
Received September 10, 2021, accepted September 21, 2021, date of publication September 24, 2021,
date of current version November 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115510

Research on Hybrid Index Based on 3D
Multi-Level Adaptive Grid and R+ Tree
YONGSHAN LIU1, TIANBAO HAO 1, XIANG GONG 1, DEHAN KONG 2,
AND JIANJUN WANG 1
1Department of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2Department of Information Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China

Corresponding author: Tianbao Hao (283454988@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61972334, in part by the 2019 Hebei
University Higher Education Science and Technology Research Youth Fund Project under Grant QN2019044, and in part by Qinhuangdao
Science and Technology Bureau (Research and Development of Science and Technology in Qinhuangdao) under Grant 201902A028.

ABSTRACT With the widespread application of Geographic Information System (GIS), three-dimensional
spatial data, as the reflection of the real world entity, has an increasing amount of data, and the phenomenon
of uneven data distribution appears. If a single spatial index structure is used to store and manage these
data, there will be a waste of storage space and low query efficiency. A hybrid index structure based on
3D multi-level adaptive grid and R+ tree was proposed to solve these problems. The index structure was
mainly composed of two structures, multi-level grid and R+ tree. Firstly, the data set was processed by
the multi-level automatic grid algorithm based on normal distribution, and the length, width and height of
the grid were obtained. Secondly, a multi-level adaptive grid structure was used to partition the data space
quickly and effectively, and the advantage of zero overlap of the intermediate nodes of the R+ tree was used
for efficient indexing. Finally, the maintenance and query algorithms of the index structure were given in
detail, which solved the problem of low index establishment and retrieval efficiency under the condition of
uneven distribution of massive data sets. In this paper, a data set subject to Gauss distribution was used to
simulate the distribution of three-dimensional data. Through a large number of experimental comparison
tests, it was proved that the hybrid index structure based on 3D multi-level adaptive grid-R+ tree proposed
in this paper had good performance in both index structure construction and query in the case of massive
data sets or uneven data distribution.

INDEX TERMS Adaptive algorithm, hybrid index, multilevel grid, R+ tree, spatial database.

I. INTRODUCTION
With the widespread application of Geographic Information
System (GIS), spatial indexing technology affects the effi-
ciency of spatial data query and GIS retrieval to a certain
extent. The storage efficiency and query performance of the
spatial database can be improved effectively by a reasonable
spatial index structure. For example, the catalogue of a book
can be regarded as an index. With this catalogue, the struc-
ture of the whole book can be understood more clearly, and
the pages that readers want to read can be located quickly.
Especially when dealing with a large amount of spatial data,
the search will take a long time if there is no reasonable and
efficient index structure. Therefore, the establishment of an

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

efficient index structure is essential for the retrieval of spatial
data.

In real life, there are many situations similar to the follow-
ing. The data may be denser in some areas, while in other
areas may be sparser, that is, the amount of data is large and
the data distribution is uneven. For example, the distribution
of shared bicycles. In urban centers, the number of shared
bicycles is large and densely distributed. In remote moun-
tainous areas, the number is small and unevenly distributed.
There are many similar examples, such as the distribution
of high-rise buildings in multi-center cities, the distribution
of atmospheric pollutants, the vegetation coverage, popula-
tion density, precipitation distribution, and so on. Grid index
structure and R tree index structure are used mostly in the
current spatial databases for data query processing. However,
in view of the large amount of spatial data and uneven data
distribution, if a single spatial index structure is used to store

146010 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8806-9568
https://orcid.org/0000-0002-0170-2982
https://orcid.org/0000-0002-4626-5675
https://orcid.org/0000-0002-4463-3200
https://orcid.org/0000-0002-5169-9232

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

and manage these data, there will be a waste of storage space
and low query efficiency. For example, if a single grid index
structure is used to partition the data, there will be a large
number of sub-grids without data nodes, and it will bring
unnecessary pressure to queries. If a single R tree is used to
build the index structure, the depth of the tree will increase
and a large number of intermediate nodes will appear, and it
will increase the space complexity and time complexity of the
system.

In three-dimensional space, the most commonly used data
models are Axle Aligned Bounding Box (AABB) model,
Oriented Bounding Box (OBB) model, 8-DOP Model and
convex hull model [1]. However, there is spatial redun-
dancy between the actual spatial object and the representation
model. Generally, the spatial redundancy of the AABBmodel
is greater than that of the OBB model. In order to make
the results of the query more accurate, the impact of spatial
redundancy should be minimized when the query is per-
formed. In the existing research on index structure, the most
widely used model for representing three-dimensional spatial
objects is the Minimum Bounding Box (MBB) model [2].
The MBB model is easier to represent the spatial objects
and the query speed is faster. However, compared with the
OBB model, 8-DOP model and convex hull model, the MBB
model is more prone to spatial overlap. Using it to build an
R tree index structure will lead to serious multi-path prob-
lems, thereby reducing the speed and accuracy of the query.
Therefore, the combined use of datamodel representation and
index structure establishment plays a vital role in queries in
three-dimensional space.

At present, the index structure for three-dimensional space
mainly includes R tree, octree, grid, or hybrid index and so
on [3]–[8]. The single index structure has many problems
when dealing with three-dimensional objects. The octree is
the expansion of the quadtree in three-dimensional space, and
it has the problem of depth imbalance. The grid index divides
the spatial area into sub-grids of equal or unequal size. Each
sub-grid contains a certain number of spatial objects. It has
a good I/O performance and fast search speed in general.
But this index structure wastes main memory buffer and the
secondary storage space as its catalog is loose. In addition,
when local matching query or range query is performed,
adjacent items may point to the same grid unit, so there may
be multiple scans of the same item. Hybrid index structure
mainly includes several modes such as octree and R tree or
grid tree and R tree [9], [10]. Hybrid index can take advantage
of the unique advantages of different index structures. It is
more flexible and more efficient than a single index structure.
Therefore, in recent years, the study on the structure of the
hybrid index has received widespread attention.

In order to solve the problem of large amount of data
and uneven data distribution in three-dimensional space,
an in-depth study had been conducted. The traditional MBB
model is used to represent the data in three-dimensional
space, and a hybrid index structure of grid and R+ tree is
adopted. The grid can dividemultiple sub-grids automatically

by an adaptive algorithm according to the spatial data dis-
tributed unevenly, and then the sub-grids are further divided
according to the threshold set by the user. The spatial data
within the sub-grid adopts a zero-crossing R+ tree index
structure to avoid multi-path problems during query. The
structure of the paper is as follows. In section 1, an overall
introduction of the paper was described. In section 2, a brief
summary of related work was given. In section 3, a hybrid
index structure was proposed based on three-dimensional
multi-level adaptive grid and R+ tree. The maintenance algo-
rithm of the hybrid index structure was described in section 4.
Section 5 described the query algorithm based on the index
structure, including precise point query and k-nearest neigh-
bor query. In section 6, the experimental environment was set
up and experimental comparison wasmade to prove the effec-
tiveness and robustness of the index structure. In section 7,
we gave the conclusion of this paper.

II. RELATED WORK
At present, the studies of spatial index structure are mainly
based on tree structure and grid structure. There have been
many researches based on tree structure, such as R tree
[11]–[14], quadtree [15], octree [16], and some other vari-
ant trees of R tree and so on [17]–[20]. As early as 1984,
the concept of R tree was proposed by Guttman et al. [21].
R tree is an extension of B+ tree, which could better solve
the problem of data storage and query. Sellis et al. [22] had
proposed R+ tree which is a variant of the R tree. This
index structure could avoid the problem of a large number
of overlaps effectively in the middle node of the R tree,
and improve the query of spatial data. R* tree was designed
by Guttman in 1990 [23]. It forced the node to be inserted
again using the principle of node optimization. R* tree could
improve the space utilization rate and reduce the number of
node splits. Yang and Huang [24] proposed a hybrid index
based on extended quad-tree and three-dimensional R tree
organization. This index structure was applied to large-area,
high-density ground point cloud data management and visu-
alization applications. Grid index structure was based on
the idea of hashing [25]. It built the index structure after
reducing the dimension by dividing the data set into ‘‘m×n’’
small blocks, and then encoded and stored it according to a
certain method. The structure of grid was simple, and it could
divide two-dimensional or three-dimensional space quickly
for efficient query. Huang et al. [26] described the grid struc-
ture systematically and proposed the concept of multi-level
grid to solve the problem of uneven data distribution in
two-dimensional space. In 2016, Tang et al. [27] proposed
an algorithm to divide the space into grids, and realized the
rapid division of spatial data in the form of z-sorting curves.

Each index structure had its own advantages, but also has
its own limitations. Scholars at home and abroad had con-
ducted in-depth research to improve the index structure and
make it have better query efficiency. Xu et al. [28] proposed
a nearest neighbor query algorithm based on space-filling
curve grid division. This algorithm sorted the points linearly

VOLUME 9, 2021 146011

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

in the grid, using the space-fulfilling curve’s dimensionality
reduction characteristics and data clustering characteristics.
The nearest neighbor could be obtained by visiting the points
in the grid where the query point was located and the points in
the nearby grid around it. A ciphertext sorting search encryp-
tion scheme based on B+ tree index structure was proposed
by Niu et al. [29]. The index structure of B+ tree was used
to improve the retrieval speed of ciphertext transactions on
the blocked chain. Zhang [30] analysed the electric power big
data and proposed a hybrid index structure based on the B+
tree to improve the query efficiency. Gong [31] proposed an
expansionmethod of three-dimensional R tree index that took
into account detail of multiple levels. Based on global opti-
mization and three-dimensional clustering analysis, the bal-
anced structure of index was established. And they designed
the node selection algorithm. In the algorithm, the search-
ing was from bottom to top firstly, and then from top to
bottom. The node splitting algorithm based on k-medoids
clustering algorithm was used. So the node size was uniform,
the shape was regular, and the overlap was reduced. At the
same time, they proposed an adaptive algorithm [32] based
on the extended structure of the 3D R tree index in 3D city
model. This algorithm could modify the multi-level of detail
definition parameters in real time according to the current
performance and adjust the complexity scene quantitatively.
A database management algorithm based on combined 2D
and 3D indexing of very large point-cloud data was proposed
by Wang and Guo [33], for extracting the point cloud in need
and improving the query efficiency. The algorithm used 3D-R
tree and QMBB tree index to access self-organized spatial
data and point cloud data. Sharifzadeh and Shahabi [34]
proposed a VoR-Rtree hybrid index built by R tree com-
bined with Voronoi diagram. It merged the Voronoi diagram
into the R tree. Using the index, the V diagram searched
the neighborhood quickly and reduced R tree overlapping
space for various nearest neighbor queries. Gong et al. [35]
proposed an efficient management method for point cloud
data based on octree and 3D R tree, which could solve the
problem of large-scale data management, but it would result
in wasting huge storage space when the octree was too deep.
Song et al. [36] proposed a hybrid tree spatial index structure
in 3DGIS. Octree and R* tree were used to solve the problem
that a single spatial index structure restricted retrieval per-
formance as the amount of data increased. The experiment
used distributed random data and the results were satisfactory,
but the R* tree still had intermediate nodes overlapping,
and the multi-path query still restricted the improvement
of index performance. Gong et al. [37] proposed a hybrid
index method based on 3d grid-R Tree. Although the problem
of uneven data distribution was solved to a certain extent,
the single-level grid used an artificial parameter to divide the
grid. It did not make sure the rationality of the division, and
resulted in data redundancy. The R tree hadmulti-path queries
that still restricted the improvement of index performance.

Among them, R+ tree was a variant tree of R tree. It could
realize the path clearly and uniquely when the data set was

searching. The R+ tree divided the objects that spanned
the subspace into two or more, and then stored each part
separately in the node of the tree. It could ensure that the
intermediate nodes would not overlap. However, the R+ tree
needed to be split up down to some child nodes, which would
increase the number of layers of the tree, and reduced the
efficiency and space utilization rate during the query. Grid
index was used for the 3D data set. If the sub-grids spanned
multiple grids at the same time, there would be redundancy
in the index. In this situation the space complexity would
increase. This paper proposed a hybrid index structure based
on 3D multi-level adaptive grid and R+ tree, which used a
multi-level grid automatic division algorithm based on nor-
mal distribution to divide the grid and obtainedm× n× t sub-
grids. If the number of the data set in the sub-grid exceeded
the threshold set by the user, the sub-grid continued to be
divided. The R+ tree was used to build the index structure in
the sub-grids. Since the intermediate nodes of the R+ tree had
zero overlap characteristics, it had high query performance.

III. 3D MULTI-LEVEL ADAPTIVE GRID AND R+ TREE
HYBRID INDEX STRUCTURE
A. MULTI-LEVEL ADAPTIVE GRID STRUCTURE DESIGN
Multi-level grid [38]–[40], which is a kind of grid structure,
is based on the idea of hashing. The idea is to divide the
entire data space horizontally and vertically into several equal
small blocks, each of which is a bucket. The identification
number of the entity object in the small block is put into the
corresponding bucket of the small block. In order to improve
performance, the small blocks are continued to be divided
until the cut-off condition ismet. Dividing themulti-level grid
is the first and most critical step to determine the performance
of the entire index structure.

The data structure of the index is generally composed of
two parts, an array and a single list. Each bucket of the grid
has a pointer to the previous physical node. There is no entity
in the bucket if the pointer is empty. In addition to the actual
label, the entity node also has a pointer to the next entity
and some other information indicating the subordinate spatial
index of the entity.

In the 3D space, the space is divided into m×n× t blocks,
an m× n× t grid have m× n× t buckets, and the i-th bucket
can be expressed by Buck[index](0 6 index < m × n × t),
the relationship between Buck and Block is as follows.

Buck[index] ↔ Block[i, j, k]

i = index/(n× t)

j = (index−i× n× t)/t

k = (index−i× n× t)%t (1)

Among them, when 1 6 index 6 m×n×t , ‘‘↔’’ indicates
a one-to-one correspondence. The number of layers of the i-th
bucket in the three-dimensional grid is represented by i, i =
index/(n × t), the number of rows of the i-th bucket in the
three-dimensional grid is represented by j, j = (index−i ×
n× t)/t , and the number of columns of the i-th bucket in the

146012 VOLUME 9, 2021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

FIGURE 1. 3D multi-level grid index structure.

three-dimensional grid is represented by k , k = (index−i ×
n× t)%t . Therefore, a one-to-one correspondence is formed.
If we know the bucket number, we can locate the grid position
quickly.

Taking into account that the grid is divided into too many
levels, it will lead to excessive storage space inevitably and
reduced query efficiency, so three levels of division is sup-
ported at most in the grid index of our paper. If the second or
third level uses buck structure, it will take up a lot of storage
space inevitably. Therefore, in order to save storage space and
improve query efficiency, the second and third level spatial
indexes are represented by a dynamic linked list.

The first-level division of the multi-level grid structure is
to divide the whole spatial space, and m × n × t sub-grids
Block[i, j, k](0 6 i < m, 0 6 j < n, 0 6 k < t) are obtained.
The second-level grid divides the Block[i, j, k](0 6 i < m,
0 6 j < n, 0 6 k < t) that exceeds the threshold range
again into m2 × n2 × t2 sub-grids Block2[i2, j2, k2](0 6 i2 <
m2, 0 6 j2 < n2, 0 6 k2 < t2), The third level grid
divides the Block2[i2, j2, k2](0 6 i2 < m2, 0 6 j2 <

n2, 0 6 k2 < t2) that exceeds the threshold value into
m3 × n3 × t3 small blocks, then the division is over. The
subscript 2 in the above formula represents a 2-level divi-
sion. The three-dimensional multi-level grid index structure
is shown in Figure 1. Buck[index] stores the first divided grid
Block[i, j, k] in the form of array, and the subsequent grid
divisions are stored in the form of linked list Obji. Each Obji
has a pointer to the next node. The pointer of the last node
points to null.

In order to split the grid reasonably, a definition of the
density of distribution (disd) is proposed. disd is the density
of the element distribution in a unit volume. The number of
objects in the sub-grid is represented by count , and the vol-
ume of the sub-grid is represented by volume, the calculation
formula is as follows.

disd =
count
volume

(2)

The density distribution size threshold is ε, and it is the
density threshold entered by the user. When disd > ε,
we consider the grid is a dense unit and need to be divided
again. When disd < ε, we consider the grid is a sparse unit,
and do not continue to divide it down.

The data structure designed for the multi-level grid is
expressed in C # language. According to the need, we give
the definitions in 3D space as follows.

FIGURE 2. Multi-level grid.

Definition 1 (Point): Point(ID, x, y, z) represents the point
in 3D space. ID is the unique identification of the point in 3D
space. x, y, z is the coordinates of the point on the axis.
Definition 2 (GridNode): GridNode(ID, gridCount ,

leftPoint , rightPoint , flag, List<Point> Data) represents the
node in multi-level grid. ID is the index number of the node,
which represents the unique identification of the sub-grid
formed after the grid is divided. The leftPoint and rightPoint
represent the space index coordinates of the lower left front
and upper right rear of the sub-grid respectively after the grid
is divided, which is used to represent the actual position of
the node cube in the space. The flag is a boolean type, used
to determine whether the grid needs to be divided into the
next level. If it is true, it means the number of objects in the
current subspace is still too large, and this subspace needs
to be re-divided. If it is false,the subspace no longer divide
down. The division of multi-level grids is shown in Figure 2.
The space is first evenly divided into 27 small blocks. The 3rd
block, the 12th block, and the 21st block exceed the threshold
and need to be further divided. The steps for dividing grid are
as follows.

Step 1. The boundary coordinates Xmax , Xmin, Ymax , Ymin,
Zmax , Zmin can be obtained by the given data set, then we can
get the root node on the X axis, Y axis, and Z axis by the
following formula.

LX = Xmax − Xmin
LY = Ymax − Ymin
LZ = Zmax − Zmin (3)

Step 2. The grid is divided for the first time. We use
the multi-level grid automatic division algorithm based on
normal distribution, and divide it into m × n × t basic grids
G000,G001, . . .Gijk , . . . (0 6 i < m, 0 6 j < n, 0 6 k < t).
Then in accordance with the order of the Z → Y → X axis,
we put the sub-grids formed after the first grid division are
sequentially coded. The next division of the sub-grid also
prioritizes the division of the sub-grid in the order of the

VOLUME 9, 2021 146013

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

Z → Y → X axis, we can remove the sub-grid that does
not exist in the grid to free up storage space.

Step 3. Continue to divide the sub-grid. We can count
the number of objects contained in the sub-grid space, and
calculate the distribution density in this sub-grid. According
to the degree of density, we can decide whether to divide
the sub-grid again. If the conditions for continued division
are met, divide it and all the elements into the corresponding
subset according to the coding order of the grid division in
step 2. For example,Gijk divides into eight sub-grids, asGijk1,
Gijk2, Gijk3, Gijk4, Gijk5, Gijk6, Gijk7, Gijk8.
Step 4. During the division process, two situations may be

encountered. An object falls completely in the grid, and we
store it in the linked list corresponding to the grid directly.
The object spans multiple grids, and we do not save it in
the divided sub-grid directly, but store it in the linked list
corresponding to the upper-level grid for better query.

Step 5: Step 3 is called recursively in a loop, until the
distribution density of all subsets is less than the threshold
we set, or the grid has been divided for three times, then all
the multi-level grid construction is completed.

The determination of grid parameters is the key factor
for meshing. Although the three-dimensional multi-level grid
and R+ tree hybrid index allows users to assign different
values to improve the adjustability of the spatial index, it adds
great difficulty to the user. Therefore, if the system can
adjust the spatial index parameters automatically in com-
bination with the given data set during the operation of
the spatial index, and obtain more reasonable and effective
three-dimensional grid spatial index parameters, it will be the
best solution.

Based on the idea, amethod that can adjust the spatial index
parameters m× n× t dynamically, is proposed to realize the
establishment of an efficient index according to the data set.
As the method is studied on the basis of normal distribution,
it is called a multi-level grid automatic division algorithm
based on normal distribution.

The multi-level grid automatic division algorithm based
on normal distribution is mainly used for the data that obey
Gauss distribution, and it still adapt to data that does not
meet normal distribution. The algorithm is mainly used to
deal with the length, width and height of all objects in the
three-dimensional space. Firstly, we judge whether the data
set of object obeys the normal distribution. If the data set does
not obey, a scale factor K (0 < K 6 1) is designed. This scale
factor less than 1 and can be used to control the side length
of the grid. If the data set satisfies the Gauss distribution,
the scale factor K will not play any role in the realization
of the whole algorithm. Therefore, when the data meets the
Gauss distribution, the ‘‘3σ criterion’’ and the calculated
MBB length, width, and height values are used to divide the
grid. If the data set does not meet the Gauss distribution,
the scale factor K is used, because the value obtained accord-
ing to µ + σ no longer meet the user’s requirements well,
and this scale factor needs to be adjusted. Experiments have
proved that when K is in the interval of 0.90-0.95, the query

efficiency is relatively high, so we no longer set the value of
K , and default it to 0.9. The calculation formulas for the mean
and standard deviation are shown below.

µ =
1
n

n∑
j=1

xj

σ =

√√√√1
n

n∑
j=1

(xj − x)2 (4)

The base idea of the algorithm is as follow. Firstly,
we take the length of all spatial entities of MBB in the
three-dimensional space as the study object, and sort the
sample quickly to obtain a set of arrays sorted from small to
large. Secondly, we use the normal distribution test algorithm
to calculate the mean value µ and standard deviation σ of
the sample, and use µ + σ as the initial value of the grid
division, and increase by 0.1σ each time by m times. Finally,
µ+ σ + m× 0.1σ is used as the length of the grid division.
Thus we get the number of rowsm of the grid division. Them
is determined by the proportional coefficient K . In the same
way, if the width of all spatial entities of MBB is used as a
sample, the number of grid divisions n can be obtained. If the
height of all spatial entities of MBB is taken as a sample,
the number of grid divisions t can be obtained. Taking the
length of the grid as a sample, the specific algorithm is shown
in Algorithm 1.

Firstly, the quick sort algorithm is used to sort the Dataset
P of the samples (x1, x2, . . . , xn) to get the set of array
sorted in ascending order, array[0], array[1], . . . , array[n−
1], the total number of samples is n. Secondly, we use the
formula 4 to get the mean value µ of the sample and the stan-
dard deviation σ . Finally, we judgeµ+σ+proportion×µ 6
array[i]. If (i + 1) \ n < K , proportion = proportion + 0.1,
i + +, the process continue to traverse.If (i + 1) \ n >
K , position = i + 1, the algorithm is end and return the
array[position-1].

B. R+ TREE INDEX STRUCTURE DESIGN
R+ tree index structure is similar to the R tree. It is a variant
of the R tree. It mainly solves the overlap problem of the
directory rectangles in the R tree and realizes the zero overlap
of the nodes in the middle of the tree, which improves the
query performance greatly.

The data structure designed for the multi-level adaptive
grid and R+ tree structure is described in C # language.
According to the need, we give the definitions of structure
as follows.
Definition 3 (Root): Root(maxNodeEntries, Dictionary

<int,Node> nodeMap, treeHeight , rootNodeId , Dictionary
<int,T> IdsToItems) represents the root of the multi-level
adaptive grid and R+ tree. maxNodeEntries is the maximum
number of leaf nodes. The node information of the structure
is stored in nodeMap, treeHeight represents the height of
R+ tree. Root node id is the rootNodeId , and its leaf node
items are recorded by IdsToItems.

146014 VOLUME 9, 2021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

Algorithm 1: Adaptive Algorithm
Input: Dataset P
Output: Array[position]

1 array[n]← Quicksort(x) ;
2 µ← 1

n

∑n
j=1 xj ;

3 σ ←

√
1
n

∑n
j=1(xj − x)2 ;

4 int position, proportion ;
5 for each i in n+ 1 do
6 if µ+ σ + proportion× µ 6 array[i] then
7 if (i+ 1) \ n < K then
8 proportion = proportion+ 0.1
9 end
10 else
11 position = i+ 1 ;
12 break ;
13 end
14 end
15 else
16 i++ ;
17 end
18 end
19 return Array[position− 1] ;

Definition 4 (Node): Node(nodeId , Rectangle MBB,
Rectangle[] entries, ids, level, entryCount) represents inter-
nal nodes of the multi-level grid and R+ tree. nodeId is
the id of the node. MBB is the bounding box of the node.
All the bounding boxes contained in the MBB is represented
by entries and their ids are ids. The number of the layer where
the node is located is level and the number of MBB in node
is entryCount .
Definition 5 (MBB): MBB(DIMENSIONS = 3, max,

min) represents the cuboid information of each node.
DIMENSIONS = 3 means the dimension is 3.max represents
theMBB’s upper right rear coordinates andmin represents the
MBB’s left front and bottom coordinates.

It can be seen from Figure 3 that the dashed boxes A,B,C,
and P are the directory rectangles, and they do not overlap
each other. When a spatial data object is in two directory
rectangles at the same time, it will be split into two spatial
objects and stored in two directory rectangles respectively.
For example, object G crosses A and P directory rectangles,
and it will be split into two objects and stored in the nodes A
and P. Thus, creating an unique search path by avoiding the
overlap of the directory rectangles.

C. THE OVERALL STRUCTURE DESIGN
The multi-level adaptive grid structure and the R+ tree
structure have been introduced above. And we propose a
combination of these two structures and a new hybrid index
structure based on the three-dimensional multi-level adaptive
grid and R+ tree.

In the process of dividing the multi-level adaptive grid and
R+ tree hybrid index structure, the three-dimensional space

FIGURE 3. R+ tree structure.

is divided intom×n× t equal sub-grids through the first grid
division. However, if the m, n and t are divided, the index
structure will occupy a huge storage space, the redundancy
and query time will also become larger and longer. The over-
all performance will decrease. Therefore, this paper proposes
an automatic multi-level meshing algorithm based on normal
distribution to solve the problem.

Firstly, we use the adaptive algorithm to divide the grid
reasonably. Then each sub-grid as the entire spatial range of
the R+ tree index structure is the root node of the R+ tree.
On this basis, the R+ tree index structure starts to be built.
Secondly, the information of the spatial object is stored in
the leaf node of the R+ tree. Therefore, the overall idea of
the three-dimensional multi-level adaptive grid and R+ tree
is to use the advantages of the multi-level adaptive grid to
divide the space area quickly at first, and divide the entire
data space reasonably. Finally, we use the R+ tree directory
rectangle that do not intersect and overlap each other to build
an R+ tree for the divided sub-grids, which can reduce the
space overlap, and improve the overall performance.

For the convenience of description and display the grid
structure, we take a two-dimensional multi-level grid as an
example, as shown in Figure 4. Supposing 3 objects are stored
in the grid at most, it will be graded down if the number
exceed it. The four point objects a, b, c, and d are all in the
same grid, corresponding to disk P, if we put them into page
P, it exceeds themaximumvalue that the grid can hold. At this
time, the grid is divided until the set conditions are met, then
the R+ tree index structure is built.
Figure 4 shows the physical storage mode and index struc-

ture of the three-dimensional spatial data in the system. After
the first partition of the grid, the data is stored in the form of
a matrix. The query efficiency is the highest, and the time
complexity is O(1). However, there are a large number of
sub-grids in the matrix without data, and a lot of storage
space is wasted. We need to release the sub-grids that have
no spatial data. Then there are fewer sub-grids in which the
number of data exceeds the threshold. Therefore, the linked
list is adopted for further grid partition, which reduces the
storage space and facilitates insertion and deletion operations.
Figure 5 is a logical structure of the entire hybrid index
structure. From the figure, we can easily see that the data is
displayed hierarchically. Firstly, the entire three-dimensional
spatial data is partitioned by an adaptive algorithm to gen-
erate many sub-grids, and the sub-grids continue to be par-
titioned when the number of data exceeds the set threshold.

VOLUME 9, 2021 146015

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

FIGURE 4. Grid space index structure.

FIGURE 5. Index structure of multi-level grid and R+ tree.

Secondly, when the grid partition is completed, the number
of data in the sub-grids is controlled within the threshold set
by the user. R+ tree index structure is used for the data in the
sub-grids. The depth of the R+ tree is controllable. Finally,
the leaf nodes of the R+ tree store the three-dimensional spa-
tial data, including the ID of the data, the spatial coordinate
value and other extended attributes of the data.

This hybrid index structure mainly uses a multi-level grid
automatic division algorithm to preprocess the data set. It can
ensure that the multi-level adaptive grid is reasonable and the
three-dimensional space is divided quickly when the data is
distributed unevenly and the amount of data is large. In order
to reduce the overhead of storage space, the grid is divided
into three levels at most. If the grid can’t be divided, the
R+ tree will be built on each sub-grid, and the data infor-
mation of the object will be stored in the leaf nodes of the
R+ tree. At this point, the construction of the three dimen-
sional multi-level adaptive grid and R+ tree is completed.
Next, the maintenance of the hybrid index structure and the
query based on the hybrid index structure are introduced, and
the excellent performance of the index structure is verified
through experiments.

IV. MAINTENANCE OF THREE-DIMENSIONAL
MULTI-LEVEL ADAPTIVE GRID AND R+ TREE
HUBRID INDEX STRUCTURE
After the construction of the three-dimensional multi-level
adaptive grid and R+ tree hybrid index has been com-
pleted, certain maintenance (for data insertion, deletion, and
query algorithms) of the index are required in the realiza-
tion of the index function in a real sense. In this section,
we introduce the insertion and deletion of hybrid indexes
only. We will focus on the introduction of query retrieval in
the next section. There are three types of spatial objects in
two-dimensional space, point, line, and area. So the insertion
algorithm and deletion algorithm are also relative to them.
In three-dimensional space, in addition to points, lines, and
area, spatial objects also have body types, so insertion and
deletion algorithms are the description of these four types.
For the sake of convenience and clarity to describe, all the
insertion and deletion operations involved here are for point
objects. As others are composed of points.

A. INSERT OPERATION
The insert operation algorithm of the three-dimensional
multi-level adaptive grid and R+ tree hybrid index structure
is shown in Algorithm 2.

The specific description of the algorithm is as follows.
According to the automatic division algorithm based on nor-
mal distribution, the grid can be divided. The grid where
the new inserted 3D point element object can be located by
formula 1, and the grid index ID can be obtained. Then,
the insert operation of the three-dimensional multi-level
adaptive grid and R+ tree will insert the sub-R+ trees of
the independent and non-overlapping multi-level grids. The
detailed process is as follows.

The root node is the incoming parameter node N , we start
the R+ tree insert operation from the root node. If N is a
non-leaf node, we insert the point object P directly according
to the principle of ‘‘minimum enclosing MBB’’. We find the
node with the smallest expansion after the MBB adds a new
object. If the expansion is the same, we check smallest index
of the original MBB and continue to traverse each node. If the
node is a leaf node, then return it, otherwise loop recursively
until the leaf node meets the condition. If N is a leaf node,
we judge whether the leaf node is full and whether there is
overflow after insertion. If leaf node is not full, we insert
the index information of the object P directly, and adjust the
R+ tree from the leaf node to the parent node. If leaf node is
full, object P is added to the leaf node and split operation is
performed.

The essence of node splitting is the insertion operation.
After the new node is added, the parent node does not have
its index information yet, so an index item needs to be added
to the parent node, it point to the newly added leaf node.
However, if the parent node overflows after adding the index
item, the parent node also needs to perform the same split
operation until the conditions are met and no overflow occurs.

146016 VOLUME 9, 2021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

Algorithm 2: Insert Algorithm
Input: Point P,GridsNode N
Output: Node CP

1 indexID← GetMultGrid(P);
2 Root ← N .getNodeID(indexID);
3 if Root.level = 0 then
4 if N is overfill then
5 CP← SplitNode(N);
6 end
7 else
8 Node(N)← P;
9 CP← N ;

10 end
11 end
12 else
13 CP← getMinSize(Root.MBR);
14 insert(N .CP,P);
15 end
16 return CP;

As shown in Figure 6, the split of the R+ tree is different
from the split of the R tree slightly. The split of the R tree
will propagate upwards only, but the R+ tree may propa-
gate downwards. The R+ tree reduces overlap by splitting
intermediate nodes. When the added non-leaf node covers or
overlaps multiple areas, we re-divide it to ensure that its child
nodes only belong to a certain intermediate node, and cannot
span multiple partitions region, which ensures the uniqueness
of the query path. If A is the parent node of B, and B is the
parent node of C , using a straight line to divide A, then B and
C also need to be split. Of course, the leaf nodes cannot be
split, because they are not affected by the effect of recursive
splitting, and will not cause the splitting of the underlying
nodes.

B. DELETE OPERATION
The delete algorithm of the three-dimensional multi-level
adaptive grid and R+ tree hybrid index structure is shown
in Algorithm 3.

The specific description of the algorithm is as follows.
According to the automatic division algorithm based on nor-
mal distribution, the grid can be divided quickly. The grid
where the deleted 3D point element object can be located by
formula 1, and the grid index ID can be obtained.

The delete operation of the three-dimensional multi-level
adaptive grid and R+ tree removes the sub-R+ trees of
the independent and non-overlapping multi-level grids. The
detailed process is as follows. The delete operation in
the R+ tree is traversed from the root node. We start to find
the specific location of the leaf node where the object P is
stored. Only when the location is found the corresponding
data item can be deleted. We need to set node N as the root
node, judge whether N is a leaf node, if N is a leaf node,

FIGURE 6. Node split.

Algorithm 3: Delete Algorithm
Input: Point P,GridsNode N
Output: Boolean Result

1 indexID← GetMultGrid(P);
2 Root ← N .getNodeID(indexID);
3 if Root.level = 0 then
4 if N contains P then
5 delete(P);
6 N .Count = N .Count − 1;
7 Result ← true;
8 end
9 else
10 Result ← false;
11 end
12 end
13 else
14 for each Node N in Root[indexID] do
15 if N .MBB intersect with P then
16 Delete(P,N) ;
17 end
18 end
19 end
20 Adjust(N .MBB);
21 return Result;

we check whether N contains object P, if it does, delete the
information of object P directly. Then we adjust the smallest
outer rectangle of the index item corresponding to its parent
node up to the root node. If the object is deleted, there are
no other data items in the leaf node, we need to release
the storage space where the leaf node was located. Then,
the index corresponding to the leaf node in its parent node
just delete the item. If the parent node has no other data items
during the process of deleting, the same operation need to be
performed.

VOLUME 9, 2021 146017

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

V. QUERY BASED ON HYBRID INDEX STRUCTURE
A. ACCURATE POINT QUERY
The algorithm of accurate point query based on the 3D
multi-level adaptive grid and R+ tree hybrid index structure
is shown in Algorithm 4.

Algorithm 4: Accurate Query Algorithm
Input: Point P,GridsNode N
Output: Point PosNode

1 indexID← GetMultGrid(P);
2 Root ← N .getNodeID(indexID);
3 for each Node n in Root[indexID] do
4 if n is leaf p is in n then
5 PosNode.index = index;
6 PosNode.path = each node id in Root;
7 end
8 end
9 return PosNode;

The algorithm is described specifically as follows. Accord-
ing to the automatic division algorithm based on normal
distribution, the grid can be divided, we could locate 3D point
element object in the grid by formula 1, and the grid index
number can be obtained. It traverses from the root node to
the leaf node, if the leaf node contains the data information
of the query point, the result will be returned. The query
result set represents the path taken to query the precise point.
3D multi-level adaptive grid and R+ tree root node → 3D
multi-level adaptive grid and R+ tree intermediate node→
3D multi-level adaptive grid and R+ tree leaf node, the end
sign is the final query of the leaf node.

B. K-NEAREST NEIGHBOR QUERY
K-nearest neighbor query [41]–[44] based on the 3D
multi-level adaptive grid and R+ tree can make use of the
advantages of the index structure, combined with the idea
of space division, and query the result set according to
certain rules. Operations of the intermediate nodes of the
lattice-R+ tree is pruned to obtain a preliminary candidate
set, and then we perform a refinement operation to obtain the
final result set. Query performance can be improved by this
way.

In the primary structure of the hybrid index, the specific
location of the grid center point in the spatial area is repre-
sented by the multi-level adaptive grid center node, so that it
can locate and determine the distance from the query point.
The calculation method for each central node of the 3D
multi-level adaptive grid and R+ tree primary structure is
shown in formula 5.

pcenter =
pli + pri

2
, i = x, y, z (5)

pli(x, y, z) represents the value of the coordinate point
of the left front boundary of each intermediate node of
the multi-level adaptive grid and R+ tree, and pri(x, y, z)

represents the value of the coordinate point of the upper right
boundary.

The k-nearest neighbor query algorithm based on
multi-level adaptive grid and R+ tree is described in detail.

Algorithm 5: K-Nearest Neighbor Query Algorithm
Input: Integer k , GridsNode ListNode
Output: List<Node> KList

1 KList ← KList(k);
2 BuckArray← BuildMulGrid(ListNode);
3 for each barray in BuckArray do
4 if q is in barray then
5 i = index/(n× t);
6 j = (index−i× n× t)/t ;
7 k = (index−i× n× t)%t ;
8 index ← Buck(T);
9 if Buck(T).count > k then
10 KList = Knearest(q,Buck(T));
11 end
12 else
13 i− 1← m1→ i+ 1;
14 j− 1← n1→ j+ 1;
15 k − 1← t1→ k + 1;
16 for each g in 27 do
17 T1 = m1 × (m× n)+ n1 × m+ t1;
18 if Buck(T).count + Buck(T1).count > k

then
19 KList = Knearest(q,Buck(T1));
20 end
21 end
22 end
23 end
24 end
25 return KList;

The algorithm is described as follows in Algorithm 5.
Firstly, a linked list KList is created to store the returned
result set of K objects. According to the automatic division
algorithm based on normal distribution, the grid structure can
be divided for pruning query, and the bucket structure can
be obtained. We use formula 1 to locate the grid where the
query object can be found, and the number of the bucket
obtained. Then we judge whether the number of objects in
the bucket is larger than the K value. If it is larger than the K
value, the k-nearest algorithm is called to perform k nearest
neighbor query and return the result set. If it is less than K ,
pruning query is required, that is, the sub-grid extends one
unit up and down on the X ,Y , and Z axes to expand the
range of the candidate set. According to the traversal order
of the (Z → Y → X) axis, the coding order of the sub-grid
is increased, and the coordinates of the grid where the object
is located are increased sequentially, and then we calculate
the number of the bucket and the number of objects in each
bucket. If the number of objects in the nearest intermediate
nodes is larger than the value of K , we add them to the

146018 VOLUME 9, 2021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

candidate set. Then the Knearest algorithm is called to obtain
the result set of the k-nearest neighbor query. Otherwise,
the process continues until the bucket structure is traversed,
then the Klist result set is returned, and the algorithm ends.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
The operating system of this experiment is based on the
64-bit Microsoft Windows10 system. The software used in
the experimental development environment is Visual Studio
2015, and the development language uses the C# program-
ming language. The hardware environment is set to: Intel(R)
Core(TM) i5-3230M CPU@2.60 GHz, quad-core, 8GRAM.

In order to verify the good query performance of the
three-dimensional multi-level adaptive grid and R + tree
hybrid index structure in different scenarios, this experi-
ment uses the software SpatialDataGenerator to generate
three-dimensional spatial objects randomly. The data set
coordinates are random numbers between 0 and 400 that fol-
low a normal distribution. The data set uses 50,000, 100,000,
and 200,000 data sets in size. The k values of k-nearest
neighbor query and Anti-k nearest neighbor query are 100,
200, 300, and 400, and the data sets are tested for different
scenarios. The specific data set format is shown in Table 1.

TABLE 1. Data set.

Each piece of the data represents the position and size
of a three-dimensional object. We use the form of ID and
coordinate set to represent the MBB model of the object,
such as (ID: Xmin Ymin Zmin Xmax Ymax Zmax). Take
the first piece of data in the data set for an example. ‘‘1’’ is
the ID of the first piece of the data. Each piece of data has
its ID followed by ‘‘:’’ and then 6 numbers. The first three
represent the lower front left coordinate value of the MBB
object and the last three numbers represent the upper right
rear coordinate value of the MBB object. Each number is
separated by a space.

It often takes a lot of time to construct the index structure.
The larger the data set, the longer it takes. This experi-
ment compares the construction time with other index struc-
tures based on different data sets. As shown in Figure 7,
the traditional R tree index structure, the grid-R tree index
structure and the three-dimensional multi-level adaptive
grid and R+ tree index structure are constructed based on
50000, 100000 and 200000 data sets. Under the same data
set, the indexing construct time of the three-dimensional
multi-level adaptive grid and R+ tree is shorter than that the
traditional R tree or the grid R tree. When the data set is
small, such as the size of the 50,000 data set, the time for the
three-dimensional multi-level adaptive grid and R+ tree and

FIGURE 7. Index structure construction comparison chart.

the traditional R tree, the grid R tree to build the index struc-
ture is very close, and the time is very short. However, with
the increase of the data set, such as the size of 200,000 data
set, the time required to build the index structure of the
three-dimensional multi-level adaptive grid and R+ tree is
much shorter than the traditional R tree. As the amount
of data increases, it can be seen that the indexing of the
three-dimensional multi-level adaptive grid and R+ tree is
more advantageous than the others.

The construction of the index is to insert each spatial data
object into the index structure. When the amount of data is
very large and distributed unevenly, the three-dimensional
multi-level adaptive grid and R+ tree index structure are
more advantageous. This is because through the divi-
sion of the three-dimensional multi-level adaptive grid and
R+ tree one-level grid structure, the original space has been
divided, which makes the data objects that appear distributed
densely in the original space range to be placed in inde-
pendent Non-overlapping accordingly and interdependent
three-dimensional multi-level adaptive grid and R+ tree sec-
ondary structure. On this basis, a three-dimensional R+ tree
index structure is established for each small spatial data
area. Compared with the traditional R tree index structure,
although some storage space will be wasted, because of the
characteristics of the grid structure, it can locate the node
location quickly where the search object is located, reducing
the coverage rate of the middle node MBB of the R+ tree,
without traversing every intermediate node, reducing I/O
overhead and improving indexing efficiency. The number of
nodes in the sub-grid is controlled within a certain threshold
set by user, and the R+ tree index structure is constructed
concurrently through the sub-threads, which improves the
efficiency and reduces the construction time.

For the k-nearest neighbor query under the three-
dimensional multi-level adaptive grid and R+ tree index
structure, the three-dimensional multi-level adaptive grid and
R+ tree, the grid R tree and the traditional R tree index
structure are compared under the same data set and different
k values. Table 2 shows a comparison of the query time of
three index structures k-nearest neighbors under the default
parameter of 50,000 normal distribution data sets.

VOLUME 9, 2021 146019

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

TABLE 2. k-nearest neighbor query time (different k values).

When the amount of data is very large and distributed
unevenly, the three-dimensional multi-level adaptive grid
and R+ tree index structure have more advantageous. This
is because through the division of the three-dimensional
multi-level adaptive grid and R+ tree one-level grid
structure, the original space has been divided quickly,
which makes the data objects that appear distributed
densely in the original space range to be placed in inde-
pendent non-overlapping accordingly and interdependent
three-dimensional multi-level adaptive grid and R+ tree sec-
ondary structure. On this basis, a three-dimensional R+ tree
index structure is established for each small spatial data
area. Compared with the traditional R tree index structure,
although some storage space will be wasted, because of the
characteristics of the grid structure, it can locate the node
location quickly where the search object is located, reducing
the coverage rate of the middle node MBB of the R+ tree,
without traversing every intermediate node, reducing I/O
overhead and improving indexing efficiency. The number of
nodes in the sub-grid is controlled within a certain threshold,
and the R+ tree index structure is constructed concurrently
through the sub-threads, which improves the efficiency and
reduces the construction time.

For the k-nearest neighbor query under the three-
dimensional multi-level adaptive grid and R+ tree index
structure, firstly, the three-dimensional multi-level adaptive
grid and R+ tree, the grid R tree and the traditional R tree
index structure are compared respectively under the same
data set and different k values.

As shown in Figure 8, as the value of k continues to
increase, and the time required for k-nearest neighbor query
under the three index structures increases. This is because the
larger the value of k , the more the number of objects to be
searched, and the more the distance between the query point
and the object has to be calculated, so the time will increase.
But it is not difficult to see that under the same k value,
the k-nearest neighbor query under the three-dimensional
multi-level adaptive grid and R+ tree index structure is
shorter than the others, so the k-nearest neighbor query
under the hybrid index in this article still has good query
performance.

For the same k value and different data sets, we will
compare and analyze the k-nearest neighbor query under
the three-dimensional multi-level adaptive grid and R+ tree,
the grid R tree and the traditional R tree index structure.
As shown in Table 3, the default value of k is 100. As shown
in Figure 9, when the value of k is the same, under each differ-
ent test data set, the time required for the three-dimensional
multi-level adaptive grid and R+ tree index in the k-nearest

FIGURE 8. Under the size of 50,000 data set.

TABLE 3. k-nearest neighbor query time (k = 100).

FIGURE 9. Under k = 100 different data set sizes.

neighbor query is shorter than the others. With the increase
of the data set, the time required for the k-nearest neighbor
query under the three-dimensional multi-level adaptive grid
and R+ tree have less change. Especially when the data
set is large, compared with the k-nearest neighbor query
under the traditional R tree index, the time required of
three-dimensional multi-level adaptive grid and R+ tree is
less smaller. Therefore, when faced with a large amount of
unevenly distributed data, the query performance based on
the three-dimensional multi-level adaptive grid and R+ tree
index structure is excellent. The size of the data set has a
great impact on the query time of the R tree index structure.
The larger the data set, the longer the query time. The hybrid
index based on 3D multi-level adaptive grid and R+ tree
has less impact, because after the threshold is set by user,
the time required for the R+ tree query is ascertained. How-
ever, the grid may have a secondary structure and a tertiary

146020 VOLUME 9, 2021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

structure, which use linked list and the query will take some
time. Therefore, as the data set increases, the query time of
this structure will increase accordingly.

VII. CONCLUSION
Aiming at the uneven distribution of massive data, this
paper proposes a hybrid index structure based on a
three-dimensional multi-level adaptive grid and R+ tree. This
kind of index structure has better performance in terms of
fast building index and data query. Firstly, a multi-level grid
automatic division algorithm based on normal distribution
is used to process the data set to construct a multi-level
adaptive grid. The multi-level adaptive grid structure can
partition the data space quickly and effectively, thus solving
the problem of irregular division caused by the single-level
grid. Secondly, our method constructs the R+ tree index
structure according to the threshold conditions, and uses the
advantage of zero overlap of the R+ tree’s intermediate node
directory rectangles to perform efficient indexing. In this
way, the construction of the overall mixed index is com-
pleted. Finally, this paper gives maintenance algorithm of
inserts and deletes the hybrid index to ensure the safety and
reliability of the index structure. The researches on precise
point query and k-nearest neighbor query algorithm based
on three-dimensional multi-level adaptive grid and R+ tree
hybrid index structure are given respectively. The experi-
mental results prove that the three-dimensional multi-level
adaptive grid and R+ tree hybrid index structure has good
query performance when the amount of data is large and the
distribution is uneven.

The hybrid index proposed in this paper is just suit-
able for static spatial databases, but for moving objects
or multi-source objects, this will make the database index
update very frequent, resulting in lower database oper-
ating efficiency. Therefore, it is of great significance to
develop an index structure based on dynamic environment
or multi-source situation. In addition, the reverse K-nearest
neighbor query could be performed based on the hybrid index
structure. And we could add obstacles to the space and define
the obstacle distance of the model to study the visual query
of the three-dimensional obstacle space.

REFERENCES
[1] Y. Shen, J. Xu, and D. Liu, ‘‘Research on spatial data index of 3D digital

map in embedded system,’’ Comput. Appl. Softw., vol. 29, no. 7, 2012.
[2] W.Wang et al., ‘‘Parallel algorithm for arc intersection based on grid index

and R tree,’’ Sci. Surv. Mapping, vol. 39, no. 3, 2014.
[3] Z. Li, X. Li, S. Yang, and T. Liu, ‘‘Spatial index built in cloud computing

environment,’’ Geomatic Spatial Inf. Technol., vol. 38, no. 10, pp. 13–17,
2015.

[4] M. Zhang, F. Lu, P. Shen, and C. Cheng, ‘‘The evolvement and progress of
R-tree family,’’ Chin. J. Comput., vol. 28, no. 3, 2005.

[5] Y. Wang and M. Guo, ‘‘A combined 2D and 3D spatial indexing of very
large point-cloud data,’’ Acta Geodaetica et Cartograph. Sinica, vol. 41,
no. 4, pp. 605–612, 2012.

[6] S. Xu, M. Wang, and W. Wang, ‘‘A new index structure for moving object
spatial database based on R tree and Quan tree,’’ Comput. Digit. Eng.,
vol. 34, no. 3, 2006.

[7] Z. Jiang, ‘‘A survey on spatial prediction methods,’’ IEEE Trans. Knowl.
Data Eng., vol. 31, no. 9, pp. 1645–1664, Sep. 2019.

[8] H. Liao, J. Han, and J. Fang, ‘‘All-nearest-neighbor queries processing in
spatial databases,’’ J. Comput. Res. Develop., vol. 48, no. 1, p. 86, 2011.

[9] N. Li, X. Wu, J. Ma, and Z. Wang, ‘‘A line clip algorithm of based on
cell and R-tree spatial indexes against arbitrary polygonwindow,’’Comput.
Eng. Sci., vol. 34, no. 11, 2012.

[10] H. Liang andM.Wu, ‘‘Performance analysis and evaluation for two typical
methods of spatial index in GIS,’’ J. Anyang Inst. Technol., vol. 20, no. 2,
2006.

[11] M. Wu, Y. Guo, and T. Chen, ‘‘An effective hybrid spatial indexing mech-
anism,’’ Comput. Eng. Appl., vol. 42, no. 29, 2006.

[12] N. Chen, X. Zhong, and L. Li, ‘‘Research on optimized R-tree high-
dimensional indexing method based on video features,’’ in Proc. Int. Conf.
Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2017, pp. 123–146.

[13] S. Pramanik, A. Watve, C. R. Meiners, and A. Liu, ‘‘Transforming range
queries to equivalent box queries to optimize page access,’’ Proc. VLDB
Endowment, vol. 3, nos. 1–2, pp. 409–416, Sep. 2010.

[14] D. Han, ‘‘Research on nearest neighbor query based on R-tree,’’ Harbin
Univ. Sci. Technol., Harbin, China, Tech. Rep., 2011.

[15] T. Wu et al., ‘‘Research on routing technology based on quadtree,’’ Univ.
Sci. Technol. China, Hefei, China, Tech. Rep., 2015.

[16] A.-V. Vo, L. Truong-Hong, D. F. Laefer, and M. Bertolotto, ‘‘Octree-based
region growing for point cloud segmentation,’’ ISPRS J. Photogramm.
Remote Sens., vol. 104, pp. 88–100, Jun. 2015.

[17] K. Zheng et al., ‘‘Research on the spatial index structure of LOD_OR tree
in 3D DIS,’’ Bull. Surv. Mapping, vol. 39, no. 5, 2005.

[18] D. Z. Chen and H. Wang, ‘‘Weak visibility queries of line segments
in simple polygons,’’ Comput. Geometry, vol. 48, no. 6, pp. 443–452,
Aug. 2015.

[19] N. Sultana, T. Hashem, and L. Kulik, ‘‘Group nearest neighbor queries in
the presence of obstacles,’’ inProc. 22nd ACMSIGSPATIAL Int. Conf. Adv.
Geograph. Inf. Syst., Nov. 2014, pp. 481–484.

[20] A. Arman, M. E. Ali, F. M. Choudhury, and K. Abdullah, ‘‘VizQ: A system
for scalable processing of visibility queries in 3D spatial databases,’’ in
Proc. ACM Conf. Inf. Knowl. Manage., Nov. 2017, pp. 2447–2450.

[21] A. Guttman, ‘‘R-Trees: A dynamic index structure for spatial searching,’’
in Proc. ACM SIGMOD, 1984, pp. 47–57.

[22] T. Sellis, N. Roussopoulos, and C. Faloutsos, ‘‘The R+-tree: A dynamic
index for multi-dimensional objects,’’ Comput. Sci. Dept., vol. 9,
pp. 507–518, 1987.

[23] Guttman, ‘‘Research history and latest progress analysis of R-tree spatial
indexing algorithm,’’ Mod. Comput., Tech. Rep., 1990.

[24] J. Yang and X. Huang, ‘‘A hybrid spatial index for massive point cloud
data management and visualization,’’ Trans. GIS, vol. 18, pp. 97–108,
Nov. 2014.

[25] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, ‘‘The grid file: An
adaptable, symmetric multikey file structure,’’ ACMTrans. Database Syst.,
vol. 9, no. 1, pp. 38–71, Mar. 1984.

[26] Z. Huang et al., ‘‘Research on hybrid index based on multi-level grid and
STR tree,’’ Zhejiang Univ., Hangzhou, China, Tech. Rep., 2013.

[27] X. Tang, B. Han, and H. Chen, ‘‘A hybrid index for multi-dimensional
query in HBase,’’ in Proc. Int. Conf. Cloud Comput. Intell. Syst.,
Aug. 2016, pp. 332–336.

[28] H. Xu and Z. Hao, ‘‘Nearest neighbor query algorithm based on space-
filling curve meshing,’’ Comput. Sci., vol. 37, no. 1, 2010.

[29] S. Niu et al., ‘‘A ciphertext sorting search scheme based on the B+ tree
index structure on the blockchain,’’ J. Electron. Inf., vol. 41, no. 10, 2019.

[30] X. Zhang, ‘‘Design and analysis of electric power big data hybrid index
based on B+ tree,’’ Electron. Des. Eng., vol. 28, no. 22, 2020.

[31] J. Gong, ‘‘A sub-three-dimensional R-tree index expansion method that
takes into account multiple levels of detail,’’ J. Surv. Mapping, vol. 40,
no. 2, 2011.

[32] J. Gong, ‘‘Adaptive method of 3D city model based on the extended
structure of 3D R-tree index,’’ J. Surv. Mapping, vol. 40, no. 4, 2011.

[33] Y. Wang and M. Guo, ‘‘A two-dimensional and three-dimensional hybrid
indexing method for large-scale point cloud data,’’ J. Surv. Mapping,
vol. 41, no. 4, 2012.

[34] M. Sharifzadeh and C. Shahabi, ‘‘VoR-Tree: R-trees with Voronoi dia-
grams for efficient processing of spatial nearest neighbor queries,’’ Proc.
VLDB Endowment, 2013.

[35] J. Gong et al., ‘‘A laser point cloud data management method integrating
octree and three-dimensional R-tree,’’ J. Surv. Mapping, vol. 41, no. 4,
2012.

[36] X. Song et al., ‘‘Research on the spatial index structure of hybrid tree in
3D GIS,’’ J. Shenyang Jianzhu Univ., vol. 22, no. 3, 2006.

VOLUME 9, 2021 146021

Y. Liu et al.: Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree

[37] X. Gong et al., ‘‘Research on hybrid index method based on three-
dimensional grid-R tree,’’ J. Yanshan Univ., vol. 44, no. 2, 2020.

[38] G. Wu et al., ‘‘A multi-level grid division method for urban distribution
network planning,’’ Patent CN 108 876 204 A, 2018.

[39] L. Cai and H. Jiang, ‘‘Geographical national conditions information rep-
resentation based on multi-level grid,’’ Sci. Surv. Mapping, vol. 41, no. 3,
2016.

[40] J. Hu et al., ‘‘Optimal partitioning of spatial database grid indexing mech-
anism,’’ Chin. J. Comput., vol. 25, no. 11, 2002.

[41] W.Wang,W.Wang, and J.Wang, ‘‘Algorithm for finding the smallest circle
containing all points of a point set,’’ J. Softw., vol. 28, no. 9, 2000.

[42] L. Liu, L. Zhang, and J. Yu, ‘‘Line segment reverse k nearest neighbor
query based on Voronoi diagram in spatial database,’’ J. Chin. Comput.
Syst., vol. 38, no. 4, 2017.

[43] L. Zhu, W. Sun, and Y. Jing, ‘‘Voronoi graph-based k-nearest nearest
neighbor query method for road network,’’Chin. J. Comput. Res. Develop.,
vol. 48, no. 3, 2011.

[44] P. Pei, D. Zhang, and F. Guo, ‘‘A density-based clustering algorithm using
adaptive parameter K -reverse nearest neighbor,’’ in Proc. IEEE Int. Conf.
Power, Intell. Comput. Syst. (ICPICS), Jul. 2019, pp. 455–458.

YONGSHAN LIU was born in Zhangjiakou,
Hebei, China, in 1963. He received the M.S.
degree in computer science and technology from
Yanshan University, in 1989, and the Ph.D. degree
in computer and applications from Harbin Univer-
sity of Science and Technology, in 2006. Since
1994, he has been a Professor with the Department
of Information Science and Engineering, Yanshan
University. He currently serves as a tutor for Ph.D.
students.

TIANBAO HAO was born in Handan, Hebei,
China, in 1985. He received the M.S. degree in
computer software and theory from Yanshan Uni-
versity, in 2011, where he is currently pursuing the
Ph.D. degree in computer science and technology.
His research interest includes spatial database.

XIANG GONG was born in Taiyuan, Shanxi,
China, in 1991. He received the M.S. degree in
software engineering from Yanshan University,
in 2017, where he is currently pursuing the Ph.D.
degree in computer science and technology. His
research interests include spatial database, infor-
mation visualization, and visual analysis of obsta-
cle environment.

DEHAN KONG was born in Dalian, Liaoning,
China, in 1986. He received the Ph.D. degree in
computer science and technology from Yanshan
University, in 2017. He is currently teaching
with the Department of Information Engineering,
Hebei University of Environmental Engineering.
His research interests include spatial database and
point cloud reconstruction and registration.

JIANJUN WANG is currently pursuing the Ph.D.
degree with Yanshan University, Qinhuangdao,
China. Prior to that, he worked with IT industry
for more than ten years as an enterprise architect
and the program manager. His research interests
include machine learning, deep learning, and com-
plex networks.

146022 VOLUME 9, 2021

