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ABSTRACT The transformers architecture and transfer learning have radically modified the Natural
Language Processing (NLP) landscape, enabling new applications in fields where open source labelled
datasets are scarce. Space systems engineering is a field with limited access to large labelled corpora and a
need for enhanced knowledge reuse of accumulated design data. Transformers models such as the Bidirec-
tional Encoder Representations from Transformers (BERT) and the Robustly Optimised BERT Pretraining
Approach (RoBERTa) are however trained on general corpora. To answer the need for domain-specific
contextualised word embedding in the space field, we propose SpaceTransformers, a novel family of three
models, SpaceBERT, SpaceRoBERTa and SpaceSciBERT, respectively further pre-trained from BERT,
RoBERTa and SciBERT on our domain-specific corpus. We collect and label a new dataset of space systems
concepts based on space standards. We fine-tune and compare our domain-specific models to their general
counterparts on a domain-specific Concept Recognition (CR) task. Our study rightly demonstrates that the
models further pre-trained on a space corpus outperform their respective baseline models in the Concept
Recognition task, with SpaceRoBERTa achieving significant higher ranking overall.

INDEX TERMS Language model, transformers, space systems, concept recognition, requirements.

I. INTRODUCTION
In the past three years, the transformers architecture [1]
and transfer learning [2] have profoundly impacted the
Natural Language Processing (NLP) landscape. Transfer
learning consists of two stages: (i) a pre-training phase in
which contextualised word embeddings are learned through
self-supervised training tasks on a large unlabelled corpus
(for instance, Masked Language Model (MLM) and Next
Sentence Prediction (NSP) [2]), and (ii) a second phase
in which the pre-trained model is fine-tuned for a specific
task [3]. The performance of the downstream NLP tasks
are thus greatly improved with the knowledge transferred
from the pre-trained models. Numerous studies presented
the theoretical background and empirical proof of the pos-
itive impact of the pre-training and fine-tuning setting for
downstream tasks [4], [5]. The BERT model, standing for
Bidirectional Encoder Representations from Transformers,
from Google AI Language [2] advanced the state-of-the-art
(SOTA) performance on 11 NLP tasks. Transfer learning
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brings a decisive advantage for NLP applications, especially
for domains where annotated corpora are scarce.

Space systems engineering is a field where access to
large-scaled annotated data is limited. Yet, experts involved in
the early stages of space mission design can spend up to 50%
of their work time searching for heritage and design informa-
tion [6]. The accumulated data explored by experts mostly
consist of unstructured data: past design reports, books and
journal publications. This information bottleneck can be
reduced by implementing NLP and text mining solutions.
Concept Recognition (CR) is a first essential step for the
identification and extraction of domain-specific fundamental
concepts, enabling the structuring of accumulated data via the
construction of ontologies [7].

While pre-trained transformer models such as BERT
[2] or RoBERTa, a Robustly Optimised BERT Pre-
training Approach [8], are trained on general corpora,
domain-specific models such as SciBERT [9] have proven
to be more adapted to domain-specific downstream tasks.
Pre-training language models from scratch is resource inten-
sive, requiring large corpora (160 GB for RoBERTa [8])
and costly computational resources (7 days of training on
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a Tensor Processing Unit (TPU) for SciBERT [9]). Instead,
we propose to further pre-train the baseline models on
our domain-specific corpus. We choose the BERT-Base,
RoBERTa-Base and SciBERT-SciVocab models to build
SpaceTransformers, a family of three models for space
systems language modeling: SpaceBERT, SpaceRoBERTa
and SpaceSciBERT. While models pre-trained on a general
corpus learned contextualised word embeddings for a general
or scientific English vocabulary, our further pre-training
specialises these models in space systems engineering. The
models performance are evaluated through a fine-tuning
Concept Recognition (CR) task with a set of space systems
terms annotated by hand by three human annotators. The
contributions of this paper are summarised as follow:

1) We further pre-train and release SpaceTransform-
ers, a novel open-source family of three models:
SpaceBERT, SpaceRoBERTa and SpaceSciBERT fur-
ther pre-trained from BERT, RoBERTa, and SciBERT
on our space systems corpus.

2) We release a novel labelling scheme based on space
standards and its corresponding hand-annotated dataset
for Concept Recognition (CR) of space systems terms.

3) We provide, for the first time a thorough comparison
of the performance of domain-specific models with
respect to several baseline models on a classification
task.

4) We demonstrate that further pre-training from
RoBERTa-Base considerably improves the results on
the downstream CR task for domain-specific language
models.

The source code and domain-specific models are available
at github.com/strath-ace/smart-nlp. All data underpinning
this publication are openly available from the University of
Strathclyde KnowledgeBase at https://doi.org/10.15129/8e1c
3353-ccbe-4835-b4f9-bffd6b5e058b (further pre-training
corpus) and https://doi.org/10.15129/3c19e737-9054-4892-
8ee5-4c4c7f406410 (fine-tuning corpus and labelled
concepts).

II. BACKGROUND AND RELATED WORK
A. TRANSFER LEARNING
The purpose of transfer learning is to first learn from an initial
training objective, then apply it to a different target objective.
Let s be an input sequence consisting of m words such that

s = (t1, . . . , tm) (1)

where ti is the ith word of the sequence. These tokens have
a fixed initial embedding of dimension n, noted as xi. The
pre-training phase yields a contextualised embedding yi of
dimension d for each embedding xi of a term ti

f : Rn
×2f → Rd , f (xi, θf ) = yi (2)

where θf ∈ 2f represents a particular set of model param-
eters. In the pre-training phase, the model f is trained in a
self-supervised fashion. In a second phase, the pre-trained

model is fine-tuned for a specific task. The contextualised
representations previously obtained are used as inputs to the
model

g : Rd
×2g→ Rq, g(yi, θg) = zi (3)

The output is a probability distribution through an identity
or softmax activation function, configured by the parameters
θg ∈ 2g and of dimension q. The parametrisation of the
fine-tuned model is thus configured by

θft = [θf , θg] (4)

This framework has proven to be more efficient than train-
ing a task-specific model from scratch, requiring at least
10 times less task-specific data samples [2], [4]. The num-
ber of pre-training parameters, θf , is usually much higher
than the number of fine-tuning parameters θg. For instance,
the configuration of BERT-Base involves a θf ,BERT of 110M
parameters [2]. Thus, the training set required for fine-tuning
is significantly smaller than for the pre-training, while avoid-
ing over-fitting.
Finally, let C(·, ·) be the loss function for training a neural

net (e.g. cross-entropy), then the cumulative empirical risk for
minimising the loss in the fine-tuning setting is defined as:

min
θf

C
(
fθf ,Xf

)
+min

θft
C
(
gθg (fθf ),Yg

)
(5)

where fθf is the pre-trained model configured by θf param-
eters, gθg (fθf ) is the fine-tuning model configured by θg
parameters, and Xf , Yg are respectively the pre-training and
fine-tuning training sets.

B. DOMAIN-SPECIFIC LANGUAGE MODELS
There are three approaches found in the Literature to gen-
erate domain-specific language models: (i) a generic model
is fine-tuned on a domain-specific task, (ii) a model is
further pre-trained from a generic pre-trained model with
a domain-specific corpus, or (iii) a model is trained from
scratch on a domain-specific corpus.
Fine-tuning a pre-trained model for a domain-specific task

is the quickest and easiest approach. In [10], the authors
fine-tuned BERT-Base on a patent database for a classifica-
tion task. Their model, patentBERT achieved better results
than the previous SOTA method based on Convolutional
Neural Network (CNN) and word vector embedding.
Reference [11] presents a downstream application similar
to our work. The authors fine-tuned BERT-Base on a CR
task to identify concepts related to space systems engineer-
ing. To the best of our knowledge, their study is so far the
only application of transfer learning in the space field. Their
labelled dataset was however based on a single document,
the NASA System Engineering Handbook [12] and they
chose high-levels labels such as event or locationwhereas our
labels cover all management, product assurance and engineer-
ing disciplines found in 126 space standards.
Pre-training from scratch or further pre-training on

a domain-specific corpus enables the introduction of
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domain-specific words embeddings in the language model,
improving the performances on downstream domain-specific
tasks. BioBERT [13] and VNLawBERT [14] were both fur-
ther pre-trained from BERT-Base respectively with biomed-
ical publications and a Vietnamese legal corpus. A clinical
language model presented in [15] was further pre-trained
from BERT-Base and from BioBERT. Both ClinicalBERT
[16] and FinBERT [17] were trained from scratch on an
architecture similar to BERT’s with, respectively, a corpus
of clinical notes and a large financial corpora. The benefits
of either further pre-training or training from scratch on a
domain-specific corpus have been largely proven by these
studies as they all outperformed the original general language
models on domain-specific tasks.

Further pre-training or training from scratch appears as
a trade-off between (i) the available domain-specific corpus
size, (ii) the available computational resources, and (iii) the
fine-tuning performances sought-after. Training from scratch
is resource intensive, it requires a large domain-specific cor-
pus and heavy computational resources. Both BERT and
SciBERT use a corpus of around 3B tokens. The training of
BERT-Base was performed in 4 days on 4 cloud TPUs [2].
RoBERTa was trained in one day over 1024 V100 GPUs [8].
SciBERT took 7 days to train from scratch with a single
TPU v3 with 3 cores [9]. In [18], a legal language model,
LEGAL-BERT, is trained on a 12 GB corpus of legal texts,
either from scratch or further pre-trained from BERT-Base.
The authors found that both were valid approaches with
similar results. Our training corpus has a similar size as [18]
and we use a single NVIDIA V100 GPU with 16 cores to
train our models. Based on these limitations, the decision was
taken to further pre-train our domain-specific models rather
than train them from scratch. The methods mentioned in this
Literature Review are summarised in Table 1.

C. CONCEPT RECOGNITION FOR SPACE SYSTEMS
CR is a NLP task used to identify and classify terms of
interest from text. It is a word-level annotation exercise. For
instance CR in the clinical domain annotates labels associated
with general terms, including, in the analysis of patient data,
terms such as ‘‘treatments’’, ‘‘findings’’, and ‘‘problems’’
[19]–[21]. Similarly to the clinical domain, CR for space
systems engineering includes generic terms, describing, for
instance, the interface between engineering and manage-
ment [11]. Therefore, concepts can be loosely defined as
sequences that represent a specific cognitive construct in their
domain [22]. In the context of systems engineering, these
concepts can be ‘‘engineering unit’’, ‘‘system architecture’’
or ‘‘system analysis’’, labelled as examples for the label
‘‘system concepts’’ in [11]. One can assume that in systems
engineering the concept ‘‘system’’ almost exclusively stands
for the technical assembly of interconnected items or devices
of a satellite or spacecraft, in comparison to generic text
where ‘‘system’’ could have different meanings based on
context. In general, ambiguity depends on the target domain

TABLE 1. Methodologies comparison. PT stands for pre-training from
scratch, FPT for further pre-training, and F for fine-tuning.

as well as on the level of granularity in the annotation scheme
defining the level of abstraction. For instance, labels such
as ‘‘tasks’’, ‘‘processes’’, and ‘‘materials’’ were used for
constructing a scientific knowledge graph in [23]. These
labels can be applied to multiple scientific domains such as
computer science, biology, and mathematics, and thus have a
low level of granularity with a high chance of ambiguity as the
meaning of a concept varies in function of the scientific field.
Nevertheless for the purpose of comparing scientific publica-
tions based on their intrinsic concepts, this level of granularity
is considered as sufficient [23]. Thus, the necessary level of
granularity in the annotation scheme for CR depends on the
later application, target domain, and their tolerated level of
ambiguity.

Different approaches for CR applications exist. Rule-based
and pattern matching systems leverage hand-crafted rules
on the text and its linguistic features to extract concepts
as shown in [24]. Alternatively, other methods are based
on supervised Machine Learning (ML) methods, trained
from example inputs and their expected outcomes. Lin-
guistic feature-based ML systems such as support-vector-
machines, decision trees, and conditional random fields
used to be the preferred methods for CR [20]. However,
in the last years, these were increasingly replaced by deep
learning approaches using word embedding as input fea-
tures [19], [23]. Language models and transfer learning have
recently significantly contributed to this field. Transfer learn-
ing increases the performances of CR applications, as seen in
[25], [26], requiring a smaller labelled dataset than training
from scratch. Furthermore, the contextualised representation
contributes to recognising and differentiating concepts based
on their context, thus increasing the accuracy of the model
predictions.
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III. CORPORA
The study involves two corpora:

1) A further pre-training corpus: a 14.3 GB collection
of unstructured documents related to space systems,
acquired from heterogeneous sources.

2) A fine-tuning corpus: 28, 763 textual requirements
extracted from European Cooperation for Space Stan-
dardisation (ECSS) standards.

A. FURTHER PRE-TRAINING CORPUS
The training corpus is a collection of 5, 266 unstructured doc-
uments including books, publication abstracts, andWikipedia
pages. These documents were manually gathered. They were
chosen as they represent the typical information sources
used by space systems engineers. The books cover most
of the fields of space mission design, and are publicly
available. The abstracts were extracted from papers pub-
lished in three peer-reviewed journals: the Acta Astronautica,
Advances in Space Research, and the Aerospace Science
and Technology journals. All papers were published between
2017 and 2019 included, and therefore describe recent
work. Using the abstracts of the publications was found to
yield better results than using the full journal publications
documents. The reason is most likely that papers include
mathematical notations, figures and tables which introduce
noise. The Wikipedia webpages were scraped and manu-
ally filtered using the hyperlinks connecting pages to the
spacecraft design webpage. Table 2 provides statistics on
the training corpus. The sentences are mainly extracted from
books (70%), then from publication abstracts (17,6%) and
Wikipedia (12,4%). This distribution reflects the language
complexity of these different sources.

TABLE 2. Statistics of the further pre-training corpus.

B. FINE-TUNING CORPUS
The fine-tuning corpus consists of annotated requirements
extracted from ECSS standards. The latter is an initiative
launched by the European Space Agency (ESA) in 1993 to
define a coherent and single set of standards for all European
space activities [27]. 28,763 requirements are collected from
126 single standards as shown in Table 3. The ECSS standards
are split into three main branches under an overhead branch
called System: Management, Product assurance and Engi-
neering, covering the design and implementation of the stan-
dards and requirements. Each requirement briefly describes a

TABLE 3. Statistics of the fine-tuning corpus.

regulatory provision to be complied with in the form of ‘‘what
to do’’ in a customer - supplier context [28]. Because of the
intent of using them in an obligating contract, the require-
ments are written in a clear and unambiguous language.
Additionally, the average number of tokens per requirement
is similar for all branches.

For the fine-tuning, we used requirements from the three
branches. Focusing on just the majority branch Engineering
would not be feasible as the standards are to be used in
conjunction with each other and not as single documents. For
instance, the topic ‘‘Software’’ is covered by two standards
belonging to the Engineering and the Product assurance
branches. Nevertheless, there is an effort to avoid duplication
of content in requirements with the ideal situation that each
requirement is unique [29].

IV. METHODOLOGY
The SpaceBERT, SpaceRoBERTa and SpaceSciBERT mod-
els are respectively further pre-trained from BERT-Base,
RoBERTa-Base, and SciBERT-SciVocab. The pre-trained
and further pre-trained models are fine-tuned on a
domain-specific CR task. The methodology is summarised
in Figure 1.

A. FURTHER PRE-TRAINING
Further pre-training a model

f : Rn
×2f → Rd , (6)

means that in the pre-training phase, instead of randomly
initialising the weights θf , the weights values of a baseline
model such as BERT, RoBERTa or SciBERT are reused.
Hence the weights θf for the three further pre-training tasks
are initialised with the following set of weights

θf ,0 = θf ,BERT , (7)

θf ,0 = θf ,RoBERTa, (8)

θf ,0 = θf ,SciBERT (9)

where θf ,BERT , θf ,RoBERTa and θf ,SciBERT are respectively the
set of weights of the pre-trained models BERT, RoBERTa
and SciBERT.Weights initialisation from a pre-trainedmodel
also implies the reuse of the original model vocabulary.
The authors of the SciBERT model [9] observed an aver-
age improvement of only +0.76 F1 score on biomed-
ical tasks when using their domain-specific vocabulary.
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FIGURE 1. Overview of the further training and fine-tuning methodology with SpaceBERT, SpaceRoBERTa, and
SpaceSciBERT.

They concluded that training with a domain-specific cor-
pus had more impact than using a domain-specific vocab-
ulary. A study similar to ours, BioBERT [13], chose to
rely on the BERT-Base vocabulary. The authors assessed
that since the Word Piece tokenization used to build the
BERT vocabulary reduces out-of-vocabulary issues it was
fit to represent and fine-tune their domain-specific terms.
An alternative to training from scratch with a domain-specific
corpus is to replace ‘‘Unused’’ tokens in the vocabulary
with domain-specific words. To assess if a modification
of the original vocabulary was necessary, we extracted the
top thousand most frequent words from our domain-specific
corpus and compared our frequency-based lexicon to the
vocabulary of BERT-Base-uncased, RoBERTa-Base, and
SciVocab-uncased. The top 10 most frequent words in
our frequency-based lexicon are: ‘‘satellite’’, ‘‘system’’,
‘‘orbit’’, ‘‘space’’, ‘‘spacecraft’’, ‘‘data’’, ‘‘time’’, ‘‘mis-
sion’’, ‘‘model’’, and ‘‘control’’. Out of our frequency-based
lexicon, 87, 8% of the words were already included
in the BERT-Base-uncased vocabulary, 88, 8% in the
RoBERTa-Base vocabulary, 89, 9% in the SciVocab. Within
these 1000 words, the 10%most frequent words were already
included in all three vocabularies. Table 4 gives a sample
of the words not found in the generic models vocabularies.
As the amount of domain-specific terms not covered by the
original vocabularies was negligible, we decided to re-use the
vocabularies and tokenizers of the models we were further
training on.

The configuration and pre-trained weights of the
BERT-Base, RoBERTa-Base and SciBERT models are
accessed through the HuggingFace library and their Python
Transformers library [30]. For each model the pre-training
weights and hyperparameters are thus initialised from one
of the three baseline models with the exception of the batch
size and maximum sequence length. The batch size is set
to 256, as for RoBERTa [8], with a gradient accumulation
step of 16. The maximum sequence length of the input is

TABLE 4. Sample of terms not found in the generic models, words in bold
are missing from more than one vocabulary.

set to 512 as defined in BERT [2]. The models are further
pre-trained for 70 epochs on one NVIDIA V100 GPU hosted
on the ARCHIE-WeST High Performance computer. The
further pre-training corpus is split between a training and a
testing set, based on the classic 80%/20% partition.

B. REQUIREMENTS LABELLING
For the fine-tuning of the pre-trained models, the corpus
presented in section III-Bwas used as a basis for the annotated
dataset. The requirements are written in a precise and brief
manner, with a high density of concepts relevant to space
systems, making them useful for generating a CR dataset in
this domain. An annotation scheme was carefully designed
to cover the whole spectrum of the ECSS standards, creating
labels for each of the three main branches: Management,
Product assurance and Engineering. The labels were con-
structed from domain-experience of three human annotators
as well as with the help of online available taxonomies in the
space domain such as the ESA Technology tree [31], the ESA
Product tree [32] and the NASA taxonomy viewer.1 18 labels
were eventually defined for the annotation scheme. The
complete description for each label is found at github.com/
strath-ace/smart-nlp. Table 5 summarises the annotation

1https://techport.nasa.gov/view/taxonomy
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TABLE 5. Annotation scheme summary.

scheme, providing a short description and examples for each
label.

The single requirements were annotated with the
commercial software tool Prodigy from the software
company explosion.ai.2 To facilitate the annotation process,
requirements addressing similar topics were annotated
simultaneously. The process was repeated for all topics,
ensuring that similar numbers of requirements were selected
so that the resulting dataset would be balanced and cover the
full scope of the ECSS standards. The annotation process was
considered done once the performance of the CR classifier
were within an acceptable accuracy. Eventually, 882 require-
ments were annotated. Each annotator labelled the whole
fine-tuning corpus independently. These results were then
compared, showing a high level of inter-annotator agreement
of 96.5%. Discrepancies between the three annotators were
discussed and removed from the final set. The resulting
numbers of annotated concepts present in the final dataset
are shown in Table 6. The number of unique concepts found
per label, as well as the ratio of unique concepts to the

2https://prodi.gy/

TABLE 6. Summary of annotated concepts per label.

total number of concepts, called non-overlapping, are also
displayed.
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C. FINE-TUNING FOR CONCEPT RECOGNITION
The Python Transformers library fromHuggingFace [30] was
used to load the pre-trained and further pre-trained models.
For CR, a linear layer is added as output layer with a softmax
activation function. The models were trained three times with
a 10-fold, 80% to 20% split, cross validation. The split size
was established from the mean ratio of non-overlapping sam-
ples, which is slightly below with 78%, as shown on Table 6.
Another assumption for the training was to reinitialise the
weights of the final layer if the fine-tuning resulted in a failed
run for the fold. This is in accordance with previous studies,
which stated that the random initialisation of the fine-tuning
layers can have a significance influence on the fine-tuning
results in computer vision [33] as well as NLP [34]. A failed
run was defined as when the validation accuracy stayed below
classifying all examples with the majority class, classifying
every word as a non-concept [35].

Further hyperparameters for the fine-tuning were a linear
decreasing learning rate and a batch size of 16. The models
were trained for up to 10 epochs. To compare the models’
predictions, the results of the epoch with the lowest validation
loss for each respective fold were taken. One benefit of the
further pre-training was already observed during fine-tuning.
In comparison to RoBERTa with three failed runs overall,
SpaceRoBERTa did not fail any.

V. RESULTS
A. MODELS SELECTION
During the trial and error phase, we experimented with
uncased and cased vocabularies and various batch sizes. Fur-
ther pre-training on uncased vocabulary yielded better results
than cased vocabulary. This was to be expected as our labelled
concepts are not named entities and thus casing is not relevant
to our application. We also found that a higher batch size
of 256 yielded better results than lower batch sizes of 16 or 32.

The models are further pre-trained for 70 epochs which is
enough to achieve the convergence of the evaluation perplex-
ity as shown in Figure 2. Perplexity is a common metrics for
evaluating language models. It quantifies how well a model
reduces the uncertainty in the prediction of the language in a
tokenized sequence of text s. Perplexity PPL is derived from
the cross-entropy H and is defined in [36] as:

PPL = 2Hp(s) (10)

with

Hp(s) =
1
m

log2
1
P(s)

(11)

where m is the number of words in the sequence s, P(s) is the
probability of the sequence of words provided by the model,
Hp(s) the cross-entropy of the text in relation to the model,
and finally PPL the perplexity of the model.

We chose to retain the SpaceBERT model trained for
60 epochs, the SpaceRoBERTa model trained for 57 epochs,
and the SpaceSciBERT trained for 54 epochs. These models
either correspond to the start of the perplexity convergence

FIGURE 2. Evolution of the evaluation perplexity in function of the
number of further pre-training epochs.

or to a local minimum close to convergence. Although
of disparate initial configuration and pre-training corpus,
these models interestingly take a similar number of further
pre-training epochs to converge.

B. CONCEPT RECOGNITION RESULTS
Figure 3 displays the evolution of the validation loss for all
models with respect to the number of fine-tuning epochs. The
validation loss curves have a parabola-like shape reaching a
minimum after a certain number of epochs. When comparing
the minimums of each model, the validation loss appears to
be the lowest for SpaceRoBERTa and the highest for BERT.
While SpaceSciBERT and SciBERT have similar validation
losses, SpaceRoBERTa, and SpaceBERT demonstrate signif-
icant improvements with respect to their respective baseline
models. Although the results were averaged over 30 folds,
the standard deviation for the validation loss is still high. For-
mer studies [34], [35] reported similar issues for comparable
dataset sizes.

The CR F1 scores for all 6 models and 18 labels are
reported in Table 7. The results were computed from the
epochs with the lowest average validation loss, averaged over
all 30 folds. The standard deviation is provided along with

FIGURE 3. Evolution of the validation loss in function of the number of
fine-tuning epochs.
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the F1 score. The weighted label represents the averaged
F1 score over all the labels weighted by the number of exam-
ples in the validation set, and is defined as:

weighted =
1∑
l∈Lnŷl

∑
l∈LnŷlF1(yl, ŷl) (12)

where l is one label from the set L of all labels, ŷl is the set
of true samples for label l, yl is the set of predicted samples
for label l, F1(yl, ŷl) is the F1 score calculated for label l, and
nŷl is the number of true samples for label l.
Considering only this weighted F1 score, SpaceRoBERTa

clearly outperforms the other models, followed by SpaceSci-
BERT. BERT and RoBERTa obtain the lowest scores.
SpaceRoBERTa ranks the highest on several labels. As shown
on Table 7, the labels, displaying the most significant
improvements compared to the baseline of BERT, areGN&C
with a 7.8% improvement, then Space environment with
4.5%, followed by Thermal with around 4% improvement,
and Structure & mechanism 3.8%. SpaceSciBERT also sub-
stantially improves the score of the Communication and
OBDH labels, respectively by 12% and 4%, compared
to BERT.

Altogether, the reported F1 scores are consistent with the
observed validation loss trends, with SpaceRoBERTa leading
the F1 score table and the further pre-trained models out-
performing their baselines. The standard deviations of the
single scores are still generally high, usually exceeding the
achieved improvement between the baseline and the further
pre-trained models. Therefore, statistical tests are conducted
and summarised in section V-C to evaluate the statistical
significance of the results.

To fully assess the impact of the further pre-training with
a domain-specific corpus, the scores of the baseline models
are compared to their respective space variant in Figure 4.
SpaceRoBERTa again displays the most significant improve-
ments compared to its baseline model RoBERTa. All three
domain-specific models show substantial improvements for
the Propulsion, Space environment, Structure & mechanisms,
Communication,GN&C, andOBDH labels. These labels cor-
responds to the main engineering disciplines of a spacecraft
subsystems. However the score of more general labels such as
Safety & risk control, Nonconformance, and Quality control
were either unaffected or slightly deteriorated by the further
pre-training. These labels all belong to the ECSS branch of
Product assurance. For the remaining labels, no clear trend
can be inferred as the further pre-training resulted either in an
improvement or a deterioration of performances depending
on the model used.

A more thorough investigation is conducted for the
SpaceRoBERTa model as it achieved the highest perfor-
mance. Figure 5 displays the confusion matrix for the
SpaceRoBERTa model. The majority of samples are concen-
trated on the diagonal, thus predictions are predominantly
accurate. A few incorrect classifications occur between the
OBDH and Communication labels, indicating a lack of clear
boundaries between the two topics.

FIGURE 4. Variations between the performance of the baseline models
and respective further pre-trained space models.

The annotated requirement shown in Figure 6 illustrates
this overlap. SpaceRoBERTa wrongly associates the con-
cepts found in this requirement to the Communication label
instead of the OBDH label as they were manually assigned
to. These concepts, including communication frame and com-
mand word, actually fall under the domain of signal process-
ing and can be used both in a communication or data handling
context. The requirement was here extracted from a standard
related to data handling. This information is however hidden
from the model and therefore cannot be used to guide it. The
ambiguity of these terms were already highlighted by the
human annotators.

Figure 7 quantifies the number of new concepts not seen
by the model during training but found in the validation set,
demonstrating the ability of the model to generalise over
the training set and discover new concepts in unevaluated
samples. The prediction of the model was compared for
one fold to a simple look-up approach. The latter method
identifies concepts present in both training and validation
sets. As seen in Figure 7, the prediction with the fine-tuned
model achieves substantially better results than the look-up
approach. Out of 844 unique concepts, 690 were recognised
exactly by the model and 78 concepts were partly recognised.
For partial recognition, the span was either too long or too
short. For instance, the concept 50W resistors, corresponding
to two labelled concepts 50W and resistor were merged by
the model. The concept flight production was extracted by
the model while the full labeled concept was proto-flight
production. Alternatively, the look-up approach resulted in
only 170 complete and 187 partial matches.

C. STATISTICAL TESTS
The results obtained have been statistically analysed with
the Friedman pre-hoc and the Bonferroni-Dunn and Nemenyi
post-hoc tests. To determine the statistical significance of
the F1 score of each method with respect to the labels set,
a non-parametric Friedman test was completed with the rank-
ing of the F1 score of the best model as the test variable.
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FIGURE 5. Confusion matrix of the fine-tuned SpaceRoBERTa model (the majority class ‘‘non-concept’’ is excluded).

The Friedman test shows that the proposed method is statis-
tically significant at a level of 5% as the confidence interval
is C0 = (0,F5 = 2.322) and the F-distribution statistical
values is F∗ = 6.330 /∈ C0. Consequently the Friedman test
rejects the null-hypothesis that all models perform equally
well in mean ranking. Based on this rejection the Nemenyi
post-hoc is completed to compare the performances of the
different models. The difference in ranking, as resulting from
the Nememyi tests can be observed in Figure 8, for α = 0.05.
The results of the Bonferroni-Dunn test for α = 0.05 are
reported in Table 7. From the results of both tests it can
be concluded that SpaceRoBERTa has a significant higher
ranking than all the other methods and RoBERTa, its baseline,
the lowest one. The remaining methods, BERT, SciBERT

and their space counterpart instead, have not a significant
difference in mean ranking.

VI. DISCUSSION AND FUTURE WORK
The weighted F1 scores demonstrate that the domain-specific
models outperformed their respective baseline models.
SpaceRoBERTa benefited the most from the further
pre-training with an increase of 8% F1 score with respect
to RoBERTa. SpaceBERT and SpaceSciBERT have less
significant improvements, respectively displaying increases
of 0.3% and 0.85%. Both SpaceSciBERT and SciBERT
outperformed SpaceBERT and BERT proving that the sci-
entific pre-training gave an additional advantage to training
from a general model. The decisive advantage came from
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TABLE 7. Results for the F1 scores of 30-fold cross-validation for each model and each label. The best score for each label is highlighted with a grey
background. The standard deviation is presented for each label behind the respective F1 score.

combining our domain-specific training corpus with the alter-
native pre-training architecture and tokenizer of RoBERTa.
Indeed, the latter model is pre-trained on a single Masked
Language Model (MLM) task [8] where the model must
predict randomly hidden tokens whereas the BERT-based
models are also trained on a Next Sentence Prediction (NSP)
task [2], [9]. The statistical analysis and Bonferroni-Dunn
test, ignoring the number of labels in the evaluation set unlike
the weighted F1 score, demonstrated that there is no signif-
icant difference between SpaceBERT, SpaceSciBERT and
their baseline counterpart. The Bonferroni-Dunn test however
confirmed the significant higher ranking of SpaceRoBERTA.

Labels covering more common concepts such as Noncon-
formance, Project Scope, and Quality Control benefited less
from the domain-specific training. Domain-specific labels

FIGURE 6. Comparison of manual annotation and model prediction.

such as Propulsion, Structure & Mechanisms, and Commu-
nication however saw their F1 score significantly increased
for all space models. These results were obtained for one
fine-tuning task. When fine-tuning for another task it is rec-
ommended to not discard SpaceSciBERT nor SpaceBERT
as different models might be more adapted to different
applications.

In future work, other pre-training tasks, beyond MLM and
NSP, could be explored as in [37] where a domain-specific
model was trained on four different tasks. This is a resource
intensive approach requiring additional computational power
and a larger training set. To improve the performances over
ambiguous concepts that could be belong to several engi-
neering disciplines, information should be integrated about
the original document the requirements were extracted from.
Related to the fine-tuning, the comparison could be extended
to additional downstream tasks to further compare the perfor-
mances of SpaceRoBERTa, SpaceSciBERT and SpaceBERT.

FIGURE 7. Number of unique concepts detected by the SpaceRoBERTa
model, compared to a simple look-up approach.
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FIGURE 8. Nemenyi CD diagram comparing the generalization F1 score
rankings of the different methods (α = 0.05).

CR can as well support additional text mining operations
on the ECSS standards. Standards contain key information
on space systems, and they are highly correlated. Thus,
a follow-up task could be to associate similar requirements
based on common concepts. This application could facilitate
the identification of requirements relevant to a new project.
Finally, we recommend the development of a standard taxon-
omy for transformers, as in the Literature the concepts of pre-
training and further pre-trained often overlap or are misused.

VII. CONCLUSION
In this paper, we proposed SpaceTransformers a new
family of three models: SpaceBERT, SpaceRoBERTa and
SpaceSciBERT, providing contextualised word embedding
for space systems. Our domain specific models were
further pre-trained from BERT-Base, RoBERTa-Base and
SciBERT-SciVocab on our domain-specific corpus. The
pre-trained and further pre-trained models were evalu-
ated on a CR task with our new labelled dataset of
space systems concepts. All further pre-trained models out-
performed their respective baseline models. The model
further pre-trained from RoBERTa-Base, SpaceRoBERTa,
considerably improved the F1 score of several labels
with a weighted average of 8% with respect to its base-
line. The SpaceSciBERT model, further pre-trained from
SciBERT-SciVocab, achieved the highest improvement,
on the single label, with respect to BERT-Base with an
F1 score increase of 12% for the Communication label.
Finally, SpaceRoBERTa achieved the highest ranking in
the Nemenyi CD diagram. The statistical analysis however
showed a lack of significant difference in mean ranking for
the remaining models.
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