
Received August 27, 2021, accepted September 14, 2021, date of publication September 24, 2021, date of current version October 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115519

Partial Discharges Classification Methods
in XLPE Cable: A Review
NORFADILAH ROSLE 1, NOR ASIAH MUHAMAD 1,2, (Member, IEEE),
MOHAMAD NUR KHAIRUL HAFIZI ROHANI3,
AND MOHAMAD KAMAROL MOHD JAMIL 1, (Senior Member, IEEE)
1School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang 14300, Malaysia
2Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
3Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia

Corresponding author: Mohamad Kamarol Mohd Jamil (eekamarol@usm.my)

This work was supported in part by Universiti Sains Malaysia (USM) under the Research Universiti Grant (RUI) 1001/PELECT/8014050
(UO1620/2018/0320), and in part by the Ministry of Higher Education, Malaysia, under the Fundamental Research Grant
Scheme FRGS/1/2019/TK04/UNIMAP/03/8.

ABSTRACT Partial discharge (PD) signal classification analysis on cross-linked polyethylene (XLPE)
cables is complex, requiring a comprehensive understanding of the characteristics of PD patterns. In the
realm of high-voltage electrical insulation, PD pattern characteristics, such as PD charge and inception
voltage, are essential as assessment criteria in diagnostics systems using PD classifiers. This paper provides a
review of the various PD patterns and classifiers used by previous researchers, specifically for XLPE cables.
In addition, the differences of the studies on various sensor developments based on PD detection in the past
27 years are also discussed. The repeatability, recognition accuracy, recognition speed, and effect of feature
sizes on each PD classification method are reviewed and explained. This review indicates that the pattern
recognition for PD signal using artificial neural network (ANN) exhibits better performance than the other
methods in terms of accuracy and repeatability, and the reduction of feature size does not affect the accuracy
of ANN.

INDEX TERMS Partial discharge (PD), cross-linked polyethylene (XLPE) cable, solid insulator, pattern
recognition, feature extraction, artificial neural network (ANN).

I. INTRODUCTION
Power cables are an important part of power systems that
have transmission lines of different voltage grades and dis-
tribution networks of over 100 years [1]. Power cables are
widely used in medium-voltage (MV) and high-voltage (HV)
power system networks. Approximately 80% of the 33-, 22-
and 11-kV networks are underground cables with approx-
imately 180,000 km of MV cables in service [2]. Cable
failures have become one of the greatest problems of the
power industry. The insulation failure of power cables could
impact many customers due to unexpected power outages.
In Malaysia, cross-linked polyethylene (XLPE) cables are
widely installed through the existing network of cable lines
due to their excellent electrical, thermal, and mechanical
properties [3]. Among its numerous advantages, the XLPE
cable has a lightweight structure, excellent electrical
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properties, a heat obstruction feature, and a high transmission
limit and is simple to introduce and easy to twist [3], [4].
In Peninsular Malaysia, MV cable failures have contributed
to 53% of the power system breakdown, as shown in Fig. 1.
The data indicates that 72% of the failures are attributed
to the cable joint, whilst 22% and 6% are from the cable
insulation and the termination, respectively [2]. According to
Halim et al., most of the reliability issues originate from MV
underground cable joint failures contributing to 60% of the
annualised System Average Interruption Duration Index of
TenagaNasional Berhad (TNB),Malaysia for many years [5].
When discussing the reliability issues of joint cable failures,
the concern is the unscheduled interruption that causes faulty
electrical equipment. According to the TNB statistics [6]
in Fig. 2, the highest percentage of unscheduled interrup-
tion was experienced in 2013, i.e. 9.92%, which is slightly
higher than the 9.45% recorded for the previous year per
1000 customers. The lowest percentage of unscheduled inter-
ruption was recorded at 6.68% in 2016. This interruption
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FIGURE 1. Failure of power cable in Malaysia [2].

FIGURE 2. Performance of distribution system in Peninsular Malaysia,
2012–2018 [6].

trend shows that the fundamental issue of cable joint reli-
ability and the subsequent choice of cable joint technology
remain unresolved [5]. Since 1998, TNB has investigated the
partial discharge (PD) activities on XLPE, paper-insulated
lead-covered (PILC), and the combination of XLPE/PILC
cables with 209 feeders that are more than 10 years old [2].
The test requirements in compliance with international stan-
dards require the PD magnitude to be less than 10 pC in
the factory [2] and the cables to be longer than 2 km [7].
Nevertheless, for the cable system performance to have good
sensitivity, the PD magnitude must be less than l pC [7].

Table 1 shows the PD results obtained from the three types
of cable six months after installation [2].

The test result reveals that the 11-kV-rated PILC cable
contributes 98% PDwith an average PDmagnitude discharge
that is three times higher than that of XLPE cables [2].
However, the experiment did not mention the type of PD in
the cables, resulting in difficulty in identifying the causes of
PD. Therefore, the PD types must be monitored and classified
to identify the root cause of PD activities and estimate their
harmfulness. A rehabilitation approach is required to differ-
entiate between the PD from vital sources and other noise

TABLE 1. Results of PD measurement based on types of cable [2].

FIGURE 3. Three stages to evaluate PD phenomena.

to avoid losing a PD source before failure or accidentally
shutting down a PD-free cable system.

PD is an important cause of insulation degradation and
electrical equipment breakdown, contributing to the risk of
damaging a power grid’s safety without any continual pre-
vention [8]. PD also causes electrical aging which can be a
symptom of thermal, mechanical, and environmental aging
in a HV apparatus of over 70 years [8]. According to IEEE
400.3-2006 [9], PDs are small electric sparks or discharges
that occur in defects in insulation, at interfaces or surfaces
or between a conductor and a floating metal component (not
connected electrically to the HV conductor nor the ground
conductor). PD also occurs between floating metal compo-
nents if the electric field is high enough to cause the ionisation
of the gaseous mediumwhere the components are located [9].
According to IEC60270 [10], PD is an electrically localised
discharge that partially bridges the insulation between two
conductors. Meanwhile, researchers [11] reported that con-
tinuous PDs degrade the insulation material, inevitably lead-
ing to insulation breakdown. All these definitionsmention PD
as themain indicator for assessing the integrity of power cable
insulation and the cause of insulation degradation [12].

Discharge events can be influenced by different factors,
such as the type of applied voltage, the insulation material,
the conductor material, configuration, humidity and pres-
sure [13]. Three stages of PD evaluation must be considered,
namely, detection, classification, and localisation, as por-
trayed in Fig. 3.

Since the 20th century, many researchers worldwide have
shown interest in PD recognition, conducting studies on
PD source classification. In line with the advancement of
digital electronics and signal processing techniques, various
artificial intelligence (AI) techniques, such as artificial neu-
ral networks (ANNs), genetic algorithms, knowledge-based
system, fractal models, wavelet transformation, and support
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vector machines (SVMs), have been used to classify PD
sources [14]. The solution to overcome PD issues is difficult
to determine without classifying the defects that are causing
PD. Each defect has its symptom and effects on power cable
performance. However, the data related to how frequently PD
source classification in power cables has been performed is
limited.

In this study, a comprehensive review was carried out
to discover and suggest the most accurate method with the
highest repeatability, shortest processing time, and minimum
data size requirement for all pattern recognition and data
classification methods for PD faults in XLPE cables. The
review includes the recognition of PD activities using statis-
tical analysis methods and AI application in the classification
system. The best methods for identifying and classifying PD
must have the highest accuracy and data repeatability and the
shortest processing time.

II. TYPES OF PD IN XLPE CABLE
According to Gao et al. [15], the insulation failure of power
cables could occur because of several factors: equipment per-
formance, such as cable defects during manufacturing, insu-
lation deterioration and malfunctions; human effects, such
as potential human error, quality of workmanship, instal-
lation and handling; abnormal system conditions, such as
overcurrent and overvoltage from system maloperation and
lightning; damages caused by road digging and thermal,
mechanical, and earth movements. In addition, Rohani et al.
recently stated that insulation degradation occurs due to the
aging process, environmental factors, mechanical damages,
operational stress and manufacturing defects [16]. During
manufacturing processes, various defects, such as voids and
contamination inside power cables, may appear and be the
main source of PD under high electric field (EF) activity,
as mentioned in [17]. These studies indicate that power cables
are easily affected by surrounding factors and not only by
the cable itself or its termination. The PD phenomena in
MV cables can be categorised as corona discharge, surface
discharge, internal discharge, and discharge by electrical tree-
ing [18]–[20], depending on their location. The fundamental
theory of PD source should be apparent and intelligible before
conducting a PD classification study. Each PD type has its
criteria, standards, reduction techniques, and different equip-
ment damages.

A. CORONA DISCHARGE
Corona discharges imply a glow or brush discharge occur-
rence due to the air ionisation between the HV electrode
and the ground or under HV stress at any sharp point [19]
as shown in Fig.4. In other words, corona discharges also
occur in the continuous partial breakdown of air under electric
field stress and confined to one or both HV terminals with an
area of unbroken air in between [19]. Corona discharge as an
electrical discharge is brought on by the ionisation of fluid,
such as the air surrounding an electrically charged conductor.
Fig. 5 shows an example of a PD measurement result of

FIGURE 4. Corona discharge.

FIGURE 5. Example of measurement result of corona discharge display
on sinusoidal pattern [21].

corona discharge displayed on sinusoidal pattern from the
research of Boonpoke and Marungsri [21]. The pattern of
corona discharge is used as an input to the proposed PD
classification technique.

Many studies have reported that corona discharges are
indirectly generated by the cable or its termination but may
originate from the switchgear and cable/terminal hardware
connection [9]. Many researchers [20], [22]–[24] used a
needle or electrode as a sharp point in their experiments
to analyse the characteristics of corona discharges in XLPE
cables. The shape of the electrodes under HV stress enor-
mously influences the corona discharge characteristics at low
inception voltage. The sharp points of the electrode record
a higher maximum charge magnitude than spherical and flat
electrodes [25]. Madhar et al. [20] investigated four different
corona configurations under DC stress from the device under
test using needle-plate electrodes. They discussed the dis-
charge patterns and physics for each configuration according
to the voltage and protrusion polarity. Their results show that
the only difference is in the discharge magnitude and incep-
tion voltage of the configuration, and the defects progression
is similar. The electrode with a protrusion at ground plane
configuration under a negative applied voltage has a relatively
higher risk of corona occurrence because the streamers in
the negative test voltage incept at a low voltage level and
subsequently break down at reduced voltage compared with
the nominal test voltage. This phenomenon proves that low
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FIGURE 6. Standard test object for surface discharge [28].

voltage with an improper ground plane connection will pro-
duce corona discharge and increase the chance of equipment
breakdown [20].

B. SURFACE DISCHARGE
Surface discharge occurs in a HV insulation system on the
surface of a solid dielectric material due to corrosion pro-
cesses. This discharge can contribute to the deterioration of
the insulation surface [26], [27]. In XLPE cables, as men-
tioned by Isa et al. [3], surface discharge occurs when the tan-
gential field component exceeds the discharge field intensity
over the surface of the material. The sample test object used
to detect surface discharge must comply with IEC60243 [28],
that specifies test methods for determining the short-term
electric strength of solid insulating materials at frequencies
between 48 and 62 Hz. The behaviour of surface discharge
events can be influenced by several factors, such as the type
of the applied voltage and insulation and conductor materials,
the configuration, humidity, and pressure [29]. According
to IEC60243 [28], the test metal electrodes shall be main-
tained clean, smooth and free from defects at all times. This
provision was proven necessary by Shi et al. [30] in China
in their study of the surface discharge of composite dielec-
tric in XLPE power cable joints in which they found that
dielectric interface conditions largely influence the surface
discharge. Their study also revealed that the XLPE cable with
the cleanest surface, tight fitting and dry interfaces equipped
with a layer of silicone grease exhibits the best dielectric
performance.

Different insulation materials will yield different results.
According to IEC60243 [28] a standard test electrode should
consist of a metal sphere with 20 ± 1 mm diameter at
the upper side and metal plate electrodes with 25 ± 1 mm
diameter at the lower side as shown in Fig. 6. The radius
of the rounded edge is 2.5 mm, and the discrepancy of the
central axes between the upper and lower electrodes shall
be within 1 mm. The thickness of the specimen is important
because specimen results with different thicknesses are not
directly comparable.

C. INTERNAL DISCHARGE
Internal discharges occur in low dielectric strength inclu-
sions [21]. These discharges can degrade the insulation

FIGURE 7. Common types of internal defects on XLPE cable.

depending on the field strength, material type, and discharge
magnitude. Fig. 7 illustrates of the factors that initiate the
occurrence of internal discharge in XLPE cables, such as,
crack, delamination, air void and water tree. Electrical treeing
and void as sources of internal discharges have received the
most discussion and research interest [17], [31]–[33]. The
treeing phenomena drastically reduce the lifetime of cable
insulation under high-frequency AC voltage and are worse
under harmonic AC voltage [34]. The effect of harmonics
on the shape of electrical treeing indicates that a voltage
wave with a high total harmonic distortion has features that
are quite similar to high-frequency AC voltage. This phe-
nomenon proves that various tree structures could form from
a defect site in cable insulation, including bush type, tree-like
and fibrillary type trees, depending on the frequency of the
supply AC voltage and its magnitude [34]. Electrical treeing
can grow rapidly and lead to failure of the insulation system
due to the modification of the existing local electric field
distribution, and failure occurs in a high electric field gradient
nearly immediately after inception. Thus, the variation of
PD pulse characteristics in XLPE with tree growth has been
studied [35], [36] to determine the effect of the duration and
magnitude of PD pulse when subjected to different intensi-
ties of average electrical stress. The shape of the electrical
tree that grows from the needle tip inserted in a polymer is
determined by the amplitude and frequency of the applied
voltage. According to reports, failure occurs up to several
days and not immediately if a relatively low average stress
(<5 kV/mm) is used. In fact, faults can develop within an
hour if the average stress is high, that is up to 5 kV/mm,
and can develop in seconds if the stress exceeds 10 kV/mm
[35], [36]. Gulski et al. [37] studied the transition effect from
water trees to electrical trees in XLPE cables. The moment
of this transition is crucial in determining the behaviour of
PD because it affects the cable’s insulation condition. In this
research, the authors also found that the wet cable samples
containing water trees of the PD activity up to hundreds of
picocoulombs (pC) remained constant when the PD activity
initiated. Thus, the electrical tree with a continuous AC at
50 Hz continued to grow in the second and fourth quadrants
of the sine wave [37].

In 2013, Illias et al. [26] studied the effect of void size
and the insulation thickness on the electric field of a 22-kV
XLPE cable insulation system. Their results indicate that the
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electric field in the void decreases as the cable insulation
thickness increases. Moreover, Do Nascimento et al. [31]
conducted a comparative experiment in 2019 to investigate
the effects of electrical parameters, such as the electric field,
the electric potential, the current density, and the electric
field displacement due to changes in the location and size
of the void inside XLPE insulated power cables [31]. They
found that the location of the void inside XLPE insulated
power cables has a higher impact on the electric field and
the current density than the void size. These parameters are
inversely proportional to the location of the void and directly
proportional to the void size [31].

In summary, the defect type, size, and location inside
XLPE cables are identified as threats to the good performance
of electrical parameters, such as the electric field, the electric
potential, the current density and the electric field displace-
ment, if not properly managed. Continuous improvement is
essential as power cables are still in use. Thus, improving
the reliability of power cables through PD monitoring and
detection has become a vital part of power systems, resulting
in energy cost savings of 5% to 10% [31].

III. PD DETECTION TECHNIQUES
PD detection is an important monitoring tool for the avoid-
ance of the catastrophic failures of power networks that
lead to damage in electrical equipment and severe workplace
safety incidents. Therefore, PD occurrence must be correctly
identified and prevented through regular monitoring [27].
Since the 1980s, many different experimental methods have
involved detection methods, such as electrical, chemical,
acoustic and optical methods [29]. In PD detection for moni-
toring the performance of power cables, such as XLPE, only
a few PD detection methods rely on PD pulses and frequen-
cies. The wideband PD detection system for the low fre-
quency range according to IEC 60270 is 30 kHz to 500 kHz,
whilst the upper-frequency limit is 100 kHz to 400 kHz [10].
According to the IEEE standard, two general approaches can
be adopted to detect PD pulses in installed cables, namely,
off-line and on-line detection [38]. Both approaches are used
to create an apparatus, like a sensor, to obtain information
about the propagation of PD pulses or signals in a cable
network [4].

These detection approaches have different roles and use
separate voltage sources after the cable is removed from the
service (i.e. off-line detection) or during the normal operation
of the cable system (i.e. on-line detection) [38]. In this paper,
all PD detection methods for XLPE cables in online and
offline modes are reviewed and presented.

A. ON-LINE DETECTION
The on-line detection of power cables begins with sen-
sor detection [39]. The sensor captures the signal before
a wideband radio frequency (R/F) amplifier is used to
amplify the signal and the analysis procedure. According to
IEC60270 [10], this discharge signal appears as pulses with
a duration of less than 1 µs inside the XLPE cable. On-line

FIGURE 8. Typical test setup for on-line PD testing.

PD detection methods, also known as on-line testing meth-
ods, such as ultra-high frequency (UHF) test, high-frequency
current transformer (HFCT) test and ultrasound (AE test), are
options due to their suitability for practical activities [38].
However, the implementation of on-line detection must con-
sider the sensor’s sensitivity. Accurate location position-
ing in the existing field environment is crucial [38]. The
increase in cable length and environmental noise decreases
the sensor sensitivity. Thus, the mitigation of and sepa-
ration from noise are the main factors of detection accu-
racy, measurement sensitivity and PD location prediction.
These factors help avoid confusion that can influence each
other. Sensitivity is expressed in millivolts (mV) or apparent
charge in picocoulombs (pC) with a minimummagnitude [9].
Ghaedi et al. [40] mentioned that different parameters, such
as currents, voltages or temperatures, could be monitored in
on-line mode detection, leading to quick and accurate fault
detection.

Since the 20th century, many researchers [41]–[43], have
conducted in-depth studies on the different types of sensors
for detecting PD signals using an on-line approach. These
works proved that sensor sensitivity with a suitable band-
width influences the sensor performance. PD signals cannot
be detected if the sensitivity is low and can be distorted if the
bandwidth is narrow [39]. The mistakes due to the frequency
limit can be reduced if the detection bandwidth is wide [44].
Shafiq et al. [12] stated that the characteristics of PD signals,
such as amplitude and frequency, depend on the defect size,
applied voltage, material properties, the involved defect loca-
tion, and the environment’s condition. Sensors are placed at
the end of each branched system to communicate far end data
to near end devices, as illustrated in Fig. 8. The termination
is connected to the power system whilst the cable remains in
service with both ends connected to the system [38].

Table 2 presents the sensors’ development for the on-line
PD detection in XLPE cable from 1992 to 2019, as sum-
marised in Fig. 9. Comparisons have shown the reliability and
achievements of the developed methods. In the current global
economic situation, focus can be given to low-cost sensor
applications to reduce the production costs.

As a summary from Table 2, many advantages of the on-
line detectionmethod have attracted researchers into applying
it using additional types of sensors. Different sensor param-
eters in on-line measurement have different impacts on the
measurement results and performance. On the basis of the
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TABLE 2. On-line PD detection method in XLPE based on the type of sensor.
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FIGURE 9. Summary of sensor development from 1992 to 2019.

duration captured inside XLPE cables, the UHF sensor is
more practical than other sensors for detecting PD pulses. The
focus on accuracy and efficiency has confirmed that only the
RC sensor can obtain an undisturbed PD pulse because it can
efficiently restrain the noise whilst collecting PD pulses in
XLPE cables that occur at as low as 0.85 pC. This sensor can
also perform better than other sensors with additional advan-
tages, such as linearity, low-cost, and low inductance. The
typical setup for on-line PD testing shows that the sensors’
location and distance from the measuring equipment play a
significant role. The sensors are placed at the end of each
branched system to communicate far end data to near end
devices. Then, signal processing commences to subtract the
real PD signal from the noise.

B. OFF-LINE DETECTION
Off-line detection testing is carried out using a separate volt-
age source after the cable is removed from service [38]. This
method has some advantages that can be considered. This
testing can operate at different voltages whilst determining
the PD characteristics and assist in identifying certain types of
defects in XLPE. Given these advantages, the PD parameters
can assist in identifying certain types of defects in XLPE.
The PD parameters, such as PD inception voltage, PD extinc-
tion voltage, and the PD magnitude versus the voltage plot
(q vs. V ), can be used during the measurement or testing
procedure [38]. In contrast with that in the online approach,
the cable in the off-line test is isolated and disconnected from
the network at both ends, as shown in Fig. 10. A voltage

FIGURE 10. Typical test setup for off-line PD testing.

source and a sensor are connected at the ends with open
remote ends.

In terms of sensitivity, like online detection, off-line detec-
tion also requires high sensor sensitivity, especially if the
PD source generates low-magnitude pulses. The magnitude
and the repetition rate increase with the excitation volt-
age. Thus, an inadequate detection sensitivity may mask the
existence of serious defects with low PD magnitudes [9].
Table 3 shows the advantages and disadvantages of off-line
PD detection methods in XLPE based on different types of
sensors.

As a summary from Table 3, the measurement using
off-line detection must consider several factors that can affect
the PD signal, such as the cable parameters, the length of
cables, and the distance between the cables and the sensor,
to prevent the performance of the system from being com-
promised whilst taking measurements. Furthermore, the data
from off-line measurement is captured first, and the analysis
is performed later. Thus, off-line detection may be more
time-consuming than on-line detection.

Therefore, the type of sensor used in detecting PD signals
plays an important role in analysing the pulse propagation in
a cable and constituting the PD signal characteristics. Mean-
while, a good sensor material is important for developing a
preferable sensor for PD detection, especially the character-
istics of the material itself that influence the performance of
the sensors.

Thus, the sensor characteristics must be the priority
of studies, especially the sensor sensitivity in low- and
high-range PD signal frequencies. The PD signal result-
ing from a good sensor can improve the understanding
of how to protect the cable insulation from breakdown.
Obviously, on-line techniques are the best solution for PD
detection activities. In the off-line mode, PDs may occur
between intervals as the detection of PDs involves discrete
intervals [40].

Consequently, insulation failures increase, and the con-
dition monitoring system becomes inefficient in diagnosing
the PD signal. However, additional procedures, such as PD
recognition algorithms, can be used to eliminate background
noise. Thus, off-line measurements are required to establish
the noise levels and provide a filtration pattern. The pattern
can be used to remove unwanted signals and assess pure PD
signals.
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TABLE 3. Off-line PD detection method in XLPE based on the type of sensor.

FIGURE 11. Steps for PD classification.

IV. PD SIGNAL CLASSIFICATION
The relationship between the PD patterns and the aging pro-
cess of the insulating materials of XLPE cables has attracted
researchers [55]–[57] into classifying PDs according to their
type. Various methods and techniques have been proposed
in parallel with technology advancement. Each type of PD
defect has its degradation characteristic. Thus, identifying
the correlation between the defect type and the PD pattern
is important in investigating the quality of the material insu-
lation. According to [57], an intelligent classifier is crucial
for classifying the PD source using the measured PD char-
acteristics because the direct inspection of the measured PD
patterns is complex. Several steps must be considered in
obtaining a good PD classification result. These steps start
with PD measurement, including abstracting the PD pulse
using on-line or off-line detection. The next step is feature
extraction for identifying the PD patterns. The last step is the
development of a PD classifier using the data extracted from
the PD patterns. The process flow of the PD classification
is illustrated in Fig. 11. PD detection and measurement are
discussed in Section III, where a PD detector, such as sensor
and coupling devices, is used to obtain the PD data.

A. FEATURES EXTRACTION
Feature extraction plays an important role in pattern recog-
nition. The consistency of the extracted features will affect
the efficiency of the classification algorithm, which is similar
to the PD pulse phase analysis. Several techniques can be
adopted for feature extraction, such as statistical data anal-
ysis, signal processing, image analysis, information retrieval,

bioinformatics, data compression, computer graphics, and
machine learning. The extracted features, such as the statisti-
cal and phase-resolved partial discharge (PRPD) pattern char-
acteristics, are used to build classification algorithms [57].
The major issue associated with PD signal measurement is
the heavy contamination by noise that results in decreased
efficiency in PD patterns detection. Most of the statistical
operators are derived from PD distributions and applied to
classification procedures to reduce the difficulty of the recog-
nition process [58]. Reducing the size of the input data for
real-time fault classification is important to reduce the com-
putational burden because it can also reduce the bandwidth.

Numerous feature extraction techniques have been pro-
posed, including the time-resolved partial discharge (TRPD),
the phase-resolved pulse sequence (PRPS), and the PRPD,
mainly including Fourier transforms, wavelet transforms,
Hilbert transforms, the decomposition of empirical mode, the
transformation of S parameters, fractal parameters, and polar
coordinate transformation. The PD patterns of defects can be
identified if some discriminative features are extracted from
the raw data [59]. The details of these extraction techniques
are presented in the next section.

1) STATISTICAL TECHNIQUES
Given that PD is a random phenomenon for reliable statis-
tical analysis to identify PD patterns, sufficient PD samples
must be captured [60], [61]. Statistical features, like mean,
variance, kurtosis, skewness, cross-correlation factor (CCF),
phase asymmetry, discharge asymmetry, and modified CCF,
are estimated for the number of PD events (n) against the
phase angle (φ), (Hn(φ)), and the PD charge magnitude (q)
against the phase angle (φ), the (Hq(φ)) distributions [57].
The different sizes of cavity PD patterns in XLPE were
compared by Dessouky et al. [55] using statistical features,
as shown in Fig. 12.
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FIGURE 12. Examples of parameters of statistical features: (a) mean and
(b) coefficient of variation [55], [56].

The mean, the standard deviation and the coefficient of
variation are better than the maximum value, skewness, and
kurtosis statistical features when used to classify the defective
cable models [56]. The effectiveness of feature extraction can
be improved by combining the calculated PD parameters,
such as the mean apparent charge, the pulse repetition rate,
the average discharge current, and the quadratic rate, with
the statistical features [62]. Jineeth et al. [57] defined the
statistical features in their studies as summarised in Table 4.

2) PHASE RESOLVED TECHNIQUE
One of the earliest phase-resolved techniques used in PD
studies is a PRPD technique known as the PRPD pattern
(1995). The use of PRPD in analysis is beneficial for pat-
tern recognition and has been widely used to diagnose PD
defects in an insulation systemwith a noise environment [63].
Compared with time-resolved features, such as TRPD, which
is unsuitable for pattern recognition, the effect of signal
propagation path and noise interference is quite great [64].
A classifier is difficult to develop without PRPD data because
the data extracted from the PRPD can be easily used by a
machine learning model.

Karimi et al. [61] used three main characteristics of PRPD:
maximum charge (qmax), average charge (qmean), and the total
number of PDs (qn). These characteristics are calculated in
predefined window intervals along the 360-degree AC power
cycles. As the PD source is mainly in phase form, the parame-
ters in each interval must be determined. These characteristics
in the PRPD technique along with the statistical operators can
increase the number of features whilst, developing a new PD
classifier as shown in Fig. 13. Statistical variables, including

TABLE 4. Parameters of statistical features [57].

skewness, kurtosis, asymmetry, and the cross-correlation of
the phase-charge-number of PD (8-q-n) patterns, have been
used in many studies [61], [61], [65], [66]. Furthermore, these
researchers also used three other vectors, namely Vmaxi , as a
vector of qmax , Vmeani as a vector of qmean, and Vni as a
vector of qn for the ith half cycle. Each vector contains phase
windows, W elements (where W is the phase windows),
as shown in (1).W is 360 and 36 if the window interval is 1◦

and 10◦, respectively, along the cycles, C . The PRPD matrix
can be determined with the value ofC as the row and (3×W )
as the column.

W =
360

window interval
(1)

Raymond et al. [67] stated that the PRPD pattern could
be characterised using two fractal features, namely, fractal
dimension, and lacunarity, which are measured using the box-
counting technique. Fractal characteristics can be incorpo-
rated in PD recognition because they explicitly characterises
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FIGURE 13. Characteristics of PRPD feature extraction process for each
cycle.

the PRPD pattern [67]. The PD data are arranged into three
column matrices, namely, phase, magnitude, and pulse count,
like the PRPD format. However, no standard duration can be
referred to for generating a single PRPD. Thus, Xin et al. [68]
investigated the effects of an extremely short duration in
PRPD on the PD classification accuracy. A duration interval
of 1 s to 15 s was selected to test the overall system robustness
to recognise the PD source. The result shows that the accuracy
of PD classification is unaffected by the PRPD duration.
However, for XLPE cable joints, a longer PRPD duration is
recommended to improve the classification accuracy in terms
of practicality [68].

The other phase-resolved feature is the PRPS. According
to Lim et al. [69] the PRPD pattern data of various facility
defects are acquired through the diagnosis of underground
power transmission cables. However, because the PRPD data
storage structure and the pulse generation information are
destroyed over time, reconverting to a 3D PD pattern (i.e.
PRPS) is impossible. To generate the pulses based on the
PRPS pattern using the existing PRPD pattern and input
the pulses into the device to perform the defect judgement
output test, a PD pulse generator must be created based
on simulated PRPS data. The development of a PD pattern
generator that can generate pulses based on PRPS data and
an algorithm that converts existing PRPD pattern data to
PRPS pattern data were studied by Lim et al. [69] to solve
the issue. Their study shows that PRPS and PRPD can be
performed together with a new technique and equipment
development.

3) PRINCIPAL COMPONENT ANALYSIS
The principal component analysis (PCA) introduced in 2007,
known as the Karhunen–Loève (K–L) method, can also be
used to filter out important factors from the large data [70].
This method can be transformed to a lower dimension
without reducing the space, with minimal information data
loss. Like other features, the concern is on the parameters

FIGURE 14. Scree plot from large to small of the sorted eigenvalues [70].

used during calculation, such as the number of principal
components required to obtain an accurate depiction of the
original data [67]. Data can be arranged into three column
matrices of phase, magnitude and pulse count similar to the
PRPD format. The best number of principal components
implies that increased data accuracy can be obtained. Thus,
to obtain the best number, Babnik et al. [70] introduced
a scree plot in 2007, as shown in Fig. 14. According to
Raymond et al. [67], two situations exist in PCA. In the
first situation, the positive and negative of charge magni-
tudes are split into four distributions and phase-divided into
two quadrants with 180 degrees. In the second situation,
the positive and negative of charge magnitudes are split
into six distributions and divided into four quadrants with
90 degrees.

4) FRACTAL FEATURES
The next extraction feature suitable for natural phenomena
with complex shapes is the fractal features. Fractal features
are suitable for PD recognition because they can directly char-
acterise the PRPD pattern [71]. Two types of fractal features
can be calculated using the box counting technique: fractal
dimension and lacunarity [67]. The fractal dimension can be
computed from an image surface and can measure the coarse-
ness of the surface. However, given different surface values
with the same fractal dimension, additional methods, such
as ANN, must be used to support the fractal dimension fea-
tures [67]. Duan et al. [72] proposed four fractal dimensions
that represent the grey image used in PD pattern recognition
as a discharge fingerprint. If the grey value on the image
is 0, then the insulation is in good condition, no discharge
phenomenon occurs, and it can be ignored in the calculation.
The result shows that all dimensions provided can be used
as a recognition feature quantity, accurately obtaining the
PD classification result. However, this feature is unsuitable
for use as an input for the PD classifier in signal processing
due to the strong mathematical theory support required. The
speed of convergence is low so that this dimensions can easily
decrease to local minimum values [72].

B. PD PATTERN RECOGNITION METHOD
Since the 1960s, PD fault issues have been an interesting
topic among researchers, especially in assessing the cables’
condition in service and identifying the type of defects in
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cables. These two topics have expanded yearly based on the
types of methods used, such as statistical learning, artificial
intelligence, and fuzzy logic. In this section, each PD pattern
recognition method is reviewed in terms of repeatability,
recognition accuracy, and recognition speed to determine
which methods have a good performance.

1) SUPPORT VECTOR MACHINE
SVM was introduced in the 1960s on the basis of statistical
learning theory. In 1995, V. N. Vapnik [73] proposed the first
application in pattern recognition. SVM presents great bene-
fits for a small sample quantity and nonlinear and high dimen-
sionality pattern recognition issues due to the application of
kernels in the system, enabling SVM to perform in different
tasks [73]. The SVM algorithm kernel uses a set of mathemat-
ical functions that take data as input and transform it to the
required form. Many types of kernels based on their function
exist, such as polynomial, Gaussian, Gaussian radial basis
function (RBF), Laplace radial, hyperbolic, sigmoid, Bessel
function, ANOVA radial basis and linear spline. In 2013,
Sarathi et al. [74] investigated the Gaussian RBF kernel based
on SVM to classify PD. The RBF kernel function provides a
better result for SVM than the other kernels, with an overall
classification rate of 99.76%.

SVMs have been applied by many researchers [66],
[72], [75] since their introduction for classification and anal-
ysis purposes, especially for the repeatability and accuracy
of the method. SVM can classify inputs into two classes;
if more than two classification groups are required, multi-
level SVM is needed [67]. The category sample of PD data
was classified during multi-level SVM training as one class
and the other samples as another class [67]. Serttaş and
Hocaoǧlu [76] proposed multi-class SVM to classify PD
defects with additional statistical features as a parameter of
the SVM. The best part of the research is that no noise
filtering was applied, and all the data used were based on the
measuring signal desired in the signal processing technique.
The method’s accuracy was measured based on four condi-
tions, with the combination of SVM and statistical features
obtaining a higher accuracy of 94% than the others [69].
However, the repeatability of the result is not mentioned
in the paper. Raymond et al. [67] investigated the SVM
performance using three features, namely, statistical, fractal,
and PCA, under a noisy environment in five different cable
joint defects. The performance of these features varies as
the input feature combination has a noise tolerance. Statis-
tical features exhibit a lower accuracy as the noise duration
increases than the fractal feature and PCA (i.e. 47.1%, 57.1%
and 73.9%, respectively). Overall, research indicates that
SVM performs better in noise-free conditions than in noise
conditions.

Furthermore, Duan et al. [72] reported the higher accuracy
of their proposed SVM (95%) than the traditional SVM.
In this work, M-ary classification theory is used to expand
SVM into multi-class classifiers. Thus, to improve the SVM
performance, a genetic algorithm (GA) is used to optimise

FIGURE 15. Operators used in GAs to compute the next generation from
the actual one.

SVM parameters. The result shows that the accuracy of PD
recognition is further improved, and the parameter optimisa-
tion of SVM exhibits improved classification accuracy [72].
The application of SVM is continuously improving.

2) GENETIC ALGORITHM
GA is frequently employed to develop high-quality solu-
tions to optimisation and search problems by using biolog-
ically inspired operators, including mutation, crossover and
selection, as illustrated in Fig. 15. This algorithm inspired
by Charles Darwin’s theory of natural evolution [77] has
been used by researchers in various fields, including HV
cables [77], [78], to optimise pattern recognition and improve
the performance of existing systems. Rizzi et al. [79] inves-
tigated an automatic approach based on the GA’s ability to
optimise a diagnostic system for the recognition and identi-
fication of PD pulse patterns in the terminations and joints
of solid dielectric extruded power distribution cables. This
approach is used for PD source identification in cables and
other electrical power equipment by reducing the system
complexity whilst improving the diagnostic performance.
Three hundred measurement data have been used and show
that GAs can achieve 100% accuracy on the test sets. How-
ever, to achieve the desired target, GAs have been replicated
with the same analysis by replacing an exhaustive one with
a new dataset. Although GA is faster than other algorithms,
it is not a complete algorithm because it does not always find
suitable solutions.

The work published by Fresno et al. [78] describes GAs
as a strategy for separating pulse sources with promising
experimental findings based on spectral power ratios.

The selection, reproduction, crossover and mutation of the
elements that make up the numerous solutions to the objective
function are used in this meta-heuristic method. Based on
their research, the intervals of the calculation-based GAs can
produce a larger value of parameters, providing a satisfactory
classificationwithout any human supervision compared to the
manual calculation value. To define the intervals, GAs do not
need an expert study on the shape of the spectra. However, this
algorithm still has a constraint of turning the fitness value to
0 when the mutations or crossovers send the frequencies out
of the bounds defined by the constraints, ignoring the next
generation [78].
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FIGURE 16. Multilayer ANN and its function.

3) ARTIFICIAL NEURAL NETWORK
Since the 20th century, ANN has been attracting the interest
of many researchers in various fields for studies and appli-
cations, such as signal-processing tools, control systems, and
image processing. According to PD faults studies, ANN is
suitable for PD classification because it is unaffected by small
input changes. That is, ANN can still make the right decision
evenwith a difference in input data from the input used during
the training procedures. ANN also has a great potential in
areas such as pattern recognition, encouraging the application
of PD pattern diagnosis [80]. However, to obtain the best
ANN performance in PD recognition, accurate information
must be provided to the network. ANN can be constructed
and designed with at least one layer of input, one hidden
layer, and one output layer, with every layer connected to
the following layer. A multilayer neural network (NN) and
its mechanics [65] are illustrated in Fig. 16.

Many NN types have been proposed in previous works,
such as the feed-forward back propagation (FFBP) neural net-
work, the RBF, recurrent neural network and convolutional
neural networks. However, the most commonly used learning
mode in ANN is the FFBP [67]. The FFBP belongs to the
supervised learning category and is trained in a forward back-
ward process consisting of three layers: the input, hidden, and
output layers [67].

The weights and biases are initialised into small random
values in a forward way. The neuron output in each layer
is computed using an activation function in the feature vec-
tor [67]. To avoid any restraint whilst running the system,
at least two input features are required for PD classifica-
tion [67]. Unlike other works that are usually performed in
a noise-free environment, Raymond et al. [67] investigated a
multilayer feed-forward ANN in a noisy environment using
15 neurons at the hidden layer and the scaled conjugate gra-
dient backpropagation training function. PCA, statistical, and
fractal features were used to train the classifiers to compare
the accuracy and training speed as the feature size changes.
Their finding proves that the increase in feature size is unaf-
fected by the training speed of ANN that remains constant

as the size increases. However, in a high noise environment,
the PCA features with ANN are recommended for better
classification results [67].

Meanwhile, Majidi, and Oskuoee [81] proposed three
types of ANN, namely, FFBP, RBFNNs, and the NN pattern
recognition toolbox (nprtool), to recognise the patterns of the
processed data. Their study is quite complicated, measuring
the performance of three types of ANN in five scenarios.
However, the proposedmethods have simple calculations that
are not time-consuming. They found that the high number of
input parameters of ANN plays an important role in discrimi-
nating the PD classes in five scenarios. The correlation factor
in the FFBP network, the error value in the RBF network and
the classification percentage in nprtool are 0.9867, 0.0001,
and 96.4%, respectively.

Moreover, ANNwas used by Figueroa et al. [82] to develop
a benchmark for identifying the quality of XLPE cable insu-
lation by classifying the PD types in a short duration at low
cost. The correlation between the defect type and the PD
patterns is important in identifying the different types of PD.
Each type has unique characteristics for assessing the quality
of insulation. A study proposed a probabilistic NN Bayesian
modified (PNNBM) method with a large amount of data to
determine a solution within a short period [82]. The applica-
tion of PNNBM was published in 1989 by Donald F. Specht
in his research, ‘Probabilistic Neural Network’. This publi-
cation introduced a PNN that can estimate decision limits
or nonlinear decision surfaces through an optimal Bayesian
approach [82]. This work also found that the increase of the
feature size or input data is unaffected by the performance of
PNNBM, and the accuracy can be maintained.

Other works published by [83] used feature pruning using
the IndFeat and ReliefF algorithms to reduce the input feature
size for the easy implementation of ANN as a PD classi-
fier [83]. The algorithms can reduce the size of the input
feature by eliminating the most insignificant input features.
When the input data is reduced to 18.75%, the accuracy of
the ANN accuracy is indirectly reduced by 1%. Thus, if 50%
feature reduction occurs, the accuracy of the ANN is reduced
by 1% to 3% only, proving that whenever a feature algorithm
is used to reduce the data size, the accuracy of ANN is
affected by not more than 5% of data reduction.

4) ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
Since the 1940’s, after the analysis of PD started and have
been more intensively studied worldwide, many recognition
methods have been proposed, including adaptive neuro-fuzzy
inference system (ANFIS) [84]. This method combines NNs
and fuzzy systems to determine the best fuzzy parame-
ters [67]. Fuzzy parameters cannot be select manually but can
be done using a NN. Prior to the fuzzy scheme training in
ANFIS, the fuzzy structure must be constructed using fuzzy
logic. The first fuzzymodellingwas introduced by Takagi and
Sugeno in 1985 [85]. ANFIS is a great tool for mapping PD
patterns to the PD types using ‘If–Then’ rules.
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FIGURE 17. Characteristics of ANFIS.

The rules generated by the decision tree have five impor-
tant layers, as shown in Fig. 17 [85]. The first layer is called
adaptive nodes whose output becomes the input to the second
layer and known as the fuzzy membership grade. The second
layer has a constant node that acts as amultiplier for incoming
signals and determines the rules’ firing strength. The second
layer’s output that has a trigger strength is received by fixed
nodes in the third layer to normalise the firing strength. Then,
another adaptive node in the fourth layer produces the first
order polynomial and the normalised firing power. Lastly, all
output signals from the previous layers are summarised by a
fixed node in the fifth layer [67]. Examples of the rules:
Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y+ r1
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y+ r2
Chalashkanov et al. [86] developed pattern recognition by

using 15 statistical parameters for ANFIS input comprising
a discharge fingerprint to discriminate between internal PD
pulses. The number of input features becomes six after the
discriminant analysis. The two parts of measurement data
are split into 22 and 8 samples to generate and verify the
performance of ANFIS, respectively.

They achieved a classification accuracy of 95.8%, which
is better than that in the previous case of a classifier with
15 input features. Redundant data were removed through
discriminant analysis, improving the capability of ANFIS
whilst increasing its accuracy. Fard et al. [87] investigated
ANFIS in 2010 based on the Sugeno fuzzy model for PD
defect classification in an insulation area using the input data
from statistical features. The twomodels were compared with
33- and 12-input models and to each other in terms of accu-
racy of feature selection in providing features data to the sys-
tem. They found that the accuracy of a 12-input model (93%)
is higher than that of the 33-input model (84%), proving that
the features selection in the system can influence the ANFIS
system’s accuracy.

In summary, the classification of PD data based on PD
types is the best approach to overcome the issue because it
can help identify the root cause of PD activities and estimate
the PD harmfulness. Table 5 summarises the performance
of each PD classification method reviewed. The selection
of network types and feature parameters has a high impact
on recognition and speed accuracy. High accuracy with fast

TABLE 5. Summary of performance of PD classification method.

recognition speed is the best solution to classifying the PD
and reducing the possibility of system break down.

V. CONCLUSION
PD fault is an important cause of insulation degradation and
electrical equipment breakdown. The PD activities in XLPE
cables can be influenced by several factors, such as the type
of applied voltage, the insulation material, the conductor
material, humidity, and pressure. Accurate PD fault type iden-
tification is crucial because by knowing the PD type in XLPE
cables, the correct preventive or corrective maintenance can
be performed to avoid breakdown.

The types of PD defects that could occur in XLPE cables
were reviewed. The sources that activate the PD activities are
discussed. The setup for on-line and off-line PD measure-
ment for XLPE cables in previous works is presented. More-
over, the technologies development on PD detection methods
for HV cables were reviewed and summarised. The review
reveals that the on-line method is preferred by numerous
researchers although the measurement is deficient in terms
of sensitivity.

The PD detection sensor with high sensitivity utilised in
on-line or off-line methods is a vital in accurately detecting
PD signals in a noisy environment. The extraction of different
features is discussed to compare and identify the features
that perform well in terms of eliminating the noise in PD
signals and reducing the data input size for the PD classifier.
Furthermore, the classification theories of PD patterns based
on machine learning, such as SVM, ANN and fuzzy logic,
obtained by previous researchers are discussed and compared
in terms of data repeatability, accuracy of recognition, and
recognition speed. Overall, the following conclusions can be
drawn:

(i) PD signals can be detected accurately by using on-line
detection to achieve a meaningful response effect.
However, off-line detection can also be used but
should be supported with additional procedures, such
as PD recognition algorithms. Off-line measurements
are required to establish the noise levels and provide a
filtration pattern. The patterns can be used to remove
unwanted signals and analyse pure PD signals.
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(ii) On the basis of the duration captured inside XLPE
cables, the UHF sensor is more practical than the oth-
ers for detecting PD pulses. In terms of perfect lin-
earity, low-cost, and low inductance that can quickly
respond to the currents, the RC satisfies all the men-
tioned requirements. The RC sensor can also improve
the accuracy and efficiently restrain the noise whilst
collecting PD pulse in XLPE cables in wide current
ranges.

(iii) The best PD classification approach in terms of accu-
racy and repeatability is ANN. The feature reductions
in the ANN classifier do not significantly affect the
accuracy.
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