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ABSTRACT As robots perform manipulation tasks and interact with objects, it is probable that they
accidentally drop objects (e.g., due to an inadequate grasp of an unfamiliar object) that subsequently bounce
out of their visual fields. To enable robots to recover from such errors, we draw upon the concept of
object permanence—objects remain in existence even when they are not being sensed (e.g., seen) directly.
In particular, we developed a multimodal neural network model—using a partial, observed bounce trajectory
and the audio resulting from drop impact as its inputs—to predict the full bounce trajectory and the end
location of a dropped object. We empirically show that: 1) our multimodal method predicted end locations
close in proximity (i.e., within the visual field of the robot’s wrist camera) to the actual locations and
2) the robot was able to retrieve dropped objects by applying minimal vision-based pick-up adjustments.
Additionally, we show that our method outperformed five comparison baselines in retrieving dropped
objects. Our results contribute to enabling object permanence for robots and error recovery from object
drops.

INDEX TERMS Error recovery, multimodal neural network, object localization, object permanence,
trajectory prediction.

I. INTRODUCTION
We all drop objects, from car keys to pens or utensils. When
an object is dropped and bounces out of sight, people retrieve
the object by estimating its landing position. This ability
to retrieve objects that are outside of visual fields is based
on an understanding of object permanence [1]—objects
remain in existence even when they may not be visible.
As robots increasingly interact with human-made objects,
they are bound to drop objects. Drops can be frequent not
only due to the challenging nature of robot grasping [2],
imperfect sensing, complex human-made objects in unstruc-
tured human environments, and computationally intensive
pose estimations, but also because robots may accidentally
drop objects during manipulation. This paper addresses the
problem of how robots may recover from dropping objects,
focusing on how to retrieve objects that bounce out of the
robot’s visual field by estimating bounce trajectories and
object locations (Fig. 1).
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Drawing inspiration from humans’ ability to locate objects
using multiple sensing modalities, we developed a multi-
modal deep network that takes as input a partial, observed
trajectory and impact sound to predict an object’s bounce
trajectory and end location. Our multimodal network encodes
modality-specific features from visual and auditory chan-
nels and uses observed partial trajectories to adjust audio-
driven spatial predictions enabled by a microphone array.
To illustrate our approach to object permanence, we used a
simple wooden object and compared our approach to physics-
driven baselines and baselines informed by previous state-of-
the-art models. We additionally explored the possibility of
generalizing our approach to a different object and dropping
height. However, rather than focusing on developing a uni-
versal model capable of predicting end locations for objects
made of various materials under a diversity of conditions, our
goal in this paper is to demonstrate the utility of leveraging
audio input and incomplete visual data to achieve object
permanence.

Our contributions include: 1) a human-inspired multi-
modal approach to object permanence, 2) a demonstra-
tion of how a robotic manipulator may use the multimodal
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approach to recover from object dropping, and 3) an open
dataset of object drops for the robotics community. Next,
we briefly highlight relevant prior research that motivates this
work.

FIGURE 1. We explore object permanence through audio-visual
representations and contextualize our exploration in retrieving dropped
objects that bounce out of its visual field.

II. BACKGROUND AND RELATED WORK
A. OBJECT PERMANENCE IN ROBOTICS
The concept of object permanence originates from the fields
of psychology and child development, and has motivated
research in developmental robotics [3]. Prior research on
object permanence in robotics has focused on realizing the
concept of object permanence to enable robots to understand
the effects of their own actions and facilitate their inter-
actions with people. For example, object permanence has
been explored to enable perspective taking and to support
situated dialog between humans and robots [4], [5]. It has
also been studied as a mechanism for self-monitoring, allow-
ing robots to distinguish self-generated movements from
external movements and thus infer the effects of their own
actions. Such monitoring mechanisms can help robots form
mental representations of objects that were occluded by
their own actions [6]–[8]. In contrast to previous research,
the present work focuses on investigating how object perma-
nence may be realized by modeling audio-visual inputs and

used by a manipulator to retrieve objects that bounce out of
its view.

B. TRAJECTORY PREDICTION
The problem of trajectory prediction has been widely investi-
gated to enable robot autonomy. For instance, a growing body
of research focuses on modeling and predicting pedestrian
trajectories to enable mobile robots to navigate in a safe and
socially appropriate manner among people (e.g., [9]–[13]).
Recent works have also investigated vehicle trajectory
prediction in an effort to develop autonomous vehicles
(e.g., [14], [15]). The common property shared by pedestrian
trajectories and autonomous vehicle trajectories is that both
are goal-oriented. When the trajectories are not driven by
intentional agents but purely laws of physics, physics-based
and dynamics models are commonly used (e.g., [16], [17]).
For example, neural network models have been proposed to
infer physical parameters from images, capturing the physical
interactions between a foam ball and different type of sur-
faces, and predict post-bounce trajectories of the foam ball
for a certain time interval [18], [19]. In our work, we focus
on the prediction of bounce trajectories and end locations of
dropped objects with the goal to enhance robot autonomy in
events of unintended object drops.

C. AUDIO-VISUAL JOINT REASONING
Visual and auditory signals are typically correlated in com-
mon daily activities. This insight has inspired learning sound
representations from visual signals [20] and led to various
explorations of object/scene recognition through audio-visual
joint reasoning. For example, cross-modalmodels, leveraging
audio-visual correspondence, have been used to map audio
and visual data to a shared space and locate the sound source
in visual data [21], [22]. With audio-guided visual attention,
a multimodal residual network has shown success in audio-
visual event localization in video segments [23]. Audio-visual
correspondence also allows audio signals to serve as supervi-
sion for visual learning [24].

In the context of robotics and situated interactions, joint
reasoning using audio-visual inputs supports target local-
ization, tracking, and hence navigation (e.g., [25]–[28]).
For example, a deep neural network that utilizes both
vision and auditory inputs outperforms conventional meth-
ods that rely on single modalities in object tracking [25].
Audio-visual fusion has also been used to enhance speaker
tracking [29], [30]. A simultaneous localization and map-
ping (SLAM) framework that uses both audio and visual
inputs has been shown to localize both human speakers
and the observer effectively [26]. A variational expectation-
maximization algorithm that takes audio and visual signals
as inputs is able to track the location of multiple speakers in
the scene [27]. Rather than focusing on tracking, this work
focuses on predicting a partially unobservable trajectory that
resulted from an object drop using the observed portion of the
trajectory and a complete impact sound recording.
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FIGURE 2. Structure of our multimodal neural network.

III. PROBLEM STATEMENT
Our goal is to enable robots to recover from inadvertent object
drops. In this work, we consider a robotic manipulator with a
wrist camera and that does not rely on external visual sensing
capability for error recovery, and moreover, we focus on erro-
neous situations in which objects bounce out of the robot’s
visual field. To contextualize our investigation, we experi-
mentally let the robot drop a wooden block and collected
its partial trajectory, as observed through its wrist camera,
and the corresponding impact sound due to the dropping. Our
primary technical problem is the recovery of the full bounce
trajectory and end location of the dropped object given the
partial trajectory and impact sound.

IV. MULTIMODAL NETWORK FOR OBJECT PERMANENCE
We developed a new network architecture1 (Fig. 2) that takes
as inputs an observed partial trajectory and a complete audio
recording, and outputs the object’s bounce trajectory and its
end location with respect to the robot.

A. FEATURE EXTRACTION
1) AUDIO
Similar to the approaches proposed in SELDnet [31] and
DOAnet [32], we extracted magnitude and phase components
from spectrograms of each channel of the microphone array.
The magnitude and phase components were then stacked
along the channel dimension and treated as a M/2 by 2× C
image, where M is the window length of the Fourier trans-
formation and C is the number of channels (Fig. 2). After
processing the whole audio sequence with 50% overlap on
window size, the shape of the audio data was T ×M/2×2C ,

1Our code is available at: https://intuitivecomputing.jhu.edu/openscience.
html

where T is the number of data points in the time dimension.
The parameters used for our feature extraction followed those
in SELDnet [31] and DOAnet [32].

2) VISION
Observed trajectories were represented as NumPy arrays with
shape (65, 2) after being extracted from series of images using
a color tracking algorithm (detailed in Section V).

B. AUDIO FEATURE ENCODER MODULE
As informed by SELDnet [31], we encoded audio features
through convolutional recurrent neural networks. To learn
inter-channel and intra-channel features across time, we used
four 3D convolutional layers with kernel size (k, k, c) to
compute our audio representations. (k, k) is the kernel size
in the time-frequency dimension, which aims to capture cor-
relations within the channel across time; c is the total number
of channels, which allows for finding correlations across
all available channels. 3D max pooling layers were added
between convolutional layers to reduce the dimension along
the frequency axis.

The encoded audio representations were then passed to two
bidirectional Gated Recurrent Units (GRUs) (input dimen-
sion = 64, hidden dimension = 64, number of layers = 1),
seeking to further encode possible connections in the time
domain.

C. TRAJECTORY ENCODER MODULE
The trajectory encoder module is a three-layer multilayer
perceptron (MLP) that maps the 65×2 partial observed trajec-
tories from the robot’s wrist camera to a higher-dimensional
feature vector that matches the shape of the output of the
bidirectional GRUs (T × 128).
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D. MUTIMODAL FUSION AND CORRECTION MODULE
The audio representation (T×128) and the visual feature vec-
tor (T×128) are stacked into one 2D vector (T×256), which
is subsequently fed into a two-layer MLP. The audio rep-
resentation reflects the complete trajectory, while the visual
representation describes the observed, partial trajectory. Con-
sequently, the visual representation serves as a mechanism
to provide corrective adjustments to the location information
embedded in the audio representation. The output of the
fusion and correction module (135×256) encodes each (x, y)
coordinate in a 256-dimensional vector, with 135 being the
time length for complete trajectories.

E. TRAJECTORY PREDICTION MODULE
The trajectory prediction module is a three-layer
MLP (hidden layer size: (64, 16)) that decodes the
256-dimensional vector representation from each time step
and outputs a corresponding (x, y) location. We note that
our prediction includes the full trajectory so as to ensure
robustness against missing frames.

V. EXPERIMENT
In this section, we describe an experiment that sought to
evaluate the effectiveness of our multimodal model in pre-
dicting the object bounce trajectory and end location based
on a partially observed trajectory and impact sound.

A. TASK AND DATA COLLECTION SETUP
Our experimental task involved a robot picking up a red
wooden cube (3 cm × 3 cm × 3 cm) and releasing it
from the same height (0.3 meters above the table surface)
repeatedly. There was no systematic manipulation of object
release across trials. Observed differences in trajectories and
impact sounds were results of gripper friction and natural
physics. Our data collection setup is shown in Fig 1. We used
a Kinova Gen3 robot, which has a built-in RGB-D wrist
camera (robot camera). A Microsoft Azure DK camera was
used to collect impact sounds; we note that we only used its
embedded microphone array (seven channels; 48k sampling
rate). The microphone was positioned to reduce noise from
the robot motors. A RealSense D435 camera was mounted
on the ceiling (ceiling camera) to collect the ground truth
videos, which included object trajectories outside of the robot
camera’s visual field. Both the robot and ceiling cameras had
a data rate of 30 frames per second.

B. EXPERIMENTAL DATA
1) DATA COLLECTION AND PROCESSING
In each trial, the robot camera and the ceiling camera pub-
lished RGB images separately to different ROS topics. To
synchronize all of the recording devices (two cameras and
a microphone array), two processes were run right before
the robot released the object; the first process listened to
both ROS topics and saved images in a rosbag file, whereas

the second process recorded audio data using the PyAudio
package. All processes ran in parallel for three seconds.

To extract object trajectories, we wrote a simple color
tracking program using OpenCV. In particular, we defined
the range for the color red in HSV space and masked out the
contours of red objects. The center of the object contour was
recorded to represent the current location of the object.

Each camera, in practice, captured only a portion of the
complete trajectory. The robot camera captured the trajectory
up to the moment when the cube bounced outside of its
view (observed trajectory). The ceiling camera was initially
blocked by the robot gripper and therefore was not able to
observe the release of the cube. However, the ceiling camera
was able to keep track of the cube after the cube was outside
of the robot camera’s visual field (post trajectory).

To map coordinate frames between the two cameras, four
ChArUco markers were used such that they were initially
visible to both the ceiling camera and the robot camera,
allowing the post trajectory to be transformed to the coor-
dinate frame of the robot camera. After this transformation,
the overlapping portion between the observed trajectory and
the post trajectory was removed from the post trajectory.

We kept the last 65 coordinates recorded in the observed
trajectory and the first 70 coordinates recorded in the post
trajectory to keep the model input size fixed. The numbers
65 and 70 were chosen to ensure the complete capture of
each trajectory. If the length of an observed trajectory was
greater than 65, the beginning of the observed trajectory could
be removed without losing information since the cube was
still in the air while the first few coordinates were recorded.
If the length of a post trajectory was longer than 70, the last
few coordinates could be removed without losing informa-
tion since the cube always stopped moving during the three-
second movement window, leaving the last few data points
the same. We removed cases in which the cube did not stop
moving within 3 seconds; in most of these cases, the cube fell
off the table in our experimental setup. For similar reasons,
if the length of an observed trajectory or a post trajectory were
less than 65 or 70, we could prepend or postpend the first
or last data point, respectively, to keep the input size of our
network fixed. After the above processing steps, a complete
trajectory was formed by concatenating an observed trajec-
tory with its corresponding post trajectory.

We note that our audio and trajectory data were not nec-
essarily aligned. The number of trajectory data points that
was removed depended on factors such as missing frames and
travel direction, and was independent of the corresponding
audio data. We did not trim or pad audio data accordingly to
keep two data sequences aligned.

2) DATASET
A total of 1404 trajectories2 was included in this experi-
ment [33]. All included data points contained full trajectories
from the ceiling camera’s point of view; instances where the

2Data is available at: https://doi.org/10.7281/T1/EP0W7Y
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FIGURE 3. (a) This histogram presents the distribution of travel distance after the initial impact between the cube and surface. The red curve shows the
estimated Gaussian distribution. (b) This histogram depicts the distribution of travel duration after the initial impact between the cube and surface.
(c) This hexbin plot shows the density of end locations in the 2D field as viewed from the ceiling camera. Each cell represents the number of times the
cube ended up in that cell. The robot was placed at the top facing down. We only visualize the end locations that were outside the initial visual field of
the robot’s wrist camera. Thus, the rectangular empty space in the middle corresponds roughly to the size of the visual field.

experimental cube rolled out of the ceiling camera’s view
(most likely fell off the table) or never left the initial visual
field of the wrist camera were excluded. We also excluded
the data points where the cube bounces backward and collide
with the robot.

Each data point consists of a three second long audio
recording and two NumPy 2D arrays that contain the pixel
location of the cube in the image frames from the robot
camera and the ceiling camera. An observed trajectory from
the robot’s wrist camera is a NumPy array with shape
(65, 2); a complete trajectory from the ceiling camera is a
NumPy array with shape (135, 2). Each row in the trajectories
is the (x, y) coordinate of the object in the image plane.
All trajectories were normalized for our proposed model,
and the initial locations of the trajectories were set as the
origin using the equation: trajectory = trajectory[0] −
trajectory.

Fig. 3 visualizes characteristics of our dataset in terms of
bounce duration, distance traveled, and resulting end loca-
tions. We calculated the duration of object bounces by com-
puting the difference between the first peak and last peak
in audio wave data. We also computed the geodesic dis-
tance traveled by the object (i.e., Euclidean distance between
initial impact location and the cube’s end location). The
distributions of bounce duration and geodesic distance can
be modeled as Gaussian distributions through kernel den-
sity estimation. The parameters for the distributions were
dependent on factors including object properties (e.g., shape,
size, material) and surface properties. Fig. 3 (c) shows the
distribution of the object’s end location in the ceiling camera’s
visual field.

C. EVALUATION BASELINES
We evaluated our proposed method against five baselines:
two simple uni-modal baselines, two additional uni-modal
baselines inspired by state-of-the-art (SOTA) methods, and
one multimodal baseline that combined the two SOTA mod-
els. We provide detailed descriptions below.

1) B1: LINEAR EXTRAPOLATION OF VISIBLE TRAJECTORY
(SIMPLE VISION-ONLY BASELINE)
One simple baseline for estimating the end location of a
dropped object is to project its trajectory linearly based on
the last seen location (Pf ) before the object bouncing out
of view, the corresponding velocity at that location, and the
remaining time to travel. We can compute the velocity (v)
at which the cube leaves the visual field by multiplying the
coordinate difference between the last two observed frames
and the inverse of sampling frequency (1/30). From impact
sound, we can compute the duration of bouncing (t) after the
cube leaves the visual field. Assuming that the acceleration is
constant and that velocity linearly decreases to zero, we can
then estimate the end location of the cube using the following
equation:

Pf + vt +
1
2
at2, where a =

0− v
t

(1)

2) B2: ESTIMATION OF AUDIO SIGNAL DELAY (SIMPLE
AUDIO-ONLY BASELINE)
Given the microphone arrays used in our data collection,
localization estimation through sound can be solved by lever-
aging signal delay across microphone channels [34]. We used
convolutional layers to extract delay information across chan-
nels as our audio and visual data were not perfectly synchro-
nized due to noises and difference in sampling frequency.
Specifically, the output of our 7-D microphone array was
treated as a T by 7 image, where T denotes time. The image
was fed through three convolutional 2D layers with kernel
sizes (16, 7), (8, 7), and (4,7). Each convolutional layer
was followed by a 2D batch normalization layer and a 2D
pooling layer. The output of the final convolutional layer was
reshaped by a multi-layer perceptron.

3) B3: SOCIAL GAN-LITE (SOTA VISION-ONLY BASELINE)
Most trajectory prediction models utilize state-of-the-art
recurrent neural network architectures. This baseline was
motivated by one such architecture: the Social GAN [9],
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which utilizes long short-term memory (LSTM) [35] in
predicting human movement trajectories. In particular,
we embedded each 2D coordinate of the observed trajectory
in a 64-dimensional vector. Then, an encoder (implemented
using LSTM, input dimension= 64, hidden dimension= 64,
number of layers = 1) took the 65 embedding vectors as
inputs and outputted its final hidden state. A decoder (imple-
mented using LSTM, input dimension = 64, hidden dimen-
sion = 128, number of layers = 1) took the 64-dimensional
embedding of the last 2D location coordinate of the observed
trajectory and the final hidden state of the encoder as inputs
and recursively predicted the difference between consecutive
locations sequentially for the 70 unseen trajectory positions,
which we normalized. Our choice of parameters was consis-
tent with that in Social GAN [9]. Note that the decoder pre-
dicted recursively starting at the end location of the observed
trajectory. Thus, we needed to include the observed trajectory
in our predicted complete trajectory. This is different from
our proposed multimodal method, where we did not take the
observed trajectory as exact in the prediction.

4) B4: SELDnet-LITE (SOTA AUDIO-ONLY BASELINE)
The modal used for this audio baseline was inspired by
SELDnet [31] and mirrored our multimodal network, except
that it did not include the vision input, vision encoder, and
fusion components. The audio representation produced by the
bidirectional GRUs was passed to the trajectory prediction
network directly. Conceptually, this baseline addressed the
sound localization problem without vision-based corrective
adjustments.

5) B5: COMBINATION OF SOCIAL GAN-LITE AND
SELDnet-LITE
In addition to four uni-modal baselines described above,
we created a multimodal baseline that combined the Social
GAN-lite and SELDnet-lite models. Specifically, the output
from the Social GAN-lite’s encoder and the output from the
SELDnet-lite’s bidirectional GRU were fused through a fully
connected linear layer and then reshaped to match target
shape.

D. MODEL TRAINING
We split our 1404 data samples into training, validation,
and test sets using an 8:1:1 ratio. We trained all models for
30 epochs with the Adam optimizer using a learning rate of
1e− 4 and a momentum parameter of 0.9. No early stopping
was applied, and model selection was performed using the
validation set.

E. EVALUATION METRICS
To comparemodel performance, we employed two evaluation
metrics, focusing on whether or not the robot was able to
retrieve the dropped objects successfully and on how accurate
the predictions of the end locations were. Below, we describe
these metrics in detail.

1) TASK SUCCESS RATE
In practice, the robot is able to reposition itself using a simple
vision-based alignment method to retrieve the object when it
is in the camera view (Fig. 1). Therefore, we considered a
prediction as successful if the dropped object was visible to
the robot’s wrist camera when the robot was located at the
end of the predicted trajectory. We defined task success rate
as the number of trials with a successful prediction divided
by the total number of trials.

Task Success Rate =
Number of Successful Trails

Total Number of Trials
(2)

2) TARGET DISPLACEMENT ERROR
Target displacement error represents the distance (in cen-
timeters) between the end location of a predicted bounce
trajectory and the ground truth end location.

F. RESULTS
We conducted independent two-tailed t-tests to compare the
target displacement errors from our multimodal model and
the baseline models. Table 1 summarizes the results of the
model performance on the test dataset. Figure 4 shows sam-
ples of trajectory predictions. Overall, our multimodal net-
work outperformed all baselines in all metrics, suggesting
that the learned audio-visual representation captured mean-
ingful location information from both modalities.

Linear extrapolation of visible trajectory (B1) made rea-
sonable predictions when the unobservable portion of the
trajectory wasmostly linear. However, themajority of the col-
lected trajectories were non-linear, influenced by the object
and surface properties (Fig. 4). The Social GAN-lite model
(B3) also tended to predict linear trajectories, although it
appeared that the Social GAN-lite model may have relied
on two sources of information that were implicitly contained
in the partial observations for prediction: 1) the distance
between consecutive observed locations (capturing bounce
speed) and 2) directional change in consecutive observed
locations. When a bounce trajectory was close to linear, this
vision model worked reasonably well (Fig. 4 (c)).

Through estimation of audio signal delay, the B2 model
seemed to capture non-linearity and the general shape of
a bounce trajectory. However, the visualization of output
trajectories (Fig. 4) indicated that the model failed to capture
the sequential property of input data, as predicted trajecto-
ries were noisy and scattered. In contrast, the SELDnet-lite
model (B4) seemed to be able to capture non-linearity and
enforce the sequential property of the trajectory at the same
time. We believe that the phase and magnitude information
extracted from the seven-channel microphone array carried
more nuanced information that the 2D visual trajectories did
not represent, and that the recurrent neural network com-
ponent in B4 effectively maintained the sequential property
of trajectories. However, early errors (offsets) propagated
through the model and influenced later predictions. As shown
in Fig. 4 (d) and (e), the offsets accumulated and caused
consequential displacement error in the end.
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TABLE 1. Results of the baselines and multimodal models on the test
dataset.

TABLE 2. Results of the finetuned baselines and multimodal model using
Dataset H and Dataset T on their respective test datasets.

B5, a multimodal baseline that combined B3 and B4,
showed enhanced performance in both task success rate and
target displacement error. However, simply combining the
state-of-the-art uni-modal models was not sufficient. In B5,
audio and visual information were both processed sequen-
tially and appeared to interfere with, rather than complement,
each other, resulting in discontinuous trajectories (Fig. 4 (e)).
Additionally, as we will discuss in the next section, B5 did
not generalize well to new bounce dynamics (Table 2).
Our proposed multimodal model was able to utilize infor-

mation from both audio and vision modalities effectively.
Specifically, instead of a recurrent neural network (LSTM),
a multi-layer perceptron was applied to partially observed
trajectory data and able to correctively adjust early prediction
offsets and reduced the error propagation.

In Fig. 4 (b), (d) and (e), the accumulation of early offsets
led B4’s predictions away from the ground truth. In con-
trast, our multimodal model was able to utilize the observed
information to reduce the errors from the audio modality
and produced more accurate predictions. However, the model
might not be able to recover from significant early prediction
errors from the audio input (potentially due to surrounding
noise), as shown in Fig. 4 (e).

G. ADDITIONAL EXPLORATION
While our goal in this paper is not to develop an omnipo-
tent network that predicts well in every possible scenario,
we wanted to explore the generalizability of our audio-visual
representation. To this end, we collected two additional small

datasets: releasing the original object (cube) from a different
height (Dataset H, size 108) and releasing a different object
from the original height of 0.3 meters (Dataset T, size 115).
Specifically, for Dataset H, the cube was released 5 cm higher
than the height used in the original experiment. For Dataset T,
we used a triangular wooden block to replace the cube.
The triangular block can be thought of as the original cube
cut in half along the diagonal. These datasets include novel
bounce dynamics that were not represented in the original
dataset. In Dataset H, the cube made the initial impact with
more energy, which resulted in longer and more non-linear
trajectories. In Dataset T, the triangular block was lighter
in weight and non-symmetric. Therefore, the magnitude of
impact audio was smaller, and conversely noise was more
evident. Trajectories in Dataset T also tended to be non-linear.

To explore generalizability, we finetuned all baselines and
our proposedmodel usingDataset H andDataset T separately,
with a much smaller learning rate (1e− 5) and 0 momentum
value for 3 epochs.We performed a 5-fold cross-validation on
each dataset to account for small data size. Table 2 describes
the results of our exploratory examination. These results
suggest that a small set of data was sufficient in finetuning our
multimodal modal to achieve reasonable performance. Note
that both the audio baseline andmultimodal model performed
reasonably well, suggesting the importance of audio data in
providing indicative information.

VI. ROBOT DEMONSTRATION
Fig. 1 illustrates a manipulator using our multimodal method
to locate and retrieve a dropped object. A full demonstra-
tion can be seen in our supplementary video.3 To allow for
retrieval actions, we transformed model predictions in the
robot camera frame to the world frame. Though predictions
were not perfect, as long as the object was present in the
robot’s camera view, the robot was able to use a simple vision-
based method to reposition itself for object grasping.

VII. DISCUSSION
Object permanence is crucial for autonomous robots to inter-
act with objects and operate in human environments robustly.
In this project, we explore object permanence through object
localization and retrieval in the context of dropped objects
bouncing out of a robot’s visual field. We developed a mul-
timodal neural network that combines a partial, observed
bounce trajectory and the audio resulting from the drop
impact to predict the full bounce trajectory and the end loca-
tion of a dropped object. Our results show that our approach
outperformed various baseline methods.

A. OBJECT PERMANENCE FOR ENHANCING ROBOT
OPERATIONS
The ability to estimate where dropped objects may be is
important in enhancing robot operations. As an example,
our multimodal model can be used to let robots recover

3https://youtu.be/Rj-ZZf3r4g8
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FIGURE 4. Sample predictions from baselines (B3, B4, B5) and the multimodal model. Each column shows prediction results from the same trial.

from accidentally dropping objects efficiently. Rather than
relying on external sensing or heuristics-based search, our
lightweight model is able to provide reasonable estimations
for object retrieval. This ability to estimate object locations
also provides robots with a sense of action feasibility. If an
object is too far to reach or in a position that the robot
cannot find a feasible motion plan to reach, the robot may
instead ask for human assistance, minimizing unnecessary
grasping attempts. Overall, this ability may be used to foster
the fundamental skill of knowing when to ask for help.

B. LIMITATIONS AND FUTURE WORK
The task setup used in this work was experimentally con-
trolled. Future work should explore task settings in natural
human environments, diverse dropping scenarios (e.g., acci-
dental drops during robot motions), and a variety of exper-
imental objects (e.g., everyday objects). Future work also
needs to explore different audio-visual representations that
can encode richer nuances in object properties and physical
impact. For instance, both a higher release point and a heavier

object can result in an increase in magnitude. In addition
to different representations, future work should also con-
sider other sensing modalities that might contribute to the
formation of object permanence understanding. Lastly, more
research is need to study object permanence in the context of
human-robot collaboration in which objects are jointly used,
manipulated, and shared.
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