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ABSTRACT Based on the common existence of the mixed road, a switched controller with consideration of
the difference between estimation optimal and current flux (EOCFD) is presented in the lattice hydrodynamic
model of traffic flow. Based on the Hurwitz criteria and theH∞-norm, stability conditions for the curved road
and straight road scenarios are obtained with the transfer functionsG0 andG1 respectively. By analyzing the
Bode-plot of transfer functionsG0 andG1, stability analysis is performedwith the feedback gain k , the radian
θj and the curvature radius R. These theoretical results indicate that the switched control scheme prompts the
traffic flow to be more stable in both curved and straight roads. Compared with Cheng’s model, numerical
simulations with multiple perturbations confirm that the switched control scheme can further suppress the
traffic congestion with a lower feedback gain on mixed road.

INDEX TERMS Switched control, mixed road, lattice hydrodynamic model, traffic flow.

I. INTRODUCTION
With the rapid urbanization development and car ownership
growth, the traffic jam problem has attracted tremendous
attention and becomes a topic issue in the last few decades.
To increase the efficiency of limited transport resources, var-
ious traffic models have been presented to reveal the mecha-
nism of traffic jams. These traffic models generally fall into
two categories: macroscopic [1]–[4] and microscopic [5]–[9]
traffic flow models. The microscopic models mainly focus
on the dynamic behaviour of individual vehicles. While the
macroscopic models ignore individual characteristics and
describe traffic flow characteristics with density, flow and
velocity variables.

By incorporating the ideas of macroscopic as well as
microscopic traffic flow models, a lattice hydrodynamic
model [10] was firstly established to analyze density waves of
traffic jams on straight road. And the modified Korteweg-de
Vries (mKdV) equation was also derived to describe the
nonlinear evolution of traffic jams near the critical point. Con-
sidering the actual traffic complexity, many extended lattice
hydrodynamic models have been developed under various
scenarios, such as the two-lane road [11], [12], the gradient
road [13], [14] and the curved road [15]–[18], etc. When
turning corners, the trajectory of the vehicle is susceptible
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to the radian, the friction coefficient, the curvature radius
and so on. This means more influence factors should be
further addressed in the stability analysis of curved road ones,
which are quite different from straight road cases. In 2016,
Zhou and Shi [15] put forward a lattice hydrodynamic model
on curved road through the linear and nonlinear stability
analysis. Based on this single-lane case, Zhou et al. [16]
further investigated a two-lane lattice hydrodynamic model
on curved road and revealed the lane-changing effect on
the stability of traffic flow. Wang et.al. [18] also analyzed
the traffic flow stability on curved road from the perspec-
tive of the driver’s memory effect and difference of optimal
velocity.

With the rapid development of wireless communication
technology and control theory, many traffic control strate-
gies have been applied in lattice hydrodynamic models. For
example, under the straight road framework, feedback con-
trollers have been conducted with various traffic informa-
tion such as the flux difference [19], the historic density
difference [20], the next-nearest-neighbor interactions [21],
the difference between estimation optimal and current flux
(EOCFD) [22], [23] and so on. However, the studies for lattice
hydrodynamic models with traffic control strategies under
the curved road framework are still infrequent. Although
Cheng and Wang [24] proposed a new lattice model on a
mixture of straight and curved roads, the control scheme
shared the same form on mixed road.
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Switching control strategy [25]–[31] has been typically
applied in hybrid systems which are composed of several
subsystems and a switching law among them. An important
feature of switching control is that different controllers can be
selected according to the switching law to obtain better con-
trol performance. The architecture for such a multi-controller
switched system is shown in Fig. 1. In fact, it is much
expected that vehicles can automatically adopt the corre-
sponding control scheme according to the type of the mixed
road. The aim of this paper is to provide a novel insight
on how to utilize the switching control conception to effec-
tively analyze the characteristics of traffic flow on mixed
road.

FIGURE 1. Switching control flow chart.

II. THE EXTENDED MODEL WITH A CONTROL SCHEME
In 1998, Nagatani [10] proposed the first lattice hydrody-
namic model to describe the evolution of traffic flow on
straight road. And the continuity equation and evolution equa-
tion are given as follows:

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
= 0 (1)

∂tqj = a
[
ρ0Vs

(
ρj+1

)
− ρjvj

]
, (2)

where ρj denotes the local density on straight road. ρ0 and
a represent the average density and the sensitivity of drivers,
respectively. The optimal velocity function Vs(·) is adopted
as

Vs(ρ) =
vmax

2

[
tanh

(
1
ρ
−

1
ρc

)
+ tanh

(
1
ρc

)]
, (3)

where vmax = 2 m/s denotes the maximal velocity and
ρc = 0.25 m−1 indicates the critical density. Vs(·) is
monotonically decreasing with a turning point at
ρ = ρc.

Fig. 2 is the movement of vehicles running on curved road.

The curved road is obtained as y =
√
R2 − (x − R)2, where

R represents the curvature radius. The distance l between
lattice j and j− 1 is

l =
∫ x

x−x0

√
1+ y′2 dx ≈

x0
sin θj

, (4)

where θj indicates the radian at lattice j and x0 means the
average headway on straight road.

FIGURE 2. The movement of vehicles running on curved road.

The conservation equation is rewritten by incorporating the
curved road factor as follows [15]:

∂trj +
ρ0

sin θj

(
ρjvj − ρj−1vj−1

)
= 0, (5)

where rj and
ρ0
sinθj

denote the local density and the average

density on curved road, respectively. And the corresponding
optimal velocity function can be expressed as

Vr
(
rj
)
= m
√
µgR
2

{
tanh

[
2
r0
−
rj
r20
−

1
rc

]
+tanh

(
1
rc

)}
, (6)

where rc and r0 denote the critical density and the aver-
age density, respectively.

√
µgR is the maximal velocity on

curved road. m and µ represent a control parameter of the
maximal velocity and a friction coefficient of the curved road,
respectively. g is the gravitational acceleration.

From the perspective of control schemes, an extended lat-
tice hydrodynamic model was presented by considering the
mixed road [24] as follows:
∂tρj+1 + ρ0

(
qj+1 − qj

)
= 0

∂trj+1 + λρ0
(
qj+1 − qj

)
= 0

∂t
(
ρjvj

)
= a

[
mρ0Vs

(
ρj+1

)
+ nρ0Vr

(
rj+1

)
− qj

]
+ uj

uj = k(qj+1 − qj).
(7)

where qj = ρjvj is the flux flow. m and n is the ratio of the
straight road and curved road. λ is a reaction coefficient and
uj represents a fixed control signal.
In light of the aforementioned facts, Cheng et.al [24] ana-

lyzed how the fixed controller uj stabilized the traffic flow on
mixed road. Although the characteristics of the mixed road
are reflected in the evolution equation of Eq. (7), the cor-
responding controllers have not been adopted for different
types of roads. The improvement of the vehicle automation
capacity has been made possible by the rapid development
of communication technology and sensor technology. Given
the diversity of the mixed road, what deserves to expect is that
vehicles can automatically select the corresponding controller
with the assistance of sensor technology. In the case of the
mixed road, a novel lattice model with the consideration of a
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switched EOCFD controller is firstly proposed as follows:

∂tρj + ρ0
(
qj+1 − qj

)
= 0

∂trj +
ρ0

sin θj

(
qj+1 − qj

)
= 0

∂t
(
qj
)
= a

[
βρ0Vs

(
ρj+1

)
+ (1− β)

ρ0

sin θj
Vr
(
rj+1

)
−qj

]
+uj,β
uj,β = kβ

(
ρ0Vs (ρ0)− qj

)
+k (1− β)

(
ρ0

sinθj
Vr

(
ρ0

sinθj

)
− qj

)
,

(8)

where uj,β represents a switched controller. ρ0Vs (ρ0) − qj
means the difference between estimation optimal and current

flux on straight road. Likewise, ρ0
sinθj

Vr
(
ρ0
sinθj

)
− qj is the

EOCFD effect term on curved road. k and β denote the feed-
back gain and a switched index, respectively. The following
switching laws are selected as follows:

When β = 1, it indicates that the feature of the straight
road is identified by sensor technology. Then, the control
signal uj,β switches to the EOCFD controller of the straight
case; When β = 0, it indicates that the feature of the curved
road is identified and the control signal uj,β switches to the
EOCFD controller of the curved case.

The optimal velocity function OV on straight road is cho-
sen as the same as Eq.(3). And Eq. (6) is also selected as the
adopted optimal velocity function OV on curved road in this
paper.

III. CONTROL THEORY ANALYSIS
In this section, the control theory is adopted to discuss how
the switched controller suppresses traffic jams onmixed road.

Assume that ρ∗ and r∗ are the desired density of the
straight road and that of the curved road, respectively. And
the desired flux of the traffic flow is q∗. Thus, the steady-state
uniform flow solutions for the traffic system are defined as

[ρn, qn]T =
[
ρ∗, q∗

]T
, (9)

[rn, qn]T =
[
r∗, q∗

]T
. (10)

The controlled traffic system of Eq.(8) can be linearized
under small perturbations

[
ρ0, q0

]
and

[
r0, q0

]
as follows:

∂tρ
0
j+1 + ρ0

(
q0j+1 − q

0
j

)
= 0

∂tr0j+1 +
ρ0

sin θj

(
q0j+1 − q

0
j

)
= 0

∂tq0j = a
[
βρ031ρ

0
j+1 + (1− β)

ρ0

sin θj
32r0j+1 − q

0
j

]
+ u0j,β

u0j,β = kβ(−q0j )+ k(1− β)(−q
0
j ) = −kq

0
j . (11)

Simplifying Eq.(11), the novel controller can be deduced as

∂tq0j =a
{
βρ031ρ

0
j+1+(1−β)

ρ0

sin θj
32r0j+1−q

0
j

}
−kq0j ,

(12)

where ρ0j+1 = ρj+1 − ρ
∗, q0j = qj − q∗, q0j+1 = qj+1 − q∗,

31 =
∂Vs(ρj+1)
∂ρj+1

∣∣∣
ρj+1=ρ∗

, 32 =
∂Vr (rj+1)
∂rj+1

∣∣∣
rj+1=r∗

.

By performing Laplace transformation and Taylor expan-
sion on Eq.(11), one can obtain

sPj+1(s)− ρj+1(0)+ ρ0
[
Qj+1(s)− Qj(s)

]
= 0

sRj+1(s)− rj+1(0)+
ρ0

sin θj

[
Qj+1(s)− Qj(s)

]
= 0

sQj(s)− qj(0) = a{βρ031Pj+1(s)

+(1− β)
ρ0

sin θj
32Rj+1(s)− Qj(s)} − kQj(s),

(13)

where Pj+1(s) = L(ρj+1), Qj(s) = L(qj), Qj+1(s) = L(qj+1),
Rj+1(s) = L(rj+1). L(·) and s indicate the Laplace transform
and a complex variable, respectively.

By eliminating the variable Pj+1(s) of Eq.(13), the flux
equation between Qj(s) and Qj+1(s) can be expressed as

Qj(s) =
−aβρ2031−a(1− β)

ρ20
sin2 θj

32

s2 + s(k+a)−aβρ2031 − a(1−β)
ρ20

sin2 θj
32

Qj+1(s),

(14)

where D(s) signifies the characteristic polynomial. The poly-

nomial is equal to s2 + s(k + a)− aβρ2031−a(1−β)
ρ20

sin2θj
32.

Based on the Hurwitz stability criterion, it is known that
D(s) remains stable when 31 < 0, 32 < 0 and k + a > 0.
Thus, the transfer function G(s) can be described as

G(s) =
−aβρ2031 − a(1− β)

ρ20
sin2 θj

32

D(s)
. (15)

Based on the control theory [32], traffic congestions never
occur in the traffic flow if and only if the following conditions
can be satisfied:

(1) The characteristic polynomial D(s) is stable;
(2) The H∞ norm of transfer function ||G(s)||∞ ≤ 1 for

any ω > 0.
In summary, the stability criterion of Eq.(8) can be obtained

as follows:

‖G(s)‖∞ = supw∈[0,∞) |G(jw)| ≤ 1

|G(jw)| =
√
G(jw)G(−jw) =√√√√√√√√
(
aβρ20Λ1+a (1−β)

ρ20
sinθ2j

32

)2

(
aβρ2031+a (1−β)

ρ20
sinθ2j

32+ω2

)2

+(a+k)2 ω2

≤1.

(16)

Case 1: If β = 1, the transfer functionG1(s) of the straight
road can be given by

|G1(jω)| =
√
G1(jω)G1(−jω)

=

√√√√ (
aρ2031

)2(
aρ2031 + ω2

)2
+ (a+ k)2 w2

6 1, (17)
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where g1(ω) =
(
aρ2031

)2(
aρ2031+ω2

)2
+(a+k)2w2

. Obviously, g1(0) = 1

and g1(ω) ≤ 1. The following inequality equation could be
obtained as follows:

ω2
+ 2aρ20Λ1 + (a+ k)2 ≥ 0. (18)

Consequently, the stability condition corresponding to
Eq.(18) is

a ≥
√
2k31ρ

2
0 +3

2
1ρ

4
0 − k −31ρ

2
0 . (19)

Case 2: If β = 0, the transfer function G0(s) of the curved
road can be given by

|G0(jω)| =
√
G0(jω)G0(−jω)

=

√√√√√√√√
(
a

ρ20
sin2 θj

32

)2

(
a

ρ20
sin2 θj

32 + ω2

)2

+ (a+ k)2 w2

6 1,

(20)

where g0(ω) =

(
a

ρ20
sin2 θj

32

)2

(
a

ρ20
sin2 θj

32+ω2
)2

+(a+k)2w2

. Obviously,

g0(0) = 1 and g0(ω) ≤ 1. The following inequality equation
could be obtained as follows:

ω2
+ 2a

ρ20

sin2θj
Λ2 + (a+ k)2 ≥ 0. (21)

Consequently, the stability condition corresponding to
Eq.(21) is

a ≥
1
2


√√√√(232ρ

2
0

sin2 θj
+ 2k

)
2 − 4k2 −

232ρ
2
0

sin2 θj
− 2k

 .
(22)

In addition, when θj = π/2, the stability condition (19)
for the curved road will be equivalent to the one (22) for the
straight road.

Fig. 3 depicts the solid Bode curves with different param-
eters including the feedback gain k , the radian θj and the cur-
vature radius R on mixed road. The model stability depends
upon the peak value of the Bode curve. The more the peak
value deviates from 1, the more the traffic system deviates
from the stable state [21].

The Bode-plot Fig. 3(a)-(b) can be obtained by using
Eq. (17) and Eq. (20) respectively. Fig. 3(a) demonstrates
the amplitude variation of the transfer function |G1(s)| with
different values of k under the straight road scenario. While
Fig. 3(b) shows the amplitude of the transfer function |G0(s)|
with the fixed curvature radius R = 10 and the radian θj =
π/3 under the curved road scenario. Since the parameters of
six solid curves (k = 0, 0.15, 0.3) in Fig. 3(a)-(b) do not

FIGURE 3. Bode-plot for different values of the feedback gain k ,
the radian θj and the curvature radius R.
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FIGURE 4. The movement of vehicles on mixed road.

satisfy the stability conditions (18) and (21), the peak values
of six Bode curves are greater than 1, which will lead to
the congested traffic flow. From Fig. 3(a)-(b), it can also be
found that the amplitude of the transfer function |G1(s)| or
|G0(s)| decays gradually with the increased feedback gain k .
When k = 0.45, 0.6, the stability conditions (17) and (20)
corresponding to the straight road and the curved road cases
are all satisfied. Then, the instability of traffic flow will die
out and the traffic flow evolves into the uniform flow.

In view of the curved road scenario, Fig. 3(c) shows the
amplitude of transfer function |G0(s)| with different values
of the radian θj. When the fixed parameter R = 10 and the
radian θj equals toπ/6, π/5, π/4, the peak values of the Bode
curves are about 1.25, 1.1, 1.03, respectively. However, when
the radian θj equals to π/3, π/2, all values of the Bode curves
are smaller than 1. This indicates that the traffic flow stability
enhances with the continuous growing value of θj. As soon as
θj = π/3, the peak value of the transfer function |G0(s)| is
smaller than 1, which means that the traffic flow reaches its
desired steady flux.

Fig. 3(d) displays the variation trend of the Bode curves
for different values of the curvature radius R with a fixed
parameter θj = π/3. It is obvious that the amplitude of |G0(s)|
is weaker with the decreasing value of R. This reveals that
there is a negative correlation between the curvature radius R
and the stability of traffic flow. From Fig. 3 (c)-(d), it can also
be found that the effect parameters θj and R have on the traffic
flow stability coincides with the ones in [15], [16].

Generally speaking, the increase of the radian θj is con-
ducive to the stability of traffic flow. While the increased
curvature radius R is detrimental to the uniform stability of
traffic flow.

IV. NUMERICAL SIMULATION
In this section, a switched EOCFD controller is applied in
the lattice hydrodynamic model on mixed road. Following
the [24], the ratio of the straight road and the curved road are
set as m = 0.7 and n = 0.3. Assume the mixed road in Fig. 4
is divided into 300 lattices. Then, the lattices from 1th to
210th represent the straight part, while the lattices from 211th

to 300th represent the curved one. The related parameters in
the fixed controller and the switched EOCFD controller are

FIGURE 5. Density-time plot for lattices j = 25,55,231,261 with different
values of the feedback gain k and R = 10 in Cheng’s model.

chosen as ρc = ρ0 = 0.25, a = 1.5, t = 5000s, vmax = 2,
m = 1.4, µ = 0.9 and rc = 0.1. The initial conditions of the
density ρj on straight road and the density rj on curved road
are selected as follows:

ρj(0) = ρ0 = 0.25(1 ≤ j ≤ 210)

rj(0) = r0 = 0.2(211 ≤ j ≤ 300) (23)

And the initial multiple perturbations on mixed road are
given by

ρj(1) =

 0.5 50 ≤ j ≤ 55
0.2 55 < j ≤ 60
0.25 j < 50, 60 < j ≤ 210

rj(1) = 0.2, 211 ≤ j ≤ 300 (24)

For the sake of simplicity, representative values of R, k ,
θj and lattice sites have been adopted to further validate the
effectiveness of theoretical analysis in Section III.

To further validate the effectiveness of the switched
EOCFD controller on mixed road, simulations are carried out
with periodic boundary conditions for two cases:

Case 1: The fixed controller on mixed road
Fig. 5 exhibits the density waves under the fixed con-

troller (7) on mixed road with the curvature radius R = 10 for
t = 1−5000s. Moreover, Fig. 5(a)-(b) show the density-time
plot with different feedback gains k at two representative

VOLUME 9, 2021 132229



J. Wan, M. Zhao: Novel Switched Control Scheme for Mixed Road in Lattice Hydrodynamic Model

FIGURE 6. Density-time plot for lattices j = 25,55,231,261 with different
values of the feedback gain k , R = 10 and θj = π/3 in the novel model.

lattices on straight road. While Fig. 5(c)-(d) demonstrate the
density-time plot at the other two representative lattices on
curved road. Obviously, the oscillation amplitude of den-
sity waves for any position of lattice in Fig. 5 all deteri-
orates gradually with the increasing value of the feedback
gain k . Additionally, whether on straight road or curved road,
the oscillation amplitude of the density wave falls into the
steady state with k = 0.7.

Case 2: The switched controller on mixed road
Different from the fixed controller (7), the switched control

scheme (8) can be automatically switched according to the
type of the mixed road. Fig. 6 (a)-(b) and Fig. 6 (c)-(d) reveal
the density-time plot of lattices on straight road and curved
road, respectively. Similar to Fig. 5, the feedback gain k also
has positive influence on traffic stability of the mixed road.
When θj = π/3 and R = 10, the oscillation of density
waves at different lattices in Fig. 6 all becomes slighter with
the increasing value of k . Particularly when k = 0.45,
the fluctuations of density waves for four different lattices
in Fig. 6 die out and the traffic flow falls into the steady-state
finally.

Note that the density waves of red curves (k = 0.45)
in Fig. 5 remain in an unstable state. Compared with the
fixed controller (7), the novel switched control scheme (8)
can be more favorable to the stability enhancement of the

FIGURE 7. Density-time plot for different values of the radian θj with
β = 0, k = 0.45 and R = 10 on curved road.

FIGURE 8. Density-time plot for different values of the curvature radius R
with β = 0, k = 0.45 and θ = π/3 on curved road.

traffic system on mixed road with a lower feedback control
gain.
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Additionally, Figs. 7-8 further demonstrate how the
radian θj and the curvature radius R affect the traffic flow
stability only on curved road.

Fig. 7 demonstrates the profile density for different values
of the radian θj with the fixed R = 10 and k = 0.45.
As the stability condition (22) of the curved road is not
satisfied, these small perturbations evolve into the congested
flow in Fig. 7(a)-(b). When θj = π/3, the stability condition
of traffic flow is satisfied after time t = 4500s. This leads to
the traffic state changing from an unstable state to a stable
state, as shown in Fig.7(c). In other words, the increased
radian θj contributes to the improvement of the traffic flow
stability.

Fig. 8 depicts the evolution of traffic density with differ-
ent values of the curvature radius R when θj = π/3 and
k = 0.45. When the curvature radius R is set as 16, the range
of amplitude fluctuation is about 0.2 to 0.3 in Fig. 8(a).

And the fluctuation of density waves tends to be gentle
gradually in Fig. 8(b). When R decreases to 10, the oscillation
of the density wave is reduced and reaches the steady-state
after time t = 4500s. This reveals that the curvature radius R
has negative influence on the traffic flow stability.

In summary, the traffic flow will become stable with the
increased radian θj or with the decreased curvature radius R.
These characteristics of density waves on curved road shown
in Fig. 7 and Fig. 8 further validate the theoretical analysis
results demonstrated in Fig. 3(c) and Fig. 3(d). On the whole,
the proposed feedback control model with consideration of a
switched scheme is conducive to relieve the traffic congestion
not only on straight road but also on curved road.

V. CONCLUSION
Accounting for the mixed road consisting of curved and
straight roads, a new switched controller with consideration
of the EOCFD effect is proposed in this study. Through
control theory analysis, stability conditions are respectively
obtained by the transfer function G0 and the transfer function
G1. The Bode-plot of transfer functions G0 and G1 illustrates
that the feedback gain, the curvature radius and the radian
play a significant role in the stability of the traffic flow.
To verify the effectiveness of the switched EOCFD controller
on mixed road, the numerical simulation of the fixed con-
troller has been performed. Compared with the fixed control
scheme, it can be concluded that the novel switched control
scheme can be more favorable to the stability enhancement
of the traffic system with a lower feedback control gain.
Moreover, enlarging the radian or reducing the curvature
radius may contribute to the stability of traffic flow on curved
road. Future work will focus on the improvement of the novel
switched control scheme from various respects, such as the
decentralized delayed-feedback control, the adaptive fuzzy
control signal, and the asynchronous switching.
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