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ABSTRACT Reconfigurable Intelligent Surfaces (RISs) promise improved, secure, and more efficient
wireless communications. One less understood aspect relates to the benefits of RIS towards wireless
localization and positioning of mobile users and devices. In this paper we propose and demonstrate two
practical solutions that exploit the diversity offered by RIS-enhanced indoor environments and to select
RIS state configurations that generate easily differentiable radio maps for use with wireless fingerprinting
localization estimators. Specifically, we first investigate supervised learning feature selection methods to
prune the large state space of the RIS, thus reducing complexity and enhancing localization accuracy and
device position acquisition time. We then analytically derive noise correlated heuristics that can further
reduce the computational complexity of our proposed solution. Finally, we validate and benchmark our
proposed solutions through accurate end-to-end models and computer simulations while demonstrating an
average localization accuracy improvement of about 33%. Our explorations thus demonstrate how and why
accuracy improvements are achieved and also hint towards how these can be further enhanced in practical
localization settings while utilizing more than one RIS.

INDEX TERMS Wireless localization, RIS, 6G, RSSI, fingerprinting, feature selection.

I. INTRODUCTION
Reconfigurable intelligent surface (RIS) technology has
given rise to the concept of ‘‘smart radio environments’’ [1]
thus unlocking the engineering of the wireless propagation
environment itself - a key stepping stone towards the sixth
generation (6G) mobile network vision. In a 6G architecture,
it is envisaged that the propagation environment itself will be
available as a service to improve network performance [2]
through RISs which essentially operate to controllably back-
scatter electromagnetic (EM) signals originating from a net-
work of traditional access points (APs). The backscattering at
each RIS is achieved via an array ofN metallic elements, e.g.,
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dipoles or patches, which are themselves loaded with tunable
circuitry. The RIS and the AP can thus operate in unison
to create a tailored EM field that optimizes specific signal
characteristics at a dynamic target, e.g., a mobile user (MU)
terminal while for example mitigating blockages in a non-line
of sight (NLOS) setting. One of the many advances enabled
by RIS-enhanced smart radio environments is improved wire-
less localization [3].

Improved radio localization and positioning of MUs and
other internet of things (IoT) devices using RIS capabilities is
an important and promising research direction. In current cel-
lular communications for example, the FCCmandate requires
network operators to locate those calling 911 to within
certain accuracy requirements (50m horizontally and ±3m
vertically). The need for even more accurate localization is
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FIGURE 1. System model for RIS-assisted localization. It consists of an AP
and a RIS connected to a network operator. A MU attempts to
self-localize using radio maps generated jointly by the AP and RIS and
sampled along a grid.

echoed but also amplified by many other position-related
services, such as, logistics, smart factories, smart cities,
autonomous vessels, vehicles, and localized sensing. There-
fore, the wealth of wireless localization methods that have
been developed and are widely deployed through 4G and now
mm-wave 5G frequencies and network densification (broadly
classified as fingerprint database, angle-based, range-based,
and range-free methods [4]), are now being re-imagined in a
6GRIS-enhanced smart environment setting; a rich and active
research field [5]. In addition to improved localization accu-
racy, RIS-enhanced wireless localization promises to reduce
AP deployment costs, signal processing overheads, and to
create an unprecedented capillary network for distributed
sensing and computation.

This paper focuses on RIS-enhanced wireless fingerprint-
ing localization (WFL) and proposes two practical solutions
for improving localization accuracy while reducing computa-
tional complexity. One solution is based on machine learning
and training data, while the other one is based on corre-
lated noise heuristic estimators. The performance of these
two solutions are benchmarked through accurate computer
simulations and discussed. Our main contributions are:

• We propose, detail and validate two practical WFL solu-
tions in RIS-enhanced indoor environments that can
improve localization accuracy by 33%while also signif-
icantly reducing the RIS configuration state space thus
improving localization complexity and delay.

• We demonstrate that localization heuristics that account
for signal noise correlations can perform just as good as
a computationally more expensive supervised learning
approach.

• The proposed solutions are generalizable and scalable
and do not require large amounts of training data,
nor do they require an offline fingerprint measurement
campaign.

• Our results demonstrate the different sources of WFL
localization errors and also highlight the impor-
tance of using accurate simulation tools, especially
in RIS-enhanced environments where exotic EM

wave phenomena (e.g., reflections, beamforming, and
scattering) control the radio map characteristics.

The paper is structured as follows: in Sec. II we summarize
recent works on wireless localization with a focus on RIS-
enhanced environments; in Sec. III we present our system
model and problem statement while also introducing the
notation that we will use throughout the rest of the paper; in
Sec. IV we provide an overview of the end-to-end method
used to simulate and generate different radio maps as a result
of different RIS states; in Sec. V we detail our first proposed
solution for selecting a reduce RIS state set leveraging a
supervised machine learning framework; in Sec. VI we detail
two heuristic state selection solutions, a naive one and a more
sophisticated one leveraging noise correlations; in Sec. VII
present several computer simulation experiments that vali-
date and benchmark the proposed solutions; and finally in
Sec. VIII we summarize our results, discuss their implications
and suggest future research questions.

II. BACKGROUND AND MOTIVATION
Traditional WFL approaches are both practical and fairly
accurate as they use readily available received signal strength
information (RSSI) at the MU while mitigating the effect of
wireless signal fluctuations. Research inWFL is quite mature
and the technology has been widely deployed and tested [6].
Typically, in WFL applications a dense spatial database of
RSSI measurements (i.e., the fingerprint) is constructed dur-
ing an offline phase usually along a grid of L locations. Then,
during an online phase, real-time RSSI measurements are
compared with the offline database and matched to estimate
the MU location [7].

The standard approach towards enhancing WFL accuracy
is to deploy multiple APs thus improving the dimensionality
of the fingerprint at the expense of added infrastructure and
signal processing costs along with the high cost of training
data collection and high computational cost of the subsequent
training process. While some of these issues can be mitigated
for example through crowdsourcing techniques [8], the use
of existing Wi-Fi infrastructure [9], or through additional
data points obtained through ray-tracing simulators [10]WFL
challenges and potential problems like the high compu-
tational costs and relatively unstable positioning accuracy
remain unresolved.

In this paper we aim to mitigate some of the shortcom-
ings of traditional WFL systems through the use of smart
environments and in particular the RIS ability to flexibly
alter the EM radio map environment. Namely, we propose
and demonstrate that a single RIS can effectively replace the
requirement ofmultiple APs by improving the dimensionality
and diversity of the wireless fingerprint. However, while the
RIS can inject a very large number of degrees of freedom
into the fingerprint, this induces 1) significant computational
costs to the WFL matching algorithm, and 2) significant
time-delays towards the creation of the fingerprint since
the RIS and MU need some time to transmit and process
every single new EM radio map realized by the RIS mask.
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FIGURE 2. a)-d) Examples of four Radio Maps in noise-free environments under different configurations of RIS. The modeled EM radio map corresponds
to a 20× 20 m2 environment, using a 2.4 GHz transmitting AP anda RIS comprising of N = 16 elements. The heat maps represent the RSSI on a dBm scale.
a) and b) apply two different uniformly increasing impedance values to the RIS elements thus creating different beam-steering radio maps, c) applies
random impedances chosen from a uniform distribution, and d) applies a constant impedance thus simply reflecting the incoming radiation from the AP.

These time-delays can be considered a weakness because the
MU device needs to take several RSSI measurements from
different RIS configuration settings in order to benefit from
different propagation conditions. This process not only takes
time but also prolonged measurements may affect localiza-
tion accuracy for example due to the device motion and
change of its location. Our aim is to therefore reduce the
dimensionality of the RIS induced fingerprint by efficiently
selecting a smaller RIS configuration set that will maximize
WFL accuracy.

Despite much interest in RIS-enhanced smart radio envi-
ronments, e.g., for alleviating multi-path fading, mitigating
blockages in non-line-of-sight (NLOS) settings [11], boost-
ing multi-user downlink rates [12], enhancing MIMO diver-
sity and throughput gains [13], maximizing wireless power
transfer [14], or improving energy efficiency [15], very little
work has been done with respect to wireless localization.

Del Hougne et al, [16] introduced the idea of using the
additional configurational degrees of freedom offered by RIS
to ink wave fingerprints into the received signal waveform
for indoor localization purposes, and demonstrated the con-
cept experimentally. Hu et al. [17] calculated lower bounds
for point to point positioning accuracy. Huang et al. [18]
described a DNN-based method for online wireless config-
uration of the RIS based on fingerprint localization esti-
mates that beam-steer onto the MU thus optimising its RSSI.
He et al. [19] studied the theoretical performance limits of a
single anchor MIMO system using a path loss LOS model
while also evaluating the impact of the number of RIS ele-
ments, and further proposed adaptive phase shifter designs
based on hierarchical codebooks [20]. Ma et al. [21] a gen-
eral model for UWB-aided RIS-assisted indoor positioning
was developed where it was also recognized that single AP
and single RIS arrangements can deliver significant accuracy
improvements and cost reductions to multi-AP indoor local-
ization solutions. Wymeersch et al. [3] analyzed a RIS-aided
downlink positioning problem from a Fisher Information per-
spective which the RIS can then use to select the ‘best’ RIS
configuration that minimizes MU location uncertainty. And
finally, Zhang et al. [22], [23] proposed methods that modify

the fingerprint radio map and improves localization accuracy
by making RSSI values at adjacent data set locations have
significant differences.

Building on the above ideas, this paper proposes two novel
practical solutions that exploit the diversity offered by RIS to
WFL settings. For simplicity we will consider a basic indoor
environment composed of an AP transmitter connected to a
RIS through a network operator as shown in Fig. 1. While the
figure shows just one MU, the algorithms proposed scale to
serve multiple MUs simultaneously.

Our first proposed solution adapts off-the-shelf supervised
learning feature selection (SL-FS) methods to find a near-
optimal minimal set of RIS configuration. Note that there are
q!/(M !(q−M )!) number of ways of configuration selection,
thus finding the optimal set of RIS configuration is time-
consuming and resource expensive. To speed up the computa-
tional searchwe employGenetic Algorithms, thus converging
towards a near-optimal RIS configuration set for WFL. This
method will act as a target benchmark for our second solu-
tion which is based on heuristic arguments and unlike the
machine learning approach does not require training data.
More specifically, we will design and test two heuristic
state selection (HSS) solutions. Our naive heuristic (HSS-1)
will seek to create maximally differentiable radio maps (and
corresponding RIS configurations) as measured by the L2

norm. In contrast, our noise-correlated heuristic (HSS-2) will
re-scale differentiability between adjacent coordinates of the
radio maps according to noise strength spatial correlations
between candidate positions. We will benchmark all three
WFL algorithms (SL-FS, HSS-1, and HSS-2) to the scenario
where no pruning of the radio map is applied, i.e., when RIS
configurations are simply chosen at random. Finally, we will
discuss extensions and generalizations of our work.

Regarding generalizability and scalability, the arsenal of
tools already available for use in WFL applications, such
as signal denoising, back-end filtering, probabilistic posi-
tioning, fingerprint database clustering, etc. can directly be
applied to our proposed solutions which are agnostic and
therefore compatible to such further enhancements. Impor-
tantly and unlike all other WFL publications in the literature
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to date, we do not use a pathloss based channel propagation
model or fadingmodel (e.g., Friis and Rayleigh) because such
models cannot accurately capture the EM coupling effects
caused by the RIS elements (e.g., (beamform, scatter, null)
that can completely change the radio map spatial power
distribution. Instead, we use a recently proposed end-to-end
model [24] based on impedance coupling of thin wire anten-
nas which allows us to accurately test and benchmark our
proposed solutions while also gaining realistic engineering
insights into the design capabilities and challenges related to
RIS-enhanced WFL methods.

III. SYSTEM MODEL, NOTATION, AND
PROBLEM STATEMENT
In typical WFL approaches that use multiple APs, each AP
contributes towards one fingerprint. Increasing the number
of APs generates a longer fingerprint vector that generally
improves the localization accuracy via radio map differ-
entiability and robustness [25]. There have been multiple
attempts at reducing the dimension of fingerprint through AP
selection [26], [27]. In a RIS-assisted environment, however,
using just one AP and the RIS, multiple fingerprints can be
created through configuring the RIS in different ways there-
fore saving infrastructure space and deployment costs [21].
Fig. 2 illustrates four representative example of radio maps
corresponding to four different configurations of the RIS in
an indoor space generated using our simulation approach
described in Sec. IV [24]. Thus, by changing the configu-
ration of the RIS, i.e., the load impedance of the dipoles
thus applying a phase shift to the reflected EM waves, one
can get a much more diverse set of radio maps, i.e., a high
dimensional fingerprint by using just one AP and one RIS.

In the most basic setting, we consider a transmitter
(e.g., an AP), a RIS, and a receiver (e.g., a MU) situated
within a 2D domain V ⊂ R2, and assume that the RIS and
the AP are connected to a network operator that can also
control the RIS configuration (see Fig. 1). Our model is inten-
tionally simple but generic enough to generalize to multi-
AP and multi-RIS in future studies. Each RIS configuration
will generate a different radio map (see Fig. 2.a). The RIS is
usually made up of N quasi-passive tuneable elements, often
modeled as cylindrical thin wires of perfectly conducting
patches, arranged periodically across a grounded dielectric
substrate. In Fig. 1 the RIS consists of 4 × 5 elements
for illustration purposes only. Due to hardware limitations,
the complex values (amplitude and phase-shifts) applied by
the N load impedances of the RIS reflecting elements are
usually quantized into D discrete phase values between 0 and
2π [28]. Thus, the RIS can be electronically controlled into
any one of Q = DN possible configurations. Note that Q
is usually a very large number. For example, Dai et al. [29]
have recently experimentally built and tested a RIS operating
at 2.3 GHz with N = 256 and D = 4, leading to Q = 4256

possible RIS configurations.
Specifically, in our simulations presented in Sec. VII we

have N = 16 and D = 200, resulting in Q = 20016

TABLE 1. List of all frequently used notations found in the paper.

possible RIS configurations. Each of these configurations
will generate a slightly different radio map however there is
likely to be a huge amount of redundancy and it is possible
to chooseM � Q representative RIS configurations that can
reduce complexity while maximizing localization accuracy.
Problem Statement: How to choose those M configura-

tions efficiently thereby reducing the dimensionality of the
fingerprint while retaining high WFL accuracy is a key open
problem which we will address in the following sections.
We remark that similar questions have been considered in
the context of data rates and communication quality, but
not for wireless localization [30]. Table 1 summarizes all
the symbols and terminology that are frequently used in the
paper.

For simplicity we assume a basic localization request pro-
tocol that can support multiple MUs simultaneously. More
secure and advanced protocols are beyond the scope of this
paper however the results that we will present are easily
generalizable as we discuss in Sec. VIII.

When a WFL request is sent by a MU, the network
operator instructs the AP to transmit a sequenced burst of
M � Q wireless messages periodically every t milliseconds
(e.g., every t = 100 ms). Meanwhile, the network operator
also configures the RIS by re-setting the load impedances
periodically every t ms, such that the m-th transmitted
message corresponds to the m-th configuration of the RIS
(1 ≤ m ≤ M ). The MU located at some unknown position
x ∈ V also receives the M messages from the transmit-
ter and calculates their RSSI values to form an RSSI vec-
tor R(x) = [R1(x),R2(x), . . . ,RM (x)] + [X1,X2, . . .XM ],
where we have explicitly separated out the noise-less RSSI
values Rk and noisy part Xk of the measured RSSI for
ease of notation. The MU then compares R(x) to a finger-
printing database of L radio maps R̂ = [R̂1, R̂2, . . . R̂L],
one for each sampled location in V . Each of the L radio
maps is composed of a noise-less and noisy part R̂l =
[R̂l1, R̂l2, . . . , R̂lM ]+[X̂l1, X̂l2, . . . X̂lM ] corresponding to one
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of the sampled location coordinates yl ∈ V , l ∈ [1,L]
(usually along a rectilinear grid as in Fig. 2) obtained either
through computer simulations (e.g., as described in Sec. IV),
or during an offline fingerprint measurement campaign and
communicated to the MU by the AP. Note that for clarity
of notation, we discriminate between the online (real-time)
measurementR(x) at x ∈ V and theWFL database R̂ through
the use of an over hat ( ·̂ ) symbol.
There are a number of established algorithms available that

compare andmatch the offline and onlinemeasurements, e.g.,
probabilistic, neural networks, nearest neighbors, etc. [25].
To illustrate their basic principle one can consider the offline
radio map database R̂ and compare its vector entries to the
measured RSSI vector R(x) through a permuted Pearson’s
correlation coefficient

l∗ = argmax
l∈[1,L]

(
max

k∈[1,M ]

cov(R(x),πk R̂l)
σR(x)σπk R̂l

)
(1)

where πk is an M × M permutation matrix that cycles the
elements of R̂l by k positions to the left. Thus, in (1), the inner
max operation finds the largest Pearson’s correlation coeffi-
cient when comparing the online measured RSSI vector R(x)
to a permutation of the lth offline radio map RSSI vector
πk R̂l , while the outer argmax operation returns the location
l∗ with the most similar RSSI vector, thus identifying the
most likely location of the MU. Note that the Pearson’s
correlation coefficient is equivalent to the cosine similarity
metric of centered (zero mean) vectors. Alternatively, if the
measured and stored RSSI vectors do not need any sorting and
permuting then one can directly test their similarity and find
the MU’s most likely location l∗ by minimizing the vector
difference between the measured RSSI values R(x) and the
stored WFL database one R̂l at location l

l∗ = argmin
l∈[1,L]

∥∥∥R(x)− R̂l∥∥∥ (2)

The k nearest neighbors (k-NN) algorithm generalizes
(2) slightly by taking a weighted spatial average of the
k most similar locations therefore introducing a layer of
robustness. Equation (2) describes a deterministic matching
algorithm that is robust, easy to understand and implement,
and is therefore the most commonly used in WFL literature.
While other distance metrics have been shown to improve
localization accuracy, we note that their performance will
depend on the specific setup and signal characteristics (see
comprehensive study [31]) Other matching algorithms for
positioning include support vector machines (SVM) and neu-
ral networks (NN) for statistical learning from a dataset of
fingerprints. Both these techniques are similar in principle to
pattern recognition, a mature but computationally demanding
field of research.

A. LOCALIZATION ACCURACY
The error in the estimated location of x using the estimator in
equation (2) can be calculated though ε(x, yl∗ ) = |x − yl∗ |.
Here, x is the true location of the MU, while yl∗ is the

estimated location that uses the wireless fingerprint data and
the matching algorithm estimator. Averaging over all possible
locations of x ∈ V provides us with a neat way of representing
the absolute expected error in our estimator

E =
1
|V|

∫
V
|x − yl∗ |dx (3)

or its root mean squared (RMS) error

ERMS =

√
1
|V|

∫
V
|x − yl∗ |2dx (4)

Inspecting equation (3) and (4), one can see that the local-
ization error can vary with the location of x, the number of
sample locations L, the noise power σ 2, the performance
of the estimator that returns l∗, and the RIS configurations
that generate the different radio maps R̂ being compared.
Treating the average error as a statistical observable, one
can also explore other interesting observables such as the
cumulative distribution function (CDF) of the RMS error and
its variance, both of which can provide insightful information
about the chosen WFL method and its performance. Further
standard methodologies used to evaluate indoor localization
systems can be found in the ISO/IEC 18305:2016 Interna-
tional Standard, which defines a complete framework for
performing Tests and Evaluation of localization and tracking
systems [32].

B. LOCALIZATION COMPLEXITY AND DELAY
Further inspection of Equation (2) indicates that the compu-
tational complexity of those WFL estimators grows with L
and M . Importantly, the process of acquiring the radio map
database is a labor intensive and time-consuming effort which
grows with L. Also, the time needed for the AP and RIS to
transmit and reconfigure the EM spatial distribution grows
like M × t , where t is the time interval needed for a RIS
configuration update. It is therefore desirable to reduceM and
L wherever possible while maintaining high levels of WFL
accuracy. Reducing M will lead to a proportional reduction
in any time-delays related to a WFL estimation of a MU.

RIS-aided WFL accuracy and performance therefore gen-
erally depends on the design of the fingerprinting algo-
rithm employed and the specifications of the RIS and AP
being used. While WFL algorithms have been well-studied
in the past, the reconfigurability property offered by RIS
has introduced many new possibilities to the space, enabling
the design of new fingerprinting algorithms and new RIS
optimization techniques.

Themain aim of this paper is therefore to propose and eval-
uate practical methods for efficiently selecting the M � Q
bestRIS configurations while also reducing L such that ERMS
is minimized.

IV. RADIO MAP GENERATION
We will use the impedance based model developed in [24] to
obtain simulated RSSI values at theMU.While the full power
of this model is not required for our simplified WFL setting
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FIGURE 3. Ent-to-End model configuration based on impedance matrices.

(see Fig. 1) we believe it is useful to summarize the assump-
tions made and also how this model is appropriate towards
accurately simulating RSSI values for radio maps in the
presence of different RIS configurations. Firstly, we assume
that the wireless link in Fig. 2a) is realized with a single-
input single-output (SISO) system. Furthermore, we let VAP
be the voltage signal given as an input to the AP, and VMU
the voltage signal received as an output at the MU. Therefore,
an end-to-end (E2E) model between an AP and aMU located
at x ∈ V can be expressed as a linear complex-valued relation
between the two voltage signals as

VMU = HE2E VAP. (5)

Fig. 3 shows the configuration modeled by (5), the single
antenna transmitter T models the AP, the single antenna
receiver R models the MU, and the multi-element surface S
models the RIS. A detailed discussion in [24, Corollary 1.]
shows that the channel transfer function between AP and
MU through the RIS can be found by an order reduction
procedure, which yields

HE2E = Y0 (ZRT − ZRS 8SS ZST ) , (6)

where Y0 includes mismatching factors at the transmitter and
receiver ports, and

8SS = (ZSS + ZRIS)
−1 , (7)

is a rank-N matrix expressing the configuration state of the
RIS (S), where ZRIS is a diagonal matrix containing the N
‘tunable’ load impedances terminating at the RIS elements,
and ZSS is a full rank matrix containing the self (diagonal
part) and mutual (off-diagonal part) impedances of the RIS
elements when their ports are left in open circuit (i.e., when
no loads are connected to the element terminals). We remark
that the entries of ZRS and ZST in (6) have the meaning
of channel gains between the AP (T ) or MU (R) antenna
and RIS (S) elements. Furthermore, it is worth noticing that
the joint amplitude-phase unit cell control is fully captured
by the matrix 8SS , which entails the exact model of the
control circuitry via ZRIS . In particular, for an impedance
based transfer function, a practical reflection coefficient has
been developed in the model of [33, Sec. III.], where an
equivalent circuit has been used to construct a wave-based
reflection model. The reflection phase profile across RIS

FIGURE 4. Simplified illustrations of some of the different effects a RIS
can have on an incoming planar EM wave. In addition to these, the RIS
can refract, absorb, polarize, split and collimate incident EM radiation [5].
These effects can be achieved through the effective application of a
phase shift mask to different parts of the reflected wave.

elements is configured as a linear phase gradient when the
RIS performs a reflection; as a quadratic phase gradient when
the RIS performs focusing/beamforming; and as a random
phase profile when the RIS performs diffusive scattering.
A qualitative representation of those three functionalities is
depicted in Fig. 4.

The received voltage at theMU forms the basis to calculate
the RSSI at spatial position x or yl ∈ V within the sampling
grid used for fingerprinting as RSSI = |HE2E|

2. The noise-
less RSSI value in dBm within the grid position l ∈ [1,L]
and for the selected RIS mask configuration m ∈ [1,M ] is

R̂lm = 30+ 10 log10 RSSIlm (dBm). (8)

Equation (8) therefore takes as input details about the
AP (position, transmit power and frequency), the RIS (posi-
tion and impedance configuration) and outputs the predicted
noiseless RSSI at a hypotheticalMU located somewhere inV .

As indicated in the previous section III, we can include
a noisy component X of different powers to the received
RSSI at the MU. For simplicity, our simulations will only
consider additive white Gaussian noise (AWGN) with X ∼
N (0, σ 2). Varying the noise power σ 2 provides a means for
testing the robustness of our proposed localization schemes
in Sec. VII. Besides additive noise, rich multi-path fading for
indoor environments can be included into the RSSI through
the impedance formalism via the random coupling model
(RCM) [34]. Including such effects would increase the accu-
racy of our model and simulations since.

V. SUPERVISED LEARNING APPROACH
To choose a good RIS configuration set that would per-
form well both in terms of accuracy (i.e., small ERMS) and
complexity (i.e., small M ), we propose to leverage off-the-
shelf supervised learning (SL) tools to train and thus inform
this selection process through a data-driven training phase.
Fig. 5 illustrates the whole process of RIS-used localization
and evaluation, while the gray rounded rectangle in the fig-
ure demonstrates the proposed RIS configuration set selec-
tion based on supervised learning approach. The proposed
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Algorithm 1 Supervised Learning Based Feature Selection
Output: Final configuration subsetM
1: Training data collection: Collect q RSSI values cor-

responding to q RIS configurations at every grid point
l ∈ [1,L].

2: Divide the training data set consisting of L data points
into train data set consisting of Lu data points and vali-
dation data set consisting of Lv data points using k-fold
method. Note that Lu + Lv = L.

3: Initialize each individual in the population. {An individ-
ual corresponds to a set of selected configurations}.

4: while The termination condition of the iteration is not
satisfied do

5: for each Individual Ind in the population do
6: Train the location estimator over training data

set using RIS configuration subset corresponding to
Ind

7: for each Element e in validation data set do
8: Estimate the position Pe of e through trained

location estimator.
9: Calculate the localization error E(e) =∥∥∥Pe − P̂e∥∥∥ {where P̂e is the ground truth of

the position of e}.
10: end for
11: E(ind)← Mean of all E(e) {Localization error}
12: F(Ind)← E(Ind)+c×max(0, |Ind |1−M ) {Fitness

value of Ind , see Equation (9)}
13: Update the population using Selection, Crossover

and Mutation processes
14: end for
15: end while

method is detailed further in pseudo-code format in Alg. 1 to
aid towards its understanding and potential reproducibility.

First, to map the problem at hand into the realm of SL we
consider each RIS configuration as a feature and thus aim to
select a set ofM features out of a superset of Q possible RIS
configurations. Recognizing that the set of all possible RIS
configurationsQ is often too large of a set, we first construct a
smaller representative set qwith |q| = q� Q chosen through
a pseudo-random sampling strategy. This process is called
Coarse configuration selection shown in Fig. 5 and detailed
in Sec. VII. Using the now reduced RIS configuration set q
the corresponding radio maps are created via (8) which will
be used as a training database (see Fig. 5). In the Search
Algorithm phase, a supervised learning approach is applied
to first create sub groups of M � q radio maps, assign each
of them with a fitness objective score based on their accu-
racy, and attempt WFL using different location estimators
(e.g., k-NN, NN, RF); these will be numerically simulated
in Sec. VII. To speed up the computational search, a Genetic
Algorithm based wrapper is applied to help converge towards
a near optimal radio map feature selection whilst avoiding to
test all qCM possible RIS combinations.

For completeness, we describe the implementation of each
of these processes.

1) TRAINING DATA COLLECTION
Since the set of all possible RIS configurations Q is often too
large of a set, we first try to approximate it by constructing a
smaller set q with |q| = q� Q chosen at random but diverse
enough to enhance diversified fingerprint. Namely, q is cre-
ated by assigning load impedance values to the RIS dipoles,
e.g., chosen from different finite support random distributions
or that follow some specific pattern, for example representing
a reflection, refraction, beamforming, or a diffuse scattering
as illustrated in Fig. 4. In the training phase, we use these
q configurations to collect the corresponding q RSSI radio
maps and save into an L × q database.

2) SEARCH ALGORITHM
We aim to identify a subset of M � q configurations
that leverages the effectiveness of the fingerprinting algo-
rithm. Since a configuration can be considered as a feature,
we employ a feature selection method to this end. Among FS
approaches, a wrapper approach enhances accuracy because
the optimal feature subset is compatible with the specific
biases and heuristics of the learning algorithms [35]. Among
wrapper methods, Genetic Algorithm based Feature selection
algorithm is practical and outperforms other methods inmany
data sets [36]. We therefore use Genetic Algorithm to search
the best RIS configuration subset. We design the Search
Algorithm as follows.
2A) Representation of individuals: Each individual, which

is encoded by a q-bit binary vector represents a subset of RIS
configurations. Bit 1 means that the corresponding configu-
ration is being selected, while bit 0 means the opposite.
2B) Fitness function: The genetic algorithm is designed to

minimize the localization error while ensuring the number
of selected configurations does not exceed M . To this end,
we define the fitness function as follows

F(Ind) = E(Ind)+ c×max(0, |Ind |1 −M ) (9)

where Ind stands for individual and is a q-bit binary feature
vector, E(Ind) returns the localization error that is calculated
by an Accuracy Evaluation process. In (9) the term c ×
max(0, |Ind |1 − M ) is a penalty value, where c is a large
positive constant, and |Ind |1 returns the number of selected
configurations. The penalty is thus 0 only if the number
of selected configurations is less than or equals to M . The
genetic algorithm selects the individuals with the smallest
fitness.
2C) Selection:We use an elitism selection operator where

a small portion of the best individuals from the previous
generation is brought forward to the next generation.
2D) Crossover:We use a uniform crossover operator with

each bit chosen from either parent with equal probability.
2F) Mutation: An individual has a probability to mutate.

We set this probability low enough to inherit good individuals

135532 VOLUME 9, 2021



C. L. Nguyen et al.: Wireless Fingerprinting Localization in Smart Environments Using RISs

FIGURE 5. Framework of RIS-enhanced wireless fingerprinting localization method using supervised
learning-based feature selection techniques.

from the previous generation. Each bit in a chosen individual
is flipped with a probability of 1/q.
2G) Termination: The feature selection process terminates

when the number of generations reaches a threshold or the
fitness value remains unchanged for a given number of
iterations.

3) LOCATION ESTIMATOR
A location estimator can be any regressor which attempts
to determine the relationship between one outcome variable,
which is the position of MU in this problem, and other
known variables, which are RSSI values. We have selected
the best regressor from established well-known ones by eval-
uating their performance using the training database. We first
chose three algorithms: k nearest neighbours (k-NN), which
enhance accuracy in RSSI-based fingerprinting, neural net-
works (NN), which performs well in many applications, and
Random Forest (RF), which is an ensemble method known as
a strong learner.

4) ACCURACY EVALUATION
We use a K -fold cross validation process to evaluate the
localization accuracy of the three location estimators (k-NN,
NN and RF) using the selected RIS configurations. Namely,
we divide the database of radio maps into two subsets: a
training subset consisting of Lu data points, and a validation
subset consisting of Lv data points such that Lu + Lv = L.
The location estimator uses the training set to train itself and
then applies the trained model on the validation subset. The
localization error is then calculated as the mean Euclidean
distance between the ground truth position and the estimated
position of all items in the validation subset.

The proposed supervised learning-based feature selection
process produces the best subset consisting of M configu-
rations. It is combined with the RSSI database constructed
through the training data collection process to produce the
best training subset usedwith a location estimator (see Fig.5).

VI. HEURISTIC STATE SELECTION OF
RIS CONFIGURATIONS
In this section we will construct two heuristic state selec-
tion (HSS) estimators to help compute a good RIS config-
uration set of size M � Q without the need for a training
database while only using the radio simulation tools devel-
oped in Sec. IV and [24]. We refer to the first estimator
as the naive estimator (HSS-1) since it simply attempts to
choose RIS combinations which produce maximally different
radio maps. We refer to the second estimator as the correlated
noise estimator (HSS-2) since it scales the difference metric
according to spatial noise correlations.

A. HSS-1: NAIVE SELECTION
A direct approach towards maximizing WFL accuracy is to
require the average error over the L different sample locations
to be minimized. Moreover, motivated by pattern recognition
and image distance metrics, we propose a heuristic that max-
imises the distance between radio map fingerprints thereby
increasing their differentiability and removing any redundan-
cies. For example, if the set of all possible RIS configurations
was just the q = 4 radio maps shown in Fig. 2, and our algo-
rithm wanted to reduce this set by choosing the M = 2 best
ones, i.e., the two which would produce high WFL accuracy,
then the RIS state corresponding to Figs. 2a), and b), should
not be chosen together because they are too similar thus
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offering little diversity gain to the fingerprint set. On the other
hand, Figs. 2 b) and c) appear to be most different, therefore
removing redundancy and making this reduced set a strong
candidate for accurate WFL. Note that one would not be
able to get such diverse radio map profiles without using the
RIS end-to-end model defined in the previous section since
each of these maps are produced through the application of
different phase shift mask profiles such as the ones illustrated
in Fig. 4.

While the human brain is good at choosing similar or
different images, we would like to automate, and remove
bias from such decision making and enable scalability as
both q, M and qCM become large; a mathematical formu-
lation of similarity and differentiability is needed. To that
end, we write down a simple method for choosing the most
different RIS subset

M∗ = argmax
M⊂q

1
L

L∑
l=1

1
(
R̂l
)

(10)

Equation (10) tries to select the best setM∗ of RIS configu-
rationsM ⊂ qwhich on average maximizes1(R̂l) which is a
dissimilarity function, i.e., a distance metric between a set of
M RSSI values at location l defined in Sec. III. The simplest
image distance metric we can use is the Euclidean L2 norm

1
(
R̂l
)
=

2
M (M − 1)

∑
m6=n

‖R̂lm + X̂lm − R̂ln − X̂ln‖2 (11)

thus giving us a heuristic state selection (HSS-1) method for
the RIS. While equation (11) is simple to understand and
implement, the dominant issue that we can anticipate with
HSS-1 is that this approach suffers from outlier bias. If just
one out of the L locations has a very high difference metric,
then the whole radio map gets a high 1 score but would not
perform well in practice and the average WFL error ERMS
would likely be very high. Equation (11) is one of many
possible distance metrics used in image comparison algo-
rithms. Others include the Manhattan distance, mutual infor-
mation variation, gradient correlation, normalized entropy,
etc. An investigation into which one works best, why, and
when is beyond the scope of this paper. Instead, we will
attempt to model spatial correlations in image distance met-
rics scaled by the AGWN experienced by the MU when
reading RSSI values.

B. HSS-2: CORRELATED NOISE SELECTION
Our starting point is equation (4). Using the law of total prob-
ability (4) can be expanded in terms of marginal probabilities

ERMS =

√√√√ 1
|V|

∫
V

L∑
l=1

|x − yl |2 × P(l = l∗| x)dx (12)

that can be interpreted as a double average, where the internal
sum over all locations l ∈ [1,L] gives the weighted average
of the localization error, weighted by the probability that
location l is indeed the nearest neighbor l∗ to x.

Next, we assume that when L is large enough the grid
sample points are so densely packed that the localization error
is less affected by the inter-grid distance andmore affected by
the estimation accuracy of l∗ captured in (12) by P(l = l∗| x).
We can therefore discretize the integral in equation (12) and
rewrite it as

ERMS ≈

√√√√ 1
L

L∑
m=1

L∑
l=1

|xm − yl |2 × P(l = l∗| xm) (13)

where we have restricted x ∈ V onto the grid of L sample
locations which we denote by xm, m ∈ [1,L].
Equation (13) provides an opening for us to further analyze

P(l = l∗| xn) and engineer the selection of RIS radio maps R̂.
To that end, we attempt to approximate it by the probability
that the RSSI dissimilarity between R̂l and R(xm) is lower
than or equal to the RSSI dissimilarity betweenRl∗ andR(xm)

P(l = l∗|xm)

≈ P(|R̂l − R(xm)|2 ≤ |R̂l∗ − R(xm)|2)
= P(|R̂l − R(xm)|2 ≤ |R̂(xm)− R(xm)|2)

= P
( M∑
k=1

(R̂lk + X̂lk − Rk (xm)− Xk )2 ≤
M∑
k=1

(X̂k − Xk )2
)

(14)

where in the right hand side of the inequality in the second
line we identify the location of the MU xm with the correct
estimator location sample l∗ due to the discretization of the
sample grid, noting however that the noisy RSSI values of
R̂(xm) (offline) and R(xm) (online) can indeed be different
due to the AWGN which is independently calculated and
incorporated in them. The intuition here is that in a noiseless
idealised environment R̂l∗ = R(xm) and thus the only sample
location l ∈ [1], [L] where the condition in the first line
of (14) is met is when yl = yl∗ = xm. In the presence of
uncorrelated AWGN noise however, this condition may fail
to other locations l 6= l∗, e.g., because R̂(xm) and R(xm)
have experienced significantly different noise levels, orR(xm)
experiences noise levels that sway its RSSI readings to resem-
ble that of a different location l ∈ [1,L] \ {l∗}.

We can now use our assumption that the AWGN is an
independent identically distributed random variable (r.v.) that
follows a Gaussian zero-mean distribution with σ 2 variance
to simplify equation (14) which can be rewritten as

P(l = l∗|xm) ≈ P
( M∑
k=1

(R̂lk − Rk (xm))2

≤

M∑
k=1

2(R̂lk − Rk (xm))(X̂lk − Xk )

+ (X̂lk − Xk )2 − (X̂k − Xk )2
)

(15)

Observe that the distribution of each bracket in the right
hand side of the inequality can be simplified. Firstly, the dif-
ference of two Gaussian Yk = (X̂lk −Xk ) is also a zero-mean
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Gaussian r.v. with variance 2σ 2 and the sum of M of those
becomes

W =
M∑
k=1

2(R̂lk−Rk (xm))Yk ∼ N
(
0, 8σ 2

M∑
k=1

(R̂lk−Rk (xm))2
)

(16)

Similarly, since the sum of M squares of Gaussian r.v.s is
Chi-squared distributed X 2

M with M degrees of freedom

M∑
k=1

(X̂lk − Xk )2 = Z1 ∼ 2σ 2X 2
M

M∑
k=1

(X̂k − Xk )2 = Z2 ∼ 2σ 2X 2
M (17)

Finally, the difference between two correlated Chi-square
random variables Z1 − Z2, each with M degrees of freedom,
follows a Variance-Gamma distribution with zero mean and
4Mσ 2 variance [37]. Comparing this to the variance in (16),
we therefore choose to ignore the contribution of the last line
in (15) to arrive at a much simplified expression which is now
appropriately scaled by the probability error

P(l = l∗|xm) ≈ P
( M∑
k=1

(R̂lk − Rk (xm))2 ≤ W
)

=
1
2
erfc

[
1
4σ

√√√√ M∑
k=1

(R̂lk − Rk (xm))2
]

(18)

where erfc(x) is the complementary error function. Substitut-
ing back into (13) we can now approximately calculate the
expected RMS error ERMS as a function of the offline radio
mapsR and the online RSSI measurements at xm ∈ V√√√√√ 1

2L

L∑
m=1

L∑
l=1

|xm−yl |2 × erfc
[
1
4σ

√√√√ M∑
k=1

(R̂lk−R(xm)k )2
]
(19)

Equation (19) essentially takes a weighted average of the
Euclidean distance between each pair of sample locations xm
and yl weighted by the probability that a localization error
is made which is itself exponentially related to the relative
dissimilarity between the respective noiseless RSSI measure-
ments and scaled by the noise power. Note that for noisy envi-
ronments (i.e., when σ � 1) the weighted probability goes
to zero as one would expect, while in a noiseless environment
(i.e., when σ = 0) we have that P(l = l∗|xm) = 1.
It follows from the derivations above, that to minimize the

total localization error one should aim to design or select the
M RSSI radio maps which make up the noiseless past of
the WFL fingerprint R̂

M∗ = argmin
M⊂q

ERMS (20)

where ERMS in (20) is calculated through equation (19).

C. HSS COMPUTATION FRAMEWORK
Fig. 6 illustrates the whole process of RIS-used localiza-
tion using HSS configuration selection method. the proposed
HSS-based configuration selection is demonstrated in the
gray rounded rectangle and Alg. 2, and is demonstrated in
further detail as follows.

Algorithm 2 Heuristic State Selection
Output: Final configuration subsetM
1: Ideal Radio Map Generation: Generate q radio maps

corresponding to q configurations, using Equation (8).
2: Search Algorithm:
3: Find configuration c ∈ q such that the expected RMS

error estimated by Equation (19) is minimum
4: M ← {c}
5: q← q \ {c}
6: for i← 2 to M do
7: Find configuration c ∈ q such that M ∪ {c} having

smallest expected RMS error due to Equation (19)
8: M ← M ∪ {c}
9: q← q \ {c}

10: end for

1) IDEAL RADIO MAP GENERATION
Similarly to the SL-FS method for training data collection
described in Sec. V, since the set of all possible RIS con-
figurations Q is often too large of a set, we can apply a
pseudo random sampling to arrive at a smaller more man-
ageable set q. Then, for each candidate RIS configuration,
we generate the corresponding radio map using (8) and store
everything in L × q sized database. These radio maps will
then be fed to the Configuration Selection process to output
a further reduced set which is optimized according to the
chosen heuristic HSS-1 or HSS-2 method.

2) SEARCH ALGORITHM
Although the search space of equation (20) is quite large
with qCM =

q!
M !(q−M )! possible RIS configurations, it can

be rapidly explored through a Greedy Algorithm or a meta
heuristic algorithm. In our simulations reported in Sec. VII
we have used a Greedy Algorithm since it is simpler to
implement. TheGreedy configuration selection starts off with
a candidate set q, and then selects the best RIS configuration
and its corresponding radio map assuming thatM = 1. Then
while holding the selected radio map, it goes through the
remaining set of candidate maps (of size q − 1) to select the
best pair, then triplet, etc. until it has the desired M -tuple.
While this is not necessarily the optimal M -tuple solution,
the algorithm is simple to implement and also quite fast to
compute with a complexity of just O(qM ) which is much
smaller compared to other meta-heuristic methods or a brute
force search of the whole space. Moreover, the simulation
results shown in Sec. VII demonstrate that a Greedy HSS can
significantly enhance RIS-aided WFL accuracy.
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FIGURE 6. Framework of RIS-used localization method using HSS-based configuration selection.

3) HSS-BASED ACCURACY EVALUATION
A configuration subset is evaluated through Eq. (11) if using
HSS-1 or Eq. (19) if using HSS-2. The estimated accuracy is
fed back to the Search Algorithm to find out the best subset
consisting ofM RIS configurations.
The best RIS configuration subset is then used to build a

database through the Training data collection process. The
database is then used with a regression method to build a
location estimator (see Fig.6).

VII. PERFORMANCE EVALUATION AND SIMULATIONS
In this section we perform several numerical simulations to
evaluate the proposed localization techniques. We assume an
indoor space of 20×20m2 where theAP is just outside the top
left corner of the room, and the RIS comprising of N = 16
equally spaced dipoles located at the middle of the bottom
wall (see Fig. 1). Both AP and MU are equipped with SISO
omnidirectional dipole antennas. In our simulations, the AP
emits signals at frequency of 2.4 GHz, with a transmission
power of 0.1 Watt as with a traditional WiFi router, while we
set the number of RIS elements to N = 16 and their load
impedance discretization to D = 200. A frequency and RIS
element count investigation is beyond the scope of this paper,
however we can reasonably expect that a higher frequency
AP and larger RIS would result in a higher resolution RSSI
radio map but with more attenuation from the EM source and
reflector. We also suppose that there is a line of sight (LOS)
between AP-RIS and RIS-MU, but no direct LOS between
AP-MU, which is reasonable if the AP is in a different room

or outdoors, while the MU is attempting localization indoors.
It is reasonable to expect that the case where a LOS also exists
between AP and MU would result in further enhancements
of WFL accuracy. Finally, a zero-mean Gaussian noise X is
added to each noise-free RSSI value simulated by equation
(8) with standard deviation of 3 dBm.

To compare HSS-1, HSS-2 and SL-FS, we generated
q = 50 different RIS configurations and simulate the corre-
sponding radio maps at L = 100 (sparse 2 × 2m2 grid) and
at L = 400 (dense 1 × 1m2 grid) locations. The set q was
chosen to include: 10 RIS configurations where the dipoles
are set to the same value of the RIS dipole impedance thus
emulating planar reflection or refraction, 10 configurations
where the dipoles have a quadratically increasing impedance
value thus emulating beamsteering, and 30 configurations
in which the impedance values are randomly chosen thus
emulating random (diffuse) scattering as illustrated in Fig. 4.
This pseudo-random sampling process allows us to create a
diverse RIS configuration set and corresponding radio maps.

We then choose the optimal set M∗ following the HSS-1
(10) and HSS-2 approach (20), and then the SL-FS approach
on Lu = L/10 randomly chosen locations.
We have performed three simulation experiments. In the

first experiment, we investigate three well-known location
estimators for localization using the FS and HSS-2 approach.
Namely, we set M = 15 and using the dense sample
grid with L = 400 we compute the cumulative distribu-
tion function (CDF) of the RMS localization error under
k-Nearest Neighbors (k-NN), Neural Network (NN), and
Random Forest (RF) [38].
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FIGURE 7. Plots of the CDF of the RMS localization error using different
supervised learning methods with and without using FS (top) as
described in Sec, V and HSS-2 (bottom) as described in Sec, VI.

We set the parameters for these estimators as follows but
note that a systematic approach towards their optimization is
beyond the scope of this. For each parameter of each estima-
tor, we have only checked a small set of different values and
selected the best one based on its localization performance
accuracy. For instance, for k-NN, we choose k = 1, 3, 5, 7
with uniform weights or inverse distance weights. In our test
sample, k = 5 together with weights according to the inverse
of the distance between the RSSI values received from the
MU and the RSSI values registered in the database performed
best and are thus reported in the simulations that follow. For
NN, we use a Multi-layer Perceptron (MLP) regressor using
one hidden layer with 100 nodes. An activation function is
set to the rectified linear unit function. The solver for weight
optimization is set as Adam, while an L2 penalty parameter
(Ridge Regression) and a learning rate are set with values
of 0.0001 and 0.001, respectively. The maximum number of
iterations is set as 10000. For the RF case, the number of
trees in the forest is set to 100, the function that measures
the quality of a split is set to the Gini impurity, and nodes are
expanded until all leaves are pure [38].

The results of the first experiment with respect to SL-FS
are shown in the top sub-figure of Fig. 7 comparing local-
ization errors between the three WFL estimator algorithms
(k-NN, NN, RF) with and without SL-FS. In this way we can
benchmark the different estimators against each other but also
see the individual accuracy enhancement due to the heuristic
state selection procedure of Alg. 2. It is observed that SL-FS
always has a positive enhancement effect since it shifts the
CDF curves to the left and that k-NN has outperformed the
other two by a significant margin. While this may be slightly

FIGURE 8. Plot of the mean RMS localization error vs. the number of RIS
configurations M. The top sub-figure compares between SL-FS, HSS-1 and
no state selection methods for dense (1× 1m2) and sparse (2× 2m2)
sampling grids using a k-NN estimator with k = 5. The middle and
bottom sub-figures compare between SL-FS, HSS-2 and no state selection
methods for dense (middle) and sparse (bottom) sampling grids.

surprising, we note that other studies leveraging supervised
learning based localization have also observed that k-NN can
outperform other learning methods such as NN [6]. This is
mainly because accurate NN and RF require a larger training
dataset, which we have assumed is not available in practi-
cal localization settings. Thus, for our next two simulation
experiments k-NN is chosen as the preferred approach since
it is also less complex to implement and more robust to RSSI
noise fluctuations [39]. Finally, the k-NN SL-FS method
being computationally more demanding yet most accurate
will act as the near-optimal target benchmark against which
we will contrast HSS-1 and HSS-2.

The results of the first experiment with respect to HSS-2
are shown in the bottom sub-figure of Fig. 7 comparing
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FIGURE 9. Example WFL realizations showing the estimated positions yl∗ of 100 MUs vs. their true positions x chosen randomly in V . Magenta
crosses express the ground truth positions of each MU. Red dots express estimated positions using random RIS configurations. Black dots express the
estimated MU position using configurations selected through the proposed HSS method. The magenta crosses and red/black dots are connected by
black line that indicates the magnitude and direction of the estimation error ε(x, yl∗ ). Red triangle and rectangles express the location of AP and RIS
respectively. Left two sub-figures have no added noise. Right two sub-figures employ AWGN with σ = 3dBm.

localization errors between the three WFL estimator algo-
rithms (k-NN, NN, RF) with and without HSS-2. In this way
we can benchmark the different estimators against each other
but also see the individual accuracy enhancement due to the
noise correlated heuristic selection procedure of Alg. 2. It is
observed that here too, k-NN outperformed the other two
estimators (NN and RF) by a significant margin, possibly for
the same reason as above (i.e., small training datasets). Impor-
tantly, we observe that HSS-2 offers a significant enhance-
ment towards localization accuracy only in the case of k-NN.
This is because HSS-2 is developed on the assumption of
using k-NN (with k = 1) as the learner, and not some other
estimator.

This can be understood through the assumptions that lead
to equation (13) which is constructed under the assumption
that the nearest neighbor is usually chosen as the estimated
position.

In the second experiment, we investigate the k-NN local-
ization accuracy between SL-FS, HSS-1 and HSS-2 as a
function of M using both the sparse and dense sample grids,
L = 100 and L = 400, respectively. This experiment will
therefore provide some insight both in terms of sampling
density and in terms of the performance of the proposed
low-complexity heuristic state selection WFL solutions. The
results for the second experiment are shown in Fig. 8.
As expected, we observe that all algorithms converge towards
the sampling grid-size of 1 or 2meters with increasing resolu-
tion inM . We note that fluctuations and non-monotonicity in
the localization accuracy is expected since both the Genetic
and Greedy algorithms implemented in our simulations do
not guarantee convergence towards an optimal fingerprint set
of sizeM .

An interesting observation arising from Fig. 8 is that SL-FS
performs the best, while HSS-1 performs the worst. In fact
HSS-1 is even worse that random RIS configuration selection
(see top sub-figure in Fig. 8). We ascribe this to a badly
designed heuristic which suffers from outlier biases that tend
to maximize the naively chosen distance metric (11). Mean-
while, we observe that the HSS-2 approach performs almost
as well as the computationally expensive SL-FS method

FIGURE 10. Top: RMS error vs. noise level. Bottom: RMS angular error vs.
noise level. Red and black dots indicate the error using random RIS
configurations and configurations selected by using the proposed
HSS-2 method, respectively. Angular errors are calculated as the absolute
angular deviation from the polar coordinate of the MU’s position.

(see middle and bottom sub-figures in Fig. 8). We think that
the good performance of HSS-2 is because the noise of the
simulated RSSI data follows a Gaussian distribution, which
makes the assumption in HSS-2 correct. However, this may
not be true in more exotic situations with different types of
correlated noise in which case the SL-FS would probably be
most robust against. Importantly, we note that one can trade-
off Radio Map resolution L by applying SL-FS or HSS-2,
or by using a larger optimized fingerprint M . For example,
a mean localization error of 2m can be achieved by having
L = 400 (dense) grid points with M = 20 random RIS
configurations, or by using L=100 (sparse) grid points with
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SL-FS andM=12, thus saving both time and complexity but
not sacrificing accuracy.

In the third simulation experiment, we investigate the
effects of noise onto the proposed HSS-2 solution. The sim-
ulation employs a k-NN localization estimator with k = 5,
M = 30 and L = 400. The results for the third experiment are
shown in Figs. 9 and 10. In Fig. 9 we observe that the location
estimation error is significantly affected by noise, especially
if no RIS state selection method is applied. HSS-2 seems
to be a good mitigation strategy. Further, we observe that
the estimation errors are in general aligned radially outwards
from the RIS location. This is to be expected due to the
general reflective nature of the RIS and could be potentially
much improved by including a second RIS, preferably on
the adjacent wall to the existing RIS, as to provide stereo
information. Fig. 10 further amplifies our observation that
the use of HSS-2 for RIS configurations is very effective in
combating noise and in reducing both the magnitude and the
angular RMS errors in WFL.

VIII. CONCLUSION AND DISCUSSION
Reconfigurable intelligent surfaces (RISs) promise great
advancements and cost savings and may play a key role in
upcoming 6G wireless systems [1]. In this paper we have
investigated wireless fingerprinting localization (WFL) [6]
in a RIS-enhanced setting and have proposed and evaluated
novel and practical localization algorithms with the main aim
of reducing complexity while maximizing WFL accuracy.
We have argued that while a single RIS can inject a large num-
ber of dimensions to the wireless fingerprint vector, many
of them are redundant and should be removed as to avoid
unnecessary processing and save time when attempting to
localize. Such enhancements can reduce the cost and usability
of indoor localization solutions, e.g., for way-finding, object
tracking, and other location-based services.

To that end, we have proposed both machine learning and
heuristic algorithms for pruning the state space of the RIS of
size Q and selecting a significantly smaller subset of size M
that can still result in near-optimal localization accuracy. Our
machine learning approach uses a supervised learning feature
selection (SL-FS) method to first train and then identify
the RIS configuration set that would minimize localization
error. Our implementation leveraged off-the shelf tools such
as k-NN matching estimators and Genetic Algorithms. Our
two heuristic state selection approaches (HSS-1 and HSS-
2) used heuristics to maximize radio map differentiability
(HSS-1) or to minimize correlated noise within the local-
ization domain and at nearby candidate locations (HSS-2).
The former was shown to be a bad estimator, while the
latter performed almost as good as the computationally more
expensive SL-FS. Several computer simulation experiments
were performed to investigate and benchmark the proposed
WFL algorithms. Importantly the simulations employed
a novel end-to-end model [24] based on impedance coupling
of thin wire antennas thus capturing the rich scattering effects
of the RIS. As seen in Fig. 8.b), HSS-2 and SL-FS can

improve WFL accuracy by about 33% as compared to a ran-
dom selection of RIS configurations. Thus, we have demon-
strated significant complexity reductions as well performance
enhancements.

The practicality and generalizability of the proposed meth-
ods follows from the simplicity of our system model (see
Fig. 1) and also from the use of off-the-shelf solutions such
as the k-NN localization estimator, Genetic andGreedyAlgo-
rithm implementations. RIS-enhanced WFL can be exploited
by multiple users simultaneously and does not require large
amounts of training data and is therefore a scalable solution,
ideal for indoor scenarios where the radio environment is not
too dynamic, e.g., office or warehouse. The WFL accuracy
has converged in all of our experiments to the sample grid
resolution, thus suggesting that further improvements could
not be achieved by higher frequencyAP or larger RIS element
counts N , unless the domain space is sampled more densely
thus emphasizing the need for indoor radio map simulation
software that can also account for the wave phenomena
induced by the RIS (see Fig. 4 and c.f. [24]).

An interesting next step to our findings would be to study
the effect of multiple RIS deployments and also their spatial
arrangements and the effects and limitations introduced by
dynamic human movement and EM blockages due to obsta-
cles and walls. Further, having provided an initial validation
of our proposed solutions that significantly reduce some of
the risks and complexities associated to RIS-enhanced WFL,
wewould encourage followup experimental studies using real
data and real deployments.
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