano, F. Risso, and M. Tumolo, ““Accelerating Linux
security with eBPF iptables,” in Proc. ACM SIGCOMM Conf. Posters
Demos, Aug. 2018, pp. 108-110.

J. Corbet. (2018). BPF Comes to Firewalls. Accessed: Sep. 1, 2020.
[Online]. Available: https://lwn.net/Articles/747551

L. Deri, S. Sabella, and S. Mainardi, “Combining system visibility and
security using eBPE”” in Proc. Italian Conf. Cybersecur., Pisa, Italy,
Feb. 2019, pp. 50-62.

G. Bertin, “XDP in practice: Integrating XDP into our DDoS mitigation
pipeline,” in Proc. Tech. Conf. Linux Netw. (Netdev), Apr. 2017, pp. 1-5.
M. Usman and J. Kim, “SmartX multi-view visibility framework for
unified monitoring of SDN-enabled multisite clouds,” Trans. Emerg.
Telecommun. Technol., Dec. 2019, Art. no. €3819. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/ett.3819

M. Usman, A. C. Risdianto, J. Han, and J. Kim, “Interactive visual-
ization of SDN-enabled multisite cloud playgrounds leveraging SmartX
multiview visibility framework,” Comput. J., vol. 62, no. 6, pp. 838-854,
Jun. 2019.

M. Usman, M. A. Rathore, and J. Kim, “SmartX multi-view visibility
framework with flow-centric visibility for SDN-enabled multisite cloud
playground,” Appl. Sci., vol. 9, no. 10, p. 2045, May 2019.

J.-S. Shin and J. Kim, “Multi-layer onion-ring visualization of distributed
clusters for SmartX multiview visibility and security,” presented at the
IEEE Symp. Vis. Cyber Secur. (VizSec), Oct. 2018. [Online]. Available:
https://vizsec.org/files/2018/Shin_Poster.pdf

M. Usman, N. T. Manh, and J. Kim, “Multi-belt onion-ring visualiza-
tion of OF@TEIN testbed for SmartX multi-view visibility,” in Proc.
9th Int. Workshop Comput. Sci. Eng. (WCSE), Yangon, Myanmar, 2019,
pp. 6-10.

J. Kim and T. Nam, “‘Cluster visualization device,” U.S. Patent 16 629 299,
Mar. 13, 2018.

A. C. Risdianto, M. Usman, and J. Kim, “SmartX box: Virtualized hyper-
converged resources for building an affordable playground,” Electronics,
vol. 8, no. 11, p. 1242, Oct. 2019.

134221

IEEE Access

J.-S. Shin, J. Kim: SmartX Multi-Sec: Visibility-Centric Multi-Sec Framework for Multi-Site Cloud-Native Edge Clusters

[25]
[26]

[27]
[28]

[29]

[30]
[31]

[32]

(

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Canberra, ACT, Australia,
Nov. 2015, pp. 1-6.

1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), Funchal, Portugal,
2018, pp. 1-8.

B. Gregg. (2016). Linux Extended BPF (eBPF) Tracing Tools.
Accessed: Aug. 31, 2020. [Online]. Available: http://www.brendangregg.
com/ebpf.html

J. Schulist, D. Borkmann, and A. Starovoitov. Linux Socket Filtering Aka
Berkeley Packet Filter (BPF). Accessed: Aug. 31, 2018. [Online]. Avail-
able: https://www.kernel.org/doc/Documentation/networking/filter.txt

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,
D. Ahern, and D. Miller, “The eXpress data path: Fast programmable
packet processing in the operating system kernel,” in Proc. 14th Int.
Conf. Emerg. Netw. Exp. Technol. (CoNext), Heraklion, Greece, Dec. 2018,
pp. 54-66.

J.-S. Shin and J. Kim, “Template-based automation with distributed secure
provisioning installer for remote cloud boxes,” in Proc. Int. Conf. Inf. Com-
mun. Technol. Converg. (ICTC), Jeju, South Korea, Oct. 2016, pp. 33-35.
D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance implications of packet filtering with Linux eBPF,” in Proc.
30th Int. Teletraffic Congr. (ITC), Vienna, Austria, Sep. 2018, pp. 209-217.
D. Kuipers and M. Fabro, “Control systems cyber security: Defense
in depth strategies,” Idaho Nat. Lab., Idaho Falls, ID, USA,
Tech. Rep. INL/EXT-06-11478, May 2006.

JUN-SIK SHIN received the B.S. degree in infor-
mation and computing engineering from Ajou
University, Suwon, South Korea, in 2007, and
the M.S. degree from the School of Information
and Communication, Gwangju Institute of Science
and Technology (GIST), Gwangju, South Korea,
in 2014, where he is currently pursuing the Ph.D.
e degree with the School of Electrical Engineering
j and Computing Science.

His research interests include multi-site com-

posable edge clouds and infrastructure automation.

134222

JONGWON KIM (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in con-
trol and instrumentation engineering from Seoul
National University, Seoul, South Korea, in 1987,
1989, and 1994, respectively. From 1994 to 2001,
he was a Faculty Member with Kongju National
University, Gongju, South Korea, and the Uni-
versity of Southern California, Los Angeles, CA,
USA. In 2001, he joined Gwangju Institute of
Science and Technology (GIST), Gwangju, South
Korea, where he is currently a Full Professor. Since 2008, he has been
directing GIST Super Computing Center. Since 2019, he has been the Dean
of GIST AI Graduate School. He is also leading Networked Computing
Systems Laboratory, where he is involved in dynamic and resource-aware
composition of media-centric service employing programmable/virtualized
computing/networking resources. His recent research interests include
agile and visible p+v+c function-leveraged composition of SmartX
IoT-cloud services employing programmable/sliced/hyper-converged (com-
puting/storage/networking) resources.

VOLUME 9, 2021

