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ABSTRACT Traffic prediction helps mitigate the impact of traffic congestion. The accuracy of traffic
predictions depends on the availability of the data used for the prediction aswell as the predictionmodel. Data
from fixed traffic detectors is only available at certain locations. On the other hand, connected vehicles can
provide Floating Car Data (FCD) at any location and time. However, FCDmay not be available at all vehicles,
and this can impact predictions since the FCDmay not reflect the state of all traffic. This impact is larger when
predicting traffic density or flow, and existing studies generally use FCD to predict traffic speed or travel time
only. This study proposes a traffic prediction model that can accurately predict the three fundamental traffic
variables (traffic density, flow, and speed) using FCD and an error recurrent convolutional neural network
that takes as input the three variables. These are estimated using FCD and data from induction loops. These
estimates depend on the penetration rate of FCD, so we propose amethod to locally and dynamically estimate
this penetration rate. This method improves the estimation of the traffic variables, and hence their prediction.
The proposed model is used to analyze the impact of the FCD penetration rate on the prediction of the traffic
variables. We show how our proposal reduces the amount of FCD needed to improve the prediction obtained
with data from traffic detectors. We show that our proposal only requires FCD from 4% of the vehicles
to improve the prediction accuracy achieved with traffic detectors. Augmenting this percentage increases
the accuracy of our model for the three traffic variables. However, we also show that our prediction model
reduces the FCD sample size (or FCD penetration rate) needed to achieve prediction accuracy levels close
to that obtained if all vehicles provided FCD.

INDEX TERMS Traffic prediction, floating car data, connected vehicle, induction loops, data fusion, neural
networks, deep learning, convolutional neural networks, error recurrent.

I. INTRODUCTION
Traffic prediction can help anticipate and mitigate traffic
congestions, and hence reduce their negative economic, envi-
ronmental and comfort impact. An accurate traffic predic-
tion requires reliable road traffic data, and this data can
be obtained from different sources. This includes tradi-
tional fixed traffic detectors such as induction loops or
traffic cameras, and also floating car data (FCD) from

The associate editor coordinating the review of this manuscript and
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connected vehicles. Fixed traffic detectors have the advantage
of sensing all vehicles driving across a road section, and hence
provide information about the full traffic. However, fixed
traffic detectors can only provide traffic data of the location
where they are deployed. This is not the case for FCD as
connectivity transforms vehicles into moving sensors that can
provide traffic data at any location and time. In addition, FCD
devices are deployed and maintained directly by the drivers
and not the traffic managers or authorities. However, traffic
managers and road authorities need to acquire the FCD from
third party providers like GPS providers [1], [2] or insurance
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companies [3], and the price can vary based on the amount
of FCD while it is yet unclear how much FCD they really
need for their traffic estimations and predictions. In addi-
tion, FCD devices (e.g. GPS, smartphones, V2X onboard
units) may not be installed on all the vehicles or may not
always actively transmit traffic data. In this case, and unlike
fixed traffic detectors, FCD may not provide information of
the full traffic. This might slightly reduce the accuracy in
the estimation or prediction of traffic variables such as the
speed or travel time that do not depend directly on the number
of vehicles in the scenario. Averaging the speed information
of the FCD has the uncertainty of the speed of all the non-
connected vehicles. However, this average is still a good
estimate of the mean speed of the traffic since the speed
of the rest of the vehicles is usually similar. The impact of
a low penetration rate of connectivity or FCD devices can
be significantly higher when considering the estimation or
prediction of traffic variables that depend on the number of
vehicles driving a road. This is for example the case of the
traffic density or the traffic flow that provide information
about the number of vehicles per unit length and per unit time
respectively. The number of vehicles in a road can only be
estimated using FCD if we have an estimate of the rate of
connected vehicles in the traffic. However, it is important to
note that such rate can vary in space and time and hence using
a fixed rate across a road can ultimately negatively impact the
traffic estimations and predictions. These limitations explain
why most traffic prediction studies using FCD focus on pre-
dicting variables such as the speed or the travel time. Some
studies propose fusing different data sources to improve the
prediction accuracy and mitigate the disadvantages of each
data source when processed individually [4]. However, it is
yet unclear how much FCD is needed to match with FCD
(alone or in combination with other data sources) the accu-
racy of the traffic predictions achieved using only data from
existing fixed traffic detectors. To this aim, it is first important
to understand the impact of the FCD penetration rate on the
accuracy of traffic predictions.

This study analyzes for the first time the impact of the FCD
penetration rate on the accuracy of the short-term predic-
tion or forecast of the three fundamental traffic variables, i.e.
the traffic density, the traffic flow and the space mean speed,
as well as the impact of fusing FCD and data from traffic
detectors (in our case, induction loops) on the prediction
accuracy for the three traffic variables. To this aim, this study
progresses the state of the art by presenting a short-term
traffic prediction or forecast model (we will refer to as traffic
prediction model in the rest of the paper) that can predict with
high accuracy the three fundamental traffic variables using
FCD. Predicting the three fundamental traffic variables is
important, since the traffic state can only be determined when
the three traffic variables are known. To this aim, we propose
a model based on an error recurrent convolutional neural
network (eRCNN) that takes as input estimates of the three
traffic variables represented in the form of traffic images.
The variables can be estimated using different data sources.

To estimate the traffic variables using FCD, we propose a
method to estimate the FCD penetration rate and hence the
number of vehicles in a road. The method estimates the rate
at each road section and time instant so it can better adapt
to the spatiotemporal evolution of the traffic. The proposed
method improves the estimation of the three traffic variables,
and hence their short-term prediction or forecast (prediction
from now on), since the estimates of the variables are used
as input to our traffic prediction model. The proposed traffic
prediction model is used to analyze the impact of the FCD
penetration rate and of fusing FCD and data from traffic
detectors on the prediction accuracy. Our study shows that it is
possible to accurately predict the three traffic variables using
FCD, in particular if this data is combined with data from
traffic detectors. This combination can significantly reduce
the amount of FCD needed for accurate traffic predictions
when utilized with an error feedback deep learning-based
traffic prediction model. In addition, the combination of FCD
and data from induction loops significantly improves the
prediction accuracy compared to when using only data from
traffic detectors, and reduces the amount of FCD needed to
achieve such improvements. The conducted analysis provides
valuable information to understand how much FCD is really
needed to achieve accurate traffic predictions.

The remainder of this paper is organized as follows.
Section II reviews previous studies that focused on traffic
prediction using FCD. Section III describes our proposed
traffic prediction model, including the proposed method to
locally and dynamically estimate the FCD penetration rate,
the process to estimate the three fundamental traffic variables
using FCD and data from induction loops, as well as the error
feedback eRCNN prediction module. Section IV describes
the evaluation scenario and the generation of datasets for our
prediction model, and Section V evaluates its performance
and analyzes in detail the impact of the FCD penetration
rate and of fusing FCD and traffic detectors data on the
prediction accuracy. Finally, Section VI summarizes the main
contributions and findings of this study.

II. RELATED WORK
Most short-term traffic prediction proposals to date have
been designed to utilize data from fixed traffic detectors. For
example, [5] proposes a traffic prediction technique based
on Long Short-Term Memory (LSTM) recurrent neural net-
works for predicting the traffic speed. A similar technique is
proposed in [6] for predicting the traffic flow. The proposal
in [7] combines the k-nearest neighbors algorithm and neu-
ral networks to predict the evolution of the traffic density.
The study in [8] combines different statistical methods and
machine learning methods with a trigonometric regression
function to predict the evolution of the traffic speed. The
previous study is extended in [9] by combining different
statistical and machine learning methods with different peri-
odic functions. Traffic predictions using data from fixed traf-
fic detectors are restricted to the location of the detectors.
However, it is possible to predict any traffic variable using
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data from fixed traffic detectors since they provide informa-
tion about the full traffic at the location of the detectors. This
is not the case of the FCD since the penetration rate of FCD
devices is still not significant and the availability of FCD
is usually limited and, in many cases, restricted to specific
fleets of vehicles, e.g. taxis like in [10]. These limitations
result in that most studies using FCD for traffic prediction
(e.g. [1]–[3], [10]–[19]) generally focus on predicting the
traffic speed or travel times since these two traffic variables
can be computed without knowing the penetration rate of
FCD devices and hence what fraction of the full traffic the
FCD data represents.1 This is for example the case of the
study presented in [11] where authors predict the travel time
using the k-nearest neighbors algorithm and GPS data from a
private fleet of vehicles in the city of Munich. The proposal
divides Munich’s road network in different road sections, and
aggregates the GPS data at each road section by averaging
the speed of all the GPS samples located at the section. The
proposal computes the travel time loss for each road section as
the product of the length of the road section and the difference
between its average speed and its maximum speed. The travel
time loss is the input for the k-nearest neighbor algorithm,
and the travel time prediction is the average of the future
travel time associated to the k nearest travel time losses for
each road section. [20] also uses the k-nearest neighbors’
algorithm to predict travel times using the speed of GPS
data of intercity buses. However, the proposal uses a more
elaborated approach to estimate the input of the algorithm.
The authors fit a linear regression model that returns the
speed of a road section (between fixed traffic detectors) as
a function of the speed of all the GPS samples of the road
section. The model is fitted so that the speed varies linearly
between the boundaries of the road section. The model is
used to compute the travel time of each road section, and this
travel time is then used as the input to the k-nearest neighbors
algorithm. The algorithm returns then the prediction of the
travel time for each road section. Other proposals also divide
the network into road sections and average traffic variables
over each section but differ on the prediction techniques. For
example, [13] uses a Kalman filter to predict the travel time of
each road section. In [1], authors aggregate the traffic speed
and travel time per road section, and they propose different
grey systems that model the time series of the two traffic
variables per road section and that are used to predict their
future values. The authors of [10] use GPS data from vehicles
of the city of Berlin and GPS data from taxis of the city of
Thessaloniki to obtain the instantaneous speed of a sample of
vehicles in the traffic. Authors average these speeds per road
section and use a STARIMA model to predict the travel time
of each road section. The proposals in [2] and [14] use the
gradient boosting regression tree to predict the travel time.
In [2], authors train a gradient boosting regression tree to

1In this case, it is only necessary to average the values of the speed or the
travel time of each sample in the FCD in order to have an estimate of these
traffic variables.

predict the travel time of each road section using as input the
travel time of each road section in previous time steps. The
same approach is used in [14] to predict the speed per road
section.

More recently, traffic prediction proposals have shifted
towards the use of machine learning and deep learning-based
neural networks that are the state of the art. Many of these
studies have been reviewed in [15]. For example, the study
in [16] compares the accuracy of a multilayer perceptron,
a non-linear autoregressive neural network and a Bayesian
network for predicting the traffic speed using FCD. The input
of all these models is the average speed of different road sec-
tions, the number of FCD samples, and the standard deviation
of the speed. Including the number of FCD samples as input
may give the model some intuition about the traffic volume
driving each road section. However, the number of FCD
samples can provide information about the real traffic volume
only if the fraction of the total number of vehicles equipped
with FCD devices is known. The study in [17] proposes the
use of a convolutional neural network to predict the traffic
speed in a freeway using FCD. The freeway is divided into
road sections of equal length, and the speed of the FCD is
averaged for each road section. The authors represent then
the spatiotemporal evolution of the traffic speed as an image
where each pixel of the image corresponds to the average
speed in a road section at a certain time step. [18] proposes an
error recurrent convolutional neural network model to predict
the traffic speed. The architecture of the model is similar to
that of [17], and the proposal also takes as input an image
representing the spatiotemporal evolution of the traffic. The
difference is that the model proposed in [18] also takes as
input a vector composed of the prediction error in the last
time steps. [19] proposes combining a convolutional neural
network with an LSTM recurrent neural network to predict
the traffic speed. The input of this model at each time step
is also an image of the traffic but the image only represents
the spatial evolution of the traffic. In this case, a city map is
divided into a grid, and the traffic speed is averaged per cell
of the grid. The image represents then the city map and each
pixel of the image is the average speed of a cell in the grid.

Most of the studies using FCD focus on predicting the
traffic speed or travel time. However, the contributions
in [21]–[25] study the prediction of other traffic variables.
The proposal in [21] uses support vector regression and FCD
from taxis in Beijing to predict the traffic speed and the traffic
flow. The support vector regression model takes as inputs
the traffic flow and the traffic speed in previous time steps.
The traffic speed is aggregated by averaging the speed of the
FCD. The traffic flow is estimated by dividing the number
of vehicles detected with FCD by the penetration rate of the
FCD devices. The penetration rate used in [21] is a statistic
published in an annual report on the traffic published by the
city of Beijing. It should be noted that assuming that the pen-
etration rate is constant may lead to an incorrect estimation
of the traffic flow due to fluctuations of the real penetration
rate over space and time. [22] also predicts the traffic flow
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using FCD from taxis and the k-nearest neighbors’ algorithm.
The study differs from [21] in that authors use the FCD to
compute the flow of taxis, and then use the flow of taxis
as an estimate of the total traffic flow. The authors use the
evolution of this estimate in a road section and its neighbor
road sections as input to the k-nearest neighbors’ algorithm.
The output of the algorithm is the prediction of the traffic flow
on the road section under evaluation. The proposal in [22]
has the advantage that the prediction does not depend on
the penetration rate of vehicles with FCD devices. However,
the flow of taxis can fluctuate over time and space and may
not correctly reflect the evolution of the real total traffic flow.
The same approach to estimate the traffic flow is followed
in [23] where authors use a convolutional neural network to
predict the traffic flow using FCD from taxis of the city of
Beijing. A similar approach is followed in [24] where authors
propose a probabilistic method to predict the traffic density
using FCD from the GPS of taxis. In this case, the authors
assume that the density of taxis is an estimate of the real
traffic density. The study in [25] uses FCD from taxis and
environmental data like the wind speed or the rainfall to pre-
dict the traffic flow condition using Boltzmann and support
vector machines and conditional random fields. The study
defines the traffic flow condition as a discretization of the
range of values that the traffic flow can take, so the prediction
results into a classification problem. The study uses the FCD
to estimate the flow of taxis, and this estimate is converted to a
traffic flow condition for the total of the traffic flow. Working
with traffic flow conditions instead of working with the real
value of the traffic flow allows abstracting the results from
the penetration rate of FCD devices. However, we lose the
versatility of a numerical representation of the traffic flow.

We should note that existing FCD-based traffic estimation
or prediction studies are generally limited by low penetration
rates of the technology and by the scarce availability of
quality FCD datasets. It is then challenging to analyze the
effect that the penetration rate of FCD devices or the quality
of the FCD have on the accuracy of traffic predictions without
resorting to traffic simulation. This is for example the case of
the study presented in [26] where authors use FCD datasets
obtained using the microscopic traffic simulator PARAMICS
in order to predict the travel time. Using PARAMICS, the
authors create a simulated FCD dataset for each penetration
rate under study, and they train their prediction models with
each dataset. The authors analyze then the prediction error as
a function of the penetration rate. The study concludes that the
prediction accuracy does not vary greatly with the penetration
rate. However, the study does not compare the accuracy of
FCD-based predictions with that obtained using data from
fixed traffic detectors, and it is then not possible to estimate
the amount of FCD needed to outperform predictions with
fixed traffic detectors. The study in [27] analyzes the effect
of different quality indicators of the FCD on different tasks,
including the prediction of the travel time. However, the anal-
ysis does not cover the impact of the penetration rate of FCD
devices on the traffic prediction. The study in [4] analyzes the

effect of the penetration rate of FCD devices on the accuracy
of the travel time estimation. The study fuses FCD with data
from induction loops using an ensemble Kalman filter that
computes the estimation of the travel time. The authors con-
clude that fusing both data sources leads to a more accurate
estimation of the travel time, and they demonstrate that fusing
both data sources is preferable over doubling the number
of induction loops. Nonetheless, [4] only covers travel time
estimation and not prediction, so the conclusions may not be
extrapolated to the prediction of all traffic variables.

The conducted literature review shows the potential of
using FCD for traffic prediction but also highlights the chal-
lenges in achieving a reliable and realistic prediction of the
traffic variables that depend on the penetration rate of FCD,
e.g. the traffic flow or the traffic density. Some studies pro-
pose techniques to predict the traffic flow or traffic density
with FCD, but unrealistic assumptions are made or the studies
lose the versatility of the predicted variable. In addition, these
studies cannot analyze the effect of the penetration rate on the
accuracy of the prediction since they do not have FCD from
all the vehicles. Some other studies try to analyze this effect,
but they do not compare the accuracy of their techniques
with that achieved with fixed traffic detectors data or they
just focus on traffic estimation rather than traffic prediction.
A better understanding of the impact of the FCD penetration
rate on the accuracy of traffic predictions is hence necessary
as well as a better understanding of how much such rate
affects the accuracy of FCD-based predictions compared to
predictions using data from existing traffic detectors. This
is relevant to estimate how much FCD is really necessary
for reliable traffic predictions in scenarios where the FCD is
used alone or in combination with the data from fixed traffic
detectors.

III. PROPOSAL
This study proposes a method for predicting or forecast-
ing at the short-term the three fundamental traffic variables
(traffic density, traffic flow, and the space mean speed) using
FCD. The proposed method is also utilized for predicting the
three traffic variables when FCD is used together with data
provided by induction loops. The space mean speed can be
directly estimated from the FCD independently of the FCD
penetration rate since this variable does not depend on the
number of vehicles in the road. However, the traffic density
and the traffic flow do depend on the number of vehicles in the
road, and it is necessary to compute this number in order to
estimate these variables using FCD. The number of vehicles
on the road can be computed from the FCD if we know
the penetration rate of FCD devices. This section presents
then first a proposal to estimate the penetration rate of FCD.
This estimate is then used to estimate the three fundamental
traffic variables using FCD. The section also describes how
the three fundamental traffic variables can be estimated using
measurements provided by induction loops. The estimates
of the three fundamental traffic variables are then used as
input to our traffic prediction model that is presented last.
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We propose the use of an error recurrent convolutional neural
network (eRCNN) for traffic prediction. The model intro-
duces an error feedback mechanism that improves traffic
predictions. The proposed model is utilized to predict the
three fundamental traffic variables using FCD and induction
loops data.

A. ESTIMATION OF THE FCD PENETRATION RATE
The penetration rate of FCD is equal to the ratio of the number
of vehicles equipped (and transmitting) with a FCD device to
the total number of vehicles. This rate can be obtained from
market statistics as done in [21]. However, this approach has
two drawbacks. First, the market statistic may not be the exact
penetration rate at the time it is used to estimate the traffic
variables. Second, the penetration rate may fluctuate over
space and time, and using the same rate in all the road net-
work can lead to inaccurate estimates of the traffic variables.
In this context, this study proposes an approach to locally and
dynamically estimate the FCD penetration rate. The objective
is to provide a reliable estimate of the penetration rate at any
time and location. Having a reliable estimate of the rate will
provide amore precise computation of the number of vehicles
on the road, and ultimately a more accurate estimation of the
traffic density and the traffic flow that are used as input to the
eRCNN prediction model.

We define the local penetration rate as the penetration rate
at a certain location and time. We define the penetration rate
as the penetration rate on a complete scenario (e.g. a city or
freeway); themarket statistic used in [21] is a penetration rate.
We propose to estimate the local penetration rate by means of
data fusion and interpolation. We first utilize FCD and data
from fixed traffic detectors to compute the local penetration
rate in the location of fixed traffic detectors. We count the
number of vehicles equipped with FCD devices that traverse
a fixed traffic detector using the FCD, and we compute at the
same time the total number of vehicles that traverse the fixed
traffic detector. We then compute the local penetration rate at
the location of a fixed traffic detector as:

α =
NαT
NT

(1)

where α is the local penetration rate,NT is the total number of
vehicles that traverse the fixed traffic detector during a time
interval T , and NαT is the number of vehicles equipped with
FCD devices that traverse the fixed traffic detector during the
same time interval T . To compute NαT , we use Virtual Trip
Lines (VTLs) following [28]. Figure 1 illustrates the concept
of a VTL that is defined as an imaginary line that crosses
a road from side to side and provides a geographic marker
to determine if a vehicle has crossed a certain road section.
We place VTLs in the location of the induction loops and
using the FCD we determine if a vehicle has traversed a VTL
in order to compute NαT .
We compute the local penetration rate at locations that do

not have a fixed traffic detector by interpolating the local pen-
etration rate between fixed traffic detectors. However, instead

FIGURE 1. Virtual trip lines.

of computing the local penetration rate at any location,
we compute it per road section. To this aim, we divide the
road network into k road sections of equal length following
[17] and [18], and we compute the local penetration rate using
(1) for those road sections with a fixed traffic detector. For the
rest of road sections, the local penetration rate is interpolated
as a function of the distance between the target road section
and the road sections with fixed traffic detectors. To this
aim, we apply a nearest neighbor interpolation or a linear
interpolation.

When we apply the nearest neighbor interpolation to esti-
mate the local penetration rate, we assign a road section the
local penetration rate of the nearest road section with a fixed
traffic detector. We identify each road section by an index i
and define � as the set of road sections so that

� = {i ∈ Z/0 ≤ i < k} (2)

Let �D ⊆ � be the subset of road sections that have a
fixed traffic detector, let d (i, j) be the distance between road
sections i and j that have all equal length, and let lr be the
length of the road sections. The distance d (i, j) is equal to:

d (i, j) = |i− j| · lr (3)

Then, we can estimate the local penetration rate at any road
section αi using the nearest neighbor interpolation as follows:

αi = αj/j = argmin
j∈�D

d (i, j) (4)

If the target road section is at equal distance to two road
sections with fixed traffic detectors, the local penetration rate
of the target road section is set equal to the average of the
local penetration rate at the two road sections.

The linear interpolation assumes a linear evolution of the
local penetration rate between road sections with fixed traffic
detectors. For a road section with index i that is located
between two road sections (with indexes m and n) with fixed
traffic detectors, we estimate the local penetration rate αi as:

αi =
αm − αn

m− n
(5)

If a road section is not located between two road sections
with fixed traffic detectors (e.g., at the beginning of a road
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before traversing any traffic detector), the local penetration
rate is extrapolated from the two nearest road sections with
fixed traffic detectors. In this case, we must ensure that this
local penetration rate has a value between 0 and 1. Letm and n
be the indexes of the two nearest road sections to the target
road section with index i. The local penetration rate of the
target road section i is then computed as:

αi = max
(
0,min

(
1,
αm − αn

m− n

))
(6)

Using the estimated local penetration rate, we can estimate
the total number of vehicles in the road solving (1) for NT :

NT =
NαT
αi

(7)

B. ESTIMATION OF THE TRAFFIC VARIABLES USING FCD
We are interested in the three fundamental traffic variables,
i.e. the traffic flow, the traffic density, and the space mean
speed. The traffic flow is defined as the number of vehicles
that traverse a reference point in a road per unit time. It is
usually measured in veh/h/lane. The traffic density is defined
as the number of vehicles that are in a road section with a
fixed length at a certain instant. It is usually measured in
veh/km/lane. The space mean speed is defined as the average
speed of the vehicles that are in a road section with a fixed
length at a certain instant. It is usually measured in m/s. Let
Q, ρ, and v̄s be the traffic flow, traffic density, and space mean
speed, respectively. These variables are defined as follows:

Q =
NT
cT

(8)

ρ =
NL
cL

(9)

v̄s =
1
NL

NL∑
i=1

vi (10)

where NT is the number of vehicles that traverse a reference
point in the road during a time interval of duration T , NL is
the number of vehicles that are in a road section with a fixed
length L, c is the number of lanes of the road section, and
vi is the instantaneous speed of the vehicle i at the time of
computing v̄s.
We consider scenarios with FCD penetration rates below

100%. In this case, the traffic variables must be estimated
using the local FCD penetration rate we previously computed,
and we do so over a time interval of duration T . The estimates
of the traffic density and the space mean speed are then esti-
mates of their average during the time interval of duration T .2

The estimate of the traffic density ρ̂ can be computed as:

ρ̂ =

∑T
t=1 N

α
L,t

αicLT
, NαL,t ≤ NL , 0 < αi ≤ 1 (11)

where αi is the local penetration rate and NαL,t is the number
of connected vehicles that provide FCD and are in the road

2The traffic flow is already defined for a time interval.

section in the time step t . This number is lower or equal to
the total number of vehicles that are in the road section, NL .
The estimate of the space mean speed v̂s does not depend
on the local FCD penetration rate and can be computed as:

v̂s =
1∑T

t=1 N
α
L,t

T∑
t=1

NαL,t∑
i=1

vti, NαL,t ≤ NL (12)

where vti is the speed of vehicle i in the time step t .
We can then estimate the traffic flow Q̂ as:

Q̂ = ρ̂v̂s (13)

The three traffic variables can be estimated using
equations (11), (12) and (13) except when αi = 0 or NαL = 0.
If αi = 0 then NαL = 0 and the estimates of the traffic
variables are indeterminate. NαL = 0 does not necessarily
imply that αi = 0. NαL might be null, for example, when
NL = 0. In this case, we are unable to determine αi and
estimate the traffic variables. In both cases, we are not get-
ting FCD from any vehicle because there are no connected
vehicles in the studied road section. It is very unlikely that
there are no connected vehicles in case of traffic congestion,
so when αi = 0 or NαL = 0 we assume that the traffic
conditions correspond to free flow, and ρ̂ = 0, Q̂ = 0, and
v̂s = vFF , where vFF is the speed at free flow conditions in
the studied road section. Following [29], we compute vFF for
each road section as the average of the speed at the section
during all time intervals with a Level Of Service (LOS) A
and with NαL 6= 0. [29] defines LOS A as the level of service
experienced when the traffic density is lower or equal to
6.84veh/km/lane (11veh/mi/lane).

C. ESTIMATION OF THE TRAFFIC VARIABLES
USING DATA FROM INDUCTION LOOPS
We consider induction loops (like those used in the evalua-
tion scenario) that provide measurements of the traffic flow,
the time mean speed, the occupancy, and the mean length of
the vehicles. The time mean speed v̄t is here defined as the
average speed of the vehicles that traverse the induction loop
during a time interval, it is measured in m/s and it is used
as an estimate of the space mean speed. The occupancy occ
is here defined as the percentage of time that the induction
loop is covered by a vehicle. It is used as an estimate of the
occupancy of the road, and hence provides information about
the traffic density. Themean length of the vehicles l̄ is defined
as the average of the lengths of the vehicles that traverse the
induction loop, and it is measured in m. These three variables
can be computed as follows:

v̄t =
1
NT

NT∑
i=1

vi (14)

occ = 100
tocc
T
= 100

∑NT
i=1 ti
T

= 100

∑NT
i=1

lloop+li
vi

T
(15)

l̄ =
1
NT

NT∑
i=1

li (16)
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whereNT is the number of vehicles that traverse the induction
loop during a time interval of length T . In this study, we set
the time interval equal to the time between measurements
provided by the induction loop (60 seconds). vi is the speed
of the vehicle i when traversing the induction loop. tocc is
the amount of time that the induction loop is covered by a
vehicle, i.e. it is equal to the sum of the times ti that each
vehicle i covers the induction loop. ti is the time a vehicle i
takes to travel a distance equal to the sum of the length of the
induction loop lloop and the length of the vehicle li.
We can then estimate the traffic density ρ̂ as:

ρ̂ =

occ
100
l̄

1000c
=

10occ

l̄c
(17)

where c is the number of lanes in the road section where the
induction loop is located. Note that in (17) the mean length
is converted to km in order to express the traffic density in
veh/km/lane. The traffic flow Q is directly measured by the
induction loops.

D. TRAFFIC PREDICTION
Deep learning-based neural networks are currently the state of
the art in short-term traffic prediction or forecast [30]. Neural
networks predict the future values of the traffic variables
using as input their past evolution. For traffic prediction
or forecasting, neural networks are trained using supervised
learning. Supervised learning uses datasets that include inputs
to the neural network and the correct output for that input.
These datasets are used to train the neural networks in order
to find the set of parameters of the network that minimize a
loss function, for example, the prediction error (usually the
quadratic error of the prediction).

In this study, we predict the traffic variables using an error
recurrent convolutional neural network (eRCNN) [18], since
we previously demonstrated that this network achieves the
best traffic predictions using data from fixed traffic detectors
under general traffic conditions and under traffic conges-
tion [31]. The eRCNN model takes as input the estimates of
the three fundamental traffic variables. The input is organized
in the format of an (traffic) image with different channels
(like an RGB image). The number of channels of the input
image depends on the prediction approach. When the traffic
variables are predicted with FCD or induction loop data
only, the input will have three channels, one for each traffic
variable. When the traffic variables are predicted using both
FCD and induction loop data, the input image has six chan-
nels, three for the traffic variables estimated with FCD and
three for the traffic variables estimated with induction loops.
Figure 2 illustrates the format of the input of the eRCNN
for an image with three channels. Each channel is a matrix
with one dimension corresponding to the spatial evolution of
a traffic variable (the vertical dimension in our implementa-
tion) and the other dimension corresponding to the temporal
evolution of the variable (the horizontal dimension in our
implementation). The columns of the matrix represent the
state of the traffic variable for the complete road at a certain

FIGURE 2. Illustration of the format of the input image to an eRCNN
where the image of the traffic has three channels representing each the
spatio-temporal evolution of a traffic variable.

time step. The rows of the matrix represent the temporal
evolution of the traffic variable at a specific location or road
section. Each pixel of an image contains then the value of the
represented traffic variables at a specific location and time
step.

The input image is fed to the eRCNN, which is com-
posed by a convolutional layer, an average pooling layer and
three fully connected layers. The convolutional layer applies
32 convolutional filters of size 3 × 3 to the input of the
eRCNN. This convolutional layer outputs 32 feature maps,
which are fed to an average pooling layer of size 2 × 2
that reduces the height and width of the feature maps. The
output of the average pooling layer is converted into a one-
dimensional vector that is processed by a fully connected
layer composed by 256 neurons. In parallel, another fully
connected layer composed by 32 neurons process a vector of
the prediction error in the last six time steps. The output of
these two fully connected layers is concatenated and fed to
the output layer. The output layer is a fully connected layer
composed by a single neuron, which is in charge of comput-
ing the prediction. The convolutional layer and the parallel
fully connected layers use the ReLU activation function [32],
while the output layer uses the identity activation function.
The architecture of the eRCNN is depicted in Figure 3.
We demonstrated in [31] that this architecture and the design
of the eRCNN is the optimum one for predicting the traffic
under normal traffic conditions and under traffic congestion.
All the eRCNNs used in this work are trained using the back-
propagation through time algorithm (BPTT) and the ADAM
algorithm [33], which is a variation of the stochastic gradient
descent (SGD) algorithm. For this purpose, we use batches
of 20 training examples, each one consisting in a sequence
of 20 time steps. All eRCNNs have been trained to predict
the value of one of the three fundamental traffic variables in
the next 15 minutes. The loss function minimized during the
training is the squared L2 norm of the prediction error:

L =
1
2

∥∥ŷ− y∥∥22 (18)

whereL is the value of the loss function, y is the ground truth,
ŷ is the prediction of the eRCNN, and ‖·‖ is the L2 norm.
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FIGURE 3. Architecture of the eRCNN.

By minimizing the L2 norm, we train the eRCNN to predict
traffic conditions with minimum squared error. To facilitate
the training process, we employ learning rate exponential
decay. This technique allows using larger learning rates at the
beginning of the process so that the training converges faster,
and smaller learning rates at the end so that the final training
error is small. We start with a learning rate with a value of 0.1,
and this value is multiplied by 0.5 every epoch. We also use
gradient clipping so that the training process is more stable at
the beginning. Gradient clipping limits the maximum value of
the norm of the gradient (to a value of 40 in this study) in order
to avoid oscillations in the training process. All eRCNNs are
trained for 10 epochs with early stopping. Early stopping
is a technique that consists in stopping the neural network
training process when the validation error stops improving
and starts increasing. The use of early stopping helps avoiding
overfitting. The training process and the eRCNN model have
been implemented using the TensorFlow framework [34].

IV. SCENARIO AND DATASETS
A. SCENARIO
This study is conducted using the road traffic on the
Spanish A-7 freeway section that connects the cities of
Alicante and Murcia and that is shown in Figure 4. This
section is 97 km long and serves three mid-sized cities
(Alicante, Murcia and Elche) and an important industrial and
touristic area with a total population of around 2 million
people. The traffic on the road section can vary from free flow
to traffic congestion, but is usually quite busy with certain
areas near Murcia experiencing an Average Daily Traffic
(ADT) higher than 100000 vehicles per day (88.8% light
vehicles, 11.2% heavy vehicles). The ADT between Alicante
and Elche can reach values as high as 83000 vehicles per day
(93.7% light vehicles, 6.3% heavy vehicles).

This study uses simulated road traffic for the selected
freeway section using SUMO3 [35]. The traffic is generated
using the digital simulation scenario presented in [36] and
that is openly available for download in a public repository.4

The scenario realistically simulates the road traffic over the

3SUMO (Simulation of Urban MObility) is a popular open-source micro-
scopic traffic simulator.

4https://github.com/jjgonde/Alicante-Murcia-SUMO-Scenario

selected section for 9 full days of traffic. The simulation
scenario has been calibrated using real traffic flow, speed
and occupancy measurements provided for the 9 full days
of traffic by induction loops managed by the Spanish road
authority DGT. The measurements were collected using
99 induction loops deployed along the scenario (on the main-
line and on the on- and off-ramps). Figure 4 shows the loca-
tion of some of these induction loops. The calibration process
ensures that the simulated traffic generated with the scenario
matches very closely the real measurements provided by the
induction loops on the mainline and on the on-ramps and off-
ramps of the freeway.5 The digital scenario hence accurately
models the traffic flow, speed and road’s occupancy over the
complete 97 km long freeway for 9 full days considering
mixed traffic with light and heavy vehicles. To the authors’
knowledge, the selected traffic scenario is one of the largest
(both in space -97km long- and time- 9 full days of traffic) and
more accurate traffic simulation scenarios openly available in
SUMO.

Using SUMO, we reproduce the full nine days of traffic
and collect the FCD for the vehicles in the scenario as well as
themeasurements at the induction loops. The data is collected
at each time step of the simulation that is set equal to 1 second.
The induction loops are placed in SUMO at the same loca-
tions as the induction loops deployed along the 97 km by the
Spanish road authority and that provided the measurements
for the calibration of the scenario.6 Like the induction loops
deployed along the selected 97 km of freeway, the induction
loops in SUMO measure the traffic flow, the time mean
speed, the occupancy, and the mean length of the vehicles.
We collect these measurements for the 20 induction loops in
the mainline of the scenario.7 We collect FCD for different
FCD penetration rates, in particular, penetration rates of 1%,
2%, 3%, 4%, 5%, 10%, 20%, 30%, 50%, 80% and 100%.

B. NEURAL NETWORK FOR TRAFFIC PREDICTION
We use the collected FCD and induction loop data to esti-
mate the three fundamental variables following the pro-
cess described in Sections III.B and III.C. In this study,
we compute the estimates of the variables for intervals of
T = 60 seconds. We divide the 97 km freeway segment into
1 km sections of equal length like in [3] and [18], and we only
consider 95 sections to estimate the traffic variables. The first
and last road sections are not considered since the simulated
vehicles appear and disappear from the simulation in these
sections.

The estimates of the traffic variables for the first seven days
of traffic are used to train the neural network model for short-
term traffic prediction or forecasting. The datasets for the last

5The induction loops on the mainline measure the flow of light and heavy-
duty vehicles.

6The measurements collected at the induction loops in SUMO closely
match the measurements obtained by the real induction loops deployed along
the 97 km of freeway for the nine days of traffic.

7These measurements are used to compute the variables used with the
eRCNN.
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FIGURE 4. Simulated scenario and location of some of the induction loops.

two days are used for validation and testing (one day each).
The training is done by means of supervised learning, so we
create (input, output) pairs where the input is the estimates
of the traffic variables in the form of images and the output
is the ground truth, the real value of the traffic variables at
the time instant that they are predicted (i.e. 15 min after the
time instant when the input image is computed). The training
and validation sets are used to optimize the parameters of the
neural network in order to minimize the prediction error. The
ground truth for these two datasets correspond to the future
values of the traffic variables estimated using the local FCD
penetration rate corresponding to each scenario.8 For the test
set, the ground truth corresponds to the future values of the
traffic variables computed considering an FCD penetration
rate equal to 100%.8 This is the case because the test set
is used to check the real accuracy of the traffic prediction
so we need to compare the prediction of the neural network
with the real state of the traffic. We compared the evolution
of the training and validation errors and none of the trained
eRCNNs experienced overfitting, which demonstrates that
the datasets utilized are sufficient to validate the performance
of the prediction models.

The input of the neural network for traffic prediction is
organized into images. The images have three channels when
predicting the traffic with FCD or with induction loop data.
Each channel corresponds to the spatiotemporal evolution of
a traffic variable. The images have six channels when the
traffic is predicted using the FCD and induction loop data.
Three channels correspond to the spatiotemporal evolution of
the three fundamental traffic variables estimated using FCD,
and the three other channels to the spatiotemporal evolution
of the three fundamental traffic variables estimated using data

8This applies to traffic predictions using FCD only or FCD and induction
loop data.

from the induction loops. When the traffic is predicted using
FCD, the images have three channels, a width of 72 pixels
and a height of 95 pixels since the freeway is divided into
95 sections.9 The 72 pixels for the width represent the tem-
poral evolution of a traffic variable for the previous 3.6 hours.
Each pixel corresponds to traffic data aggregated for three
minutes. When the traffic is predicted using data from induc-
tion loops only, the images also have three channels and
a width of 72 pixels, but the height is equal to 20 pixels
since there are 20 induction loops on the mainline of the
97 km freeway segment. When the traffic is predicted using
FCD and induction loops data, the images have six channels,
a width of 72 pixels and a height of 95 pixels. In this case,
the channels corresponding to the traffic variables estimated
using data from the induction loops need to be resized to
match the same height as those corresponding to the vari-
ables estimated with FCD. To this aim, all pixels for the
channels estimated with the data from the induction loops
have a value equal to zero, except those corresponding to the
freeway sections where an induction loop is located. These
pixels contain the values of the traffic variables estimated
with the data from the induction loops. Figure 5 illustrates a
channel representing a traffic variable estimated with the data
from the induction loops that has been resized prior to being
introduced as input to the neural network together with the
images obtained from the FCD. We should note that setting
all the pixels for freeway sections without an induction loop
equal to zero may represent a challenge for the eRCNN if
it cannot distinguish these preset values from real measure-
ments of a traffic variable that are equal to zero. [37] proposes
to address this challenge by adding an occupancy layer or
mask to the input that indicates the neural network which

9As explained, it is originally divided into 97 1 km-long sections but we
discard the first and last ones since they are used to introduce and eliminate
vehicles at the beginning and end of the simulations.
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FIGURE 5. Format of a channel of a traffic variable estimated with
induction loops.

pixels correspond to real measurements equal to zero and
which ones correspond to a preset value indicating the lack
of measurements. We evaluated the impact of adding this
occupancy layer to our traffic prediction model but it did not
improve the prediction accuracy. This is the case because our
input to the eRCNN is not a single traffic variable but the three
traffic variables (both for FCD and induction loop data). If a
pixel corresponds to a location where there is not an induction
loop, then all three traffic variables will be equal to zero. This
can only happen when the pixel corresponds to a location
without an induction loop since an induction loop that detects
no traffic (traffic flow and density equal to 0) measures a
speed equal to the free flow speed. Our eRCNN was able
to use this information to distinguish between preset values
equal to zero for pixels representing freeway sections without
induction loops and real traffic measurements. This is why
the proposed occupancy layer did not improve our prediction
accuracy. However, the occupancy layer proposed in [37] can
improve the accuracy of prediction models when the input to
these models is a single traffic variable like in [37].

V. EVALUATION
This section evaluates the short-term traffic prediction or
forecasting accuracy achieved with our proposal when pre-
dicting the three fundamental traffic variables, i.e. the traffic
density, the traffic flow, and the space mean speed. The pre-
diction accuracy is evaluated when using FCD only, induction
loop data only, or using both FCD and induction loop data.
The evaluation allows us analyzing the impact of the FCD
penetration rate on the accuracy of the prediction of the three
traffic variables, as well as the impact of fusing FCD and data
from traffic detectors on the prediction accuracy.

A. ESTIMATION OF THE TRAFFIC VARIABLES
The traffic prediction model uses as input the estimates of
the traffic variables. When these estimates are obtained from
FCD, we need information about the FCD penetration rate
to estimate two of the traffic variables. This section analyzes
the estimation error achieved with our proposals to compute
the local FCD penetration rate using data from FCD and
induction loops, and compare it to that achieved when con-
sidering a FCD penetration rate that is maintained constant

along the road and time like in [21]. For the comparison, we
compute three error metrics, the Mean Average Percentage
Error (MAPE), the Mean Average Error (MAE) and the Root
Mean Squared Error (RMSE), that are defined as follows:

MAE =
1
N

N∑
i=1

∣∣ŷi − yi∣∣ (19)

MAPE =
100
N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (20)

RMSE =

√√√√ 1
N

N∑
i=1

(
ŷi − yi

)2 (21)

where ŷi is the estimation or prediction of a traffic variable,
yi is the ground truth, and N is the number of samples used
to compute the MAPE , MAE , and RMSE . The ground truth
corresponds to the real value of the traffic variable, i.e. to
the value of the variable computed in the scenario where all
vehicles are connected (i.e. α = 1).

Figure 6 depicts the MAPE of the estimation of the traffic
density and the traffic flow using FCD only. Results are
shown using a constant FCD penetration rate in the scenario
(Fixed), and using the local estimate of the FCD penetra-
tion rate obtained with the nearest neighbor interpolation
(Nearest) and with the linear interpolation (Linear). The
MAPE is represented as a function of the FCD penetration
rate in the scenario. We do not depict the MAPE for the
estimate of the space mean speed since this estimate does not
depend on the accuracy of the estimate of the FCDpenetration
rate.10 Figure 6 clearly shows that our proposals to locally
estimate the FCD penetration rate achieve a more accurate
estimation of the traffic variables than assuming that the FCD
penetration rate remains constant. This is important because
the estimates of the traffic variables are used as input to the
traffic prediction model, so an inaccurate estimation of the
traffic variables can impact the traffic prediction accuracy.
Both interpolation approaches achieve similar performance,
being the linear interpolation approach slightly better than
the nearest neighbor approach. The same trends have been
observed for theMAE and the RMSE .

The results obtained show that we can achieve a more
accurate estimate of the traffic variables using our local esti-
mate of the FCD penetration rate than assuming a constant
FCD penetration rate. Figure 6 shows that the benefit of
using a local FCD penetration rate are particularly relevant
at low (or below 30%) FCD penetration rates.11 We can
then conclude that our proposals are capable of accurately
estimating the local penetration rate at any location and

10However, the estimate of the space mean speed is influenced by the
sample of FCD data used for the computation.

11When the FCD penetration rate increases, the local FCD penetration rate
on the freeway sections becomes more homogeneous and closer to the global
rate. In this case, the differences observed in Figure 6 due to the assumption
that the FCD penetration rate is constant (in time and space) decrease, and
a more accurate estimation of the traffic variables can be achieved using the
Fixed approach.
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FIGURE 6. MAPE of the estimation of (a) the traffic density, and (b) the
traffic flow as a function of the penetration rate of FCD devices. The
results are shown for the three approaches to estimate the penetration
rate.

time instant. As expected, Figure 6 also shows that the error of
the estimation of the traffic variables decreases with the FCD
penetration rate for the three approaches. The estimate of the
traffic density depends on the FCD penetration rate, so when
more FCD is available we can better estimate the local FCD
penetration rate and the uncertainty on the estimate of the
traffic density decreases. The same occurs with the estimate
of the traffic flow since this estimate depends on the estimate
of the traffic density, and hence on the estimate of the local
FCD penetration rate.

Figure 7 compares the MAPE of the estimation of the
traffic density that is achieved with the linear interpolation
approach andwith the fixed approach. Results are represented
for the linear interpolation since it achieved lower estimation
errors than the nearest neighbor interpolation (Figure 6). The
results are represented for penetration rates of FCD in the
scenario equal to 1% (α = 0.01), 10% (α = 0.1), and
50% (α = 0.5). Figure 7 clearly shows that the interpolation
approach outperforms the fixed approach as the estimation
of the traffic density is closer to the ground truth value for

all penetration rates or values of α. The differences are par-
ticularly visible for the lower penetration rates. For example,
Figure 7 shows that the interpolation approach achieves an
estimation of the traffic density for α = 0.1 close to that
obtained with the fixed approach for α = 0.5, i.e. for a
significantly higher FCD penetration rate. This trend is also
observed in Figure 6, and similar results and comparisons are
obtained with the traffic flow as it can be directly derived
from the estimate of the traffic density and equation in (13).
These results demonstrate again the importance and impact
of the proposed techniques to accurately and locally estimate
the FCD penetration rate. The proposed techniques result in a
more accurate estimation of the traffic variables that are then
introduced as input to our traffic prediction model.

B. SHORT-TERM TRAFFIC PREDICTION ACCURACY
The estimated traffic variables are formatted into traffic
images as described in Section IV.B and introduced to the
eRCNN short-term prediction model. Figure 8 compares the
accuracy of the prediction of the three fundamental traffic
variables as a function of the FCD penetration rate in the
scenario. Results are shown when the traffic prediction uses:
1) data from inductions loop only (Loops),12 2) FCD only and
assumes a constant FCD penetration rate (FCD-Constant),
3) FCD only and estimates the local penetration rate with lin-
ear interpolation (FCD-Linear), 4) FCD and induction loops
data and assumes a constant FCD penetration rate (Fusion-
Constant), and 5) FCD and induction loops data and estimates
the local penetration rate with linear interpolation (Fusion-
Linear). We chose to represent results only with the linear
interpolation as it outperformed the nearest neighbor interpo-
lation in the results reported in the previous section.

The comparison of Figure 8 and Figure 6 shows that the
prediction error is lower than the estimation error for all
traffic variables and all configurations tested.13 This is the
case because the eRCNN neural network model used in this
study is capable to adapt its predictions based on its prediction
errors in previous time steps. Thanks to this error feedback,
the eRCNN learns how to react after a bad prediction. This
improves the prediction error even when the training data is
not fully reliable, for example, when the sample of FCD is
small due to a low FCD penetration rate. Despite the error
feedback in the eRCNN model, the prediction accuracy is
of course affected by the FCD penetration rate and the FCD
sample size for training the prediction model. This is visible
in Figure 8 that shows how the MAPE of the prediction
decreases with the FCD penetration rate. The same trends
have been observed for theMAE and RMSE .

12The prediction using data from induction loops only is independent of
the FCD penetration rate and hence results in a constant prediction error
in Figure 8.

13Except when the penetration rate is 100%. In this case, a lower error is
observed for the estimation compared to the prediction because the estima-
tion of the traffic variables is the ground truth, hence a null estimation error
is achieved.

133720 VOLUME 9, 2021



J. Mena-Oreja, J. Gozalvez: On Impact of FCD and Data Fusion on Prediction of Traffic Density, Flow and Speed

FIGURE 7. MAPE of the Estimation of the traffic density using the (a) linear interpolation approach and the (b) fixed approach in scenarios with FCD
penetration rates of 1%, 10%, and 50%.

Figure 8 shows that the prediction with data from induc-
tions loop only (Loops) achieves the lowest prediction error
only when the FCD penetration rate is low. This is the case
because the size of the FCD sample is too low to achieve
accurate traffic predictions using FCD. For higher FCD pen-
etration rates, the best prediction accuracy is achieved when
using both FCD and induction loops data and we estimate the
local FCD penetration rate with linear interpolation (Fusion-
Linear). On the other hand, the lowest prediction accuracy
is obtained when using FCD only and assuming a con-
stant FCD penetration rate (FCD-Constant). The differences
among configurations are maintained for all FCD penetration
rates and the three fundamental traffic variables, except when
estimating the traffic density and traffic flow with a FCD
penetration rate equal to 100%. In this case, all vehicles are
connected and provide FCD, and the value of the local FCD
penetration rates and the data from induction loops decreases.

Figure 8 demonstrates that fusing FCD and data from
induction loops improves the prediction accuracy in general.
In this study, we have used both sources of data at two differ-
ent stages of the traffic prediction process: when computing
the local FCDpenetration rate to estimate the traffic variables,
and when generating the input image to the eRCNN neural
network model. The former proves to improve the prediction
as the FCD-Linear configuration reduces the prediction error
compared to the FCD-Constant configuration. Using both
data sources for creating the input image to the eRCNNmodel
also improves the prediction since we provide more complete
information to the prediction model. This results in that the
two configurations that achieve the best prediction accuracy
are Fusion-Linear and Fusion-Constant.

Figure 8 allows determining the minimum FCD penetra-
tion rate that is necessary to improve the prediction accuracy
compared to that obtained when using only induction loop
data (Loops). This penetration rate is equivalent to the min-
imum fraction of the vehicles we need to sample in order

to have a traffic prediction as accurate as that using only
induction loop data. This is important as FCD is usually
provided by third party providers, and trafficmanagers and/or
authorities need to acquire FCD for their traffic estimations
and predictions and the price may vary depending on the
FCD sample size (and hence on the FCD penetration rate).
Figure 8 shows that the prediction with data from inductions
loop only (Loops) achieves the lowest prediction error only
when the FCD penetration rate is low. The minimum FCD
penetration rate to achieve better prediction accuracy com-
pared to the Loops configuration depends on the data used
for the prediction and the estimation of the FCD penetration
rate. For example, when using the FCD-Constant configu-
ration, we need a 5% FCD penetration rate for improving
the prediction accuracy for the traffic density and the space
mean speed. This value increases to 10% in the case of
the traffic flow. This result shows that traffic managers and
authorities need a sample of FCD corresponding to a 10% of
the vehicles to be able to start improving the traffic prediction
accuracy compared to what they can achieve nowadays with
the induction loops deployed in the freeway scenario under
evaluation. This is an important information to guide them
into howmuch data they need to acquire to be able to improve
the predictions achieved with their current traffic detectors.
Introducing the local FCD penetration rate proposal (FCD-
Linear) helps reducing a bit the FCD penetration rate required
to improve the prediction accuracy of the three traffic vari-
ables compared to when using only data from induction
loops. In particular, the FCDpenetration rate required reduces
from 10% for FCD-Constant to 8.6% for FCD-Linear. Higher
reductions in the FCD penetration rate (or sample of FCD
needed) that is necessary to improve the prediction accuracy
of the Loops configuration are obtained with our proposal to
combine the FCD and induction loops data for the estimation
of the local FCD penetration rate and the input image to the
eRCNN prediction model. In particular, the Fusion-Linear
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FIGURE 8. MAPE of the prediction of (a) the traffic density, (b) the traffic
flow, and (c) the space mean speed as a function of the FCD penetration
rate.

configuration requires approximately three times less FCD
than the FCD-Constant configuration to improve the pre-
diction accuracy compared to when using only data from

induction loops (Loops in Figure 8).14 Figure 8 shows that the
Fusion-Linear configuration improves the prediction of the
three traffic variables compared to the Loops configuration
with just a sample of FCD corresponding to a 4% FCD
penetration rate. This is again an important information to
traffic managers and authorities since it shows that using the
induction loops data and an advanced traffic prediction model
like the one presented in this study can provide predictions of
the three fundamental traffic variables with a relatively small
sample of FCD.

Figure 8 shows that the prediction error decreases for all
configurations (except Loops) as the FCD penetration rate
increases. It is though interesting to observe that increas-
ing the FCD penetration rates beyond certain values does
not result in a significant gain in prediction accuracy. For
example, doubling the FCD penetration rate from 5% to 10%
using the Fusion-Linear configuration decreases the predic-
tion error for the traffic density from 7.49% to 5.57%. On the
other hand, increasing the FCD penetration rate from 20% to
50% only decreases the prediction error for the traffic density
from 4.66% to 3.43%. The gains are even smaller when we
increase the FCD penetration rate above 50%. Similar trends
are also observed when using only the FCD for the traffic
prediction (FCD-Linear and FCD-Constant). These results
are important since they provide indications to the traffic
managers and authorities on the impact of the amount of FCD
on the traffic prediction accuracy. This will help them limit
the purchase of FCD to only the data they need to reduce the
prediction errors to their target values.

Finally, it is important to highlight that the Fusion-Linear
configuration of our prediction model (i.e. using FCD and
induction loops data as input to the eRCNN and for estimating
the FCD penetration rate) significantly reduces the amount
of FCD needed to achieve high accuracy levels compared
to when using only FCD for the prediction (FCD-Constant
configuration). For example, the Fusion-Linear configuration
achieves aMAPE of 5% in the prediction of the traffic density
and the traffic flow when the FCD penetration rate is 16.24%
and 15.19% respectively. The FCD-Constant configuration
increases these values to 32.46% and 27.01%. The FCD pen-
etration rate required by the FCD-Constant configuration to
achieve a 1%MAPE in the prediction of the spacemean speed
is 28.66% while it is only 8.34% with the Fusion-Linear con-
figurations. These results highlight how an adequate combi-
nation of FCD and induction loops data together with an error
recurrent eRCNN prediction model significantly reduces the
amount of FCD necessary to achieve high prediction accuracy
levels.

VI. CONCLUSION
This study has analyzed for the first time the impact of the
FCD penetration rate and the impact of fusing FCD and

14The Fusion-Constant configuration requires approximately half of the
FCD needed by the FCD-Constant configuration to start improving the
accuracy of the traffic prediction compared to when using only induction
loop data.
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data from traffic detectors (in our case, induction loops)
on the accuracy of the short-term prediction or forecasting
of the three fundamental traffic variables (the traffic den-
sity, the traffic flow, and the space mean speed). To do so,
this study presents a short-term traffic prediction model that
can accurately predict the three fundamental traffic variables
using FCD. The model includes an error recurrent convolu-
tional neural network that takes as input estimates of the three
traffic variables. The variables are estimated using FCD and
data from induction loops as well as a method to locally and
dynamically estimate the FCD penetration rate. This method
improves the estimation of the three traffic variables that are
used as input to the eRCNN model, and hence their short-
term traffic prediction. The conducted evaluation has demon-
strated that our proposed model can achieve high prediction
accuracy levels for the three traffic variables using a small
FCD sample or FCD penetration rate if the FCD is combined
with data from traffic detectors. In this case, the study shows
that our proposal only requires FCD from 4% of the vehicles
in the scenario to improve the prediction accuracy achieved
with traffic detectors. This is compared to needing FCD from
10% of the vehicles in the scenario when using only FCD
for the prediction. The study also shows that combining FCD
and traffic detectors data with our prediction model helps
achieving high prediction accuracy levels with significantly
less FCD than when only using the FCD for the prediction.
Increasing the FCD sample size (or FCD penetration rate)
significantly improves the prediction accuracy achieved with
our prediction model compared to that obtained with data
from traffic detectors. However, our study shows that increas-
ing the FCD penetration rates beyond certain values does not
result in a significant gain in prediction accuracy. This result
provides valuable insights into the amount of FCD needed
to exploit the potential of connected vehicles to achieve high
accuracy prediction levels.
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