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ABSTRACT Advanced capacity and density of memory have resulted in an increase in the probability of
memory faults. The in-memory Error Correction Code (ECC), which solves this problem, is a widely used
technology to improve the yield of highly integrated memory. However, the use of in-memory ECC causes
problems that have not been considered in memory repair algorithms. Redundancy analysis is effective
for repairing memory with redundant memory and in-memory ECC. In this paper, an ECC-aware fast
and reliable pattern matching redundancy analysis algorithm for memory using both spare memory and
in-memory ECC is proposed. This algorithm simplifies large-scale fault groups using in-memory ECC and
includes an early termination method that can determine whether a memory that cannot be repaired with line
spares can be repaired considering in-memory ECC. Experimental results show that the proposed pattern
matching redundancy analysis algorithm achieves a similar yield but 14.6% less RA time and 8.6 times
higher reliability compared to the existing redundancy analysis algorithms.

INDEX TERMS In-memory ECC, memory repair, redundancy analysis, yield, reliability.

I. INTRODUCTION
Advances in memory production and design technology have
led to steady improvements in memory cell density, perfor-
mance, power consumption efficiency, and cost. However,
with a decrease in the size of memory cells and increase
in the degree of integration, more faults have occurred in
the memory production process than before, especially for
Dynamic Random-Access Memory (DRAM). There are two
types of fault patterns: (1) a case with multiple faults that
share a row or column address and (2) a single cell fault that
does not share an address with any other fault [1]. Moreover,
owing to the improvement in memory design and production
technology, soft errors are more frequent than the errors in the
case where memory cells are large and placed far apart from
each other. These soft errors are present in cosmic rays [2]
and random telegraph noise [3], substantially threatening the
system reliability. Thus, improving the yield and reliability
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has been a major challenge for the advancement of DRAM
technology.

Redundancy Analysis (RA) [4]–[10] and Error Correction
Codes (ECCs) have been studied as technologies for improv-
ing memory yield and reliability, respectively. RA uses
redundant memories located in the memory layer to repair
faulty cells found through memory tests in each DRAM
array [9]–[11]. In general, redundant memory is divided
into row and column line spares, and the row or column
in which the faulty cell is located is routed to this spare
resource for repair. In addition, redundant memory of vari-
ous sizes has been proposed to improve yield [12]. RA has
been studied to achieve maximum yield with limited spare
resources. Repair Most (RM) [4] and Branch and Bound
(B&B) [5] are the cornerstones of RA. RM allocates spare
resources on the line where most faults are located. It has
a fast analysis speed with a simple analysis algorithm but
cannot repair all faulty memories that can be repaired. In con-
trast, B&B repairs all repairable faulty memories because it
builds trees to explore the number of possible repair solutions.
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However, it has a very slow analysis speed because it explores
all cases. Fast RA (FAST) [6] is the fastest RA algorithm and
uses a fault groupingmethod. The final solution is determined
by combining the row and column line spares required to
repair each group of faults; however, it does not achieve high
repair rates. For this reason, Very Efficient RA (VERA) [7]
has been proposed where the use of the fault group method
is the same, but it is possible to repair all faulty memories.
Although, its analysis speed is slower than that of FAST, it can
find an optimal solution by deriving the final solution with a
binary search tree. Fault Group PatternMatching (FGPM) [8]
performs best among algorithms that use the fault group
method. By adopting effective early termination and amethod
that matches fault patterns to solutions, all repairable faults
can be repaired at high speeds.

Unlike RA, which repairs faulty cells during produc-
tion, ECC is used to protect the data in memory against
soft errors that occur during operation. ECC is com-
monly used in rank level DRAM. The dual inline memory
module with ECC applies single-error-correction and double-
error-detection codes, along with an extra chip to store ECC
check bits [13]. As the probability of soft errors increases,
there is a need to develop effective fault-tolerant techniques
for DRAM [14], [15]. Therefore, DRAM researchers and
producers studied the placement of ECCs on DRAM dies,
which are called in-memory ECCs [16]–[18]. Despite many
difficulties in applying in-memory ECCs to DRAM [17],
results have been reported for DRAM chips with in-memory
ECCs [19]–[21].

An in-memory ECC has a limitation in that it can cor-
rect only one fault within one codeword. However, it can
repair single faults more effectively than line spare memory
under a spare row or column replacement policy. According
to the line-based replacement policy, one line spare must
be used to repair a single fault, whereas an in-memory
ECC can repair any number of single faults. Because of
these features, the in-memory ECC is a technology pro-
posed to correct soft errors occurring during operation;
nevertheless, its use for improving yield is also a major
goal [13], [16], [19], [20], [22], [23].

However, the use of in-memory ECC has led to new dis-
cussions. When it is used to improve yield with redundant
memory, very high yields can be achieved compared to the
case where only redundant memory is used. Even if the entire
processing capability of the in-memory ECC is not used to
improve the yield, the yield is clearly improved. However,
if a soft error occurs in a codeword in which a hard defect is
located, which has not been repaired considering in-memory
ECC, the memory fails. Therefore, to increase the yield with-
out compromising the reliability of the memory, the ECC
must be efficiently considered in RA. In memory design,
repair technology considering in-memory ECC is emerging
as an important research topic [7], [8], [13], [24]. For this
reason, it is necessary to study RA that can improve the repair
rate and cost efficiency of the memory by using in-memory
ECC and redundant memory.

FIGURE 1. Example of a memory using a line replacement policy.

In this paper, an ECC-aware fast and reliable Pattern
matching Redundancy Analysis algorithm (EPRA) for high
reliability memory is proposed. This algorithm simplifies
largescale fault groups, which incur considerable analysis
time in RA, using the fault grouping method with in-memory
ECC. In addition, a new early termination algorithm is pro-
posed to quickly determinewhether repair is possible, by con-
sidering in-memory ECC for memory that cannot be repaired
with line spares.

II. BACKGROUND
A. REPAIR RATE
The repair rate is an indicator that directly affects the yield
and is very important in the RA methodology. A low repair
rate reduces the number of memories produced, leading to a
lower yield. The repair rate indicates whether the RA can find
a solution to be effective. It was introduced in [25] and can
be defined as follows:

Repair rate =
No. of repaired chips

No. of total tested chips
(1)

However, there may be cases where repair is impossi-
ble, regardless of the method used, owing to the limited
spare resources of the memory. For an accurate analysis of
RA performance, it is necessary to compare the number of
repairs with the repairable memory when all solutions are
considered. This is indicated by the normalized repair rate,
introduced in [26], which can be defined as follows:

Normalized repair rate =
No. of repaired chips
No. of repairable chips

(2)

In addition, a case in which the normalized repair rate is
100%, that is, all repairable memories are repaired, is referred
to as the optimal repair rate.

B. SPARE ALLOCATION
In general, memory repair using the RAmethodology follows
a line replacement policy. There are two types of spares:
1) row line spare and 2) column line spare, as shown in Fig. 1.
Line spares are used to replace faulty cells in memory. Note
that the memory repair requires a replacement of the faulty
cell with a line spare, regardless of the number of faults
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located in one row or column line. In Fig. 1, (a) and (b) indi-
cate multiple faults sharing the same row or column address.
They are called line faults and are a common pattern of faults.
The difference between (a) and (b) lies in the spare resources
available to repair the faulty line. To repair (a), two row line
spares or one column line spare must be used. The memory
depicted in Fig. 1 has enough spare resources to repair (a) in
either manner. In contrast, repairing (b) requires one row line
spare or three column line spares. The memory shown in the
example has two row line spares and two column line spares;
thus, (b) can only be repaired with one row line spare. Thus,
a case in which the number of faults sharing the column (row)
address is greater than that of row (column) line spares and
can be repaired only with column (row) line spares is called
a must repair fault. In Fig. 1, fault (c) does not share a row
or column address with other faults. This is called a single
cell fault [1], [27], and it requires one line spare, which may
be either a row or column. The line replacement policy of
replacing several healthy cells to repair a few defective cells
may appear inefficient, but it has the strong advantage of
simple replacement control and the use of small control logic.
However, in the real world, faults are much more complex
than those depicted in Fig. 1; hence, an effective RA method
is very important in the line replacement policy. RA has been
studied to repair as many faults as possible with limited line
spare resources. For this purpose, spare resources of a form
other than line [12] or in-memory ECCs have been used to
improve yield [13], [16], [22].

C. FAULT GROUPING AND PATTERNING
Fault grouping methods have been used in many RA tech-
niques and for the evaluation of RA efficiency [6], [7], [28],
[29], [30]. Each fault group comprises a single fault or multi-
ple faults sharing the same row or column address. An impor-
tant point in this approach is that the must repair line must
be repaired prior to forming fault groups. Repair of the must
repair line through the allocation of a line spare reduces the
number of faults in each fault group, as well as unnecessary
RA, by consuming line spares that must be used in advance.

The most significant feature of the fault grouping method
is that faults in a group do not share the same row or column
address as those in other groups. This allows each fault group
to have a repair solution independent of other fault groups,
so that solution searches can be performed independently.
An example of the fault grouping method is shown in Fig. 2.
As shown in Groups 1 and 2 in the figure, the faults included
in each group do not share any address with the other groups.
In contrast, the faults included in the same group are in the
same row or column as those of one or more other faults.
For this reason, the faults of each group can be analyzed
independently.

Fault group patterning is a method proposed in FGPM [8]
where after patterning each configured fault group, the infor-
mation for each group is collected. The investigated informa-
tion is used for effective early termination. Moreover, rather
than analyzing the group’s repair solution, it helps to match

FIGURE 2. Example of a memory with the fault grouping method and
pattern generation.

the solution immediately, thereby reducing the analysis time.
Fault group patterns are formed by linking faults with the
same address in each fault group. The investigated informa-
tion is obtained from the configured fault group pattern and is
listed as follows: 1) the number of faults (Nf ); 2) the number
of faulty rows (Nfr ); 3) the number of faulty columns (Nfc);
4) the number of multi fault rows (Nmr ); and 5) the number
of multi fault columns (Nmc).
Let us consider Group 2 in Fig. 2 as an example, which

comprises five faults (Nf = 5). Considering the row and
column addresses of faults in the fault group, these faults are
located in rows 0, 1, and 3, and in columns 2, 3, and 5. That is,
because there are three rows and three columns having faults,
both Nfr and Nfc have a value of 3. Considering addresses
with multiple faults, there are two faults in each of the rows
0 and 1 and two in columns 2 and 3. That is, the number of
rows and columns comprising multiple faults is two; thus,
both Nmr and Nmc have a value of 2. As such, the pattern
matchingmethod divides a fault group by the number of faults
and the number of faulty rows and columns. That is, how
far apart the faults are within the pattern does not affect the
patterning. Due to this, the pattern matching method can be
applied regardless of the memory size. However, not all fault
groups can use the patternmatchingmethod. According to the
study, the maximum number of faults in a group for which
the pattern matching method can be used (Np) is five. This
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is because the fault groups with more than Np faults have
different solution patterns even though they have the same
investigated information.

III. PROPOSED BIRA APPROACH
A. OVERVIEW OF THE PROPOSED RA
The proposed ECC-aware RA exhibits the following three
characteristics: 1) pattern matching-based solution search,
2) group simplification, and 3) ECC-aware termination. The
pattern matching method is one of the most effective fault
grouping RAs [8]. When the group pattern is classified based
on certain information of the fault group, the repair solution
of the group is derived from the list of solutions designated
for each pattern. This substantially reduces the analysis time
for RA by reducing the number of solutions to be consid-
ered. However, pattern matching is impossible for groups
comprising more than five faults (Np = 5). ECC-aware RA
can reduce the number of faults that need to be repaired
by line spares, by correcting faults with ECC. This feature
considerably aids the pattern matching method, where the
number of faults is important. In addition, ECC can repair
only one fault within the same codeword, which implies that
the positional relation between the faults should be consid-
ered in its use. Pattern matching is a specification of the
positional relation between faults with some information and
has similar characteristics to those of ECC. For these two
reasons, the pattern matching technique can generate good
synergy with the ECC-aware RA, which is why the proposed
RA adopts the pattern matching method.

Group simplification is a process of changing a large fault
group comprising more than Np faults into a group capable
of pattern matching by utilizing the features of ECC. By skip
the faults that can be corrected by ECC, the number of faults
that must be repaired by line spares is reduced.

Finally, ECC-aware termination is an effective early ter-
mination. For improved memory reliability and yield, ECC
should be used while allocating line spares as efficiently as
possible. ECC-aware termination determines whether repair
is possible when considering ECC for a memory that cannot
be repaired only with line spares. Using this termination,
a quick judgment can be made because the calculation result
is determined for each fault pattern, such as a solution list of
pattern matching.

There are three parameters that affect memory produc-
tivity: the RA time, the yield, and the reliability. Short RA
time and high yield allow memory vendors to produce more
memory. However, if the produced memory breaks down
quickly, even if it has high productivity, it is meaningless. The
produced memories must be able to operate without failure
for a long time. Since the proposed RA is an ATE-based RA,
there is no circuit to be built into the memory, so the hardware
overhead is not considered. The proposed idea uses ECC,
a structure for reliability, to improve memory productivity.
ECC is proposed to correct errors that occur during operation.
But in the proposed idea, ECC is also used to correct per-
manent faults detected that detected during production. The

FIGURE 3. Flow chart of the group simplification.

proposed ECC-aware pattern matching algorithm shows fast
RA speed and high yield. However, due to the careful use of
ECC, high productivity gains are achieved with little loss of
reliability. Also, the proposed idea is applicable not only to
DRAM, but also to all types of memories using line spare
with ECC to improve the reliability of the memory.

B. GROUP SIMPLIFICATION OF PREPROCESSING
In the preprocessing step, RAs using the pattern matching
method classify faults into fault groups, generate fault group
patterns, and then investigate the fault group information.
Here, the investigated information is used to classify the fault
group pattern, and the classified pattern has a solution within
a specified solution list, without the need to search for a
solution. This considerably reduces the RA time of the pattern
matching method. However, the pattern matching method,
which is one of the most effective methods among fault
grouping RAs, also has limitations. The fault group pattern is
classified based on the five types of information (Nf , Nfr , Nfc,
Nmr , and Nmc) collected in the preprocessing stage. A fault
group pattern comprising Np or fewer faults has the same
solution list if the fault group pattern information is the same.
In contrast, in case of a fault group pattern comprising more
than Np faults, a different solution list is obtained even if
they are classified in the same fault group pattern based on
the five types of information. That is, the pattern matching
method cannot be used for a group in which the number of
faults exceeds Np. Large fault groups comprising more than
Np faults increase the computational loadwhile slowing down
the analysis speed [8].

The proposed RA reduces the number of faults in a large
fault group and enables pattern matching by finding and
removing faults that can be corrected by in-memory ECC.
This is called group simplification. In this stage, after col-
lecting fault group information during preprocessing, 1) child
grouping, 2) pattern simplification, and 3) regrouping is
sequentially performed for large fault groups comprising
more than Np faults. The workflow of group simplification is
illustrated in Fig. 3. Group simplification can also be applied
to fault groups of 5 or fewer faults, but it can greatly increase
the number of faults corrected by ECC. Since it can greatly
reduce the reliability of the memory, the proposed RA applies
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group simplification only to a large fault group that cannot be
pattern-matched.

Memory arrays comprise hundreds or thousands of rows
(word lines) and columns (bit lines). Rows of in-memory
ECC-applied memory comprise dozens of ECC codewords,
each of which comprises data bits and check bits. Child
grouping classifies the addresses of faults belonging to a large
fault group by a codeword, and forms subgroups of the large
group belonging to the same codeword. ECC can detect two
faults within one codeword and correct one fault [13]. Child
grouping is a preparation process to find faults that can be
corrected by ECC among faults belonging to a large fault
group. In the proposed RA, a large fault group comprising
several faults (more than Np) is called the mother group and
the subgroups formed by dividing it into codeword units are
called child groups. Faults that can be corrected by ECC in
child groups are erased according to the fault skip rule in
the next step, simplifying each child group. An example of
child grouping is shown in Fig. 4(a), which indicates a part
of the memory where a fault group is located. Let us suppose
that the memory comprises 8-bit codewords, and the mother
group, shown in Fig. 4, comprises eight faults spread across
three codewords. When divided into codeword units, there
are three subgroups, as shown in the figure, which are called
child groups. The faults within a child group can share a row
address with other child groups, but not the column address.
Within the same codeword, the rules of the existing fault
grouping are followed. If the same row or column address
is shared, it is assigned to the same child group, and a fault
without a shared address is a child group comprising one
fault. For the above reasons, multiple child groups may exist
within one codeword.

ECC can detect up to two faults in one codeword unit and
can correct one fault. This means that in-memory ECC can
fix one fault for each row in a child group. However, the fault
skip rule of the proposed RA does not skip all faults that
can be corrected by ECC. If all faults that can be corrected
by in-memory ECC are handled by ECC, and if line spares
are used only for faults that cannot be corrected, the repair
rate will surely increase. However, reliability in the online
operation of the memory may be adversely affected. This is
explained in Section 3.5. For this reason, the proposed RA
should be able to guarantee both yield and reliability of the
memory by using ECC efficiently. For the most efficient use
of ECC for RA, the proposed RA establishes a fault skip rule
that skips faults that do not share the row address with other
faults in the child group.

1) FAULT SKIP RULE
If a fault belonging to a group does not share a row
address with other faults belonging to the group, it can
be skipped from the group because it can be corrected by
in-memory ECC.

There are two reasons for establishing the above rule. First,
fault skip aims to simplify the fault group pattern. ECC should
be used for faults that can change the pattern. When there

FIGURE 4. Example of child grouping in memory 8-bit codeword memory.
(a) fault pattern of mother group. (b) child grouping and fault omission.
(c) regrouping child groups after fault omission.

are multiple faults in one codeword, skip one fault does not
guarantee a pattern change. In contrast, when there is one fault
in the codeword, the fault pattern always changes. Second,
even if one fault is skipped for a row in which multiple faults
exist, more than one line spare must be used anyway. If a line
spare is to be used, it is more efficient to fix the line fault
than a single fault. However, it is not necessary to use ECC
in a situation where a line spare must be used anyway for a
fault located in the row. The proposed RA simplifies the large
fault group by skip the faults within the child group in the
fault simplification step based on the fault skip rule. Fig. 4(b)
shows an example of pattern simplification. Here, child group
1 comprises four faults, and faults located in rows 1 and 6 do
not share the same row address in the group. These faults are
cleared according to the fault skip rule, and the pattern of the
child group appears to change through pattern simplification.
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As the child group is codeword-based, if it is directly
repaired using line spares, the inefficiency of using the
spare occurs. For efficient spare allocation, it is necessary
to group child groups back into line-based groups, such
as the mother group. In the proposed RA, the process of
recombining pattern-simplified child groups into line units
is called regrouping. Pattern-simplified child group patterns
are already grouped based on the column line. For group-
ing between child groups, only the row address needs to
be checked; thus, it can be done faster than conventional
grouping. In addition, as there are faults that have been
eliminated, one mother group can be divided into several
groups. The group simplification of the proposed RA ends
with regrouping. Fig. 4(c) shows the regrouping of child
groups after pattern simplification, where the group compris-
ing eight faults has changed into that comprising four faults.
As pattern matching is possible only for groups comprising
five or fewer faults, pattern matching is not possible before
for the group shown in the example but is possible after group
simplification.

When the group simplification is completed, the total num-
ber of faults in the simplified fault group is checked. If the
number of faults in the group is less than five, pattern match-
ing is performed by collecting five types of fault groups,
as presented above. If not, a solution search is conducted
subsequently. Group simplification of the proposed RA han-
dles faults that can be corrected by in-memory ECC within
the fault groups, allowing pattern matching of as many fault
groups as possible. This stage allows the solution list to be
matched even for groups containing several faults, which can
substantially reduce the analysis time.

C. ECC-AWARE TERMINATION
Early termination, which reduces unnecessary RAoperations,
is very important in improving RA performance. Among
the termination methods, FGPM proposes effective early
termination based on fault group pattern information [8].
This early termination calculates the minimum number of
spares required for repairing each fault group (Nmrs) with the
five types of information. If the sum of Nmrs of each fault
group is greater than the number of available spares, the RA
is terminated prematurely. However, this early termination
does not consider faults that can be corrected by in-memory
ECC. The premise of RA considering ECC is the efficient
use of line spares. There should not be any inefficiencies,
such as using ECC even though there are line spares left.
Taking this into account, the proposed RA finally reviews the
possibility of repair considering ECC only for the memory
that failed to be repaired as a result of early termination.
This is called ECC-aware termination. Here, while using
the line spares as much as possible, the memory that could
not be repaired previously is quickly determined through
calculations to check if it can be repaired when considering
in-memory ECC.

To simplify the fault group pattern using ECC, the fault
skip rule defined above is followed. This rule changes the

TABLE 1. Specifications of loads used in the experiment.

fault pattern as it eliminates single faults on a row line basis.
Fault patterns are divided into fault group pattern information.
In other words, this information is modified according to the
fault skip rule. The fault group pattern information to which
the fault skip rule is applied can be derived through a simple
operation.

First, for the fault skip rule to be applied, theremust be lines
with a fault among the row lines. That is, it can be applied only
to a fault group pattern where the value of Nfr is greater than
that of Nmr .

Nfr > Nmr (3)

When the fault skip rule is applied, the row lines where
a fault is in the fault pattern are eliminated. In other words,
the number of faulty rows of the modified fault group pattern
(N ′fr ) has the same value as Nmr .

N ′fr = Nmr (4)

In addition, because the number of rows in which multiple
faults are located is not affected by the fault skip rule, it does
not change even in the modified fault group (N ′mr ).

N ′mr = Nmr (5)

Because each of the removed row lines contains one fault,
the total number of faults in the fault group also changes. The
number of faults of the modified fault group pattern (N ′f ) is
the number of faults in the original fault group (Nf ) minus the
number of removed row lines (Nfr − Nmr ).

N ′f = Nf − (Nfr − Nmr ) (6)

When considering only the row line address, faults that are
removed are single faults. However, as these faults belong
to a fault group, if they are not in a group consisting of
only one fault, they would have another fault that shares the
column address. That is, the number of faulty columns of
the modified fault group (N ′fc) remains the same as before.
However, it is not known whether the number of multi fault
rows has changed.

N ′fc = Nfc (7)

However, it is not completely impossible to determine
the number of multi fault columns of the modified fault
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TABLE 2. Simplification result of fault group patterns.

group (N ′mc). The fault groups handled by the ECC-aware ter-
mination stage have patterns. In addition, the types of patterns
are limited. The fault group patterns are listed in Table 1. The
maximum number of faults in the fault group pattern is five;
thus, the number of faults of the modified fault group pattern
is up to four. In addition, N ′fr and N

′
mr have the same value.

The fault group patterns that satisfy the condition are (0, 0, 0,
0, 0), (2, 1, 2, 1, 0), (3, 1, 3, 1, 0), (4, 1, 4, 1, 0), (4, 2, 2, 2,
2), and (4, 2, 3, 2, 1). Because there is no fault group pattern
with the same four types of information that can be calculated
among these, all fault group patterns can find a modified fault
group pattern under the fault skip rule applied with a simple
operation.

The strongest advantage of the pattern matching method is
that there is a list of solutions for each pattern. If the pattern
can be specified, the RA speed can be substantially improved
because the solution can be selected from a list of solutions.
ECC-aware termination has the same advantage. It does not
have a corresponding modified fault group pattern for each
fault group pattern but has the minimum number of spares
for the repair modified fault group (N ′mrs) required for early
termination. The modified group patterns are specified in six
types, and their Nmrs (same as N ′mrs) can be calculated. The
original fault group patterns, simplified fault group patterns
by the fault skip rule, and N ′mrs are summarized in Table 2.
Because ECC-aware termination is applicable only to fault
group patterns that satisfy Equation (3), not all fault group
patterns are shown in Table 1.

Early termination requires N ′mrs, not the fault group pattern
information. The purpose of ECC-aware termination is to
showN ′mrs, that is,Nmr when ECC is considered for each fault
group pattern. This is because if there is a memory that cannot
be repaired as a result of early termination, it is possible
to determine if it can be repaired considering the ECC by
comparing the fault groups of the memory again with N ′mrs.
Comparing the features of the original fault group patterns
and N ′mrs in Table 2, it can be seen that N ′mrs can be easily
derived through several features of the original fault group
patterns.

First, the common point of the fault group patterns where
N ′mrs = 0, is Nmr = 0. When N ′mrs is 1, it is difficult to extract
the common points, but when N ′mrs is 2, the common points
can be easily determined. When Nf is 5 and Nmr is 2, N ′mrs

FIGURE 5. Flow chart of the ECC-aware termination.

FIGURE 6. Flow chart of the proposed RA.

is always 2. The workflow of the ECC-aware termination
is shown in Fig. 5. With the ECC-aware termination, fault
groups can easily derive N ′mrs (Nmrs when simplified by the
fault skip rule). This makes enables us to check whether an
unrepairable memory can be repaired when in-memory ECC
is efficiently considered.

D. WORKFLOW OF EPRA
Fig. 6 shows the overall workflow of the proposed RA.
First, the locations of faults found as a result of the test
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during the fault collection stage are stored in the fault bitmap.
Whenever a fault is detected in the test, the proposed RA
determines whether the fault should be written to the bitmap.
This is because if a fault was previously recorded in the
bitmap, there would be no need to rewrite it. The faults thus
recorded are divided into fault groups; the Nf of each group
is analyzed while forming the fault groups. After all fault
groups are determined, the pattern generation stage begins.
In this stage, fault groups are converted into patterns suitable
for each group and the fault group pattern information to
be used in early termination and simplification is recorded.
As mentioned earlier, the list of information collected for
each group is: 1) Nfr , 2) Nfc, 3) Nmr , and 4) Nmc. Nf is not
aggregated at this stage because it was previously analyzed
while forming the fault groups. Because most fault groups
comprise five or fewer faults [8], the pattern can be matched
immediately; however, large fault groups need to undergo
a group simplification process to determine if they can be
converted into groups with five or fewer faults. Fault groups
that cannot match the pattern are divided into child groups
in units of a codeword, to identify faults that can be skipped.
Faults that can be corrected by in-memory ECC are skipped.
The simplified child groups are again grouped into a new
group. As the number of faults in the group is significantly
reduced, fault groups that were previously impossible to be
matched can now be matched. If pattern matching is still not
possible, all possible solutions are checked to determine an
optimized repair solution for the fault group. After pattern
matching, the fault groups for which information is recorded
are subjected to early termination. If the conditions are met,
the list of solutions specified for each pattern is recorded.
However, if the conditions are not met, ECC-aware termi-
nation is performed. The ECC-aware termination proposed
in this paper simplifies the fault group and proceeds with
a new termination. If the conditions are met, it moves to
the solution match stage, as for the previous fault groups;
otherwise, the RA is ended because repair is impossible
even if ECC is used. After the solution match and solution
search produce a list of all solutions for each fault group,
the solution tree construction step is performed to derive the
final solution. Solutions for each fault group are selected,
which then generate the stem of the solution tree. The pro-
posed RA compares the available spare memories with the
solution tree. If it finds a configurable stem with the available
spare memories, the proposed RA determines it as the final
solution and completes the RA. When an optimal solution is
required, the proposed RA will explore the last trunk. If there
are no configurable trunks of available spare memories, that
memory is considered unrepairable and the RA ends.

The proposed RA has a common point with FGPM in that
it quickly derives a repair solution by using a fault group
pattern, but other than that, it has significant differences. First,
the proposed RA has group simplification stage. The pattern
matching stage in FGPM is performed for the fault groups
consisting of 5 or fewer faults. However, in the proposed
RA, the large faults group consisting of more than 5 faults

are divided into codeword units (child grouping) and simpli-
fied. The simplified fault groups are merged into one group
again (regrouping), and the pattern matching stage is per-
formed. The second point the ECC-aware termination stage.
By improving the early termination of FGPM, the proposed
ECC-aware termination considers faults that can be corrected
by ECC and quickly determines whether to repair. These two
improve the RA time by speeding up the analysis of large
fault groups, which had a significant impact on the RA time
of FGPM. The difference due to these features is analyzed in
the next section.

E. RELIABILITY ISSUES USING ECC WITH RA
Certain faults caused by hard defects are corrected by
in-memory ECC. A single fault in a codeword is corrected
by ECC to skip the faults located in a large group and convert
it to a group capable of pattern matching, or to fix a memory
that cannot be repaired with only line spares. Therefore, if a
fault is added to the same codeword owing to a soft error,
it is equivalent to a 2-bit error in the same codeword. Because
ECC can only correct a single fault in a codeword, an ECC
correction error occurs, and the memory would fail.

The Poisson distribution is used to model the soft error
distribution occurring in each bit. The number of hard faults
repaired by ECC is denoted as ne, and the number of soft
errors that occurred is denoted as ns. If ne + ns exceeds the
number of soft errors that can be corrected by the ECC, this
memory will be failed. Since the most widely used code of
ECC can correct one error, the reliability of a memory over
time is shown in Equation (8) [31], [32].

Rs (t) =
[(
e−λt

)l−1]Nk
×

[
C l
0

(
e−λt

)l
+ C l

1

(
1− e−λt

) (
e−λt

)l−1]Ns
(8)

In the above equation, λ denotes the soft error rate, and l
is the size of words that are corrected at once by ECC. Nk
is the number of correctable words in incorrect words and is
the number of words that have already been repaired one hard
error using the ECC. And Ns is the number of words with soft
errors.

As can be seen from Equation (8), when using ECC-aware
RA, the factor that has the greatest influence on reliability is
the number of words that repaired hard defects using ECC.
The proposed RA classifies and corrects only the minimum
number of faults required to improve RA performance among
faults that can be corrected by ECC. Through this, the number
of faults corrected by ECC is minimized, thereby minimiz-
ing the decrease in reliability pointed out as a problem of
ECC-aware RA. The analysis of reliability is covered in the
next section.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED RA
To evaluate the performance of the proposed RA, a simu-
lation program is implemented in Python. Here, a 1024 X
1024 memory is used because, although the memory block

VOLUME 9, 2021 133281



D. Han et al.: ECC-Aware Fast and Reliable Pattern Matching RA for Highly Reliable Memory

TABLE 3. Comparison of preprocessing time between FGPM and EPRA.

sizes vary, the trend of the experimental results is nearly
identical. For a fair comparison, various fault distributions are
considered [4]–[8]. The faults are distributed in an experiment
using the Polya–Eggenberger distribution model [33]–[35],
which is widely used in memory fault modeling and is known
to be one of the closest to the actual fault distribution among
the various fault distribution models. For the reliability of
the experiment, each experiment per fault distribution is per-
formed 100,000 times, and the average value is calculated.
Additionally, all experiments are conducted with various
numbers of faults and spares.

In the experiment, the proposed RA is compared with
FGPM [8], Optimal repair analysis Algorithm (OA) and
Heuristic repair analysis Algorithm (HA) [13]. FGPM is an
RA that repairs memory using only spare rows and columns
and adopts fault grouping and pattern matching methods to
show optimal repair rate and fast analysis speed. OA is one of
the most recent ECC-aware RAs, and it shows high repair rate
through greedy use of ECC. HA uses in-memory ECC less
greedy than OA, allowing faster solution derivation instead
of obtaining a slightly lower repair rate. The performance
of the proposed RA is compared and analyzed with the
representative studies of the fault grouping method RA and
ECC-aware RA.

A. RA TIME
The proposed RA adopts fault grouping and pattern match-
ing. This method groups faults by preprocessing during fault

TABLE 4. RA time comparison.

collection time and extracts fault group information. How-
ever, unlike RAs of the existing fault grouping and pattern
matchingmethod, the proposed RA additionally goes through
a process of simplifying large fault groups. In this part, first,
fault group simplification occurrence rate of the proposed RA
is analyzed by changing the number of faults and the number
of available spares.

Fig. 7 shows the rate of fault groups that are simplified
according to the number of faults. The number of large fault
groups comprising six or more faults does not change accord-
ing to the number of line spares but is only affected by the
total number of faults. For this reason, comparisons are made
for the same number of faults regardless of the number of
line spares. The figure shows the ratio of the number of fault
groups that have been simplified to the number of large fault
groups. As the number of faults increases, the percentage
of fault groups enabling pattern matching decreases. This
can be seen at the ratio of the simplified fault groups. It is
correct that the ratio of large fault groups consisting of six
or more faults should be affected only by the number of
faults, but looking at Fig. 7, it can be seen that the ratio
of the simplified fault groups also increases as the number
of line spares increases. This is because the number of faults
satisfying the must repair condition decreases as the number

FIGURE 7. Proposed group simplification occurrence rate.
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TABLE 5. Repair rare comparison.

of line spares increases, resulting in more large fault groups.
The pattern matching RA requires solution to search for large
fault groups in the analysis process. This occupies a large part
of the total analysis time and is one of the factors that hinder
the performance of RA. To solve this problem, the proposed
RA simplifies large fault groups so that more fault groups can
be pattern matched.

However, for pattern simplification, processes of divid-
ing large fault group into codeword units, simplifying and
regrouping them are necessary. This is done during the pre-
processing process and may affect the total RA time as
well as the preprocessing time. To confirm this, FGPM, one
of the most effective pattern matching RAs, is compared.
Table 3 shows the difference between the preprocessing times
of FGPM and EPRA, and difference in the entire repair
time. First, looking at the preprocessing time difference, the
difference shows a value between −10% and 10%, so there
is no big deviation, but overall, the proposed RA takes more
time. However, looking at the total RA time, the proposed RA
shows a much faster. If the total number of faults is small and
the proportion of analysis time out of the RA time is small,
it is greatly affected by the difference in preprocessing time.
However, as the number of faults increases, the proportion
of analysis time increases, and the proposed RA, which sim-
plifies large fault group and generates a minimum solution
search, shows a much faster speed than FGPM. This becomes
evident as the number of faults increases and the number of
available spares increases.

In Table 4, the RA times of FGPM, OA, HA and proposed
RA are compared. OA and HA have a different prepro-
cessing process from other two algorithms, so rather than
comparing only the preprocessing time separately, the total
RA time including this is compared. The RA time of OA is
not changed significantly depending on the difference in the
number of spares. On the other hand, for FGPM, HA and
EPRA, the repair time becomes longer as the number of
spares increases. This is because in the case of the three
algorithms, the time for the allocation of spares occupiesmost
of the total RA time. Compared to EPRA, the change in the
repair time of FGPM is remarkable, and when the number of
Rs and Cs is 3 each, it is faster in all sections than OA andHA.
However, when the number of spares increases, it is fast in

most of the sections, but when the number of faults increases,
the repair time also increases rapidly, and eventually it can
be confirmed that it is slower than OA and HA. This is due
to the increase in repair time as more fault groups need to
be searched for solutions. On the other hand, EPRA shows a
similar speed to FGPM in the section where the number of
faults is small, but there is no significant deviation in repair
speed even when the number of faults increases, so it shows
the fastest repair speed among four algorithms.

Comparing OA, HA and EPRA in more detail, the data
show that EPRA has a faster repair time in all processes
compared to OA and HA. As the number of line spares is
small and the number of faults increases, the strength of
EPRA in repair time is revealed. In the experimental results,
there are cases where OA took almost 70%more of the repair
time of EPRA. The difference in repair time between OA and
HA is not large, but as the number of faults increases, the
difference becomes clear. In EPRA, even if the number of
faults increases, the change in repair time is not large, but
OA and HA increases significantly compared to EPRA. In a
situation in which more faults than the suggested number for
the experiments, the repair time of OA and EPRA shows a
larger difference. This difference in repair time is important
in the modern computer industry that produces hundreds of
thousands of memories.

B. YIELD
RA aims to achieve high yield by repairing the produced
memory as much as possible using limited repair resources.
Therefore, the repair rate, which determines how many of
faulty memories can be repaired under the same conditions,
is one of the factors that directly affect the yield. In this
section, the repair rate and yield of the four algorithms
(FGPM, OA, HA and EPRA) are compared and analyzed in
various conditions.

Looking at the repair rate, the proposed RA uses ECC to
improve yield; thus, if it has the same number of line spares,
it has a higher repair rate than all RAs using only line spares.
In other words, the comparison of the normalized repair rate
is meaningless because it shows a higher repair rate than RA,
which shows a 100% normalized repair rate based on line
spares. For an accurate comparison, this study uses the repair
rate instead of the normalized repair rate.

Table 5 summarizes the results of measuring the repair
rate of FGPM, OA, HA and EPRA according to the vari-
ous numbers of line spares and faults. Both OA, HA and
EPRA proceed with RA considering in-memory ECC, but
there is a big difference in the use of ECC. OA focuses on
improving the repair rate by correcting as many faults as
possible with ECC. However, such greedy use of ECC can
increase the probability of failure during memory operation.
On the other hand, EPRA corrects faults with ECC only the
minimum number of faults necessary to simplify the fault
group. HA is somewhere in between the two algorithms, but
it is a little closer to the characteristics of OA. All available
spare resources are used, but the use of ECC is given priority.
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TABLE 6. Information of fault sets.

FIGURE 8. Probability of occurrence according to the number of faults for
each deviation.

OA shows 100% repair rate over the entire range tested,
whereas HA and EPRA do not. This difference is due to
the concept of ECC use of the three algorithms. Comparing
the repair rates of FGPM and EPRA, the proposed RA does
not show a significant difference in repair rates compared to
FGPM when the number of faults is small but shows a large
difference as the number of faults increases. This is because
in the proposed RA, as the number of faults increases, line
spares are effectively disposed through fault skip. This feature
is evident even when the number of line spares is increased.
As the number of line spares increases, the proposed RA has
less change in repair rate as the number of faults increases
compared to FGPM. To summarize the experiment of com-
paring the repair rate of the three algorithms, compared to
the maximum use of ECC, the repair rate is lower, but the
proposed RA is effective as the number of faults increases
and the number of usable line spares increases.

OA, HA and EPRA show a big difference in repair rate
as the number of faults increases. However, this difference is
not very significant in terms of yield. In an actual memory
production, various numbers of faults occur in each memory
die. Usually, most of dies are faultless or have only a very
small number of faults. Therefore, in order to compare the

TABLE 7. RA performance according to fault sets.
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yield of RAs, various fault sets must be used to compare the
repair rate.

Memory produced under a mature production process will
most likely be fault-free. On the other hand, memories manu-
factured under an immature process may contain many faults.
In order to compare the yield according to each RA in such
various cases, the deviation of the normal distribution is
increased by 0.25 units from 0.5 to 5.25 and 20 fault sets
are generated. Each fault set consists of 100,000 memories,
as shown in the repair rate experiment. However, unlike the
previous experiment, each memory has various numbers of
faults, not the same number of faults. The number of faults in
each memory is determined by the probability of occurrence
according to the deviation value determined for each fault
set. The probability of occurrence according to the number
of faults per set is shown in Fig. 8. The deviation, average
number of faults, and maximum number of faults of the
20 fault sets created according to the distribution in Fig. 8 are
shown in Table 6.

In Table 7, yield, RA time, and the number of hard defects
corrected by ECC according to RAs and number of line
spares are summarized. For memory producers, unrepaired
memory is a cost. Therefore, when the yield falls below
a certain level, it is economical to improve the yield by
adding spare resources. For this reason, it makes no sense to
compare yields below a certain level. In this paper, the yield
of FGPM using only line spares for repairing faults is taken
as a standard. Among the fault sets made previously for the
yield experiment, fault sets showing yields of 100%, 95%,
and 90% by the number of line spares when FGPM is applied
are selected. The selected fault sets are simulated by applying
OA, HA and EPRA, and the results are shown in Table 7.

Looking at the yield, it shows that when the number of
faults is large, the repair rate of OA, HA and EPRA shows
a large difference, but there is no significant difference in
the yield. Even in the case of the largest difference, the yield
of OA is only 1.08 times that of EPRA, and the difference
in yield decreases as the number of line spares increases.
HA also has a similar value to OA, which is 1.07 times
higher than that of EPRA. RA times, as analyzed in section
4.1 above, are faster for EPRA than for other algorithms. This
becomes evident as the average number of faults in fault set
increases. The number of faults corrected by ECC shows the
characteristics of each algorithm. Except for FGPM, which
does not use ECC in RA, EPRA corrects only a very small
number of faults on average compared to OA and HA repair-
ing as many faults as possible with ECC. This is also evident
in the maximum value of faults corrected by ECC. A detailed
analysis of this will be described in the next session.

In summary, EPRA shows lower repair rate than OA or HA
when the number of faults is large. But this does not affect the
yield, because this situation does not happen very often. The
difference in yield is only as small as 1.08 times at most, but
to make this difference, OA must correct so many faults with
ECC compared to EPRA. There is no significant difference
in yield with HA, and relatively few faults are repaired with

FIGURE 9. Ratio of faults corrected by in-memory ECC.

ECC compared to OA, but HA also uses more ECC compared
to EPRA like OA.

C. RELIABILITY
In-memory ECC, which has been proposed to improve mem-
ory reliability by correcting soft errors that occur during
online operation, has been actively studied to improve yield
because it effectively repairs single faults. The proposed
RA also uses ECC and line spares to improve the yield.
However, an excessive use of ECC increases the probability
of future memory failures. To solve this problem, EPRA
uses as many line spares as possible and establishes usage
rules so that ECC can be used most effectively. In this
experiment, the number of faults that the proposed RA can
repair through ECC, as well as whether ECC use for repair-
ing hard defects does not impair the memory reliability, is
analyzed.

In Fig. 9, the number of faults corrected by in-memory
ECC is shown when the proposed RA is applied while chang-
ing the numbers of faults and line spares. In each case,
the ECC-corrected fault ratio increases with the number of
faults, up to a certain level. When it reaches a certain level,
the repair rate drops. This shows that EPRA fault skip rule is
proposed in consideration of efficient use, rather than indis-
criminately increasing the repair rate using ECC. Analyzing
the number of faults that single line spare repairs on average,
in the proposed RA, this value also increases as the number
of failures increases. This shows that ECC is being used to
increase the efficiency of using line spares.
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TABLE 8. Yield and failure rate of OA and HA against EPRA.

In the case of hard defects in the memory discovered in the
production stage, even if they are not repaired, they can be
corrected through ECC. In this case, it does not significantly
affect actual memory operation. However, if a soft error
occurs while reading a codeword with a hard defect that has
been corrected by ECC, memory failure occurs. Since ECC
can only correct one error in one codeword, it fails to read the
codeword. This memory failure can greatly affect the overall
operation of the system. Memory reliability is one of the
most important factors in the stability of the system, and for
the above reasons, the use of ECC in RAs that repair hard
defects should be cautious. Due to the feature of ECC that
cannot correct a plurality of faults, a codeword inwhich a hard
defect to be corrected by ECC is located leads to a memory
failure when a soft error occurs. That is, the increase in the
probability of memory failure occurring as the RA considers
ECC is proportional to the number of hard defects corrected
by ECC.

Of the four RAs covered in the experiment in this paper,
FGPM does not consider ECC in the RA process, so there
is no additional change in the probability of memory failure.
On the other hand, since OA, HA and EPRA are ECC-aware
RAs, it is necessary to compare the probability of additional
memory failure. An additional failure rate experiment is per-
formed to measure memory failure caused by correction of
hard defects using ECC in each algorithm. Instead of repair-
ing some of the hard defects found in offline, ECC-aware RAs
correct them using ECC in online. Memory failure occurs
when an error in online occurs in the same code word as
the hard defect to be corrected. That is, the failure rate per
error is proportional to the number of codewords where hard
defects to be corrected by ECC are located. To check the exact
failure rate per error, the fault set for this experiment consist
of 10,000 random errors. In this experiment, it is assumed
that an error occurs in the requested codeword when the
system reads the memory. When an error occurs in the read

FIGURE 10. The reliability function of a memory in the RAs.

codeword 10,000 times, the failure rate is derived by checking
the percentage of memory failures that an error cannot be
corrected by ECC. These errors are online errors and include
both soft errors and hard defects. This fault set is assigned to
the memories that were determined to be good in the yield
experiment. In Table 8, the yield and failure rate of OA, HA,
and EPRA are summarized.

From the experimental results, the memory repaired by
the OA that uses ECC greedy shows a very high failure rate
in all cases. HA shows a very low failure rate compared
to OA. However, the proposed RA shows a lower failure
rate than HA, and thus shows the highest reliability among
the three algorithms in all cases. As the number of spares
increases, the difference in yield between the three algorithms
decreases. This proves that the proposed RA focuses on the
efficient use of line spares. Nevertheless, although the dif-
ference is smaller than when the number of spares is small,
compared to OA and HA, EPRA clearly shows a low failure
rate in all cases. Especially when looking at the memory with
the top 10% failure rate, it shows at least nearly half the failure
rate in the same condition.

This is due to the concept of each RA. The fail-
ure rate is proportional to the number of faults corrected
by ECC. OA shows the highest failure rate because all
ECC-correctable faults are corrected by ECC. However,
in HA, ECC-uncorrectable faults are repaired by line spares.
After repairing ECC-uncorrectable faults, among the remain-
ing faults, ECC-correctable faults are corrected by ECC.
On the other hand, the proposedRA corrects ECC-correctable
faults by ECC only for faults groups consisting of a large
number of faults. As the number of faults increases, the num-
ber of fault groups consisting of a large number of faults and
ECC-uncorrectable faults increases. Because of this, HA and
the proposed RA gradually show a similar failure rate. How-
ever, due to the criteria for selecting faults to be corrected by
ECC, the proposed RA always corrects fewer faults than HA
by ECC.

In actual use, the errors of memory in online occur due to
various causes such as the aging of elements [36], the failure
of modules in memory [37]. When correcting data of the
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FIGURE 11. Comparison of overall performance of ECC-aware RAs.

memory in online, regardless of the cause of the error, it is
recognized as an error in the memory cell and corrected by
ECC. As such, from the perspective of correcting the memory
in online, the frequency of thememory cell error is considered
regardless of the cause of the error. For this reason, the error
rate of memory in online [31], [32], [38] is used to analyze
the reliability. According to the studies, in this experiment,
the soft error rate is set to 10-10 per hour for the memory bits.
To compare the reliability of each algorithm, the previous
experimental results are substituted into Equation (8).

If ECC is not used to repair the hard defect, the relia-
bility of the memory after 10 years is 98.95%. Looking at
the reliability of ECC-aware RAs, EPRA is 97.71%, HA is
96.08%, and OA is 93.96%. In the case of EPRA, which uses
less ECC, it shows a 1.25% decrease in reliability compared
to when ECC is not used. On the other hand, HA shows
2.9% and OA shows 5.05% decrease in reliability. This is a
decline in reliability that is 2.31 times and 4.03 times greater
compared to EPRA, respectively. The reliability functions of
memory with three ECC-aware RAs and memory without
using ECC for repairing hard defects are shown in Fig. 10.
The reliability of memory can also be determined as a param-
eter of Mean Time To Failure (MTTF), which is defined
as the total execution time divided by the total number of
failures. It is measured for estimating the average lifetime of
a chip. The MTTF is obtained by integrating the reliability
function with time [32], [37]. Calculating the MTTF, FGPM
is 624,946 hours, HA is 514,556 hours, OA is 445,134 hours,
and the proposed method is 574,672 hours. The MTTF of
the proposed method is 8.04% less than FGPM, but 11.68%
higher than HA and 29.1% higher than OA. In summary,
EPRA, like OA and HA, is ECC-aware RA, which uses ECC
to repair hard defects in offline. However, since ECC is used
for efficient use of line spares in EPRA, the indiscriminate
use of ECC is reduced, thus showing very high reliability
compared to the two algorithms.

Fig. 11 shows a comparison of overall performance for
ECC-aware RA, such as with RA time, yield, reliability for
EPRA, OA, HA, and ideal RA. To compare RAs clearly,
the case of fault set 19 in Table 7 is used. For an ideal
BIRA, it is assumed that the RA time is zero and its yield

and repair rate are 100%. According to Fig. 11, OA has the
highest yield, but the slowest speed and the lowest reliability.
HA has a slightly lower yield thanOAbut has a faster RA time
and higher reliability. HA also shows good performance, but
EPRA shows the fastest RA time and the highest reliability.
Therefore, the proposed ECC-aware RA performs better than
OA and HA.

V. CONCLUSION
The RA and ECC methodologies are widely used to improve
the yield and reliability of memory, respectively. As ECC is
used for improving not only the reliability but also the yield,
there is a need to study an effective RA that considers ECC.
To address these problems, EPRA has been proposed. This
is a fault group pattern matching-based RA and involves a
fault group simplificationmethod and a new early termination
method considering ECC. This increases the possibility of
pattern matching of fault groups and enables a quick deter-
mination of whether to repair when considering ECC. The
proposed algorithm achieves a similar yield but 14.6% less
RA time and 8.6 times higher reliability compared to the
previous studies. Therefore, this is an effective ECC-aware
RA method for repair.
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