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ABSTRACT Many believe that the successes of deep learning on image understanding problems can be
replicated in the realm of video understanding. However, due to the scale and temporal nature of video,
the span of video understanding problems and the set of proposed deep learning solutions is arguably wider
and more diverse than those of their 2D image siblings. Finding, identifying, and predicting actions are a
few of the most salient tasks in this emerging and rapidly evolving field. With a pedagogical emphasis, this
tutorial introduces and systematizes fundamental topics, basic concepts, and notable examples in supervised
video action understanding. Specifically, we clarify a taxonomy of action problems, catalog and highlight
video datasets, describe common video data preparation methods, present the building blocks of state-of-the-
art deep learning model architectures, and formalize domain-specific metrics to baseline proposed solutions.
This tutorial is intended to be accessible to a general computer science audience and assumes a conceptual
understanding of supervised learning.

INDEX TERMS Action detection, action localization, action prediction, action proposal, action recognition,

action understanding, video understanding.

I. INTRODUCTION

Video understanding is a natural extension of deep learning
research efforts in computer vision. The image understanding
field greatly benefited from the application of artificial neu-
ral network (ANN) machine learning (ML) methods. Many
image understanding problems—object recognition, scene
classification, semantic segmentation, etc.—have workable
deep learning “‘solutions.” FixEfficientNet-L2 currently
boasts 88.5%/98.7% Top-1/Top-5 accuracy on the Ima-
geNet object classification task [1], [2]. Hikvision Model D
scores 90.99% Top-5 accuracy on the Places2 scene clas-
sification task [2], [3]. High-resolution network - object
contextual representations (HRNet-OCR) with hierarchical
multi-scale attention (HMS) yields a mean intersection over
union (IoU) of 85.1% on the Cityscapes semantic segmen-
tation task [4], [5]. Naturally, many hope that deep learning
methods can achieve similar levels of success on video under-
standing problems.

Drawing from Diba et al. [6], semantic video understand-
ing is a combination of understanding the scene/environment,
objects, actions, events, attributes, and concepts. This article
focuses on the action component and is presented as a tutorial
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that introduces a common set of terms and tools, explains
basic and fundamental concepts, and provides concrete exam-
ples. We intend this to be accessible to a general computer sci-
ence audience and assume readers have a basic understanding
of supervised learning—the paradigm of learning from input-
output examples.

A. ACTION UNDERSTANDING
While the literature often uses the terms action and activity
synonymously [7]-[9], we prefer to use action in this article
for a few reasons. First, action is the dominant term used
across the field, so we would need a significant reason to
divert from that term. Second, the use of activity is generally
biased towards human actors rather than non-human actors
and phenomenon. Examples of non-human actors and phe-
nomenon performing actions include a dog running, a cloud
floating, and a wheel turning. We prefer action over activity
for its broader human and non-human applicability. Third,
activity recognition is a term already used in several non-
video domains [10]-[12]. Meanwhile, action recognition is
primarily a computer vision and video-based term.

But what is an action? Kang and Wildes [13] consider an
action to be ‘““a motion created by the human body, which
may or may not be cyclic.” Zhu et al. [14] define action
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FIGURE 1. Overview of action understanding steps (problem formulation, dataset selection, data preparation, model development, and metric-based
evaluation) and underlying principles (computational performance, data diversity, transferability, robustness, and understandability. This serves as the

framework for this tutorial.

as an ‘“‘intentional, purposive, conscious and subjectively
meaningful activity.” Several human action surveys create
a spectrum of action complexity from gestures to interac-
tions or group activities [9], [14], [15]. Unlike these surveys,
we use a broader definition of action, one that includes actions
of both human and non-human actors because: 1) video
datasets are being introduced that use this broader definition
[16], [17]; 2) most deep learning metrics and methods are
equally applicable to both settings; and 3) the colloquial
use of action has no distinction between human and non-
human actors. Merriam-Webster’s Dictionary and the Oxford
English Dictionary define action as ‘“‘an act done” and
“something done or performed,” respectively [18], [19].
Therefore, this article defines action as something done or
performed intentionally or unintentionally by a human or
non-human actor from which a human observer could derive
meaning. This includes everything from low-level gestures
and motions to high-level group interactions.

As shown in Fig. 1, action understanding encompasses
action problems, video action datasets, data preparation
techniques, deep learning models, and evaluation metrics.
Underlying these steps are computer vision and supervised
learning principles of computational performance, data diver-
sity, transferability, model robustness, and understandability.

B. RELATED WORK AND OUR CONTRIBUTION

Table 1 shows a selection of surveys and tutorials on action
understanding written in the last decade. Yet, few focus on
more than one or two action problems or present more than a
narrow coverage of datasets. Additionally, the majority only
consider a narrow (human) definition of actions and have lit-
tle or no discussion of metrics. Of the more recent examples,
Kong and Fu [27], Xia and Zhan [31], and Rasouli [32] are
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TABLE 1. Coverage of surveys and tutorials on action understanding.
Tabular information includes year of publication, action coverage: human
(H) and/or non-human (N), topic coverage: datasets (Ds), metrics (Mc),
models/methods (Md), and problem coverage: 1) action recognition;

2) action proposal; 3) temporal action proposal; 4) temporal action
localization/detection; and 5) spatiotemporal action
localization/detection.

Actions| Topics Problems
Survey/Tutorial Year [ H N |Ds Mc Md|1 2 3 4 5
Poppe [20] 2010|v v vV
Weinland et al. [21] 2011 |v v v v
Ahad et al. [22] 2011 |v v v v
Chaquet et al. [8] 2013 |V v v |V
Guo and Lai [15] 2014 |v v VvV
Cheng et al. [9] 2015 |v v VvV
Zhu et al. [14] 2016| v v v
Kang and Wildes [13] 2016| v v v VIV VY v
Zhang et al. [23] 2016| v v v |V v
Herath et al. [24] 2017 | v v v |V
Koohzadi and Charkari [25] 2017 |v v |V
Asadi-Aghbolaghi et al. [26] 2017 | v v v v
Kong and Fu [27] 2018| v v VvV
Zhang et al. [28] 2019|v v VvV v
Bhoi [29] 2019|v vV |V v v
Singh and Vishwakarma [30] 2019 |v v v v
Xia and Zhan [31] 20201 vV |V VY v v
Rasouli [32] 2020\ vV |V vV VY v
Yadav et al. [33] 2021 | v v VvV v
Ours 2021 vV |V vV VIV VV VYV

the most thorough in their independent directions. We recom-
mend these works for a more advanced analysis and compar-
ison of deep learning models. Relative to the literature noted
above, we present this article as a tutorial to introduce and
systematize a balance of topics across datasets, methods, and
metrics rather than a deeply technical methods-heavy survey.
To that goal, this tutorial contributes the following:

o Clear definitions of recognition, prediction, proposal,

and localization/detection video action problems.
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« An extensive catalog of video action datasets and dis-
cussion of those most relevant to each action problem.
Descriptions of the oft neglected, yet important methods
of video data preparation and feature extraction.
Explanations of common deep learning model building
blocks with domain-specific examples.

Groupings of state-of-the-art model architectures.
Formal definitions of evaluation metrics across the span
of video action problems.

This article is organized in the following way. Section II
defines and organizes action understanding problems.
Section III catalogs video action datasets by annotation type
which directly relates to the problems for which they are
applicable. Section IV provides an introduction to video data
and data preparation techniques. Section V presents basic
model building blocks and organizes state-of-the-art methods
into families. Section VI defines standard metrics used across
these problems, formally shows how they are calculated,
and points to examples of their usage in high-profile action
understanding competitions. Section VII summarizes and
concludes the tutorial. Note that because the breadth of topics
covered is large, we chose to confine the scope of this tutorial
to supervised learning as this is the dominant paradigm
employed for video action understanding.

Il. PROBLEMS

Several problems fall under the umbrella of action under-
standing. In this section, we introduce a taxonomy, provide
definitions, and indicate disagreements in the literature.

A. TAXONOMY

We organize six main action understanding problems into
overlapping classification and search bins. Classification
involves labeling videos by their action class. Search involves
temporally or spatiotemporally finding action instances.

1) DEFINITIONS

Action Recognition (AR) is the process of classifying a com-
plete input (either an entire video or a specified segment) by
the action occurring in the input. If the action instance spans
the entire length of the input, then the problem is known as
trimmed action recognition. If the action instance does not
span the entire input, then the problem is known as untrimmed
action recognition. Untrimmed action recognition is gener-
ally more challenging because a model needs to complete
the action classification task while disregarding non-action
background segments of the input.

Action Prediction (AP) is the process of classifying an
incomplete input by the action yet to be observed. One sub-
problem is action anticipation (AA) in which no portion
of the action is yet observed and classification is entirely
based on observed contextual clues. Another is early action
prediction (EAP) in which a portion, but not the entirety,
of the action instance is observed. Both AR and AP are
classification problems, but AP often requires a dataset with
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temporal annotations so that there is a clear delimiter between
a “before-action” segment and ‘“‘during-action” segment for
AA or between ‘“‘start-action” and “‘end-action’ for EAP.

Temporal Action Proposal (TAP) is the process of parti-
tioning an input video into segments (consecutive series of
frames) of action and inaction by indicating start and end
markers of each action instance. Temporal Action Localiza-
tion/Detection (TAL/D) is the process of creating temporal
action proposals and classifying each action.

Spatiotemporal Action Proposal (SAP) is the process
of partitioning an input video by both space (bound-
ing boxes) and time (per-frame or start/end markers of
a segment) between regions of action and inaction. If a
linking strategy is applied to bounding boxes across
several frames, the regions of actions that are con-
strained in the spatial and temporal dimensions are often
referred to as tubes or tubelets. Spatiotemporal Action
Localization/Detection (SAL/D) is the process of creating
spatiotemporal action proposals and classifying each frame’s
bounding boxes (or action tubes when a linking strategy is
applied).

2) LITERATURE OBSERVATIONS
This taxonomy and these definitions are intended to clarify
several term discrepancies in the literature. First, recogni-
tion and classification are sometimes used interchangeably
(e.g., [34]-[36]). We believe that should be avoided because
both recognition (an identification task) and prediction (an
anticipation task) require arranging inputs into categories
(i.e., classification). To use recognition and classification
synonymously incorrectly equates recognition and predic-
tion. Second, localization and detection are often used inter-
changeably (e.g., [37]-[39]). However, in this case, because
the task involves finding and identifying, we feel the terms are
appropriate. While detection appears slightly more prevalent
in the temporal action literature and localization appears
slightly more prevalent in the spatiotemporal action literature,
this article will remain neutral and use localization/detection
(L/D) together as a single term. Third, action proposal
and action proposal generation are used interchangeably
(e.g., [40]-[42]). We chose to use the former because proposal
can be defined as the act of generating a proposal. Proposal
generation is therefore redundant. An important takeaway is
that the literature contains many examples where different
terms refer to the same action problem (e.g., [29] and [43]).
Similarly, there are many examples where the same terms
refer to different problems (e.g., [44] and [45]). To compound
the issue, many video action datasets can be applied to more
than one of these problems. We encourage readers to pay
careful attention to these terms when venturing into this field.
Another notable observation from the literature is that
while TAP and TAL/D are sometimes studied independently,
SAP is not studied outside of a SAL/D framework. Therefore,
the remainder of this article does not refer to SAP indepen-
dently of SAL/D.
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FIGURE 2. An overview of the main action understanding problems. Video is depicted as a 3D volume where N frames are densely stacked along a
temporal dimension (left-to-right). Action recognition (upper left) shows how an action class label is assigned to the entirety of the video or video clip.
Action prediction (upper right) shows how an action class label is assigned to a yet unobserved or only partial observed portion of a video. Temporal
action proposal (middle left) shows how temporal regions of likely action are bounded by start and end frames. Temporal action localization/detection
(middle right) shows how action class labels are assigned to temporal regions of likely action that are bounded by start and end frames. Spatiotemporal
action proposal (bottom left) shows how “tubes” or “tubelets” are formed from bounding boxes across frames indicating spatiotemporal regions of likely
action. Spatiotemporal action localization/detection (bottom right) shows how action class labels are assigned to spatiotemporal tubes of likely action.

B. RELATED PROBLEMS
Here, we define a few problems related to, but not included
in, our main taxonomy and cite literature for further reading.

Action instance segmentation (AIS) is the labeling of
individual instances or examples of an action within the
same video even when these action instances may over-
lap in both space and time. Therefore, AIS is a con-
straint that can be placed on top of TAL/D or SAL/D.
For example, a model performing SAL/D on a video of
a concert may identify the frames and bounding boxes
sections where the audience is shown and label the pro-
posed temporal segment with the action “clapping.” Apply-
ing the AIS constraint would require the model to divide
the bounding boxes into each individual clapping member
of the audience and track these individual actions across
time. Useful action instance segmentation literature includes
Weinland et al. [21], Sahaetal. [46], Ji et al. [47], and
Saha et al. [48].

Dense captioning is the generation of sentence descriptions
for videos. This problem spans several of the video under-
standing semantic components and is worth noting because it
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is often paired with action understanding problems in public
challenges [49]-[52]. Similarly, video captioning datasets
(such as MSVD [53], MVAD [54], MPII-MD [55] and Activ-
ityNet Captions [56]) will sometimes be included in video
action understanding dataset lists. For more on video cap-
tioning, Li et al. [S7] present a survey on methods, datasets,
difficulties, and trends.

Action spotting (AS), proposed by Alwassel et al. [58],
is the process of finding any temporal occurrence of an action
in a video while observing as little as possible. This differs
from TAL/D in two ways. First, AS requires finding only a
single frame within the action instance segment rather than
start and end markers. Second, AS is concerned with the
efficiency of the search process.

Object tracking is the process of detecting objects and
linking detections between frames to track them across
time. Object tracking is a relevant related problem because
some metrics used for object detection in videos were
adopted in video action detection [59], [60]. We recommend
Yao et al. [61] for a recent and broad survey on video object
segmentation and tracking.
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lll. DATASETS

Data is critical to successful machine learning models. In this
section, we catalog video action datasets, describe the diver-
sity of foundational and emerging benchmarks, and highlight
competitions using these datasets that are the pinnacle drivers
of model development and progress.

A. VIDEO ACTION DATASET CATALOG

The last two decades saw huge growth in available video
action datasets. To the best of our knowledge, we organized
the most comprehensive collection of these datasets. We cata-
log over 130 video action datasets sorted by release year. Due
to the scale of this catalog, Table 2 shows a selection of thirty
datasets that are historically influential, current state-of-the-
art, or emerging benchmarks. The extended catalog can be
found in our online repository.'

1) CRITERIA
To be included in our catalog, a dataset must meet each of the
following criteria:

1) Released between 2004 and 2020.

2) Comprised of single-channel or multi-channel videos.

3) Includes full-video or video segment annotations.

4) Captures at least two action classes.

5) Utilizes at least one of the following types of anno-
tations: (C) action class labels, (T) temporal start/end
segment markers or frame-level labels, or (S) spa-
tiotemporal frame-level bounding boxes or masks.

2) TRENDS

Several trends emerge from this catalog. First, these datasets
grew considerably over the past two decades in both num-
ber of action classes and number of action instances. This
trend is present across all of the use cases and occurred over
several orders of magnitude. Larger datasets are essential for
training deep learning models with often millions of param-
eters. Second, datasets useful only for classification (mainly
AR) are considerably larger and more prevalent than tempo-
rally or spatiotemporally annotated datasets. This is expected
because temporal markers or spatiotemporal bounding boxes
are more challenging to create. An annotator may require
only a few seconds to identify whether a particular video
contains a given action but would need much more time to
mark the start and end of an action. Additionally, solving
AR is often considered a prerequisite for effective TAL/D or
SAL/D. Therefore, recognition research generally precedes
localization/detection research.

B. FOUNDATIONAL AND EMERGING BENCHMARKS
We organize datasets in three groups, those with:
1) only action class annotations primarily for AR;
2) temporal annotations most useful for TAP, TAL/D, and
sometimes AP; and
3) spatiotemporal annotations most useful for SAL/D.

1 https://github.com/hutch-matt/vau-tutorial/blob/master/
VideoActionDatasetCatalog-updated.pdf
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Because many of the earlier influential video action datasets
such as KTH and Weizmann are described at length in pre-
vious survey papers [8], [22], [27], we focus on the current
largest and highest quality datasets.

1) ACTION RECOGNITION DATASETS

Table 3 plots AR-focused datasets by number of classes and
number of instances. Here we describe some of the largest
and highest quality among them.

Sports-1M [72] was produced as a benchmark for com-
paring convolutional neural networks (CNNs). Examples of
the 487 sports action classes include “cycling,” ““snowboard-
ing,” and “‘american football.”” Note that some inter-class
variation is low (e.g., classes include 23 types of billiards,
6 types of bowling, and 7 types of American football). Videos
were collected from YouTube and weakly annotated using
text metadata. The one million videos are divided with a
70/20/10 training/validation/test split. On average, videos are
~5.5 minutes long, and about 5% are annotated with > 1
class. As one of the first large-scale datasets, Sports-1M was
critical for demonstrating the effectiveness of CNN architec-
tures for feature learning.

Something-Something [90] (a.k.a. 20BN-SOMETHING-
SOMETHING) was produced as a human-object interaction
benchmark. Examples of the 174 classes include hold-
ing something,” ‘‘turning something upside down,” and
“folding something.” Video creation was crowd-sourced
through Amazon Mechanical Turk (AMT). 108,499 videos
are divided with an 80/10/10 training/validation/test split.
Each single-instance lasts for 2—-6 seconds. A second and
larger version [79] was released in 2018. It also added object
annotations, reducing label noise, and improving video res-
olution. These are important benchmarks for human-object
interaction due to their scale and quality.

The Kinetics dataset family was produced as ‘‘a large-
scale, high quality dataset of URL links” to human action
video clips focusing on human-object and human-human
interactions. Class examples from Kinetics-400 [74] include
“hugging,” “mowing lawn,” and “washing dishes.” Clips
were collected from YouTube and annotated by AMT crowd-
workers. The dataset consists of 306,245 videos, and within
each class, 50 and 100 are reserved for validation and testing,
respectively. Each single-instance video lasts for ~10 sec-
onds. Additional videos and classes were added in 2018 [77]
and 2019 [82]. These are among the most cited human action
datasets in the field and continue to serve as a standard
benchmark and pretraining source.

NTU RGB-D [91] was produced for RGB-D human action
recognition. The multi-modal nature provides depth maps,
3D skeletons, and infrared in addition to RGB video. Exam-
ples of the 60 human actions include “put on headphone,”
“toss a coin,” and “‘eat meal.”” Videos were captured with a
Microsoft Kinect v2 in a variety of settings. The dataset con-
sists of 56,880 single-instance video clips from 40 different
subjects in 80 different views. Training and validation splits
are not specified. It was improved in 2019 [84] with additional

2
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TABLE 2. Thirty historically influential, current state-of-the-art, and emerging benchmarks of video action datasets. Tabular information includes dataset
name, year of publication, citations on Google Scholar as of May 2021, number of action classes, number of action instances, actors: human (H) and/or
non-human (N), annotations: action class (C), temporal markers (T), spatiotemporal bounding boxes/masks (S), and theme/purpose.

Action Actors Annotations
Video Dataset Year Cited | Classes Instances H N C T S Theme/Purpose
KTH [62] 2004 4,246 6 2,391 v v B/W, static background
Weizmann [63] 2005 2,068 10 90 v v human motions
Coffee & Cigarettes [64] 2007 526 2 246 v v movies and TV
Hollywood2 [65] 2009 1,488 12 3,669 | v v movies
VIRAT [66] 2011 634 23 ~10,000 v v surveillance, aerial-view
HMDBS5SI1 [67] 2011 2,428 51 ~17,000 v v human motions
UCF101 [68] 2012 3,183 101 13,320 | v v web videos, expand UCF50
THUMOS’13 [68]-[70] 2013 191 *101 13,320 | v v v' | web videos, extend UCF101
J-HMDB-21 [71] 2013 567 51 928 | Vv v v' | re-annotate HMDBS51 subset
Sports-1M [72] 2014 5,667 487 1,000,000 v v multi-label, sports
ActivityNet200 (v2.3) [73] 2016 1,118 200 23,064 v v v untrimmed web videos
Kinetics-400 [74] 2017 1,380 400 306,245 v v diverse web videos
AVA [75] 2017 404 80 >392.416 v v v atomic visual actions
Moments in Time (MiT) [16] 2017 212 339 836,144 v v v intra-class variation, web videos
MultiTHUMOS [76] 2017 305 65 ~16,000 v v multi-label, extends THUMOS
Kinetics-600 [77] 2018 115 600 495,547 v v extends Kinetics-400
EGTEA Gaze+ [78] 2018 94 106 10,325 v v v egocentric, kitchen
Something-Something-v2 [79] 2018 12 174 220,847 v v extends Something-Something
Charades-Ego [80] 2018 39 157 68,536 v v egocentric, daily activities
Jester [81] 2019 37 27 148,092 v v crowd-sourced, gestures
Kinetics-700 [82] 2019 96 700 ~650,000 v v extends Kinetics-600
Multi-MiT [17] 2019 10 313 ~1,020,000 | v v v multi-label, extends MiT
HACS Clips [83] 2019 64 200  ~1,500,000 | v v trimmed web videos
HACS Segments [83] 2019 64 200 ~139,000 v v extends and improves SLAC
NTU RGB-D 120 [84] 2019 168 120 114,480 v v extends NTU RGB-D 60
EPIC-KITCHENS-100 [85] 2020 8 97 ~90,000 | v v v' | extends EPIC-KITCHENS-55
AVA-Kinetics [86] 2020 17 80 >238,000 v v v adds annotations, AVA+Kinetics
AViD [87] 2020 5 887 ~450,000 v v v diverse peoples, anonymized faces
FineGym [88] 2020 25 10 4,883 v v v gymnastics w/ sub-actions
HAAS00 [89] 2020 2 500 ~10,000 v v v course-grained atomic actions

*Only 24 classes have spatiotemporal annotations. This subset is also known as UCF101-24.

classes, videos, and views. This serves as a state-of-the-art
benchmark for human AR with non-RGB modalities.

Moments in Time (MiT) [16] was produced with a focus
on broadening action understanding to include people,
objects, animals, and natural phenomenon. Examples of the
339 human and non-human action classes include ‘“‘running,”
“opening,” and ““‘picking.” Clips were collected from a vari-
ety of internet sources and crowd-annotated by AMT. Nearly
one million single-instance 3-second videos are divided with
aroughly 89/4/7 training/validation/test split. The dataset was
improved to Multi-Moments in Time (M-MiT) [17] in 2019,
increasing the number of videos, pruning vague classes, and
increasing the number of labels per video (2.01 million total
labels). MiT and M-MiT are interesting benchmarks because
of the focus on inter-class and intra-class variation.

Jester [81] (a.k.a. 20BN-JESTER) was produced as “a
large collection of densely labeled video clips that show
humans performing pre-defined hand gestures in front of
laptop camera or webcam.” Examples of the 27 human hand
gestures include “drumming fingers,” ‘“‘shaking hand,” and
“swiping down.” Data creation was crowd-sourced through
AMT and organized with a 80/10/10 training/validation/test
split. Each single-instance video lasts for ~3 seconds. The
Jester dataset is the first large-scale, semantically low-level
human AR dataset.

Anonymized Videos from Diverse countries (AViD) [87]
uniquely 1) avoids western bias by providing human actions
(and some non-human actions) from a diverse set of people
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and cultures; 2) anonymizes all faces to protect privacy; and
3) ensures that all videos are static with a creative commons
license. Most of the 887 classes are drawn from Kinetics [82],
Charades [92], and MiT [16] while removing duplicates and
any actions that involve the face (e.g., ““smiling””). 159 actions
not found in any of those datasets are also added. Web videos
in 22 different languages were annotated by AMT crowd-
workers. Approximately 450,000 videos were organized with
a 90/10 training/validation split. Each single-instance video
lasts between 3 and 15 seconds. We believe AViD will quickly
become a foundational benchmark because of the emphasis
on diversity of actors and privacy.

2) TEMPORALLY ANNOTATED DATASETS

Table 4 plots temporally annotated datasets by number of
classes and action instances. Here we describe some of the
largest and highest quality among them.

The ActivityNet dataset [73], [94] family was produced
for both action recognition and detection. Example human
action classes include “Drinking coffee,” ““Getting a tattoo,”
and “Ironing clothes.” ActivityNet 100 (v1.2) is a 100-class
dataset divided into a 4,819 videos (7,151 instances)
training set, a 2,383 videos (3,582 instances) validation
set, and a 2,480 videos test set. It was expanded to
ActivityNet 200 (v1.3) with 200-classes divided into a
10,024 videos (15,410 instances) training set, a 4,926 videos
(7,654 instances) validation set, and a 5,044 videos test set.
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FIGURE 3. Datasets with only action class annotations mainly useful for action recognition (AR). Note that the plot is log-scaled in both
dimensions. Datasets in the upper right (e.g., Kinetics-700, Sport-1M, AViD) have the greatest number of action classes as well as action
instances. Many of the earlier influential datasets were much smaller and can be found in the lower left (e.g., KTH and Weizmann).
Because space on the plot is limited, not all AR datasets are labeled. We recommend the catalog described in Section 111-A for more details.
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FIGURE 4. Datasets with temporal annotations useful for temporal action proposal (TAP), temporal action localization/detection (TAL/D), and
possibly action prediction (AP). Note that the plot is log-scaled in both action instances and action classes dimensions. The largest datasets
with the greatest number of action classes and action instances (e.g., HACS Segments, Charades, and EPIC-Kitchens-100) can be found in the
upper right. Even these “large” temporally annotated datasets are an order of magnitude smaller in both classes and instances than the
largest action recognition datasets. Also to note, the SLAC dataset [93] is excluded from this plot because while it has a very large number of
temporally annotated action instances, the dataset was of poor quality. HACS Segments was developed out of SLAC and has significantly

fewer temporally annotated action instances.

On average, action instances are 51.4 seconds long. Web
videos were temporal annotated by AMT crowd-workers.
ActivityNet remains as a foundational benchmark for TAP
and TAL/D because of the dataset scope and size. It is
also commonly applied as an untrimmed multi-label AR
benchmark.

Charades [92] was produced as a crowd-sourced dataset
of daily human activities (e.g., “‘pouring into cup,”’
“running,” and ‘‘folding towel”). The dataset consists
of 9,848 videos (66,500 temporal action annotations) with a
roughly 80/20 training/validation split. Videos were filmed
in 267 homes with an average length of 30.1 seconds
and an average of 6.8 actions per video. Action instances
average 12.8 seconds long. Charades-Ego used similar
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methodologies and the same 157 classes. However, in this
dataset, an egocentric (first-person) view and a third-person
view is available for each video. The dataset consists
of 7,860 videos (68.8 hours) capturing 68,536 temporally
annotated action instances. Charades serves as a TAL/D
benchmark along with ActivityNet, but it also useful as
a multi-label AR benchmark because of the high average
number of actions per video. Charades-Ego presents a multi-
view quality unique among large-scale daily human action
datasets.

MultiTHUMOS [76] was produced as an extension of the
dataset used in the 2014 THUMOS Challenge [95]. Exam-
ples of the 65 human action classes include “‘throw,” “hug,”
and “‘talkToCamera.” The 413 video (30 hours) dataset
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has 38,690 multi-label, frame-level annotations (an average
of 1.5 per frame). The total number of action instances—
where an instance is a set of sequential frames with the
same action annotation—is not reported. The number of
action instances per class is extremely variable ranging from
“VolleyballSet” with 15 to “Run” with 3,500. Each action
instance lasts on average for 3.3 seconds with some lasting
only 66 milliseconds (2 frames). Like Charades, the Multi-
THUMOS dataset offers a benchmark for multi-label TAP
and TAL/D. It stands out due to its dense multi-labeling
scheme.

VLOG [96] was produced as an implicitly gathered
large-scale daily human actions dataset. Unlike previous
daily human action datasets [90], [92], [97] in which the
videos were created, VLOG was compiled from internet
daily lifestyle video blogs (vlogs) and annotated by crowd-
workers. The method improves diversity of participants and
scenes. The dataset consists of 144,000 videos (14 days,
8 hours) using a 50/25/25 training/validation/test split. The
30 classes are the objects with which the person is inter-
acting (e.g., “Bag,” “Laptop,” and “Toothbrush”). Clips
are labeled with these hand/object classes and temporally
annotated with the state (positive/negative) of hand-object
contact. Because of the collection and annotation methods,
VLOG brings actions in daily life datasets closer on par with
other temporally annotated large-scale datasets.

HACS Segments [83] was produced as a larger AR and
TAL/D web-video dataset. Both HACS Segments and HACS
Clips (the AR portion) are improvements on the SLAC dataset
produced in the 2017 [93]. HACS uses the same 200 human
action classes as ActivityNet 200 (1.3). Videos were col-
lected from YouTube and temporally annotated by crowd-
workers. In HACS Segments 50,000 videos are divided with
a 76/12/12 training/validation/test split. The dataset contains
139,000 action instances (referred to as segments). Compared
to ActivityNet, the number of action instances per video
is greater (2.8 versus 1.5), and the average action instance
duration is shorter (40.6 versus 51.4). HACS Segments is an
emerging benchmark and provides a more challenging task
for human TAP and TAL/D.

3) SPATIOTEMPORALLY ANNOTATED DATASETS

Table 5 plots spatiotemporally annotated datasets. Here we
describe some of the largest and highest quality among them.
We also describe two smaller but still highly relevant datasets:
UCF101-24 and J-HMDB-21.

VIRAT [66] was created as ““a new large-scale surveil-
lance video dataset designed to assess the performance of
event recognition algorithms in realistic scenes.” It includes
both ground and aerial surveillance videos. Examples of the
23 classes include ‘“‘picking up,” “getting in a vehicle,”
and “exiting a facility.” The dataset consists of 17 videos
(29 hours) with between 10 and 1,500 action instances per
class. Due to the camera distance across varying views,
the human to video height ratio is between 2% and 20%.
Crowd-workers created bounding boxes around moving
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objects and temporal event annotations. While this is a
smaller dataset, VIRAT is the highest quality surveillance-
based spatiotemporal dataset and is used in the latest SAL/D
competitions [51], [52].

UCF101-24, the spatiotemporally labelled data subset of
THUMOS'’13 [69], was produced as part of the THUMOS’ 13
challenge. Examples of the 24 human action classes include
“BasketballDunk,” “IceDancing,” ‘““Surfing,” and ‘“Walk-
ingWithDog.” Note, that the majority of the classes are
sports. It consists of 3,207 videos from the original
UCF101 dataset [68]. Each video contains one or more
spatiotemporally annotated action instances. While multiple
instances within a video have separate spatial and temporal
boundaries, they have the same action class label. Videos
average ~7 seconds long. The dataset is organized into three
train/test splits. While a small dataset, UCF101-24 remains a
foundational benchmark for SAL/D.

J-HMDB-21 [71] was produced for pose-based action
recognition. Examples of the 21 human action classes
include ‘“brush hair,” “‘climb stairs,” and ‘“‘shoot bow.”
The dataset consists of 928 videos from the original
HMDB51 dataset [67] and is divided into three 70/30
train/test splits similar to UCF101. Each video contains one
action instance that lasts for the entire duration of the video.
2D joint masks and human-background segmentations were
created by crowd-workers. Because all of the action classes
are human actions, bounding boxes could easily be derived
from the joint masks or segmentation masks. Along with
UCF101-24, J-HMDB serves as an early foundational bench-
mark for SAL/D.

EPIC-KITCHENS-55 [98] was produced as a large-
scale benchmark for egocentric kitchen activities. Exam-
ples of 149 human action classes include ‘““put,” “open,”
“pour,” and ““peel.” Videos were captured by head-mounted
GoPro cameras on 32 individuals in 4 cities who were
instructed to film anytime they entered their kitchen. AMT
crowd-workers located relevant actions and objects as well
as created final action segment start/end annotations and
object bounding boxes. The 432 videos (55 hours) are
divided into a 272 video train/validation set, 106 video test
set 1 (for previously seen kitchens), and a 54 video test
set 2 (for previously unseen kitchens). These correspond to
28,561, 8,064, and 2,939 action instances, respectively. The
dataset was improved to EPIC-KITCHENS-100 [85] increas-
ing the number of videos, action instances, participants, and
environments. Annotation quality was also improved. This
dataset serves as a state-of-the-art egocentric kitchen activ-
ities benchmark.

Atomic Visual Actions (AVA) [75] was produced as the first
large-scale spatiotemporally annotated diverse human action
dataset. Examples of the 80 classes include ““swim,” “write,”
and ““drive.” The dataset consists of 437 15-minute videos
with an approximately 55/15/30 training/validation/test split.
When only using the 60 most prominent classes (i.e., exclud-
ing those with fewer than 25 action instances), the dataset
contains 214,622 training, 57,472 validation, and 120,322 test

VOLUME 9, 2021



M. S. Hutchinson, V. N. Gadepally: Video Action Understanding

Spatiotemporally Annotated Datasets
AVA
AVA-Kinetics
EPIC-KITCHENS-100
EPIC-KITCHENS-55

Actors
OH
O HN

Annotations

100000

g VIRAT o
¢ 10000
4 OkutamaAction EGTEAGaze+ C+T+S
i=4
5 DALY
§ 1w Hollywood-Localizati PIE ADL
ollywood-Localization
UT-Tower = UCFARG J-HMDB-21
CoffeeandCigarettes | V-Humaninteraction PEHAVE UAV-GESTURE LabelMe

100
CAD-1200) cAD-60

CollectiveActivity CAVIAR

4 5 7 10 15 20 30 40 50 70 100 150

Action Classes

FIGURE 5. Datasets with spatiotemporal annotations useful for spatiotemporal action proposal (SAP) and spatiotemporal action
localization/detection (SAL/D). Those with class labels and only spatial annotations have actions which span the entirety of the video or
video clip. Note the plot is log-scaled in both instances and classes dimensions. The largest of these datasets can be found in the upper right
(e.g., AVA, AVA-Kinetics, and EPIC-KITCHENS-100). Even these “large” spatiotemporally annotated datasets are an order of magnitude smaller
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than the largest action recognition datasets.

action instances. Videos were gathered from YouTube and
segments were annotated by crowd-workers. Ground truth
“tracklets” were calculated between manually annotated sec-
tions. Because of the dataset scale, AVA serves as a large-
scale multi-label benchmark for TAL/D.

The AVA-Kinetics dataset [86] was produced by using an
existing large-scale human action recognition dataset and a
spatiotemporal atomic action annotation schema. The dataset
combines a subset of videos from Kinetics-700 [82] and
all videos from AVA [75] for a total of 238,906 videos
with a roughly 59/14/27 training/validation/test split. For
each 10-second video from Kinetics, a combination of algo-
rithm and human crowd-workers created a bounding box
for the frame with the highest person detection. Crowd-
workers then labeled the set of action instances performed
by the person using the 80 possible action classes from
the AVA dataset. This dataset is an emerging benchmark
because it improves upon AVA by dramatically expanding
the number of annotated frames and increases the visual
diversity.

C. COMPETITIONS

Several competitions introduced state-of-the-art datasets,
galvanized model development, and standardized metrics.
THUMOS Challenges [69], [95], [102] were conducted
through the International Conference on Computer Vision
(ICCV) in 2013, the European Conference on Computer
Vision (ECCV) in 2014, and the Conference on Computer
Vision and Pattern Recognition (CVPR) in 2015. These pri-
marily focused on AR and TAL/D tasks. ActivityNet Large
Scale Activity Recognition Challenges [49]-[52], [73] were
held at CVPR from 2016 through 2020 and have slowly
expanded in scope encompassing trimmed AR, untrimmed
AR, TAP, TAL/D, and SAL/D competitions. Other challenges
were modeled off THUMOS and ActivityNet such as the
Workshop on Multi-modal Video Analysis and Moments
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in Time Challenge” held at ICCV in 2019. We provide an
overview of these highly visible competitions in Table 3.
We anticipate these competitions will continue to grow in
popularity in future years. Note that the metrics specified in
the table will be defined and described in Section VI. These
competitions are a useful place for finding the current state-
of-the-art models and methods. Check the “Top Results”
column of Table 3 for papers describing the best-performing
models.

IV. DATA PREPARATION

While some datasets are available in pre-processed forms,
others are presented raw—using the original frame rate,
frame dimensions, duration, and/or formatting. Data prepa-
ration is the process of transforming data prior to learning.
This step is essential to extract relevant features, fit model
input specifications, and prevent overfitting during training.
Key preparation processes include:

o Data cleaning is the process of detecting and removing
incomplete or irrelevant portions of the dataset. For
datasets that simply link to YouTube or other web videos
(e.g., [74], [771, [82], [83]), this step of determining
which videos are still active on the site could be very
important and affect the dataset quality.

o Data augmentation is the process of transforming data to
fit model input specifications and increase data diversity.
Data diversity helps prevent overfitting—when a model
too closely matches training data and fails to gener-
alize to unseen examples. Overfitting can occur when
the model learns undesired, low-level biases rather than
desired, high-level semantics.

o Hand-crafted feature extraction is the process of trans-
forming raw RGB video data into a specified feature
space to provide insights that a model may not be able to

2https :/[sites.google.com/view/multimodalvideo/home
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TABLE 3. Prominent video action understanding challenges 2013-2021.

‘Workshop Year  Conf. Problem  Dataset Metric(s) Top Result #Teams
THUMOS [69] 2013 ICCV AR UCF101 average accuracy 85.90 [99] 17
SAL/D UCF101-24 ROC AUC sloU@0.2 n/a n/a
THUMOS [95] 2014 ECCV AR UCF101+ mAP 0.71 [100] 11
TAL/D UCF101-20 mAP tloU@{0.1,0.2,0.3,0.4,0.5} 4,3,3,2,.1[101] 3
THUMOS [70], [102] 2015 CVPR AR UCF101+1 mAP 0.74 [103] 11
TAL/D UCF101-20 mAP tloU@{0.1,0.2,0.3,0.4,0.5} 4,4,3,2,2[104] 1
ActivityNet [73] 2016 CVPR AR ActivityNet 1.3 mAP, Top-1 accuracy, Top-3 accuracy ~ 93.2, 88.1 [105] 26
TAL/D ActivityNet 1.3 mAP-50, mAP-75, average-mAP 42.5 6
ActivityNet [49] 2017 CVPR AR ActivityNet 1.3 Top-1 error 8.8 [49] n/a
AR Kinetics-400 average(Top-1 error, Top-5 error) 12.4 [106] 31
TAP ActivityNet 1.3 AR-AN AUC 64.80 [107] 17
TAL/D ActivityNet 1.3 mAP tloU@0.5:0.05:0.95 33.40 [107] 17
ActivityNet [50] 2018 CVPR AR Kinetics-600 average(Top-1 error, Top-5 error) 10.99 [108] 13
AR MiT (full-track) average(Top-1 acc, Top-5 acc) 52.91 [109] 29
AR MiT (mini-track) average(Top-1 acc, Top-5 acc) 47.72 [110] 12
TAP ActivityNet 1.3 AR-AN AUC 71.0 [50] 55
TAL/D ActivityNet 1.3 mAP tloU@0.5:0.05:0.95 38.53 [40] 43
SAL/D AVA frame-mAP sIoU@0.5 20.99 [111] 23
ActivityNet [51], [112] 2019 CVPR AR Kinetics-700 average(Top-1 error, Top-5 error) 17.88 [113] 15
AR EPIC-KITCHENS-55 micro-avg Top-1,5 acc, macro-AP AR 41.4,25.1[114] 25
AP EPIC-KITCHENS-55 micro-avg Top-1,5 acc, macro-AP,AR 13.2,8.5[115] 8
TAP ActivityNet 1.3 AR-AN AUC 72.99 61
TAL/D ActivityNet 1.3 mAP tloU@0.5:0.05:0.95 39.7 23
TAL/D VIRAT Prare @miss gy 0.605 42
SAL/D AVA frame mAP sloU@0.5 34.25[116] 32
Multi-modal [117] 2019 ICCV AR Multi-MiT mAP 0.608 [118] 10
TAL/D HACS Segments mAP tloU@0.5:0.05:0.95 23.49 [119] 5
ActivityNet [52] 2020 CVPR AR Kinetics-700 average(Top-1 error, Top-5 error) 14.9 4
TAL/D ActivityNet 1.3 mAP tloU@0.5:0.05:0.95 42.79 [120] 55
TAL/D MEVA [121] avg(1-Ppiss) across TFA from 0-20%  0.350 11
TAL/D HACS Segments mAP tIoU@0.5:0.05:0.95 40.53 [122] 22
TAL/D HACS Clips+Seg. mAP tloU@0.5:0.05:0.95 39.29 [123] 13
SAL/D AVA-Kinetics frame mAP sloU@0.5 39.62 [124] 11
ActivityNet 2021 CVPR AR Kinetics-700-2020 [125]  average(Top-1 error, Top-5 erro) 14.0 27
AR TinyVIRAT [126] Fl-score 0.478 [127] 3+
TAL/D ActivityNet 1.3 mAP tloU@0.5:0.05:0.95 44.67 [128] 3+
TAL/D HACS Segments mAP tloU@0.5:0.05:0.95 44.29 [129] 22
TAL/D HACS Clips+Seg. mAP tloU@0.5:0.05:0.95 22.45[129] 13
TAL/D SoccerNet-V2 [130] average mAP per class 74.84 [131] 7
TAL/D MEVA avg(1-Ppiss) across TFA from 0-20%  0.425 9
SAL/D AVA-Kinetics frame mAP sloU@0.5 40.67 [132] 11

independently learn. With video data, motion represen-
tations are the most common extracted features.

While data cleaning is certainly important, this section
focuses primarily on augmentation and hand-crafted fea-
ture extraction because of the many video domain-specific
terms.

A. VIDEO DATA
Video is composed of a series of still-image frames where
each frame is made of rows and columns of pixels. Pix-
els are the smallest elements of raster images. In standard
3-channel red-green-blue (RGB) video, each pixel is a 3-tuple
with an intensity value from O to 255 for each of the three
color channels. RGB-D video contributes a fourth channel
that represents depth, often determined by a depth sensor such
as the Microsoft Kinect.?

As used throughout this article, a common abstraction to
represent video is a 3-dimensional (3D) volume in which
frames are densely stacked along a temporal dimension.

3 https://developer.microsoft.com/en-us/windows/kinect/
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However, with multi-channel pixels, this volume actually
has four dimensions. The desired order of these dimen-
sions can vary between software packages with (frames,
channels, height, width) known as channels first (NCHW)
and (frames, height, width, channels) known as channels
last NHWC). This order can lead to performance improve-
ments or degradation depending on the training environ-
ment (e.g., Theano* and MXNet® versus CNTK® and
TensorFlow).

B. DATA AUGMENTATION

1) GEOMETRIC AUGMENTATION METHODS

In the context of video, geometric augmentation methods are
transformations that alter the geometry of frames [133]. To be
effective, these must be applied equally across all frames.
If separate geometric transformations are applied on different

4https://deeplea.rning.net/ software/theano/
5https://mxnet.apache.org/versions/ 1.6/

6https ://docs.microsoft.com/en-us/cognitive-toolkit/
7https://WWW.tensorﬂow.org/
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FIGURE 6. Common video augmentations. The top row shows three geometic augmentations that affect geometry of the frames. These include resizing
which changes the height and width while either preserving or permuting the aspect ratio, cropping which removes pixels, and horizontal flipping which
mirrors across the vertical center axis. The middle row shows three photometric augmentations that affect the color-space of the frames. These include
color jittering which adjusts pixel color in an orchestrated way, edge enhancement which increases the definition of contours, and noise injection which
adjusts pixel color in a random way. The bottom row shows three chronometic augmentations that affect the temporal aspect of the video. These include
trimming which removes consecutive sections of frames, sampling which removes periodic frames, and looping which duplicates frame sequences and
adds that to the beginning or end of the original frame sequence. Frames are taken from the Moments in Time dataset [16] “washing” class.

frames, a video could quickly lose its semantic meaning.
Common geometric augmentations include:

o Resizing—the process of scaling a video’s frames from a
given height and width (%, w) to a new height and width
(W', w') via spatial up-sampling or down-sampling [134].
Ratio jittering [135] is resizing that permutes the aspect
ratio done for data diversification.

o Cropping—the process of transforming a video’s frames
from a given height and width (h,w) to a new,
smaller height and width (%', w') via removing exterior
rows or columns. Techniques include random cropping
[136]-[138] and corner cropping [139].

o Horizontal (left-right) flipping—the process of mirroring
a video’s frames across the vertical axis (i.e., reversing
the order of columns in each frame). Random horizon-
tal flipping is a popular and computationally efficient
method of introducing data diversity [136], [139]-[141].

Other geometric augmentation methods that are less

popular for video include vertical flipping, shearing,
piecewise affine transforming, and rotating. Shorten and
Khoshgoftaar [138] present a survey on image augmenta-
tion which describes some of these alternative techniques
that could easily be applied to video. Some might be more
likely to change the semantic meaning of actions. For
example, jumping is an action generally predicated on an
actor moving upward. Vertical flipping or a 180 degree
rotation would change the apparent direction of motion
possibly confusing the model into believing the action is
falling.
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2) PHOTOMETRIC AUGMENTATION METHODS

In the context of video, photometric augmentation methods
are transformations that alter the color-space of the pixels
making up each frame [133]. Unlike geometric augmentation,
these transformations can generally be applied on a per-frame
basis and are overall less common in the action understanding
literature. These include:

o Color jittering—the process of transforming a video’s
hue, saturation, contrast, or brightness. This can be
done randomly [140], [142], [143] or via a specific
adjustments [136], [144].

o Edge enhancement—the process of increasing the
appearance of contours in a video’s frames. In some
settings, this speeds up the learning process since it is
shown that the first few layers in convolutional neural
networks learn to detect edges and gradients [136].

Other photometric augmentation methods that may be

useful in future settings are superpixelization, random
gray [143], random erasing [138], and vignetting [143]. How-
ever, these are not only absent from the action understanding
literature but also uncommon in image understanding.

3) CHRONOMETRIC AUGMENTATION METHODS

Because the literature does not appear to have a term for trans-
formations that affect the duration of the video input, we refer
to these as chronometric augmentations following the naming
pattern of geometric and photometric. These transformations
are generally used to fit a model’s input specifications rather
than increase data diversity.
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o Trimming—the process of altering the start and end of
a video—essentially temporal cropping. This may be
useful to remove the portion of the video that does not
include the labeled action.

o Sampling—the process of extracting frames from a
video—essentially temporal resizing. This can be done
from specific frame indices [141], [145] or randomly
selected frame indices [139], [140].

o Looping—the process of repeating a video’s frames
to increase the duration—essentially temporal
padding [141]. This might be necessary when a video
segment has fewer frames than the model’s input
specifies.

C. HAND-CRAFTED FEATURE EXTRACTION

While shallow learning is less common since the deep learn-
ing revolution, several hand-crafted motion features have
found their way into state-of-the-art deep learning mod-
els [139]-[141], [145]. These motion representations gen-
erally fall under two classical field theories: Lagrangian
flow [149] and Eulerian flow [150]. Motion representations
are one way of capturing temporal information for a video.
This can be important because temporal or casual learn-
ing remains a significant challenge in the deep learning
field.

1) LAGRANGIAN MOTION REPRESENTATIONS

Lagrangian flow fields track individual parcel or particle
motion. In the video context, this refers to tracking pix-
els by looking at nearby appearance information in adja-
cent frames to see if that pixel has moved. The most
common Lagrangian motion representation is optical flow
(OF) [151]. Many methods exist for computing this fea-
ture: the Lucas—Kanade method [152], the Horn—Schunck
method [153], the TV-L1 approach [154], the Farneback
method [146], and others [155]. It is also possible to employ
a WarpFlow technique [156] to attempt to reduce background
or camera motion. This technique requires computing the
homography, a transformation between two planes, between
frames. OF is noted for its usefulness in action understanding
because it is invariant to appearance [157].

2) EULERIAN MOTION REPRESENTATIONS

Eulerian flow fields represent motion through a particu-
lar spatial location. In the video context, this refers to
determining visual information differences at a particu-
lar spatial location across frames. Two Eulerian motion
representations are RGB difference/derivative (dRGB) [135],
[139], [148] and phase difference/derivative (dPhase) [148].
RGB derivative is the difference between pixel color inten-
sities at equivalent spatial locations in adjacent frames.
To compute this, one frame is subtracted from another.
Phase difference requires converting each frame into the fre-
quency domain before taking the difference and converting
back to the time domain.
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V. MODELS

The past decade of action understanding research saw
a paradigm shift from primarily shallow, hand-crafted
approaches to deep learning where multi-layer artificial neu-
ral networks are able to learn complex non-linear relations
in structured data. In this section, we describe network
building blocks that are common across the diversity of
action understanding models and organize a variety of mod-
els into groups based on similar underlying architectures.
For brevity, we do not cover loss functions or methods of
supervising model training. We recommend exploring these
methods by examining the papers referenced throughout this
section.

A. MODEL BUILDING BLOCKS
1) CONVOLUTIONAL NEURAL NETWORKS
No deep learning architecture component has impacted
action understanding (and computer vision at large) greater
than convolutional neural networks (CNNs), also commonly
referred to as ConvNets. A CNN is primarily composed of
convolutional, pooling, normalization, and fully-connected
layers. For further details, a multitude of tutorials exist on
utilizing standard CNN layers (e.g., [158], [159]). CNNs are
useful in video understanding because the sharing of weights
dramatically decreases the number of trainable parameters
and therefore reduces computational cost compared to fully-
connected networks. Generally, deeper models (i.e., those
with more layers) outperform shallower models by increasing
the receptive field—the portion of the input that contributes
to the feature—of individual neurons in the network [160].
However, deep models can suffer from problems like explod-
ing or vanishing gradients [161].
1-Dimensional CNNs (C1D), 2-Dimensional CNNs
(C2D), and 3-Dimensional CNNs (C3D) are the backbone
for many state-of-the-art models and use 1D, 2D, and 3D
kernels, respectively. C1D is primarily applicable for con-
volutions along the time dimension of embedded features,
while C2D and C3D are primarily applicable for extracting
feature vectors from individual frames or stacked frames.
3D-convolution allows the for a temporal receptive field in
addition to the standard spatial one. Single-channel exam-
ples of 2D and 3D convolutions are shown in Fig. 8. Note
that when using multi-channel inputs, the convolutional
kernels must be expanded to include a depth dimension
with the same number of channels as the input tensor, and
the output is summed across channels. We briefly note
a few influential developments not unique to, but con-
sistently employed throughout, the action understanding
literature:
o Residual networks (ResNets) [162]—utilize skip con-
nections to avoid vanishing gradients.
o Inception blocks [163], [164]—utilize multi-size filters
for computational efficiency.
o Dense connections (DenseNet) [165]—utilize skip con-
nections between each layer and every subsequent layer
for strengthening feature propagation.
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dRGB OF

dPhase

FIGURE 7. Examples of hand-crafted video features. The first row shows the original RGB sampled video frames. The second row shows dense optical
flow (OF) computed using the Farneback method [146] and OpenCV packages [147] (color indicates direction). The third row shows RGB
difference/derivative ({RGB) between consecutive frames. The fourth row shows phase difference/derivative (dPhase) between consecutive frames
computed using the approach described in [148]. The video frames are from the Moments in Time dataset [16] “washing” class.
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FIGURE 8. Examples of 2D and 3D convolutional layers and max pooling
on single-channel image and video inputs. In the 2D (image) example,
each small “cube” in the input represents a 3-channel pixel. In the 3D
(video) example, frames (rows and columns of pixels) are stacked from to
back. Note that these filter kernels were chosen randomly and do not
necessarily lead to good embedded features.

o Inflated networks [141]—expand lower dimensional
networks into a higher dimension in a way that benefits
from lower dimensional pretrained weights (e.g., [3D).

o Normalization [166]—methods of suppressing the
undesired effects of random initialization and random
internal distribution shifts. These include batch nor-
malization (BN) [166], layer normalization (LN) [167],
instance normalization (IN) [168], and group normal-
ization (GN) [169].

Recently, many hybrid CNNs introduced new convolu-

tional blocks, layers, and modules. Some focus on reduc-
ing the large computational costs of C3D: P3D [170],
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R2+1D [171], [172], ARTNet [173], MFNet [174],
GST [175], and CSN [176]. Others focus on recogniz-
ing long-range temporal dependencies: LTC-CNN [177],
NL [173], Timeception [178], and STDA [179]. Some
unique modules include TSM [180] which shifts individual
channels along the temporal dimension for improved C2D
performance, TrajectoryNet [181] which uses introduces a
TDD-like [182] trajectory convolution to replace temporal
convolutions, and GSM [183] which introduces a gate-shift
module.

2) RECURRENT NEURAL NETWORKS

The second most common artificial neural network architec-
ture employed in action understanding is the recurrent neural
network (RNN). RNNs use a directed graph approach to
process sequential inputs such as temporal data. This makes
them valuable for action understanding because frames (or
frame-based extracted vectors) can be fed as inputs. The
most common type of RNN is the long short-term memory
(LSTM) [184]. An LSTM cell uses an input/forget/output
gate structure to perform long-range learning. The second
most common type of RNN is the gated recurrent unit
(GRU) [185]. A GRU cell uses a reset/update gate structure to
perform less computationally intensive learning than LSTM
cells. Several thorough tutorials cover RNN, LSTM, and
GRU usage and underlying principles (e.g., [186]-[189]).

3) FUSION

The processes of combining input features, embedded fea-
tures, or output features are known as early fusion, mid-
dle fusion (or slow fusion), and late fusion (or ensemble),
respectively [72], [190], [191]. The simplest and most naive
form is averaging. However, recently attention mechanisms,
processes that allow a model to focus on the most relevant
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FIGURE 9. Action recognition model examples. RGB and Motion Single-Stream architectures train a 2D, 3D, or Hybrid CNN on one sampled feature.
Two-stream architectures fuse RGB and Motion streams. Temporal Segmentation architectures divide a video into segments, process each segment on a
single-stream or multi-stream architecture, and fuse outputs. Two-stage architectures use temporal segmentation to extract feature vectors and feed
those into a convolutional or recurrent network. Please note that this is a limited selection of many action recognition model architectures. For example,

models that use recent vision transformers for video are not included above.

information and disregard the least relevant information, have
gained popularity.

B. MODEL ARCHITECTURE FAMILIES

We focus here on grouping these methods into architecture
families under each action problem and pointing to useful
examples. These lists are neither exhaustive nor intended to
critique the field. As this article is cast as a tutorial, we hope
the reader gains a sense of the many varying directions of
ongoing study. Because of the rapidly evolving nature of
the field, we recommend checking online scoreboards® for
up-to-date performances on benchmark datasets.

1) ACTION RECOGNITION MODELS
As shown in Fig. 9, we broadly group AR architectures
into families of varying complexity. The first is single-
stream architectures, which sample or extract one 2D [72],
[192], [193] or 3D [194]-[197] input feature from a video
and feed that into a CNN. The output of the CNN is the
model’s prediction. While surprisingly effective at some tasks
[16], [72], single-stream methods often lack the temporal
resolution to adequately perform AR without the application
of state-of-the-art hybrid modules discussed in Section V-Al.
The second family is two-stream architectures with one
stream for RGB learning and one stream for motion fea-
ture learning [140], [141]. However, computing optical flow

8https://paqoerswithcode.com/ area/computer-vision
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or other hand-crafted features is computationally expen-
sive. Therefore, several recent models use a ‘“hidden”
motion stream where motion representations are learned.
These include MotionNet [198] which operates similarly
to standard two-stream methods, and MARS [199] and
D3D [200] which perform middle fusion between the
streams. Feichetenhofer ef al. [201] explores gating tech-
niques between the streams. While these models are generally
computationally constrained to two streams, more streams for
additional modalities are possible [202], [203].

Built out of single-streams, two-streams, or multi-streams,
the third family is temporal segmentation architectures which
address long-term dependencies of actions. Temporal Seg-
ment Network (TSN) methods [135], [139] divide an input
video into N segments, sample from those segments, and
create video-level prediction by averaging segment level
outputs. Model weights are shared between each segment
stream. T-C3D [204], TRN [205], ECO [206], and Slow-
Fast [116] build on temporal segmentation by performing
multi-resolution segmentation and/or fusion. Temporal Pyra-
mid Networks (TPN) [207] also perform segmentation across
multiple temporal levels with improved performance and
robustness over standard TSN and TRN implementations.

The fourth family, a higher level of complexity, is two-
stage learning where the first stage uses temporal segmen-
tation methods to extract segment embedded feature vectors
and the second stage trains on those features. These include
3D-fusion [145] and CNN+LSTM approaches [208]-[212].
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Ma et al. conducted a side-by-side comparison of C3D and
CNN+LSTM performance [213]. Temporal Excitation and
Aggregation (TEA) [214] also uses a two-stage-like approach
extracting frame-level features with a C2D prior to motion
excitation and multiple temporal aggregation.

Arguably, a fifth family of action recognition models that
employs vision transformers coalesced in 2020 and 2021.
Transformers, which made their debut in the natural lan-
guage processing (NLP) field in 2017 [215], are an encoder-
decoder sequence-to-sequence modeling schema that uses
self-attention rather than recurrent neural networks or con-
volution. Examples include TimeSformer [216] which uses
embeddings of frame patches augmented with positional
information as a sequence of tokens for the transformer,
VTN [217] which is based off a transformer model that
processes long sequences of tokens, ViViT [218] which
uses another pure-transformer architecture, and MViT [219]
which introduce resolution and channel scaling in combina-
tion with the vision transformer.

2) ACTION PREDICTION MODELS

Rasouli [32] noted that recurrent techniques dominate the
approaches. We group these highly diverse action predic-
tion models into generative or non-generative families. Gen-
erative architectures produce “future” features and then
classify those predictions. This often takes the form of
an encoder-decoder scheme. Examples include RED [220]
which uses a reinforcement learning module to improve
an encoder-decoder, IRL [221] which uses a C2D inverse-
reinforcement learning strategy to predict future frames,
Conv3D [222] which uses a C3D to generate unseen features
for prediction, RGN [223] which uses a recursive gener-
ation and prediction scheme with a Kalman filter during
training, and RU-LSTM [115], [224] which uses a multi-
modal rolling-unrolling encoder-decoder with modality
attention.

Non-generative architectures is a broad grouping of all
other approaches. These create predictions directly from
observed features. Examples include F-RNN-EL [225] which
uses an exponential loss to bias a multi-modal CNN+LSTM
fusion strategy towards the most recent predictions,
MS-LSTM [226] which uses two LSTM stages for
action-aware and context-aware learning, MM-LSTM [227]
which extends MS-LSTM to arbitrarily many modalities,
FN [228] which uses a three-stage LSTM approach, and
TP-LSTM [229] which uses a temporal pyramid learning
structure.

Many of these examples in this section were developed
for action anticipation (when no portion of the action is yet
observed), but they are also applicable for early action recog-
nition (when a portion of the action was observed). Addi-
tionally, action recognition models described in Section V-B1
may be applicable for some early-action recognition tasks if
they are able to derive enough semantic meaning from the
provided portion and the video context.
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3) TEMPORAL ACTION PROPOSAL MODELS

As shown in Fig. 11, TAP approaches can be grouped into
three families. The first family is fop-down architectures
which use sliding windows to derive segment-level proposals.
Examples include DAP [230] and SST [231] which use CNN
feature extractors and recurrent networks, S-CNN [37] which
uses multi-scale sliding windows, and TURN TAP [232]
which uses a multi-scale pooling strategy.

The second family is bottom-up-architectures which use
two-stream frame-level or short-segment-level extracted fea-
tures to derive ““actionness’’ confidence predictions. Various
grouping strategies are then applied to these dense predictions
to create full proposals. Examples include TAG [38] which
uses a flooding algorithm to convert these predictions into
multi-scale groupings, BSN [40] and BMN [233] which use
additional “startness” and ‘“‘endness” features for different
proposal generation and proposal evaluation techniques, and
RecapNet [234] which uses a residual causal network rather
than a generic 1D CNN to compute confidence predictions.
R-C3D [45] and TAL-Net [39] use region-based methods to
adapt 2D object proposals in images to 1D action proposals
in videos. Many of the bottom-up-architectures require non-
maximal suppression (NMS) of outputs to reduce the weight
of redundant proposals.

The third family is hybrid architectures which combine
top-down and bottom-up approaches. These architectures
generally create segment proposals and actionness scores
in parallel and then use actionness to refine the proposals.
Examples include CDC [235], CTAP [41], MGG [42], and
DPP [236].

4) TEMPORAL ACTION LOCALIZATION/DETECTION MODELS
As shown in Fig. 12 and introduced in Xia and Zhan [31],
there are two main families of TAL/D methods. The first fam-
ily is two-stage architectures in which the first stage creates
proposals and the second stage classifies them. Therefore,
you can pair any TAP model described in Section V-B3 with
an AR model described in Section V-B1. It is worth noting
that almost all papers that explore TAP methods also extend
their work to TAL/D.

The second family is one-stage architectures in which
proposal and classification happen together. This family
of architectures spans a wide variety of implementations.
Examples include SSAD [237] which creates a snippet-
level action score sequence from which a 1D CNN extracts
multi-scale detections, SS-TAD [238] in which parallel
recurrent memory cells create proposals and classifications,
Decouple-SSAD [239] which builds on SSAD with a three-
stream decoupled-anchor network, GTAN [240] which uses
multi-scale Gaussian kernels, Two-stream SSD [241] which
fuses RGB detections with OF detections, and RBC [242]
which completes boundary refinement prior to classifica-
tion. Recently, models that use graph convolutional networks
have shown promise. Examples include those proposed by
Zeng et al. [44] and Huang et al. [243].
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FIGURE 10. Action prediction model examples. Generative models create representations of future timesteps for prediction (typically via an
encoder-decoder scheme). Non-generative models is a broad-sweeping category for those which create predictions directly from observed sections of the
input.
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5) SPATIOTEMPORAL ACTION LOCALIZATION/DETECTION (region) proposal architectures which use various region pro-

MODELS posal algorithms (e.g., R-CNN [244], Fast R-CNN [245],
As shown in Fig. 13, there are two main families of Faster R-CNN [246], early+late fusion Faster R-CNN [247])
state-of-the-art SAL/D methods. The first is frame-level to derive bounding boxes from frame then apply a
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frame linking algorithm. Examples include MR-TS [248],
CPLA [249], ROAD [250], AVA I3D [75], RTPR [251], and
PntMatch [247].

The second family is segment-level (tube) proposal archi-
tectures which uses various methods to create segment-
level temporally-small tubes or “tubelets” and then uses a
tube linking algorithm. Examples of these models include
T-CNN [252], ACT-detector [253], and STEP [254].

A few state-of-the-art models do not fit nicely in either
of these families but are worth noting. Zhang et al. [255]
use a tracking network and graph convolutional network
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to derive person-object detections. VATX [256] augments
I3D approaches with a multi-head, multi-layer transformer.
STAGE [257] introduces a temporal graph attention method.

VI. METRICS

Choosing the right metric is critical to evaluating a model
properly. In this section, we define commonly used metrics
and point to examples of their usage. We do not cover binary
classification metrics as the action datasets we cataloged
overwhelmingly have more than two classes. Note that any
time we refer to an accuracy value, the error value can easily
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be computed as e = 1 — a. To clarify terms, we use following
notation across the metrics:
X = {x(l), ... ,x(")} as the set of n input videos,
o Y =y ...y} as the set of n ground truth annota-
tions for the input videos,
« M :X — Y as a function (a.k.a. model) mapping input
v1deos to prediction annotations,
o Y =W, ..., 3™} as the set of n model outputs,
o C ={1,..., m} as the set of m action classes, and
o TP; : N — {0, 1} as a function mapping rank in a list L;
to 1 if the item at that rank is a true positive, 0 otherwise.
Several of these metrics also use forms of intersection
over union (IoU), a measure of similarity of two regions.
Fig. 14 depicts spatial IoU (sloU), temporal IoU (tloU), and
spatiotemporal IoU (stloU).

A. MULTI-CLASS CLASSIFICATION METRICS
In action understanding, multi-class classification consists
of problems where the model returns per-class confidence
scores for each input video. This is done primarily with a
softmax loss in which the confidence scores across classes
for a given input sum to one. Formally, Vi € {1, ..., n}:
« ¥ € C is the single action class ground truth annotation
for input xV,
59 = {pl, ... pi) where p{” € [0, 1] is the probabil-
1ty that video x® depicts action j, and

o« 2 p](.’) = 1 if the model uses softmax output (as is

common).

We define the two common metrics below. Other met-
rics that we do not cover include F; score (micro-averaged
and macro-averaged), Cohen’s Kappa, PR-AUC, ROC-AUC,
partial AUC (pAUC), or two-way pAUC. Sokolava and
Lapalme [258] and Tharwat [259] present thorough evalua-
tions of these and other multi-class classification metrics.

1) TOP-k CATEGORICAL ACCURACY (ay)

This metric measures the proportion of times when the
ground truth label can be found in the top k predicted classes
for that input. Top-1 accuracy, sometimes simply referred to
as accuracy, is the most ubiquitous while Top-3 and Top-5 are
other standard choices [49]-[52], [73]. In some cases, several
Top-k accuracies or errors are averaged. To calculate Top-k
accuracy, let &g) C 3 be the subset containing the k highest
confidence scores for video x”. The Top-k accuracy (ax)
over the entire input set, where 1 is a 0-1 indicator function,
is defined as

1 < ;
==Y LaoOo. 1
ax n;yz)@) e

2) MULTI-CLASS MEAN AVERAGE PRECISION (mAP)

This metric is the arithmetic mean of the interpolated
average precision of each class, and it was used in
multiple THUMOS and ActivityNet challenges [49], [69],
[73], [95], [102]. To calculate interpolated average preci-
sion for a particular class j, the model outputs must be

134628

ranked in decreasing confidence of that class. Formally,
Vj € {1, ..,m}, L; is a ranked list of outputs such that Va, b €
{1.....n}p\” = p\”. The prediction at rank r in list L; is
a true positive if that video’s ground truth label y® is class j
(i.e., TPi(r) = 1if y) = j). Using these lists Ly, ..., Ly,
precision (P) up to rank k in a given list L; is defined as

k
1
Pi(k) = . > TP(r). )
r=1

Interpolated average precision (AP) over all ranks with
unique recall values for a given class j is calculated as

S, k) % TPj(k)
2= TPj(k)

Therefore, mean average precision (mAP) is calculated as

AP(j) = 3)

1 & ,
mAP = — ; AP(j). 4)

B. MULTI-LABEL CLASSIFICATION METRICS
In the context of action understanding, multi-label classifi-
cation consists of action recognition or prediction problems
in which the dataset has more than two classes and each
video can be annotated with multiple action class labels. As in
multi-class classification, the model returns per-class confi-
dence scores for each input. However, in multi-label prob-
lems, it is common for the outputs to be calculated through a
sigmoid loss. Unlike with softmax, confidence scores do not
sum to one. Formally, Vi € {1, ..., n}:
« Y0 C C because the ground truth annotation for input

x® is a subset of actlon classes and

o 0= {p( ), e ,pm } Wherep € [0, 1] is the probabil-

ity that video x¥ depicts action ;.

We define two common metrics below. For more informa-
tion on other metrics, such as exact match ratio and Hamming
loss, we recommend Tsoumakas and Katakis [260] and
Wu and Zhou [261] which present surveys of multi-label
classification metrics.

1) MULTI-LABEL MEAN AVERAGE PRECISION (mAP)

This is the same metric as described in Section VI-A2, and
it is calculated very similarly for multi-label problems. The
difference occurs when determining the true positives in each
class list. Here, a prediction at rank r in list L; is a true
positive if class j is one of the video’s ground truth labels
(ie., TPi(r) = 1ifj € Y®). From there, precision up
to rank k, interpolated AP for a particular class, and mAP
are calculated as shown in (2), (3), and (4). This metric is
used for MuliTHUMOS [76], ActivityNet 1.3 [73] when
applied as an untrimmed action recognition problem, and
Multi-Moments in Time [17]. One possible variant of multi-
label mAP involves only computing AP for each class up to
a specified rank k. Another variant involves only counting
predictions as true positives if the confidence score is above
a specific threshold (e.g., t = 0.5).
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2) Hit@k

This metric indicates the proportion of times when any of
the ground truth labels for an input can be found in the
top k predicted classes for that input. Once again, 1 and 5
are standard choices for k [72]. Formally, let j},(;) c 39
be the subset containing the £ highest confidence scores for
video x®. A “hit” occurs if the intersection of the ground
truth set of labels and the set of top-k predictions is non-
empty. Formally,

1< . ;
Hit@k = — D 30 . 5
i n;w 50 # 9 (5)

C. TEMPORAL PROPOSAL METRICS

Metrics for temporal action proposal are less varied than those
for classification. Below, we define the two main metrics
found in the literature. Here, the model returns proposed
temporal regions (start and end markers for each) and a
confidence score for each proposal. Formally, Vi € {1, .. .n}:

o Y = {s(]’), ...} is the ground truth annotation set of
temporal segments where s consists of start and end
markers for input video x?,

e 5O = (GV, V), ..} where cj(.i) € [0, 1] is the proba-
bility (confidence) that proposal segment fv](.l) matches a
ground truth segment for input x® and

o tIoU(sg), 3,(;)) is the temporal intersection over union
between the ground truth and a proposal.

Intuitively, a model that produces more proposals has a
better chance of covering all of the ground truth segments.
Therefore, temporal action proposal metrics include an aver-
age number of proposals (AN) hyperparameter that can be
manually tuned. AN is defined as the total number of propos-
als divided by the total number of input videos. Formally,

1<
AN = — $5D). 6
n;W| (6)

1) AVERAGE RECALL AT AVERAGE NUMBER OF PROPOSALS
(AR@AN)

Recall is a measure of sensitivity of the prediction model.
In this context, a ground truth temporal segment sg ) is counted
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as a true positive if there exists a proposal segment 32) that
has a tloU with it greater than or equal to a given threshold
t (e, TPY(1) = 1if doUGsy,5") > ). Recall is the
proportion of all ground truth temporal segments for which
there is a true positive prediction. Formally, recall (R) at a
particular threshold # and average number of proposals (AN)
is calculated as

n

1 ()
R()@AN = — — TP (r). 7
(0) ZLWQ:EGJM )

i=1j={1,...

Average recall is the mean of all recall values over thresh-
olds from 0.5 to #,,,4x (inclusive) with a step size of 5. In the
ActivityNet challenges, #,,,x = 0.95 and n = 0.05 [49]-[51].
Formally, average recall (AR) over thresholds from 0.5 to fiax
is calculated as

1 (tmax—0.5)/7

AR@AN = W ; R(0.5 + In)@AN. (8)
2) AREA UNDER THE AR-AN CURVE (AUC)

Another metric for temporal action proposal is the area under
the curve when AR@ AN is plotted for various values of AN.
Commonly, this is for values of 1 to 100 with a step size
of 1 [49]-[51]. Note that at an AN of 0 where no proposals
are given, AR is trivially 0. Using AR@AN from (8), AR-AN
AUC is calculated as

100
AR@AN — AR@ (AN — 1
AUC = Z ( ).

2

C))

AN=1

D. TEMPORAL LOCALIZATION/DETECTION METRICS
Like temporal proposal, there are two main metrics for
TAL/D and both are used across many challenges [49]-[52],
[731, [95], [102]. Here, the model returns proposed temporal
regions (start and end markers for each), a class prediction
for each proposal, and a confidence score for each proposal.
Formally, Vi € _{l, ..., n}
o Y = {(s(]l), l{ ), ...} is the ground truth annotation set of
(temporal segment, class label) pairs for input x) where

s consists of start and end markers and l;i) eC,
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o 30 = {(A(l) l(’) (l)) ..} where cj is the probabil-

20

ity (confidence) that proposal segment 5; matches a

ground truth segment labeled with class l; ) for input x,
and

. tIoU(sEf), fvg)) is the temporal IoU between a ground truth
segment and a proposal.

1) MEAN AVERAGE PRECISION AT tloU THRESHOLD

(mAP tloU@t)

This metric is the arithmetic mean of the interpolated average
precision over all classes at a given tloU threshold. First,
all proposals for a given class are ranked in decreasing
confidence. The difference from standard mAP described in
Section VI-A2 occurs when determining true positives. In this
case, a proposal segment 32) at rank 7 in list ; is counted as
a true positive if there exists a ground truth segment s ) that
has a tloU with it greater than or equal to a given threshold t,
the predicted class label if,') matches the ground truth class
label l,g'), and that ground truth segment has not already
been detected by another proposal higher in the ranked list
(ie., TP;(r) = 1iftloUGY, si) > rand I’ = 1"). This way,
no redundant detections are allowed. Precision up to rank &,
interpolated AP for a particular class, and mAP are calculated
using (2), (3), and (4). Note that in this case, 7 in (3) must be
replaced with the number of prediction tuples for the class j.

2) AVERAGE MEAN AVERAGE PRECISION (AVERAGE mAP)
The most common TAL/D metric is the arithmetic mean of
mAP over multiple different tloU thresholds from 0.5 to fiyax
with a given step size n. Commonly, #max = 0.95 (inclusive)
and n = 0.05 [49]-[52], [73]. Therefore, average mAP is
computed as

average mAP

= mAP tloU@0.5:tmax:0
(tmax—0.5)/n

1
= sy

n J=0

mAP tloU@(0.5 +jn). (10)

E. SPATIOTEMPORAL LOCALIZATION/DETECTION
METRICS
SAL/D involves locating actions in both time and space as
well as classifying the located actions. Here, the model gen-
erally returns frame-level proposed spatial regions (bounding
boxes), a class prediction for each box, and a confidence
score. Formallgl Viel{l,...,n}:
. y(’) ) b(ll), li')), ...} is the ground truth annotation
set of tuples for input x® where ];.(’) is the frame number

counting up from 1, b isa bounding box marking the
upper left corner, the box’s height, and the box’s width,
and [ € C,

C 50 = (GO0, 10, &P, '
dence that bounding box b](-’) at frame ];-(’) matches a

.} where ¢V is the confi-

134630

ground truth boundlng box on the same frame labeled
with class 1"

. tube/. isa spat10temp0ral tube in video x defined as
a linked set of bounding boxes b,(;),. bg') , bﬁ,?, ... with the
same class label (1" = 1) = I =
frames (k=1—1=m — 2— .,

. sIoU(b( bg)) is the spatial IoU between a ground truth
bounding box and a proposed bounding box (note: this
requires £\ = fb’ ) and

..) in adjacent

. stIoU(tube(l) tube ) is the spatiotemporal IoU between
a ground truth and proposed tubes.

1) FRAME-LEVEL MEAN AVERAGE PRECISION (FRAME-mAP)
This metric is useful because it evaluates the model inde-
pendent of the linking strategy—the process of developing
action instance tubes. It is utilized in several ActivityNet
challenges [50]-[52]. Like several metrics above, this is the
mean of the interpolated AP over all classes. For a given class,
every prediction tuple is ranked in decreasing confidence.
Here, a proposal box l;g) at rank r in list L; is counted as a
true positive if a ground truth box bg) exists on the same frame
with the same class label that has a sloU greater than or equal
to a given threshold 7 that was not already detected by another
proposed box higher in the ranked list (ie., TP;(r) = 1
if sloUGBY, by > ¢ and f° = £ and I = 1)
No redundant detections are allowed. Precision up to rank k,
interpolated AP for a particular class, and mAP are calculated
using (2), (3) and (4). Note that » in (3) must be replaced with
the number of prediction tuples for the classj (i.e., the length
of ranked list L;).

2) VIDEO-LEVEL MEAN AVERAGE PRECISION (VIDEO-mAP)
This metric is useful for evaluating the linking strategy
applied to connect bounding boxes of the same class label
in adjacent frames. When using frame-mAP, longer actions
take up more frames and weigh more when calculating AP
and mAP. However, using this metric, each action instance is
weighted equally regardless of the temporal duration of the
occurrence. This video-mAP metric was employed for use
with both AVA and J-HMDB-21 datasets [71], [75]. Once
bounding boxes of the same class label in adjacent frames
are linked into tubes, every prediction tube of that class is
ranked in decreasing confidence. Here, a proposal tﬁﬁe(a') at
rank r in list L; is counted as a true positive if a ground
truth tube tubeg exists with the same class label that has a
stloU greater than or equal to a given threshold 7 that was
not already detected by another proposed tube higher in the
ranked list (i.e., TP;(r) = 1 if stIoU(tube(l) tube(l)) > t and
lfl’) = l}()l)). No redundant detections are allowed. Precision up
to rank k, interpolated AP for a particular class, and mAP are
calculated using (2), (3) and (4). Note that in this case, nin (3)
must be replaced with the number of prediction tubes for the
class j.
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VIi. CONCLUSION

In this tutorial, we presented the suite of problems encapsu-
lated within action understanding, listed datasets useful as
benchmarks and pretraining sources, described data prepa-
ration steps and strategies, organized deep learning model
building blocks and model architecture families, and defined
common metrics for assessing models. We hope that this
tutorial clarifies terminology and expands your understanding
of these problems at the intersection of computer vision and
deep learning. This article has also demonstrated the similari-
ties and differences between these action understanding prob-
lem spaces via common datasets, model building blocks, and
metrics. To that end, we also hope that this can facilitate idea
cross-pollination between the somewhat stove-piped action
problem sub-fields.
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