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ABSTRACT In recent years, knowledge discovery in databases provides a powerful capability to discover
meaningful and useful information. For numerous real-life applications, frequent pattern mining and asso-
ciation rule mining have been extensively studied. In traditional mining algorithms, data are centralized
and memory-resident. As a result of the large amount of data, bandwidth limitation, and energy limitations
when applying these methods to distributed databases, especially in this era of big data, the performance
is not effective enough. Hence, data mining on distributed environments has emerged as an important
research area. To improve the performance, we propose a set of algorithms based on FP growth that discover
FPs that are capable of providing fast and scalable service in distributed computing environments and
a brief data structure to store items and counts to minimize the data for transmission on the network.
To ensure completeness and execution capability, DistEclat and BigFIM were considered for the experiment
comparison. Experiments show that the proposed method has superior cost-effectiveness for processing
massive datasets and good capabilities under various experiment conditions. The proposed method on
average required only 33% of the execution time and 45% of the transmission cost of DistEclat. Compared
to BigFIM, The proposed method on average required 23.3% of the execution time and 14.2% of the
transmission cost of BigFIM.

INDEX TERMS Data mining, parallel algorithms, distributed computing.

I. INTRODUCTION
Knowledge discovery in databases provides a powerful
capability to discover meaningful and useful information.
It improves the efficiency of business operations and has
been implemented in a variety of industrial environments.
Numerous real-life applications have resulted in several data
mining [1], [2] tasks, such as association rule mining, classifi-
cation, clustering, and sequential pattern mining. For numer-
ous real-life applications, frequent pattern (FP) mining and
association rule mining have been extensively studied.

In recent years, artificial intelligence (AI) has made
machines smart, giving them the power to make certain
decisions without human intervention. AI and the Internet
of Things work together to collect and analyze data and
automate decision-making. With the coming era of AI of
Things, data are growing much more rapidly.
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Two well-known algorithms, namely, Apriori [3] and FP
growth [4], are proposed to mine frequent itemsets and asso-
ciation rules on the basis of generation and test or pat-
tern growth approaches. The Apriori approach generates a
great number of candidate datasets and repetitively scans a
database to verify whether a pattern appears frequently or not.
Hen et al. proposed the FP-growth method based on FP tree
for mining FPs. FP growth scans the databases only twice and
the mined information could be obtained from the proposed
data structure. However, finding FPs increases the execution
time when the database size is large.

In traditional mining algorithms, data are centralized and
memory-resident. As a result of the large amount of data,
bandwidth limitation, and energy limitations when applying
these methods to distributed databases, especially in this era
of big data, the performance is not effective enough. Hence,
data mining on distributed environments has emerged as an
important research area. The use of field programmable gate
array (FPGA) for implementing parallel computing was also
proposed by Tehreem et al. [5].
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Previous research also illustrated that FP tree-like algo-
rithms performed better than Apriori-like algorithm based
on distributed, parallel computing, and Hadoop techniques,
as well as other algorithms based on the well-known
framework Apache Spark, such as PFP (parallelize the
FP-Growth) algorithm [6] based on Hadoop, PIFP-Growth
(parallelized incremental FP-Growth) [7], R-PFP (recursive-
PFP) [8], MR-PFP (MapReduce-based parallel frequent pat-
tern growth) [9], PBFP-Growth (parallel block FP-Growth
algorithm) [10], MISFP-growth (multiple item support fre-
quent patterns) [11], BigFIM (big frequent itemset min-
ing) [12], and S-FPG (Spark FP-Growth) [13]. Some research
proposed approaches to mining frequent itemsets from sec-
ondary memory when the database or the data structures used
in the mining are too large to fit in the main memory [2], [14].
These research provide new opportunities but pose some
challenges, such as a long execution time and redundant
execution, thus resulting in waste during data mining.

Two frequent itemset mining algorithms, namely, DistE-
clat (dist-equivalence class clustering and bottom-up lattice
traversal) and BigFIM for the MapReduce platform, were
proposed. DistEclat partitions the search space more evenly
among different processing units through prefixes to bal-
ance the workload for each mapper. BigFIM combines the
principles from Apriori to mine frequent itemsets first to
support the DistEclat method when mining on large datasets.
DistEclat and BigFIM have been reported to outperform PFP.
However, DistEclat and BigFIM need additional parameters
to complete the mining, which is difficult and impractical for
users.

The DP (database projection) [2] and aggressive pro-
jection [14] algorithms were proposed, using a disk-based
structure to deal with the scalability problem, thereby ensur-
ing the mining can be completed. During the mining pro-
cess, the projected database associated with each frequent
item needs to be loaded into the main memory. Then, large
databases are materialized on the disk in different projected
databases whose dimension fits in the main memory. If the
condition is not allowed, then the algorithm would activate
the condensed process again. The algorithm requires addi-
tional execution performance because the efficiency formem-
ory is much better than that for the disk.

The discussed methods focus on FP mining, which is
why improvements in execution time efficiency have been
proposed. Parallel and distributed computing techniques have
attracted attention because of their ability to manage and
compute large amounts of data. However, these studies all
have the same characteristics: high amount of data transmis-
sion time, high memory cost, high scanning cost expended by
the database to discover FPs, and redundant execution time
cost by unadaptable nodes. Neither Hadoop MapReduce nor
Apache Spark addresses these critical problems at the same
time. To improve the execution time and the redundant exe-
cution cost, we propose a distributed and parallel computing
method called DFP (distributed frequent pattern mining). The
basic flow of DFP is as follows. FP growth is performed in the

first stage and the information for the necessarymemory sizes
on the database is recorded at the same time. If the FPs can
be extracted successfully in the first stage, then the algorithm
is finished. Otherwise, the algorithm is continued to estimate
the required nodes for the parallel computing according to
the recorded information, and delivers workload to nodes to
complete mining.

The primary contributions of this study are (1) a set of
algorithms based on FP growth that discover FPs that are
capable of providing fast and scalable service in distributed
computing environments and (2) a brief data structure to store
items and counts to minimize the data for transmission on the
network.

To ensure completeness and execution capability, DistEclat
and BigFIM were considered for the experiment comparison.
Experiments show that the proposed method has superior
cost-effectiveness for processing massive datasets and good
capabilities under various experiment conditions.

This paper is organized as follows: Section II presents
the background. Section III presents our proposed algorithm
called DFP and explains how the DFP is used for tree-based
FP mining. Section IV focuses on an analytical evaluation
of the complexity of the proposed method in comparison
with other similar algorithms and shows experimental results.
Section V provides conclusions and future work.

II. RELATED WORK
Past studies are reviewed in two categories: A) associ-
ation rule mining and B) distributed algorithms for dis-
covery of FPs, including the most efficient algorithms,
DistEclat and BigFIM, for mining FPs in distributed comput-
ing environments.

A. ASSOCIATION RULE MINING
Numerous studies have been conducted on data mining
in recent years (Agrawal et al., 1993, 2001; Agrawal and
Srikant, 1995; Bayardo, 1997; Ester et al., 1996). The prob-
lem of association rule mining is the most discussed topic for
wide applications by studies on data mining techniques. The
problem was proposed by Agrawal et al. (1993), which is
defined below. Let DB = {T1,T2, . . . ,Tn} be a database
(DB) containing n transactions, and I = {i1, i2, . . . , im}
be a set of items. For each transaction Tj in DB, Tj ⊆ I ,
an association rule is represented as X => Y , where X ⊂ I ,
Y ⊂ I , and X ∩ Y = 8. The support of itemset X is
the number of transactions in DB that contain X . The rule
X => Y holds with confidence C if C% of transactions in
DB contain both X and Y . The FPs are the itemsets whose
support values are greater than or equal to a support threshold.
To efficiently discover the association rules, the first step is
to discover all the FPs.

The solutions applied by past studies that discussed the
problem of mining FPs can be classified into two types:
Apriori-like (Agrawal et al., 1993, 1996) and FP growth-
like (Han et al., 2000b). The Apriori-like algorithms generate
the candidates and scan the database repetitively to discover
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the FPs. The inefficiency of this kind of algorithm is caused
by the required large memory for generating candidates and
the multiple scans on the database. Han et al. (2000a) pro-
posed a tree-based data structure named FP tree and the corre-
sponding mining algorithm named FP growth for discovering
FPs. The algorithm requires two scans on the database to
complete the mining task. The first scan is performed to
calculate the support of each item. It also creates a header
table that records the item name, its corresponding support,
and the first node-link linking to the first node in the FP tree
carrying the same item name. The items of the header table
are sorted in descending order by the support. In the second
scan, for each transaction, the items with support smaller than
the threshold are filtered and the remaining items are sorted
in descending order by the support value. The sorted items of
each transaction are inserted into the tree, namely, the FP tree.
The structure of an FP tree consists of a root node labeled as
null, a set of item prefix subtrees as the children of the root,
and a header table. The structure of the nodes of the FP tree is
< item− name, count(support), node− link >, in which the
item name is the item name used for identification, the count
is the number of transactions that reach this node by the same
path from the root, and the node-link is a pointer linking to the
next node in the FP tree with the same item name. To insert
a transaction, P, into the FP tree, T , we check whether T
has a child, n, such that n item name is identical to the item
name of the first element of P. If the node exists, then the
count of n is increased by 1. Otherwise, it creates a new
node,m, with the same item name as n. Meanwhile, the count
of m is set to 1, the parent link is set to T , and its node-
link is set to the nodes with the same item name via the
node-link structure. We recursively perform the insertion for
each item in P until each item is inserted into the FP tree.
After the FP tree is constructed, FP growth is used to discover
the FPs. An item of the header table is selected to construct
the conditional FP tree by inserting all the prefix paths of the
item, which can be retrieved by the node-link structure in the
header table. The name of the item is called the conditional
pattern base. Then, the FP growth is executed recursively and
the conditional pattern base is cascaded by a new one in each
recursion until the conditional FP tree contains only a single
path or is an empty tree. The FPs can be easily generated by
the cascaded conditional pattern base and the FP tree. After
each item in the header table is processed, all the FPs are
obtained.

An efficient and scalable association rule mining algo-
rithm is important as it can be the kernel of many advanced
algorithms. For example, the study [15] considered the rule
correlation among various tasks to discover interesting infor-
mation and proposed a method, MTARM (multitask asso-
ciation rule miner), for mining such rules. The proposed
algorithm, MTARM, then chose an association rule min-
ing algorithm as based miners for completing the mining
named MT-Apriori, MT-FP-Growth, and MT-Eclat, which
stands for integration of Apriori, FP growth, and Eclat,
respectively.

1) DATABASE PROJECTION ALGORITHM
Han et al. [2] proposed database projection to address the
issue of insufficient memory when mining in big data,
because mining in a big database would make the FP tree
unable to finish construction. Database projection utilizes the
disk to save mining information on the basis of FP growth.
When the memory is insufficient, the algorithmwould start to
condense the database for the subsequent stage of FP growth.
The process of database condensing would be maintained
until the memory is sufficient.

Algorithm 1 Database Projection
Input: Database D and Memory M.
Output: The complete set of frequent patterns.
1. Procedure Database Projection ( D, M) {
2. T = bulid_FP-tree( D);
3. IF T≤ M then {
4. return FP-growth ( T);
5. } Else {
6. get frequent items i1, i2, . . . , in of D;
7. decompose D into Di1 , Di2, . . . ,Din;
8. return Database Projection (Di1, M)

⋃
Database Projection (Di2, M)

⋃
. . .

⋃
Database Projection (Din , M)

9. }
10. }

B. DISTRIBUTED ALGORITHMS FOR DISCOVERY OF
FREQUENT PATTERNS
Several algorithms based on distributed or parallel comput-
ing have been proposed to improve execution performance.
For example, PFP tree [16] utilizes a multiprocessor system.
However, the execution time increases due to the tree struc-
ture and high cost of data transmission. The performance
deteriorates notably when the database size increases or the
given support decreases. QFP (QFP-growth) [17] applies the
multiprocessor system as well, but it has limited performance
in FP tree construction by each core processor. If multiple
transactions share an identical frequent itemset, then they
could be merged with the number of occurrences, which is
registered as count. The QFP method does not have a good
computing ability from other available processors, thereby
resulting in a highly redundant execution time. TPFP-tree
(TIDset-based parallel FP-tree) [18] is a proposed parallel-
distributed mining algorithm based on FP tree. To exchange
transactions efficiently, a transaction identification set
(TIDset) was used to directly choose transactions without
scanning databases. However, the method would take up a
large amount of memory space, especially when mining big
data, which would easily result in insufficient memory.

A grid system is a heterogeneous computing environ-
ment, where the processor’s capability and the memory space
are different. Equal partition will increase the make span
and cause some computing nodes to become idle. Hence,
the BTP-tree (balanced TIDset parallel FP-tree) [19] was pro-
posed to reduce the communication and tree insertion cost for
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decreasing the execution time. The BTP tree partitions the tar-
get mining items according to the performance index (PI) of
each processor to balance the workload, similar to the header
table. Each processor processes a small set of transactions by
using the FP tree creation process to evaluate the PI. However,
the execution time for data transmission increases for each
processor when the nodes request the required data from each
other to finish themining task. The task assignment is decided
by the PI mechanism. The required different transaction load-
ing also increases the execution time, thereby wasting some
of the preprocessed time for PI. Moreover, the execution
time and the required memory increase considerably as the
database size increases because of the transaction selection
mechanism, namely, TIDset. FD-Mine [20] utilizes the nodes
to discover FPs in cloud computing environments. The data
structure is based on FP growth, which stores the frequent
items in a compressed form to reduce the transmission time.
To make the computing loading balance better than BTP tree,
batch-run FP growth for each conditional item in the subset
was used to mine the FPs. However, this strategy would also
cause the data transmission cost to increase with the growth
of the tree. Also, during the mining process, the unadaptable
nodes would sometimes decrease the execution efficiency.

Apache Spark inherited Hadoop andwas proposed in 2010,
then it replaced Hadoop MapReduce in 2014. S-FPG [13]
was first proposed using the in-memory parallel comput-
ing framework by using the scalable parallel P-growth
implementation. The method improved the efficiency of
processing large datasets. Then, caching-based parallel FP
growth was proposed [21], consisting of integer-based sort-
ing and resilient distributed datasets (RDD)-caching strategy
to improve the efficiency. The proposed CPFPGrowth-MD
(caching-based parallel FP-Growth with memory-and-disk)
and CPFPGrowth-D (caching-based parallel FP-Growth with
disk) decreased the execution times more than the original
PFP growth did and performed better when executing on
data centers without enough memory. The communication
cost causes the problem of reduced efficiency. A parallel
FP-growth algorithm called IFPS [22] based on Spark was
improved by matrix technology. In this algorithm, a dataset
was compressed into an informationmatrix to reducememory
consumption. However, IFPS also has problems when the
amount of data is large, such as insufficient memory and
high time consumption. PS-MP-FP-Growth (Spark platform
merging pruning FP-Growth) [23] designed parallel Apriori
and FP-growth algorithm by using the Spark platform. The
algorithm was developed for the optimization and improve-
ment of the balanced grouping strategy and the non-frequent
item merging pruning strategy. However, the problem of
insufficient memory still exists.

Apache Spark utilizes RAM without being tied to the
two-stage paradigm of Hadoop and is thus potentially
100 times faster than Hadoop MapReduce [24]. However,
this feature comes with the limitation of computing cost.
Moreover, Apache Spark works well for smaller datasets
only. When the strategy is more prefer to the cost-effective

processing massive data set. Then, the critical problem would
revert to Hadoop MapReduce and related algorithms.

The PFP [6] algorithm, based on the Hadoop framework,
proposed aMapReduce approach of parallel FP- growth algo-
rithm, the shared DBwas preprocessed through the generated
G-list. FP trees were constructed by a G-list by distributing
TIDs to the related groups. Once the tree has been con-
structed, the subsequent pattern mining could be performed.
However, the mapper needs to communicate the collected
corresponding group-dependent transactions before mining,
thereby resulting in a high execution cost. According to the
advantages of PFP, several kinds of algorithm have been pro-
posed. For example, PIFP growth [7] successfully solves the
incremental issue caused by the dynamic threshold value and
database, thereby avoiding repeated computation. R-PFP [8]
extends the level of parallelization that can be achieved by
PFP using the parent–child MapReduce feature of the IBM
Platform Symphony [25]. However, the bottleneck on the
communication cost remains when exchanging data. The
same drawbacks are found with MR-PFP [9]. To address
the issue of the communication cost, PBFP growth [10]
was combined with the Apriori and FP-growth algorithms
to reduce the scanning frequency. For MISFP growth [11],
the concept of classification of item was proposed, which
involves classifying items of higher homogeneity to reduce
the execution time on parallel architectures. However,
the execution time improvement is limited, especially when
mining on large databases.

Mining algorithms based on the Hadoop system have the
least efficient execution time. The Hadoop system has limited
efficiency because the subsequent mining result is reported
to Hadoop distributed file system (HDFS) for every single
phase, despite some results were the input for the next turn
could cause extra data mining time. BigFIM [12] proposed
by S. Moens was implicated the associating mining based on
the Hadoop system. The algorithm has two dedicated mecha-
nisms: DistEclat and BigFIM. DistEclat focuses on efficiency
and ensures that each mapper finishes mining tasks with the
adaptive parameter p to balance the computing loading on
a distributed system. BigFIM focuses on big database and
first uses the Apriori algorithm for mining until the frequent
itemsets of size p are achieved. From the increment param-
eter p, the BigFIM mechanism would switch to DistEclat
to improve the insufficient memory caused by TID-List.
The performance improved because BigFIM would mining
the frequent item first before p-FIs to reduce the size of the
TID-List through the Apriori algorithm. The twomechanisms
exhibited better performance than FP growth utilizing PFP
with the Hadoop system. However, the parameter p needs to
be set first, which would cause difficulty for beginners.

The conventional association rule mining can be further
divided into two subtopics, positive association rule mining
and negative association rulemining. The positive association
rule mining discovers sets of items, i.e., frequent patterns,
associated with other items in the database, whereas the neg-
ative association rule mining is used to discover the relation
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FIGURE 1. The flow chart of the proposed DFP algorithm.

between item-sets in which support values are negatively
correlated. Because the data size and complexity increase
rapidly, an efficient method is required for mining such rules.
Most of the past studies focused on positive association rule
mining; therefore, Bagui and Dhar [26] proposed a method
to efficiently discover both positive and negative association
rules, simultaneously, from big data, using Hadoop’s MapRe-
duce architecture.

III. PROPOSED METHOD
Section III-A introduces the problem and Section III-B
details the proposed method and presents the features of the
DFP algorithm.

A. PROBLEM DEFINITION
The FP-growth algorithm is not efficient when processing
a big database. Hence, numerous algorithms related to dis-
tributed or parallel computing have emerged. However, these
methods have high communication cost, insufficient memory,
low computing efficiency, and redundant computing waste.
Therefore, DFP was proposed based on FP growth. If the
first stage failed during mining, then the proposed method
would estimate the necessary memory and nodes for further
distributed computing steps. The excellent performance of
DFP is presented in the Experiment Results section. If the
memory of the nodes is less than the estimated necessary
memory, then the extended database projectionmethod called
mixing projection (MP) will be activated. MP is used to
store compressed crucial information and develop an efficient
FP tree-based mining method. MP performs better than the

FIGURE 2. An example of memory space estimation.

DP algorithm especially when the process is unable to mine
any further. The process would compress a large database
into a condensed, smaller data structure repeatedly until the
dataset can fit in the main memory. However, the process also
increases the input/output (I/O) cost. With the proposed MP
algorithm and the main memory space estimation method,
the repeated procedure for estimating memory space avail-
ability becomes unnecessary. If the database needs to be
condensed, then specific items instead of all items would
be condensed by the proposed method. With the use of the
extended MP method, the memory capacity is evaluated for
the database without repeated checking, thereby improving
the transmission cost between the server and the nodes.

B. DFP MINING ALGORITHM
In this section, we present an efficient DFP algorithm based
on the FP tree data structure. The algorithm steps include the
procedure for the nodes of the server and the client.

1) SERVER SIDE
The DFP algorithm has four stages in the server: a) memory
space evaluation, b) client node activation, c) TID distribu-
tion, and d) waiting for mining item distribution.

a: MEMORY SPACE EVALUATION
As in Fig. 1, in the first stage, the server would execute the
FP-growth algorithm first for two purposes: to avoid unnec-
essary transmission time cost by using the distribution mode
instead of mining in its own server and to record essential
information, including count, total counts, number of TIDs,
and estimating the necessary memory space in the database
when the mining procedure has failed. In the algorithm,
full garbage collection (GC) would be used to determine if
the mining has failed. Before the TID tree is constructed,
the count of full GC is counted.

If the full GC is equal to 1, then themining has failed. Then,
the remaining TIDs would be recorded as essential infor-
mation. For example, in Fig. 2(a), the transaction database
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FIGURE 3. An example for distributing TIDs to the assigned nodes.

FIGURE 4. An example of waiting mining items distribution.

would retrieve a support value greater than 3, then the
I − FIs{a : 6, c : 5, d : 5, b : 4} would be obtained in
accordance with the filter and order these TIDs for construct-
ing the tree. The algorithm would check the count of full
GC. In our example, as shown in Fig. 2(b), the constructed
T1 and T2 include 7 items, the count and the total are equal
to 7, and TID = 2. Assuming that the full GC is equal to
1 before the TID of T3 is scanned, the method would scan the
remaining TIDs and stop the counting, as shown in Fig. 2(c).
Then, the evaluation of the cost of the main memory space
for finishing the database mining would be followed by the
formula m × (Counts/(

∑n
i=1 Ti)), where m is the memory

space and |Ti| is the length of the transaction. If the main
memory in the server is 1000M, then the main cost needs
at least 1000 × 20/7 = 2857M for the assigned database
mining.

b: CLIENT NODES ACTIVATION
The necessary nodes must be estimated prior to distributed
mining. Our experiment results indicate that an increase
in nodes would not increase the efficiency. The proposed
algorithm would take the limited nodes to achieve the best
performance. The following are examples for three different
conditions in clients. The mechanism would optimize the
best choice. If 2857M is needed to connect to 10 clients,
with 1000M for each client, then 3 nodes would be activated.
If the set for the three clients is 1000M, 1500M, and 2000M,
respectively, then the activated clients would be ordered for
2000M and 1500M. Even if there are only two activated
clients for 1000M, the proposed DFP algorithm would drive
the MP mechanism and proceed with the efficient mining
process.

FIGURE 5. An example of tree construction.

c: TID DISTRIBUTION
In this procedure, the server evaluates the activated nodes
with regard to the processing limitation for the TIDs andwaits
for the activated MP mechanism to condense the database.
For example, if the server has a 1000M memory space, then
the memories for nodes are 500M, 1000M, and 1500M,
respectively. The procedure is shown as follows:

avgT =
TIDs

number of nodes
(1)

the client limitation for TID =
memory space in nodes
memory space in server
×avgT (2)

For the example shown in Fig. 3(a), if the memory for
client_1 is 1500M and the memory for server is 1000M,
then the TID processing limitation for client is 3 (the second
formula was used, and the result is shown in Fig. 3(b)).
The results are the basis for the process to start distributing
TIDs to the assigned nodes (shown in Fig. 3(c)). Thus, 3, 2,
and 1 TIDs would be distributed to client_1, client_2, and
client_3, respectively. As shown in Fig. 3(c), the experiment
result for the example did not exceed the limitation of TIDs.
Thus, the extended procedure for the MP mechanism would
not be executed.

d: WAITING MINING ITEMS DISTRIBUTION
Once the server is activated, the FP-growth algorithm is
performed and result in the frequent itemset of 1-FIs as the
waiting mining items. As shown in Fig. 4, the server would
distribute items of b to the client for further mining and wait
for the results (shown in Section III-B-2-c). The server then
starts to mine the frequent itemset from the r result shown
in Fig. 4(a) and then outputs the result and the transactions,
as shown in Fig. 4(b). The results for 2-FIs re {a, b : 4;
c, b : 3; d, b : 3}. The 2-FIs have further mining potential,
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FIGURE 6. An example for mining the frequent items.

FIGURE 7. An example for constructing Conditional FP-tree.

and the server would further combine these as 3-FIs, index
them as potential mining items (Fig. 4[c]), and prompt the
client to construct a conditional FP tree for the frequent items
of b. In contrast, if the response result from the client is null,
then the algorithm would not proceed with tree construction.
The procedure would be repeated until all waiting items are
finished.

2) CLIENT SIDE
This DFP algorithm has five stages in the client: a) memory
space reporting to server, b) receiving the limitation for TIDs,
c) tree construction according to TIDs, d) mining frequent
items, and e) construction of the condition FP tree.

a: MEMORY SPACE REPORTING TO SERVER
The memory space varies with every client. To estimate the
distributing TIDs for transfer to the client from the server,
each client would transfer the message to the server once they
connect to the server.

b: RECEIVING THE LIMITATION FOR TIDS
As mentioned, the server would estimate the limitation for
TIDs according to the estimated memory from the client.
If the number of TIDs exceeds the limitation, then the MP
mechanismwould be activated to execute the remaining over-
flowed TIDs to avoid the out-of-memory (OOM) condition in
the client.

c: TREE CONSTRUCTION ACCORDING TO TIDS
If all clients reached their limit, then the server would transfer
the remaining TIDs to each client. If the client received the
TID − {a, b, c} (Fig. 5[a]), then the algorithm would start to
condense the database to avoid OOM. On the basis of the
DP algorithm, the condensed database is shown in Fig. 5(b).

Hence, if the client wants to perform mining, the item of c or
b should be obtained from the root and the file of DP should
be read from the disk. The MP mechanism could reduce
the I/O cost through the root tree in the client memory by
incrementing the count according to nodes. Then, the remain-
ing items would be executed by the MP mechanism. For
example, in Fig. 5(c), the TID− {a, c, b}, was received from
the server, and the path is Root− > a− > c. Then, a and
c would increment the count, and b would execute the MP
mechanism.

d: MINING FREQUENT ITEMS
The mining process would start from the message to expect
mining items from the server, because the received TIDs
would differ from client to client. For example, a constructed
tree of the client is shown in Fig. 6(a), and the item of b is
the expecting mining item assigned from server. On the basis
of FP growth, the item of b would be mined. If there were
files of b−MP, then mining should be completed, as shown
in Fig. 6(b). In our proposed algorithm, the mining result
would be extracted as shown in Fig. 6(c). Obviously, the min-
ing task assigned from the server would not need the redun-
dant message-record item of b (as shown in Fig. 6[b]), which
would also reduce the transmission cost. Finally, the table
would be transferred to the server.

e: CONSTRUCTION OF THE CONDITION FP TREE
As mentioned, if the mechanism received the result with
the potential extended mining items of Fig. 6(c), then the
server would start to connect to the client to construct a
conditional FP tree and extract the frequent itemset to prevent
the client from adding information that does not belong to
frequent items into the conditional FP tree. For example, if the
client would like to build the conditional FP tree for item b
and the server would index {a, c} as a frequent item, then
the client would extract the item d , as shown in Fig. 7(b).
In the meantime, the file of b-MP should be read for further
construction.

IV. EXPERIMENTAL EVALUATION AND
PERFORMANCE STUDY
In the section, we present a performance comparison of DFP
with the classical FP mining algorithm.

Quest Synthetic Data Generator [27] from IBM was
utilized to generate data with different parameters. Real
data were downloaded from the frequent itemset mining
dataset (FIMD) repository [28] to evaluate the performance
of the proposed method and compare the experiment results
of the proposed method with those of DistEclat and BigFIM.
Then, the modified mechanisms of MP and DP in the DFP
algorithm were compared. Finally, the experiments with
insufficient main memory in the client and different mem-
ory spaces in clients were compared in further sections.
The experiment environment, datasets, and parameters are
introduced in Section IV-A. Experiment results with different
parameters are analyzed in Section IV-B. The experiments
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Algorithm 2 DFP Server
Input: Database DB and a Support ξ .
Output: The complete set of frequent patterns. FP
1. result← FP-growth(DB, ξ )
2. IF(result.FP 6= ∅){
3. RETURN result.FP // FP-growth succeed
4. } END {
5. TIDCount← result.getTIDCount()
6. requiredMemory← result.getEstimateMemory()
7. C ← selectClient(requiredMemory)
8. FOR i = 1 TO C.count{
9. t ← calculateClinetMaxTID(Ci, TIDCount)
10. tellClientMaxTID(Ci, t)
11. }
12. FOR i = 1 TO TIDCount{
13. sendTID(Ci mod C .Count , DBi)
14. }
15. pendingMining← result.1-FIs
16. WHILE(pendingMining 6= ∅){
17. miningTask← pendingMining.removeLast()
18. sendMiningTask (C , miningTask)
19. miningResult← allClientMiningRusult()
20. result.FP← result.FP ∪ miningResult.FP
21. IF(miningResult.pendingMining 6= ∅){
22. buildSubTree(C , miningResult.subTreeInfo)
23. pendingMining← pendingMining ∪
24. miningResult.pendingMining
25. }
26. }
27. RETURN result.FP
28. }

FIGURE 8. Execution performance of DFP and FP-growth with support
threshold varied from 0.3 to 0.2% on IBM dataset.

are summarized at the end of this section (IV-C). These
analyses are well supported by the experiments reported in
this section.

A. EXPERIMENTAL SETUP
1) ENVIRONMENTS OF EXPERIMENTS
All the experiments are performed on an Intel(R) CoreTM

i7-4770 CPU@3.40 GHz personal computer (PC) machine
with 8 GB main memory and 500 GB of storage, running on
Microsoft Windows 7 Enterprise Edition operation system.

Algorithm 3 DFP Client
Input: NULL
Output: NULL
1. S ← connectToServer()
2. sendMemory(S, getMemory() )
3. WHILE(TRUE){
4. S.command← waitingForServerSendCommand()
5. IF S.command = MaxTID {
6. MaxTID← S.getMaxTID()
7. }
8. IF S.command = TID {
9. TID← S.TID
10. IF BuildTID < MaxTID {
11. BuildTID(TID)
12. } ELSE{
13. BuildTIDAndDoMP(TID)
14. }
15. }
16. IF S.command = MiningTask {
17. miningResult← FPGrowth(S.miningTask)
18. sendMiningResult(S, miningResult)
19. }
20. IF S.command = BuildSubTree {
21. BuildSubTree(S.subTreeInfo)
22. }
23. }

TABLE 1. An example for constructing Conditional FP-tree.

TABLE 2. Execution time with various support thresholds (0.3–0.2%) for
DFP and FP-growth on IBM dataset.

All the programs are written in Java. We utilized Ubuntu
(14.04.4 version) with 3 Gb main memory through Virtual
Box to compare the experiment result with BigFIM. The
memory limitation was set to 1 GB when the experiment was
in the process of mining.

2) EXPERIMENTAL DATA SETS AND PARAMETERS
Part of the experimental dataset was generated by Quest Syn-
thetic Data Generator of IBM [27], and the data are based on
general transaction record databases, including the average
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TABLE 3. Execution time with various settings of T(35-25), I(16-7),
N(15-5K), and D(3500-1500K) for DFP and FP-growth on IBM dataset.

transaction length(T), average frequent itemset length(I),
number of items(N), and number of transactions(D).

In our experiment, the memory was limited to 1 GB for
the mining process, and T20 I10 N20K D2000K were set as
our basic experiment datasets. First, in the DFP algorithm,
we utilized these basic experiment dataset to find the support
threshold that the FP growth was unable to finish the mining
in the first stage. To compare the performance evaluated by
the proposed method and DistEclat and BigFIM, the real data
that were generated from the FIMD Repository was utilized
for the experiments. The proposed DFP algorithm could mine
with high efficiency through the dataset generated from our
daily life.

B. EXPERIMENTAL RESULTS
1) EFFECT OF VARYING THE SUPPORT AND PARAMETERS T,
I, N, AND D OF DFP AND FP-GROWTH FOR A IBM DATASET
ON EXECUTION TIME
If the memory space estimated by the DFP algorithm was
assigned for continuing the mining process when the mining
process was failed by the FP-growth algorithm with 1 GB
RAM. The results in Table 2 show that the mechanism is
feasible without including the OOM issue. Fig. 8 shows that
the proposed method outperforms the FP-growth algorithm

TABLE 4. Execution time with various support thresholds (0.6%–0.2%)
for DFP, DistEclat, and BigFIM on IBM dataset.

because the mechanism of the FP-growth algorithm does not
estimate the requirement for memory space, thereby causing
OOM. The performance was worse than that of DFP because
the FP tree needs to spend more time scanning and exploring
to construct the FP tree on a single computer. In contrast,
the DFP algorithm distributes the databases with optimized
transferred datasets to clients. Although the process increased
the data transmission cost, the performance of DFP is highly
efficient, as shown in Fig. 8.

The experiment result with different parameters T, I, N,
and D, and a fixed support value of 0.3% was utilized for
further examination, as shown in Table 3 and Fig. 9. The
memory is insufficient with the parameter T set to 30 and
35, and with N set to 5 because in the Ubuntu experiment
environment, only 6000MRAMcould be accessed. However,
the rest of the experiment parameters showed that thememory
space is correct and feasible, as estimated by the proposed
DFP algorithm. Moreover, the proposed DFP algorithm out-
performs the FP growth algorithm.

2) EFFECT OF VARYING THE SUPPORT THRESHOLD ON
EXECUTION TIME AND AMOUNT OF TRANSMITTED DATA
FOR DFP, DISTECLAT, AND BIGFIM WITH DIFFERENT
NUMBER OF CLIENTS
The experiment used the basic experiment dataset T20 I10
N20KD2000K to obtain the support threshold of 0.2%–0.6%.
The threshold means that the first stage of FP growth would
not fail in the mining process in the server. Then, the exe-
cution time and numbers of transactions were utilized to
compare the performances of DFP, DistEclat, and BigFIM.

Table 4 and Fig. 10 show that the FP growth failed when
the support threshold was 0.3%. Then, the mechanism was
activated to estimate the memory for the distributed mining
process. The experiment showed that the proposed method
outperformed DistEclat and BigFIM. The number of trans-
actions for the proposed method was also better than that of
DistEclat and BigFIM (Table 5 and Fig. 11). Overall, the per-
formance of DFP is better than that of DistEclat and BigFIM
by about 4 times, and the number of transactions is lower
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FIGURE 9. Execution performance of DFP and FP-growth with T(35-25), I(16-7), N(15-5K), and D(3500-1500K) varied on
IBM dataset.

FIGURE 10. Execution performance of DFP, DistEclat, and BigFIM with
support threshold varied from 0.3% to 0.2% on IBM dataset.

than that of DistEclat and BigFIM by about 4 and 9 times,
respectively.

The numbers of candidates for the next stage overflowed
and caused insufficient memory, thereby causing BigFIM
to fail in the experiment when the support threshold was
set to 0.2%. When the support threshold set was to 0.3%,
DistEclat performed worse than BigFIM did because the

TABLE 5. Amount of transmitted data with various support thresholds
(0.3%–0.2%) for DFP, DistEclat, and BigFIM on IBM dataset.

mined frequent items did not satisfy the parameter p, also
known as 3-FIs. The finished preprocessing mining in the
DistEclat mechanism to balance the computing loading was
the cause of lack of efficiency.

When 10 clients were included in the DFP algorithm,
DistEclat, and BigFIM, the execution time exhibited a
decreasing trend because extra waiting time was spent wait-
ing for communication and responding to clients (Table 6 and
Fig. 12). In BigFIM, the sources of reduced files were
increased, thereby also causing the decreasing trend in the
stage of reduce. However, the DistEclat with same 10-client
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FIGURE 11. Amount of transmitted data of DFP, DistEclat, and BigFIM
with support threshold varied from 0.3% to 0.2% on IBM dataset.

TABLE 6. Execution time with various support thresholds (0.3%–0.2%) for
DFP, DistEclat, and BigFIM on IBM dataset using estimated and 10 clients.

conditions exhibited increased performance because DistE-
clat stores TID-Lists in the memory and mines the items in
I-FIs to p-FIs. The increased numbers of mappers caused
the decreased 1-FIs items in each mapper. Overall, DFP still
performed better in terms of efficiency and data transmission
than DistEclat and BigFIM (Table 7 and Fig. 13). The exper-
iment results also indicate that having more clients would not
increase the efficiency.

Table 8 and Fig. 14 show that when the number of clients
was set to 15 for DistEclat, the performance did not improve
than when the number of clients increased to 15. The experi-
ment on 15 clients with a support threshold of 0.2% showed
that the performance of DFP decreased dramatically, becom-
ing even worse than that of DistEclat. The execution time
cost for DistEclat with 10 or 15 clients was still worse than
that estimated for DFP. Table 9 and Fig. 15 show that the
proposed method with various parameters still performed
better than DistEclat and BigFIM. In other words, the DFP
can utilize minimal clients but still has the best efficiency and
data transmission cost.

FIGURE 12. Execution performance of DFP, DistEclat, and BigFIM with
support threshold varied from 0.3% to 0.2% on IBM dataset using
estimated and 10 clients.

TABLE 7. Amount of transmitted data with various support thresholds
(0.3%–0.2%) for DFP, DistEclat, and BigFIM on IBM dataset using
estimated and 10 clients.

FIGURE 13. Amount of transmitted data of DFP, DistEclat, and BigFIM
with support threshold varied from 0.3% to 0.2% on IBM dataset using
estimated and 10 clients.

3) EFFECT OF VARYING THE SUPPORT OF DFP, DISTECLAT,
AND BigFIM FOR A REAL DATASET ON EXECUTION TIME,
AND AMOUNT OF TRANSMITTED DATA
The proposed DFP performed highly efficiently with the data
generated by IBM’s Quest Synthetic Data Generator. We then
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TABLE 8. Execution time with various support thresholds (0.3%–0.2%) for DFP, DistEclat, and BigFIM on IBM dataset using estimated, 10, and 15 clients.

TABLE 9. Amount of transmitted data with various support thresholds (0.3%–0.2%) for DFP, DistEclat, and BigFIM on IBM dataset using estimated, 10,
and 15 clients.

FIGURE 14. Execution performance of DFP, DistEclat, and BigFIM with
support threshold varied from 0.3% to 0.2% on IBM dataset using
estimated, 10, and 15 clients.

apply DFP on the real database ofWebdocs downloaded from
the FIMD Repository to examine the mining performance.
The real data are much larger than the data used in previ-
ously analyzed experiments with 1.37 GB, 1,692,082 TID,
5,267,656 items, and average TID length of 177.

The experiment result shows that an overloaded TID-List
would result in serious OOM during the analysis of a much
bigger database. In contrast, the proposed DFP performed
at least 6.7 to 8.6 times better than BigFIM (Table 10 and
Fig. 16). The experiment value for DFP in terms of data
transmission efficiency is much better than that of BigFIM
(Table 11 and Fig. 17).

FIGURE 15. Amount of transmitted data of DFP, DistEclat, and BigFIM
with support threshold varied from 0.3% to 0.2% on IBM dataset using
estimated, 10, and 15 clients.

4) EFFECT OF VARYING THE SUPPORT THRESHOLD ON
EXECUTION TIME AND AMOUNT OF TRANSMITTED DATA
FOR DFP, DISTECLAT, AND BIGFIM WITH VARIOUS
MEMORY SPACE CLIENTS
The proposed DFP considered whether efficiency would be
affected by different memory space of the client. The exper-
iment finished the examination through the simulation for
the assigned clients with different memory space of 500M,
800M, 1000M, 1500M, and 2000M.

The support threshold from 0.2% to 0.3% was utilized
for the varying parameters. Table 12 and Fig. 18 show that
the DFP still finished the mining even though the client had
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TABLE 10. Execution time with various support thresholds (24–16%) for
DFP, DistEclat, and BigFIM on real dataset.

FIGURE 16. Execution performance of DFP and BigFIM with support
threshold varied from 22% to 16% on real dataset.

TABLE 11. Amount of transmitted data with various support thresholds
(22%–16%) for DFP, DistEclat, and BigFIM on real dataset.

a memory space of 500M. However, BigFIM with a support
threshold of 0.2% failed because of the overloading candi-
date. As for data transmission, Table 13 and Fig. 19 show that
the proposed method still performed at least 3 to 5.1 times
better than DistEclat and BigFIM.

5) EFFECT OF VARYING THE SUPPORT OF MIXING
PROJECTION DFP, DATABASE PROJECTION DFP, DISTECLAT,
AND BIGFIM FOR A IBM DATASET ON EXECUTION TIME
WITH INSUFFICIENT MEMORY CLIENTS
In this experiment, one condition was considered: If the total
estimated memory is less than required, then the transactions
would proceed to condense for the extendedmethod—theMP
and database projection algorithms by the proposed DFP.

FIGURE 17. Amount of transmitted data of DFP and BigFIM with support
threshold varied from 22% to 16% on real dataset.

TABLE 12. Execution time with various support thresholds (0.3–0.2%) for
DFP, DistEclat, and BigFIM on IBM dataset using various memory space
clients.

FIGURE 18. Execution performance of DFP and BigFIM with support
threshold varied from 0.3 to 0.2% on IBM dataset using various memory
space clients.

The support threshold of 0.20% to 0.28% was utilized for
further experiments as the necessary memory exceeded the
estimated memory of 2000M.

Table 14 and Fig. 20 show that the memories for the two
nodes were insufficient, the transactions would be condensed,
and the proposed DFP would extend to database projection
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TABLE 13. Amount of transmitted data with various support thresholds
(0.3–0.2%) for DFP, DistEclat, and BigFIM on IBM dataset using various
memory space clients.

FIGURE 19. Amount of transmitted data of DFP and BigFIM with support
threshold varied from 0.3 to 0.2% on IBM dataset using various memory
space clients.

TABLE 14. Execution time with various support thresholds (0.28–0.2%)
for Mixing Projection DFP, Database Projection DFP, DistEclat, and BigFIM
on IBM dataset using insufficient memory clients.

and MP for further mining. Even though the I/O cost for
fetching nodes on disk increased, the performance was still
better than that of DistEclat and BigFIM. The experiment
result showed that the decrease of the support threshold and
the mining efficiency achieved by the DFP of MP were better
than those of the extended DFP of database projection. The
higher performance was obtained because a smaller support
threshold would produce more files for MP (Table 15).

C. SUMMARY
The above experiments showed that DFP is also much
more scalable than DiscEclat and BigFIM. As to execution
performance, DFP on average required only 33% of the

FIGURE 20. Execution performance of Mixing Projection DFP, Database
Projection DFP, DistEclat, and BigFIM with support threshold varied from
0.28 to 0.2% on IBM dataset using insufficient memory clients.

TABLE 15. Produced file size of Mixing Projection DFP, and Database
Projection DFP with support threshold varied from 0.28 to 0.2% on IBM
dataset using insufficient memory clients.

execution time and 45% of the transmission cost of DistEclat.
Compared to BigFIM, DFP on average required 23.3% of the
execution time and 14.2%of the transmission cost of BigFIM.
In addition to the execution time and transmission cost,
we explored the size of temporary data generated and found
that our proposed method can on average reduce 15% of the
DP temporary data size. Although the temporarily generated
data size reduced by our method, the ratio is still high and
should be improved in the future; otherwise, the execution
time can significantly increase in case of large databases with
large temporarily generated data sizes.

V. CONCLUSION
In this study, the DFP algorithm was proposed to improve the
mining efficiency for association rule by distributed mecha-
nism. In reported articles, the distributed mechanism cannot
be applied easily for processing databases. Hence, the trans-
mission cost would increase easily as communication among
clients increases. Our experiments show that the proposed
DFP algorithm successfully overcame this problem by trans-
ferring the mining result from the executing client to the
server because the integrated information would go through
the server instead of being communicated among clients. Our
experiment results also showed through a comparison of the
transmission costs that the proposed method had much better
computing efficiency than DistEclat and BigFIM, required
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only 45% and 14.2% of the transmission cost of DistEclat and
BigFIM, respectively. The proposedmethod, through the esti-
mated necessary memory and clients, reduces the computing
efficiency as well. The DFP algorithm overcomes insufficient
memory and repeated scans by estimating the limitation of
TIDs for each client, and the remaining TIDs are processed
by an extended mechanism called MP. Our experiments also
showed that the modified mechanism performed better than
DP. In other words, the proposed algorithm exhibits good
performance during big data mining. In addition, the DFP
algorithm can determine a suitable number of clients auto-
matically according to various datasets.

The proposed DFP algorithm shows potential for future
applications. For example, the mining efficiency can be
improved when distributed to the same clients with highly
related TIDs to reduce the branches of the FP tree. More-
over, efficiently balancing the data transmission times and
workload of the FP tree in each client would benefit mining
efficiency, especially when processing big databases. As the
size of temporarily generated data inherited from DP is still
high, we will also focus on improving the algorithm for better
scalability.
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