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ABSTRACT The direct measurement of distance-dependent information between wireless units represents
a challenge for wireless locating systems, because it requires the exact time synchronization of separate
wireless units. To avoid these synchronization efforts, many wireless locating systems only evaluate phase
difference of arrival (PDOA) measurements. While simple PDOA localization techniques rely on multian-
gulation, advanced PDOA concepts like the holographic extended Kalman filter (HEKF) directly evaluate
the measured phases without non-linear preprocessing. However, these differential phase measurement
approaches are less sensitive than systems that can measure absolute phase variations, which allow the
tracking of much smaller position changes than the signal’s carrier wavelength. This paper proposes to
extend the HEKF by the evaluation of absolute phases in an incoherent measurement setup, which consists of
a continuous wave (CW) beacon and several receivers. The developed quasi-coherent holographic extended
Kalman filter (QCHEKF) uses the overdetermined PDOA measurements to estimate the phase–frequency
relation between each beacon–receiver pair. Then, the established phase–frequency relations allow the
evaluation of absolute phase measurements and, thus, the accurate localization and tracking of a simple,
unsynchronized, narrowband CW beacon, even under severe multipath conditions. This novel concept is
experimentally validated via 3D localization results in a challenging indoor scenario using a 24 GHz CW
measurement setup. Here, the QCHEKF improves the achieved localization accuracy in comparison to the
HEKF by 35% from 0.78 cm to 0.51 cm, while the maximum deviation from the trajectory reduces by 68%
from 5 cm to 1.6 cm. Furthermore, the QCHEKF enables the exact tracking of fast changes in direction,
which is usually a significant challenge for standard wireless target tracking systems.

INDEX TERMS Radar, Kalman filters, incoherent measurements, localization, array signal processing.

I. INTRODUCTION
Nowadays, positioning systems are used for many applica-
tions, such as logistics, automation, and autonomous driv-
ing [1]. In the literature, many measurement concepts have
been proposed for localization, such as optical systems [2],
ultrasonic systems [3], systems based on electric or magnetic
field strengths [4], as well as electromagnetic waves [1].
Since communication devices, which emit and receive
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electromagnetic waves, are widely spread these days, wave-
based localization is a common method of choice [5].

Electromagnetic waves can be used in different ways to
gain information about a target’s position. Evaluating the
received signal strength (RSS) [6] to localize a target is
challenging due to strong RSS variability with the measure-
ment conditions [7]. However, neural networks can be used
to learn an environment-dependent signal map [8], [9] and
enable reliable indoor localization despite the RSS variability,
particularly in combination with Kalman filtering [10].
Measuring the time of arrival (TOA) yields more reliable
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FIGURE 1. Measurement setup with two receiver arrays and one beacon,
which moves the distance 1d and emits spherical waves.

distance information by evaluating the time-dependent phase
relation for different frequencies within a limited band-
width [1]. Unfortunately, available bandwidth is often lim-
ited due to governmental restrictions and implementation
issues [11]. Hence, a tremendous effort is necessary to
enable highly accurate ultra wide band (UWB) positioning
[12]–[16], thereby providing localization results with errors
of less than 1 cm.

Instead of evaluating the phases for different frequencies,
phase difference of arrival (PDOA) systems evaluate the
phase relation between spatially distributed antennas [11],
as illustrated in Fig. 1. The most popular processing method
is to estimate the angle of arrival (AOA) [17] for each
beacon–receiver (RX) pair. Then, the AOA information at
different RXs is combined to localize the beacon [18]–[20].
Since the phase-based AOA estimation results in undesired
noise shaping, the accuracy of any successive signal pro-
cessing is degraded [21] and, hence, a direct evaluation of
phases is desirable. Therefore, holographic localization was
proposed, which matches the received phases with hypothet-
ical beacon positions using computational expensive brute
force searches, as in [22]. To reduce the computational effort
and further increase localization accuracy, the holographic
extended Kalman filter (HEKF) was proposed in [23], which
recursively estimates a beacon’s position by evaluating the
phase differences, measured between every antenna pair of
each RX array.

PDOA systems inherently assume incoherent measure-
ment principles, allowing localization with arbitrarily
modulated signals based on relative phases [23]. However,
evaluating absolute phases, which are related to TOA mea-
surements between wireless units, provides a much higher
sensitivity to position changes. Therefore, radio frequency
identification (RFID) systems are often implemented with
coherent beacons, as in [22]. Here, implementing coherent
beacons depicts a challenging task, which can be solved by
switched injection locking [24]. The relative phase informa-
tion between measurements can then be used to improve

localization accuracy, as in [25]. Most often, the time-
dependent phase relation is used to estimate velocities based
on the Doppler frequency [26]. The Doppler information can
then bewell fusedwith AOA estimations [27], [28]. However,
the Doppler frequency estimation implicitly assumes a con-
stant velocity for the evaluated time frame, which is not
sufficiently valid for an accelerating beacon in a highly
accurate indoor positioning system. In this work, the phases
will be evaluated directly.

To combine the advantages of incoherent radio frequency
beacons, which are easy to implement, and the high sensitiv-
ity of coherent measurements, we propose a novel concept
to localize an incoherent continuous wave (CW) beacon.
In Fig. 1, the HEKF’s phase difference evaluation between
the different antennas of RX 1 enables absolute positioning
of the CW beacon in the vertical direction, while RX 2 pro-
vides absolute position information in the horizontal direc-
tion. However, since the time-dependent phase relation of
CW beacons is deterministic, except for phase noise and
frequency instability [29], [30], beacon movements toward a
receiving antenna can be effectively detected by its absolute
phase measurements. In Fig. 1, the small position change1d
of the beacon in the horizontal direction can be accurately
detected via the absolute phase measurements at RX 1, while
the absolute phase measurements at RX 2 remain nearly
constant.

The HEKF presented in [23] consists of a constant veloc-
ity system state model and the evaluation of phase differ-
ences in the state update. The QCHEKF extends the HEKF
by the evaluation of absolute phase measurements to take
advantage of their high measurement sensitivity. To involve
the time-dependency of the absolute phase measurements
in the incoherent CW measurement setup, the QCHEKF
extends the HEKF’s constant velocity model via a constant
frequency model for each beacon–receiver pair. To estimate
this phase–frequency relation between each beacon–RX pair,
the QCHEKF inherently uses the absolute position informa-
tion gathered from the phase differences. Afterwards, the con-
stant frequency model provides absolute phase measurement
estimations, which are used via the quasi-coherent phase
evaluation to improve the localization in comparison to the
pure phase difference-based HEKF. Due to the direct eval-
uation of phases, the QCHEKF completely omits hinder-
ing preprocessing steps, such as the AOA or the Doppler
frequency estimation. This novel concept is validated by
3D indoor localization results using a 24GHz measurement
setup with strong multipath propagation. For the presented
trajectory, the QCHEKF localization result yields a 2D root
mean squared error of 0.51 cm and a 2D maximum error
of 1.6 cm and, hence, is comparable to the best UWB local-
ization results, despite the usage of a narrow band measure-
ment setup. The QCHEKF is able to detect rapid changes of
direction, which is a standard problem in target tracking [31].

The remainder of this paper is organized as follows.
In Section II, the system model is presented, and the novel
QCHEKF is introduced in Section III. In Section IV, the
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FIGURE 2. Illustration of the measurement model for one antenna array,
receiving the signal of one beacon.

algorithm is validated via measurements. Finally, the article
is finishes with a conclusion.
Notation: In this paper, E(·) represents a vector, matrices are

denoted in bold letters, arg(·) evaluates the phase of a complex
number and | · | is the absolute value. The transposition of
a vector is calculated by (·)T. A normally distributed vector
with mean Eµ and covariance matrix C is denoted asN ( Eµ,C).
‖·‖2 denotes the Euclidean norm. In the following, all phases
will be mapped to (−π, π] using

mod′2π (·) =

{
mod2π (·) if mod2π (·) ≤ π
mod2π (·)− 2π if mod2π (·) > π.

(1)

II. MODEL DESCRIPTION
In this section, the systemmodel is described. First, the signal
model chain from the beacon to one RX array, as illustrated
in Fig. 2, is presented. Then, the measurement noise model
is discussed. Finally, the system model describing the move-
ment and oscillator behavior is presented.

A. SIGNAL MODEL
A moving beacon, located at time t at EpB(t) =

[xB(t), yB(t), zB(t)]T, emits the signal

sB(t) = AB cos(2π fBt + φB(t)), (2)

whereAB denotes the signal’s unknown amplitude, fB denotes
the approximate known transmit frequency, andφB(t) denotes
the transmit phase, which models both slowly varying fre-
quency deviation and phase noise [29]. The signal is received
by NR receive antenna arrays, with the nRth array comprising
NA,nR antennas. The receive signal at the nAth antenna of
the nRth array, located at EpnR,nA = [xnR,nA , ynR,nA , znR,nA ]

T,
is given by

snR,nA (t) = ABanR,nA cos(2π fB(t − τnR,nA (t))+ φB(t)), (3)

where anR,nA denotes the unknown signal attenuation caused
by path loss, the receive and transmit antenna characteristics,

and amplification factors in the processing chain, and

τnR,nA (t) =
‖EpB(t)− EpnR,nA‖2

c0
(4)

denotes the signal’s propagation time from the beacon to the
antenna, with c0 denoting the speed of light. At the nRth
antenna array, the signal is first mixed using a CW signal with
frequency fnR and time varying phase φnR (t), which is also
corrupted by phase noise, and then low-pass filtered, yielding
the baseband signal

sBB,nR,nA (t)

= LP
(
e−j(2π fnR t+φnR (t)) · snR,nA (t)

)
= ABanR,nAe

j
(
2π (fB−fnR )t−2π fBτnR,nA (t)+φB(t)−φnR (t)

)
= ABanR,nAe

j
(
2π1f ′nR t−2π fBτnR,nA (t)+1φ

′
nR

(t)
)

(5)

where 1f ′nR = fB − fnR denotes the frequency difference
and 1φ′nR (t) = φB(t) − φnR (t) denotes the time varying
unknown phase difference between the RX and the beacon,
which is corrupted by their combined phase noise. Assum-
ing the frequency difference 1f ′nR is small enough to sat-
isfy 1f ′nR �

1
2TS

, with TS denoting the time between two
sampling instances, the sampling theorem is satisfied and,
therefore, the complete setup can be described solely at the
discrete time instances t = kTS. From now on, for every
variable, the time step information is marked in the index as
variablek = variable(kTS).

To separate the influence of the measurement system’s fre-
quency and phase relations from the influence of the beacon’s
movement on the measured phases, the beacon–RX phase
difference 1φnR,k in (5) at time step k is defined as

1φnR,k = 2π1f ′nRkTS +1φ
′
nR,k . (6)

Expressing the slowly varying phase difference1φ′nR,k via
frequency variations enables the current phase difference to
be described as a summation of all past phase shifts, yielding

1φnR,k =

k∑
ν=1

2πTS1fnR,ν−1 +1φ
′

nR,0, (7)

where 1φ′nR,0 denotes the starting phase difference and the
overall frequency difference

1fnR,k−1 = 1f
′
nR +

1φ′nR,k −1φ
′

nR,k−1

2πTS
(8)

accounts for both the slowly drifting beacon–RX frequency
difference and the phase noise of both the beacon and the
RX [32]. Since the proposed algorithmwill estimate the phase
and frequency difference in a recursive manner, the beacon–
RX phase difference (7) at time step k is formulated recur-
sively as

1φnR,k = 1φnR,k−1 + 2πTS1fnR,k−1, (9)

as in [33]. Inserting the beacon–RX phase difference 1φnR,k
in (6) into (5) yields

sBB,nR,nA,k = ABanR,nAe
j
(
1φnR,k−2π fBτnR,nA,k

)
. (10)

VOLUME 9, 2021 133231



E. Sippel et al.: Quasi-Coherent Phase-Based Localization and Tracking of Incoherently Transmitting Radio Beacons

Evaluating the phase of (10) yields the measurement model
hnR,nA,k at the nAth antenna of the nRth array as

ϕnR,nA,k = hnR,nA,k (EpB,k ,1φnR,k )

= arg
{
sBB,nR,nA,k

}
= mod′2π

(
1φnR,k − 2π fB,kτnR,nA,k

)
. (11)

Stacking the measured phases yields the measurement
vector as

Eϕk = Eh(EpB,k ,1φ1,k , . . . ,1φNR,k )

=
(
· · · EϕTnR,k · · ·

)T
(12)

with the phases at one array

EϕnR,k =
(
· · · ϕnR,nA,k · · ·

)T
. (13)

B. MEASUREMENT NOISE MODEL
The phases, measured at spatially distributed antennas in
indoor scenarios, are corrupted by many different error
sources. In addition to the phase noise, which was introduced
in Section II-A, thermal noise, multipath propagation, and
unknown antenna phase characteristics disturb the measured
phases. In indoor scenarios, the multipath propagation rep-
resents the main error source for localization systems [34].
However, Kalman filters minimize a least-squares metric [35]
and, hence, the proposed QCHEKF treats multipath prop-
agation as additive white Gaussian noise (AWGN), which
impairs the phase measurements as

Eϕmeas,k = Eϕk + Ewϕ,k , (14)

with Ewϕ,k ∼ N (E0, σ 2
ϕ I). In doing so, the AWGN model

implies several assumptions on the measurement impair-
ments. First, it assumes that the line-of-sight (LOS) is never
blocked. Second, the AWGN model assumes that the impair-
ments on the LOS signal are sufficiently small to neglect
the non-linear distortion due to the phase extraction from
the complex valued measurement data. Third, the AWGN
model implicitly assumes the noise for different antennas
to be uncorrelated, which is not true for multipath propaga-
tion. Therefore, it is advisable to decorrelate the LOS signal
from the multipath propagation signal as much as possible
by using widely spaced RX antennas [11], [36]. Further,
the AWGN model implicitly assumes the noise for different
time instances to be uncorrelated. Since the measurement
errors caused by multipath propagation depend on the bea-
con’s position, this is mainly valid for fast fading channels
or a quickly moving beacon and, therefore, the proposed
QCHEKF is most suited for tracking applications. Beside
the uncorrelated noise assumption, (14) assumes normally
distributed noise with constant power, which implies the
complex valued measurements to be impaired by Gaussian
distributed noise with constant signal-to-noise ratio [37]. This
assumption is approximately valid, because both the multi-
path propagation receive power and the LOS signal power
decrease with increasing beacon–RX distance.

Because of the phases’ ambiguity, all phases are defined
within (−π, π] in this paper and, therefore, the noise term
Ewϕ,k in (14) might cause a large difference between the
measured Eϕmeas,k and the hypothetical phases Eϕk . Hence,
the measurement deviation between the measured and correct
phases must again be mapped to (−π, π]. Evaluating this
deviation yields

mod′2π
(
Eϕmeas,k − Eϕk

)
= mod′2π

(
mod′2π

(
Eϕk + Ewϕ,k

)
− Eϕk

)
= mod′2π

(
Ewϕ,k

)
≈ Ewϕ,k , (15)

which is valid as long as the noise standard deviation satisfies
σϕ � π . Despite the 2π-ambiguity, the noise shape in (14) is
preserved within the deviation and, therefore, a Kalman filter
based evaluation is well suited [38].

C. SYSTEM MODEL
Since the proposed algorithm mainly concerns the evaluation
of phases, which are measured at spatially distributed anten-
nas, arbitrary motionmodels can be incorporated.Most often,
a constant velocity approach [39], such as(

dB,k
vB,d,k

)
=

(
1 TS
0 1

)(
dB,k−1
vB,d,k−1

)
+

(
TS
1

)
wvd ,k , (16)

where dB,k ∈ {xB,k , yB,k , zB,k} is the beacon’s position for
each individual dimension, vB,d,k ∈ {vB,x,k , vB,y,k , vB,z,k}
denotes the beacon’s velocity for each individual dimension,
and wvd ,k ∼ N (0, σ 2

v ) denotes the velocity noise, is well
suited for localization purposes. Furthermore, the phase and
frequency relation of the complete beacon–RX processing
chain has to be modeled. In communications, digital phase
locked loops (PLL) are used to provide a stable phase relation
between a transmitter and a RX [40]. However, these PLLs
also correct phase deviations caused by beacon movements,
so the estimation of the phase and frequency relation between
each beacon–RX pair has to be incorporated into the local-
ization algorithm. Generally, PLLs can be well modeled via
a Kalman filter, as in [33]. For this purpose, similar to the
constant velocity concept, a constant frequency approach is
established for each beacon–RX pair as(
1φnR,k
1fnR,k

)
=

(
1 2πTS
0 1

)(
1φnR,k−1
1fnR,k−1

)
+

(
2πTS
1

)
wRX,nA,k +

(
2πTS
1

)
wB,k , (17)

where wRX,nA,k ∼ N (0, σ 2
nA ) denotes the frequency noise at

the nAth RX array andwB,k ∼ N (0, σ 2
B) denotes the beacon’s

frequency noise. In (17), the phase difference 1φnR,k−1 is
created by the recursive summation of the past phase changes
2πTS1fnR,k−1, as in (9). Note that the beacon’s frequency
noise term is the same for all RXs. Stacking the beacon’s
position dB,k and velocity vB,d,k for every dimension, and the
phase and frequency differences between each beacon–RX
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pair, 1φnR,k and 1fnR,k , yields the state vector Exk and the
complete system state model as

Exk = FExk−1 + GEwk , (18)

where all phases are mapped to (−π, π], and F denotes the
state transition matrix, which models the relation between
Exk−1 and Exk according to (16) and (17). The system noise
Ewk ∼ N (E0,Q) in (18) includes all occurring system noise
sources as Ewk = (wvx ,k wvy,k wvz,k wRX,1,k , · · · ,wRX,NA,k

wB,k )T, which aremapped in (18) via the noise shapingmatrix
G onto the system state according to (16) and (17). Here,
the covariance matrix Q contains the noise variances on the
main diagonal according to the noise vector Ewk . Using the
state vector Exk , the measurement function in (12) is denoted
as Eh(Exk ).

III. LOCALIZATION ALGORITHM
Because both the measurement deviation and the system
noise are assumed to be normally distributed, an extended
Kalman filter (EKF) based evaluation is well suited [38]. The
EKF works in a recursive predict-update manner, which will
be examined in the following section. Here, (·)k|k denotes an
estimate at time step k and (·)k|k−1 denotes the estimate at
time step k after the prediction step, meaning that the mea-
surements at time step k have so far not been incorporated.

A. PREDICTION STEP
The prediction step performs a linear extrapolation of the
current system state, see [41]. Despite the phase ambiguity,
the prediction step remains unchanged in comparison to a
standard EKF, which yields

Exk|k−1 = FExk−1|k−1,
Pk|k−1 = FPk−1|k−1FT

+ GQGT. (19)

For consistency, all phases should again be mapped to
(−π, π].

B. PHASE PREPROCESSING
Generally, the algorithm’s concept is to evaluate both the
phase differences between the antennas, which yield absolute
information about the beacon’s position, and the absolute
phases, which provide highly accurate relative information
about the beacon’s position. To calculate suitable phase dif-
ferences and choose one absolute phase, the phases at each
array are preprocessed using a matrix Tpre,nR as

Eϕ
pre
nR,k
= Tpre,nR EϕnR,k , (20)

where the preprocessing matrix Tpre,nR evaluates NA,nR − 1
phase differences between antenna pairs per array via the
first NA,nR − 1 rows, and the absolute phase at one antenna
per array via the last row. To assure that all antennas’ phase
information is incorporated, Tpre,nR needs to have full rank.
Hence, the evaluated phase differences should create a span-
ning tree between all antennas of the array [42] to assure a full
rank of the first NA,nR − 1 rows of Tpre,nR . Since the phase
difference unambiguity range of an evaluated antenna pair
increases with decreasing antenna distance, it is advisable

to choose the evaluated phase differences in Tpre,nR so that
each receive antenna is connected to the spanning tree via
the most closely spaced neighboring antenna. By stacking the
preprocessing matrices Tpre,nR of each array, the complete
preprocessing matrix Tpre evaluates the measured phases as

Eϕ
pre
meas,k = Tpre Eϕmeas,k . (21)

With

mod′2π
(
Tpre Eϕmeas,k − Tpre Eϕk

)
= mod′2π

(
Tpre Ewϕ,k

)
≈ Tpre Ewϕ,k , (22)

the measurement deviation remains normally distributed for
σϕ � π . Hence, the measurement error of the preprocessed
phase is normally distributed as Tpre Ewϕ,k ∼ N (E0,Rpre =

σ 2
ϕTpreTT

pre). The preprocessed residual Er between the mea-
sured phases and the hypothetical phases is then given by

Er(Exk ) = mod′2π
(
Tpre Eϕmeas,k − TpreEh(Exk )

)
. (23)

C. UPDATE STEP
Generally, the EKF update step minimizes a generalized
least squares metric [21], [35], incorporating both the mea-
surement and the predicted system state. By linearizing and
minimizing the likelihood function

J (Exk ) =
1
2
ErT(Exk )R−1preEr(Exk )

+
1
2
(Exk − Exk|k−1)TP−1k|k−1(Exk − Exk|k−1) (24)

starting from Exk|k−1, the update step

Kk = Pk|k−1HT
pre,k

(
Hpre,kPk|k−1HT

pre,k + Rpre

)−1
,

Eϕ
pre
meas,k = Tpre Eϕmeas,k ,

Exk|k = Exk|k−1 + Kkmod′2π
(
Eϕ
pre
meas,k − TpreEh(Exk|k−1)

)
,

Pk|k = (I − KkHpre,k )Pk|k−1, (25)

is established as shown in the appendix, where Hpre,k =

TpreHk holds, with Hk denoting the Jacobian of Eh(Exk ) at
Êxk|k−1, andKk denoting theKalman gain. Here, the difference
to the common EKF is the mod′2π (·) mapping of the phase
error. This is valid as long as the absolute differences between
themeasured Eϕmeas,k and the hypothetical phases Eh(Exk|k−1) do
not exceed π , which is also a direct result of the update step
derivation in the appendix.

D. INTERPRETATION
In [23], a HEKF was proposed that estimates the position
of an incoherent beacon. To cope with the incoherent mea-
surement process, the HEKF in [23] evaluated only phase
differences. In this paper, the novel QCHEKF extends this
concept by additionally evaluating absolute phases, because
these are muchmore sensitive to position changes, and enable
further improvement of localization accuracy in compari-
son to a pure phase difference evaluation. For this purpose,
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the absolute phase differences between the beacon and each
RX 1φnR,k have to be estimated. Assuming the absolute
phase behavior to be completely unknown, that is σ 2

nA →∞

and/or σ 2
B →∞, the same localization accuracy as in [23]

is achieved. If the frequency differences 1fnR,k remain suf-
ficiently stable, the QCHEKF is able to estimate the abso-
lute phase and frequency relation between each beacon–RX
pair by comparing the phase-difference based position esti-
mation with the absolute phase measurements. Thereafter,
when the phase and frequency relation is estimated with
sufficient accuracy, the QCHEKF is able to incorporate the
absolute phase measurements in the localization process,
further increasing the localization accuracy. For a reliable
localization based on the evaluation of absolute phases, a high
update rate is necessary to ensure that the absolute dif-
ferences between the measured Eϕmeas,k and the hypotheti-
cal phases Eh(Exk|k−1) at the predicted position remain less
than π . Otherwise, a position update towards an incorrect
position will occur. Assuming the phase noise to be small,
the main phase shifts occur because of position changes.
Unfortunately, the exact behavior of the predicted position is
difficult to analyze for every situation and, therefore, we sug-
gest choosing the maximum position difference between
successive measurement instances to be significantly less
than half of the wavelength. Note that the absolute position
estimation is still performed only based on the phase dif-
ferences and, hence, the QCHEKF still provides accurate
estimates for larger position deviations. Thus, in the event
of an erroneous position estimation, which is related to the
ambiguity of the evaluated absolute phases, the algorithm can
slowly correct the error by adopting the beacon–RX phase
difference 1φnR,k .

E. INITIALIZATION
Generally, Kalman filters exponentially converge toward the
system state after the initialization [43]. In the beginning,
the system state varies widely until the steady state is reached.
This procedure is well suited to estimate the position and
velocity for a pure phase difference evaluation, because phase
differences provide a sufficiently ambiguous range [23].
However, as discussed in the previous subsection, the eval-
uation of absolute phase measurements requires the absolute
differences between the measured Eϕmeas,k and the hypotheti-
cal phases Eh(Exk|k−1) at the predicted position to be less than
π , which contradicts strong variations in the position estimate
after initialization.

Hence, we propose starting the QCHEKF in aHEKF-based
manner, meaning that only the phase differences are evalu-
ated. For this purpose, coarse pre-estimates of the beacon’s
position EpB,0 and frequency fB,0 are assumed. To exclude the
absolute phases of the beacon-RX pairs from the localization
process in the beginning, the frequency variation is assumed
to be completely random in each sample via σ 2

nA → ∞

and/or σ 2
B → ∞. Then, the localization is conducted as for

a pure phase difference-based HEKF, while the frequency
and phase relations are estimated. To start the QCHEKF,

FIGURE 3. Measurement setup consisting of three receiving arrays, each
with 12 antennas, and one beacon, which is mounted on a robotic arm
and emits a 24 GHz signal using one antenna.

FIGURE 4. Array RX 1, measuring the phases at 12 patch antennas, which
are spread over an area of 25.4 cm × 9.1 cm. The arrows between
antenna pairs depict the spanning tree of the evaluated phase differences
in Tpre,nR . The antenna geometry was optimized for an efficient
HEKF-based phase difference evaluation.

the variances σ 2
nA and/or σ 2

B are set to their desired values.
Since the beacon’s position and velocity are already roughly
estimated, the QCHEKF then incorporates the relative phase
and frequency relations, thereby increasing the localization
accuracy.

IV. EXPERIMENTAL VERIFICATION
In this section, localization measurements within the 24GHz
industrial, scientific, and medical (ISM) band are presented.
First, the measurement setup is described. Then, localization
results are shown and analyzed.

A. MEASUREMENT SETUP
The measurements are conducted within the setup shown
in Fig. 3. Because of the strong reflectors in the surrounding,
the considered environment depicts a challenging multipath
scenario. The measurement setup consists of NR = 3 iden-
tical receivers, each with NA,nR = 12 antennas, and one
beacon, which is mounted on a robotic arm. The antenna
geometry of each array with an aperture size of 25.4 cm ×
9.1 cm and the phase differences, which are evaluated by
Tpre,nR , are shown in Fig. 4. To incorporate absolute phase
measurements, the last row of Tpre,nR evaluates the absolute
phase measurement at antenna 1. The beacon’s 24GHz signal
is created via a voltage-controlled oven-controlled 50MHz
crystal oscillator (VCOCXO) with the use of a PLL. Accord-
ing to the data sheet, the oscillator provides a 10 s Allan
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deviation of approximately 4 · 10−11, which corresponds
to a frequency change of approximately 1Hz after 10 s for
the 24GHz CW signal. Note that the behavior is degraded
due to the acceleration force of the robotic arm [44]. At the
RXs, the received signals are converted to a low intermediate
frequency by mixing with slightly shifted 24GHz signals,
which are created by the identical VCOCXOs and PLLs as
used for the beacon. To compensate for phase mismatch,
coupling, and antenna position errors, the arrays have been
calibrated in-situ with 50 measurements at known positions
using the calibration concept proposed in [45]. Unfortunately,
the robotic arm is able to provide highly accurate positioning,
but not corresponding timing information when it performs
continuous movements. Therefore, a direct comparison of the
correct and the estimated beacon positions is not possible and
only the distance between the estimated beacon positions to
the overall trajectory can be evaluated here.

B. MEASUREMENT RESULTS
To assess the QCHEKF, the localization results are com-
pared to the results of a pure phase difference HEKF. Since
Tpre,nR evaluatesNA,nR−1 phase differences and one absolute
phase via the last row, a pure phase difference HEKF is
obtained by removing the last row of Tpre,nR and omitting
the constant frequency part in the system model. During the
measurement, the robotic arm is moved continuously along
a trajectory Eprob(t), which consists of 21 straight sections
at a constant height with a total trajectory length of 2.2m,
as shown in Fig. 5-7. While the trajectory parts with a linear
motion are well suited for tracking systems, the changes of
direction contradict the constant velocity model in (16) and
are challenging for tracking systems. The complete measure-
ment time was approximately 26 s, yielding measurements at
37,523 time instances, which corresponds to an update rate
of 1.4 kHz.

Typically, the localization errors are calculated by directly
comparing the estimated positions with reference positions.
However, since an exact time synchronization of the robotic
arm is not possible, each position estimate can only be
assessed via its minimal deviation from the trajectory as

dmin,k = min
t

∥∥∥ÊpB,k − Eprob(t)∥∥∥
2
. (26)

Hence, a root mean square error can be defined as

RMSE =

√∑
k d

2
min,k

K
, (27)

where K is the number of position estimations. The result-
ing RMSE can be interpreted as a 2D RMSE of a 3D
localization process, because it most often depicts the 2D
trajectory–beacon distance in the plane, which is orthogo-
nal to the straight line currently driven by the robotic arm.
Besides the RMSE, the maximal distance from the trajectory

dmax = max
k

dmin,k (28)

is used to assess the localization results.

TABLE 1. Used QCHEKF and HEKF parameters for all presented
measurement evaluations.

FIGURE 5. QCHEKF and HEKF localization result using 12 antennas,
yielding an array size of 25.4 cm × 9.1 cm.

To use the HEKF and QCHEKF, several parameters, sum-
marized in Table 1, have to be chosen. Despite the bea-
con’s position, which is known via the reference, the system
states are unknown and initialized by zeros. The correspond-
ing covariance matrices of the HEKF and the QCHEKF
are initialized via a diagonal matrix with large entries to
reflect a high uncertainty about the system state at the begin-
ning. The used noise parameters were estimated by hand
and are held constant for all subsequent evaluations. First,
the values for σϕ = 5◦ and σv ≈ 5.1 · 10−5 m

s were
chosen so that the HEKF’s performance was optimized.
Afterwards, σnA = σB ≈ 3.6 · 10−4Hz was determined so
that the QCHEKF’s performance was optimized. As dis-
cussed in Section III-E, the QCHEKF starts to involve the
phase frequency relation with the tenth measurement instance
by setting σnA = σB = 3.6 · 10−4Hz.

By evaluating the HEKF and QCHEKF using all 12 anten-
nas at all receivers with an aperture of 25.4 cm × 9.1 cm,
the localization results in Fig. 5 are obtained. The standard
HEKF already provides very accurate localization results
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FIGURE 6. QCHEKF and HEKF localization result using antennas 1-8,
yielding an array size of 6 cm × 9.1 cm.

FIGURE 7. QCHEKF and HEKF localization result using antennas 1-3,
yielding an array size of 2.5 cm × 2.5 cm.

with RMSE ≈ 0.78 cm. Note that the filter requires some
time to converge, so the localization results are evaluated
starting with the 1800th sample at approximately the first
change in direction at EpB,1800 ≈ [0.85m, 0.35m, 0.10m]T.
However, while the constant velocity model is well suited
for the straight trajectory sections, it struggles whenever
changes of direction occur. Then, the constant velocity model
is not able to compensate for localization errors, which most
often occur because of multipath propagation. The effect
is most visible at Epdev = [0.25m, 0.65m, 0.10m]. This
causes a maximal error of dmax ≈ 5.0 cm. In comparison,
the QCHEKF is able to trace the changes of direction, reduc-
ing the maximum error to dmax ≈ 1.6 cm and improving
the accuracy to RMSE ≈ 0.51 cm. The cumulative error
function is shown in Fig. 8. It can be observed that the
QCHEKF improves the localization accuracy whenever the

TABLE 2. Comparison of the localization results for the different
presented measurement evaluations.

FIGURE 8. Cumulative error distribution function for the different
evaluation cases and algorithms.

HEKF yields high errors due to stability issues induced by
model errors.

The accuracy of the standard HEKF mainly depends on
the array size and beacon distance, because these param-
eters directly influence the phase difference measurement
sensitivity [11]. Hence, the HEKF’s accuracy decreases for
smaller arrays. By only evaluating the phase differences of
antennas 1-8 in Fig. 4 at all arrays, the array size is reduced to
6 cm×9.1 cm, yielding the localization results in Fig. 6. Then,
the HEKF’s accuracy decreases to RMSE ≈ 1.3 cm and the
maximum error increases to dmax ≈ 8.7 cm. In comparison,
the QCHEKF yields RMSE ≈ 0.9 cm and dmax ≈ 3.4 cm.
The cumulative error function in Fig. 8 again validates the
QCHEKF’s ability to prevent high localization errors.

By reducing the array’s evaluated antennas to 1-3, which is
the minimum for a 2D array, an array of size 2.5 cm× 2.5 cm
is obtained. Now, the HEKF has difficulties reconstructing
the driven trajectory, as shown in Fig. 7, yielding RMSE ≈
3.0 cm and dmax ≈ 7.6 cm. In comparison to the localization
result with eight antennas per array, the maximum distance
error is slightly reduced, because of the smaller error at Epdev.
Overall, many large errors occur, as can be observed from the
cumulative error function in Fig. 8. The QCHEKF improves
the localization accuracy to RMSE ≈ 2.2 cm and dmax ≈

5.1 cm, and effectively prevents the high localization errors
in the cumulative error function in Fig. 8.
The RMSEs and maximal deviations of the different mea-

surement evaluations are summarized in Table 2. Gener-
ally, the measurements have shown that the QCHEKF is
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able to improve the localization accuracy compared to the
HEKF, particularly when the HEKF’s localization perfor-
mance deteriorates due to multipath propagation or a defi-
cient motion model. Visible in the cumulative error function
in Fig. 8, the potential improvement increases for smaller
arrays, because the phase differences become less sensitive
to position changes [11], whereas the sensitivity of abso-
lute phases does not scale with the array size. Hence, even
in the three-antenna case in Fig. 7, the QCHEKF provides
very accurate information about relative movements. This
can be seen by inspecting the localization behavior during
the changes of direction, where the HEKF’s phase difference
evaluation results in large localization errors.

V. CONCLUSION
In this paper, the novel QCHEKF was presented, which
incorporates the evaluation of absolute phase measurements
into incoherent PDOA localization systems to enable highly
accurate beacon tracking. Particularly relative motions can
be tracked precisely, enabling, for example, the detection of
a person’s tremor or mechanical vibrations. In comparison
to the UWB systems, the simultaneous tracking of many
targets is easily implementable via slightly frequency-shifted
beacons. The QCHEKF’s localization accuracy depends on
the stability of the frequency references used. Therefore,
the relationship between the oscillator’s frequency stability
and the localization accuracy should be studied in future
research. Localization accuracy could be improved further
by sharing the signal of a common oscillator to all receivers,
each with an individual PLL, and adopting the QCHEKF’s
system accordingly. In this paper, the QCHEKF relies on
the evaluation of the permanently available LOS between
the beacon and each receiver. To extend the QCHEKF for the
varying conditions in complex indoor measurement setups,
a detection of non-LOS scenarios, for example by an adaptive
noise estimation [46], is desirable.

APPENDIX
In this appendix, (24) is minimized using one Newton
step [47] beginning at the state prediction Exk|k−1. For this
purpose, Er(Exk ) is Taylor expanded at Exk|k−1 as

Er(Exk )

= mod′2π
(
Tpre Eϕmeas,k − TpreEh(Exk )

)
≈ mod′2π

(
Tpre Eϕmeas,k − Tpre

(
Eh(Exk|k−1)+Hk1Exk

))
= Er(Exk|k−1)−Hpre,k1Exk (29)

which is valid as long as the absolute differences between the
measured and the hypothetical phases do not exceed π , and
where 1Exk = Exk − Exk|k−1 holds. Inserting (29) in (24) yields

J (Exk ) ≈
1
2
(Er(Exk|k−1)−Hpre,k1Exk )TR−1pre

·(Er(Exk|k−1)−Hpre,k1Exk )+
1
2
1ExTk P

−1
k|k−11Exk .

(30)

The gradient of (30) is given by

grad(J (Exk ))

= −HT
pre,kR

−1
pre
(
Erk (Exk|k−1)−Hpre,k1Exk

)
+ P−1k|k−11Exk

= −HT
pre,kR

−1
preErk (Exk|k−1)−H

T
pre,kR

−1
preHpre,k Exk|k−1

−P−1k|k−1Exk|k−1 + (P−1k|k−1 +H
T
pre,kR

−1
preHpre,k )Exk . (31)

Evaluating grad(J (Exk ))Exk
!
= E0 yields the state vector

estimate as

Exk|k =
(
HT

pre,kR
−1
preHpre,k + P−1k|k−1

)−1 (
P−1k|k−1Exk|k−1

+HT
pre,kR

−1
pre
(
Er(Exk|k−1)+Hpre,k Exk|k−1

) )
= Exk|k−1 + KkEr(Exk|k−1), (32)

with

Kk =

(
HT

pre,kR
−1
preHpre,k + P−1k|k−1

)−1
HT

pre,kR
−1
pre

= Pk|k−1HT
pre,k

(
Hpre,kPk|k−1HT

pre,k + Rpre

)−1
, (33)

and(
HT

pre,kR
−1
preH + P

−1
k|k−1

)−1
= (I − KkHpre,k )Pk|k−1, (34)

as in [35]. Since the covariance matrix of a Gaussian distribu-
tion is equivalent to the inverse Hessian matrix of the likeli-
hood function [41], the inverse Hessian of (30) is evaluated as

Pk|k =
(
HT

pre,kR
−1
preHpre,k + P−1k|k−1

)−1
=

(
I − KkHpre,k

)
Pk|k−1 (35)

as in [35], where again, (34) was used.
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