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ABSTRACT In today’s modern manufacturing environments, Multi-Agent Manufacturing System (MAMS)
has been a fundamental approach for developing industrial applications that can cope with complexity,
uncertainty, and dynamicity. It has become a significant resource for improving smart factories. However,
little attention has been paid to integrate human workers into these overall control systems efficiently. This
article is intended to take a step forward and propose a human worker integration scheme under MAMS. The
multi-skilled feature of workers and the collaboration between workers are considered in this research. First,
a Worker Agent (WoA) model with wearable devices is proposed as a critical design building block. After
that, based on the conventional hybrid manufacturing control architecture (HyMCA), a WoA integration
interface is investigated to implement the MAMS model. Then, a working mechanism of WoA in the task
allocation process is studied. After that, a matching algorithm that considers different scenarios between
workers and tasks is proposed based on the Hungarian Algorithm and Genetic Algorithm. Finally, program
simulations and actual experiments are carried out to verify the effectiveness of the worker integration
mechanism proposed in this paper.

INDEX TERMS Multi-agent manufacturing system, smart factory, hybrid manufacturing control architec-
ture, worker agent.

I. INTRODUCTION
As the manufacturing industry evolves toward socializa-
tion and individualization of markets, customer requirements
have become personalized and dynamic. In this new sce-
nario, enterprises continuously receive orders coming in
small-batches with uncertain time, random quantity, and
changing priorities. The uncertainties of orders are getting
stronger. In order to make the manufacturing workshop adapt
to the new market environment better, the Multi-Agent Man-
ufacturing System (MAMS) approach was proposed [1].
In MAMS, the workshop physical components and functions
are abstracted into entities (agents) with autonomous decision
abilities and cooperation capabilities [2]. In this way, the deci-
sional entities (agents) can work together to quickly and
efficiently react to events instead of wasting time requesting
control decisions from a central unit.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

However, little attention has been paid to the efficient inte-
gration of human workers in the emerging context of MAMS.
This is entirely in agreement with [3] that they draw atten-
tion to human factors as critical elements in addressing new
and unpredictable behaviours in smart factories. Although
the improvement of automation and intelligence has reduced
manual intervention and can implement unmanned factories
in specific environments, the efficient integration of workers
in smart factories is still an open problem.

For a long time in the past, although the level of automation
and intelligence of equipment within the shop floor has been
improved, the working environment and scheduling system
of workers are still the same as traditional processing work-
shops, especially in developing countries. In recent years,
more and more people realized that the worker began to
detach from the smart factory system control and, sometimes,
became a constraint on the subsequent development of smart
factories. To solve this problem, approaches such as ‘‘Made
in China 2025’’, which is currently implemented in China,
have started to focus on integrating workers into the smart
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factory system control efficiently. In this plan, an approach
is to equip workers with wearable mobile devices, which
usually have image output and voice service functions, along
with positioning and health monitoring sensors that monitor
the workers. This method is typically used to assist workers in
better-performing tasks in smart factories, such as improving
efficiencies, reducing fatigues, and reducing work intensi-
ties [4]. In the research field of MAMS, this approach can
also be used to integrate workers into the system control
by developing Work Agents (WoAs) associated with each
worker at the software level [5], [6].

WoAs are different from traditional agents, which can col-
lect machines’ status autonomously and control themachines.
A WoA itself cannot control the worker’s behaviour, and it is
challenging to manage worker status autonomously. WoAs
rely on wearable devices to dispatch tasks to the correspond-
ing workers, but how and when the workers perform the tasks
are not determined. When the workers complete the tasks,
they can inform WoAs through the interactive interfaces of
the wearable devices. In this way, WoAs can be regarded
as black-box agents and integrated into the MAMS. Due
to the uncontrollability of human behaviour, how a WoA
participates in the interaction and collaboration with control-
lable agents (such as machine agents and part agents) needs
further research. However, there are currently few articles on
integrating WoA into the dynamic scheduling mechanism of
MAMS.Most investigations focus on how to provide workers
with an immersive experience through wearable devices to
improve their work efficiency [7].

Furthermore, we need to consider that workers’ func-
tions also evolve with the improvement of the manufacturing
industry. This is mainly manifested in the following two
aspects:

1) With the improvement of the intelligence of the work-
shop, the amount of labour positions is gradually
reduced, and the quality of workers continues to
increase, which leads to workers having more skills
in modern manufacturing systems. For example, in a
processingworkshop composed of CNCmachine tools,
almost all workers can use these machine tool sys-
tems proficiently and complete the pre-processing
preparations.

2) Due to order uncertainty, random production events
(e.g., fixture replacement, equipment maintenance)
sometimes require multiple workers’ cooperation to
solve them. By investigating some part-processing
workshops in China, we have found that workers usu-
ally form a temporary team to handle a task in many
cases. After completing the task, the quick team will
be disbanded.

The multi-skilled feature of workers prevents them from
being limited to a single job. The collaboration between
workers makes arrangements more complicated. In many
cases, tasks that need to be handled by multiple workers are
difficult to find enough workers immediately. It is necessary
to pre-select suitable candidates for the tasks in advance.

In order to deal with the above problem, this article proposes
a multi-agent interaction mechanism integrated withWoAs to
assign tasks to workers.

This article is organized as follows. The research work
related to this article is presented in section 2. Section 3 intro-
duces a worker integration mechanism in MAMS. Moreover,
a feasible solution to integrate WoAs under HyMCA is also
proposed. After that, in section 4, the effectiveness of this
integration mechanism is verified through an actual experi-
ment. Section 5 summarizes the work presented in this article.

II. RELATED WORK
The main goal of this article is to study the efficient inte-
gration of workers into manufacturing systems based on
traditional MAMS. This integration must ensure the correct
operation of the original MAMS system, including task allo-
cation between machines and parts, autonomous operation of
the device, and initial optimal scheduling. Simultaneously,
the integrated system should be able to improve the efficiency
of workers.

A. MULTI-AGENT MANUFACTURING SYSTEM
The concept of Agent evolved from the research of Dis-
tributed Artificial Intelligence (DAI) systems in the 1990s
[8]–[10]. An agent is a computational mechanism that
exhibits a high degree of autonomy, performing actions based
on information received from the environment [11]. A net-
work of agents will create a multi-agent system that aims
to provide both principles for constructing complex systems
involving multiple agents and mechanisms to coordinate
independent agents’ behaviours [9], [12]. The entities in the
workshop can be abstracted into agents and given different
characteristics. The Machine Agent (MA) and Part Agent
(PA) proposed by Krothapalli and Deshmukh [1] are the two
most widely used agents in the construction of agent-based
smart factories.

In MAMS, autonomy and negotiation are fundamental
features to promote workshop operations [13], [14]. These
two features are inherent to agent-based approaches. Thanks
to their autonomous quality: agents combine their calculation
power with local knowledge to decide individual behaviour.
Simultaneously, thanks to the agents’ negotiation capability
(through the interaction between individuals): agents can
jointly promote a specific behaviour, such as part opera-
tion, tooling distribution, and logistics planning. As a result,
the workshop layer can realize a self-organized process
through MAMS. MAMS is an essential means to realize
smart factories [9], especially in parts processing workshops.

B. CONTROL ARCHITECTUE
The traditional Computer Integrated Manufacturing (CIM)
system adopts a layer-based centralized architecture, which
is named hierarchical manufacturing control architecture
(HiMCA) [15]. The main characteristics of such systems
are the top-down structure, fixed multi-layers of hierarchies
(parent and child), and a centralized decision-making unit.
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These systems present good optimization in mass production,
and it is also possible to find the optimal set-up parameters
for specific production equipment. However, the drawbacks
of fragility and lack of flexibility limit the production perfor-
mance in short series manufacturing [16]. In this kind of envi-
ronment, production technology is often changed. Production
tools have to be adjusted to specific products, and the process
organization must follow these changes to avoid reduction or
losses resulting from non-productive time gaps. Furthermore,
with the increasing size and scope of Hierarchical/centralized
planning systems, the structural complexity of these systems
grows rapidly [17].

Duffie [18] proposed the heterarchical control architec-
ture (HeMCA). In this architecture, the physical components
(e.g., machines and parts) and functions (e.g., monitoring
and task distribution) in the workshop are abstracted into
entities with independent decision ability. This architecture
is very similar to the design idea of MAMS and has become
the most commonly used system architecture of MAMS
for some time. Shen et al. [19] and Leitão [20] conducted
several high-quality surveys for this architecture. Compared
with HiMCA, HeMCA is no longer for finding the opti-
mal solution of the system but for better adaptability. This
architecture has strong robustness. It can efficiently deal with
disturbances and is more adaptable to the modern manufac-
turing environment. However, HeMCA lacks the means to
achieve high performance, limiting its application in large
enterprises [9], [15].

Hybrid manufacturing control architecture (HyMCA),
which is also called semi-HeMCA in some works [15], is a
mixture of hierarchical and heterarchical controls. It applies
the benefits of both systems while avoiding their shortcom-
ings. This type of structure usually has an additional layer
as the system’s supervisor, in which the primary function is
to maintain overall performance [21]. For instance, in [22],
the supervisor level manages the coordination between the
fundamental entities and ensures global performance. If a
perturbation occurs, the low level enters into a reactive mode
and manages their routing with pheromones without asking
the supervisor level. The work described in [21] and [23] pro-
poses a dynamic architecture for the optimized and reactive
control of flexible manufacturing scheduling. The authors
in [9] believe that HyMCA will become the mainstream
control architecture used by smart factories in the future.

C. HUMAN-MACHINE COOPERATION FOR
SMART FACTORIES
A growing number of researchers are addressing human-
machine cooperation designs in the domain of industrial
engineering. Concerning the industrial state of the art in
this domain, numerous studies are underway to integrate the
human operator in manufacturing processes correctly. Still,
they are conducted mainly at manufacturing ergonomics [7].
For instance, a framework that relied on immersive tech-
nologies and intelligent personal digital assistants is defined
and implemented in [4] for augmented operators in Industry

4.0. In this framework, the personal digital assistant answers
questions as an expert, and the immersive technologies
are explored to provide interactive, absorbing experiences.
In [24], it is proposed to adopt digital simulation set-ups to
support the human-centred design of manufacturing worksta-
tions to enhance workers’ interactive experience.

There is less research on integrating workers into the
overall control system architecture, but they are constantly
emerging. In many MAMS literature, authors may define
Work Agent but essentially treat the worker as a machine
described in detail in [3]. In response to these issues,
researchers in [7] designed a human-oriented system control
framework. In [25], it is discussed how to integrate human
behaviour into factory simulation to make the simulation pro-
gram results more in line with expectations. In [6], combined
with the manufacturing situation of developing countries,
it is proposed that workers can use mobile devices as the
information access interface of the system, and the system
control architecture is designed based on this.

D. RELATED WORK SUMMARY
In general, the theoretical development of MAMS has
become more and more consummate, and the research
focused has gradually shifted from how to obtain an excellent
model to how to get better applications in practice and how
to better conform to the development trend of manufacturing.
There are still many issues worthy of discussion in these
research directions [9].

The focus of this article is how to incorporate workers
into the overall control system under MAMS. Workers are
not the same as machines. They are more complex and more
random. Under the research premise of this article, the WoA
is different from other agents in the factory environment.
It is no longer a controller but a worker’s assistant. More
detailed internal structure design will be discussed in the next
section. Simultaneously, this article will use HyMCA as the
system control architecture to study howWoAs assist workers
to participate in the manufacturing process autonomously
instead of a mode of artificially designated tasks.

III. A WORKER INTEGRATION MECHANISM IN MAMS
This article proposes a specific implementation to integrate
worker agents into traditional MAMS. Under this implemen-
tation, WoAs are added as black box agents to the inter-
active system of MAs (Machine Agents) and PAs (Product
Agents), assisting workers in undertaking tasks dynamically
and ultimately improving overall worker efficiency. To this
end, in this section, the life cycle of MAs, PAs, and workers
is described first. Then, a multi-agent control system for
processing workshops is designed. Under this control system,
the integration scheme and the task allocation mechanism of
the worker agent are proposed.

A. AGENTS COMBINED WITH PHYSICAL
ENTITIES AND WORKERS
As shown in Fig. 1, machine tools of different brands
are distributed discretely in the processing workshop and
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are allowed for addition, removal, and interchange. Auto-
matic Guided Vehicles (AGVs), along with robotic arms,
are usually used to move materials, components, and tools
between the buffer stations of the corresponding machine
tool. Finished products, raw materials, and tooling are stored
and managed by Automated Storage and Retrieval System
(AS/RS). As introduced in section 1, in smart factories, work-
ers are equippedwith wearable mobile devices, which usually
have image and voice interfaces and can be connected to the
control layer.

1) MACHINE AGENT AND PART AGENT
Functional units (FUs), with a particular machine as the
main body, are divided first on the shop floor. Fig. 2 shows
a milling FU located in a processing workshop laboratory.
The FU contains a CNC milling machine as its main body.
It also contains buffer stations, RFID read/write equipment
and sensors. We propose an Agent Computing Node (ACN)
as the intelligent control node for this FU (see Fig. 2), which
will give it the ability to make independent decisions and
autonomous behaviours.

FIGURE 1. The processing workshop.

The ACN software consists of three layers, including the
adaptation layer, intelligent analysis layer, and JADE-based
information development layer. The adaptation layer is used
to interconnect with the machines. The protocol for com-
municating with devices of different brands is encapsu-
lated in the ‘‘Link library.’’ Simultaneously, the machine’s
action drive and information collection modules are designed
according to its type and function. The intelligent analysis
layer is the core part of building intelligent individuals.

On the one hand, the information from FUs and the envi-
ronment is analyzed here. On the other hand, it is the agent
threads’ management container that sends information to the
corresponding agents and transfers the agent decisions to
the corresponding information interfaces. The JADE-based
information exchange layer is used for interaction with other
ACNs. JADE is an agent development framework based on
the JAVA language [26]. It encapsulates the interface of mes-
sage exchange.

Parts are the execution objects of the processing workshop.
In our research environment, the antennas of RFID readers

FIGURE 2. A milling FU located in a laboratory. FU: functional unit.

are installed in the buffer stations attached to the FUs. Pallets
that hold the parts are equipped with RFID tags. The ACN
of the AS/RS gets order information from the order database.
Before the task is delegated, the AS/RS will negotiate with
the processing FUs through ACNs to determine the location
of the first processing step of the part. When parts leave
the AS/RS, they will be written with relevant information.
When parts arrive at each station, they can be quickly sensed
by ACNs, and all information about the current task can be
obtained simultaneously.

As shown in Fig. 3, ACNs will serve as containers for MA
and PA execution. Taking a processing FU as an example,
the MA program in the ACN is responsible for the operation
of the unit itself. When a part arrives, the information of it is
perceived as a task by the current ACN. At the virtual level,
the agent program corresponding to this part is in a silent state
at this time.

When there is no task in the processing machine, the task
will be selected for processing from the buffer task list. If the
part is determined, the part’s data will be combined with the
supporting program to generate the PA program. The ACN
acts as the container for this PA to run until this part is
processed, and the next undertaking machine is determined
through negotiation and interaction. After that, this PA pro-
gramwill go offline. At this moment, the part becomes a piece
of data at the virtual level again.

The PA is usually a piece of data at the virtual level and will
be generated by ACN when needed. The intelligent analysis
layer of the ACN is responsible for managing the threads of
MA and PA. In this mode, PA will not always use computing
power and memory. The necessary data is stored in the RFID
tag for generating PA threads and circulates along with the
part in the workshop.
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2) WORKER AGENT
Unlike MA and PA,WoAs cannot directly perceive or control
objects (i.e., workers). It establishes connections with things
through graphical interfaces or voice services. As mentioned
in [3], the behaviour of workers is unpredictable and highly
random. For example, the execution time of a manual task
cannot be accurately predicted, and workers may temporarily
leave their positions for any reason.

FIGURE 3. MA’s and PA’s Life Cycle in an ACN. MA: machine agent. PA:
part agent. ACN: agent computing node.

The WoA cannot directly make decisions. The goal/utility
ofWoA is to convey information and assist workers inmaking
judgments. After the workers are integrated into the MAMS
system, the tasks will be directly communicated to the work-
ers through the graphical interface of the wearable device,
which is different from the previously manual task assign-
ment. At the same time, the details of the task are conveyed,
and the workers can choose to accept or not according to their
situation. Considering the above factors, this article proposes
the WoA model shown in Fig. 4.

The WoA is designed by two modules, including ‘‘infor-
mation processing module’’ and ‘‘interactive module’’.

The ‘‘Interactive module’’ is responsible for the informa-
tion interaction with workers. It presents the task information
to the worker through a graphical interface or audio. The
worker will respond to this information and be able to actively
respond with the information required to the upper level,
such as whether the task is currently active and whether
the task undertaken has started or ended. When a particular
event occurs, workers can also give feedback to the upper
level through the voice service of the wearable device or the
options of the graphical interface. The accessory functions
of the wearable device itself will also be fed back through the
‘‘Interactivemodule’’. This part of information does not come
from the active report of the worker, but the sensors attached
to the wearable device, such as the current worker’s location,
worker’s health status information, etc.

The ‘‘Information processing module’’ is used to process
the ‘‘Interactive module’’ information. On the one hand,

the task information from the outside will be filtered here,
trigger the built-in event response program, and complete the
content presented through the ‘‘Message pushing’’ part of the
‘‘Interactive module’’. On the other hand, the information
from the workers and their sensors will be classified and
stored here, and essential historical data (e.g., the start and
end time of each task of the worker, the length of work,
etc.) will be synchronized with the upper database. The
information confirmed by the worker will be encapsulated
according to the specific content and fed back to the upper
system through the ‘‘External information interface’’ in the
‘‘Interactive module’’. It is also a mobile interface developed
through the JADE framework.

FIGURE 4. Worker agent model.

TheWoA is similar to an information transfer and delivery
platformwhen it communicates with the worker. Workers can
access the overall system through this platform, handle tasks
more flexibly, and report their status more dynamically.

B. THE INTEGRATION FOR WORKER
AGENT UNDER HYMCA
As mentioned in section 2, HyMCA is applied as the con-
trol architecture for MAMS in this article. Using ACNs,
intelligent improvement for a processing workshop can be
achieved. The FUs together with ACNs constitute a heterar-
chical control level, as shown in Fig. 5, and we call this level a
‘‘self-organizing operation layer’’. Individual autonomy and
swarm negotiation are the main behaviours of this layer.
In this model, the negotiation between MA and PA follows
the contract net mechanism [27].

Above the self-organizing operation layer, a high-level is
proposed regarding the general form of HyMCA [21].We call
this level the ‘‘supervisor layer’’. Usually, the main respon-
sibility of this layer is to optimize the system. Still, in this
article, we mainly focus on how to integrate workers into
the MAMS and how to improve the efficiency of workers.
A worker management module is set up in the supervisor
layer, and through WoAs, workers are registered in it. The
registered workers can decide whether to be online/offline
and whether to participate in the assignment of tasks through
the graphical interface provided by the wearable device.

Because a WoA cannot make direct decisions, the worker
management module also assumes the responsibility of man-
ual task assignment. Taking preparatory work before part pro-
cessing as an example. When the corresponding ACN selects
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FIGURE 5. The architecture of the control system.

a certain batch of parts located in the buffer, the associated
PA thread will be activated, and the processing information of
the current step will be notified to the MA. MA will analyze
the processing information. In addition to obtaining the NC
program of the corresponding processing step, it will also
release the preparatory tasks (e.g. fixture replacement, butted-
knife, and confirmation of NC program, etc.) required by the
current processing step to the ‘‘supervisor layer’’. When a
WoA is registered in the supervisor layer, the correspond-
ing worker information is written into the relevant database.
The worker status is updated to the management module in
real-time during the system operation.

Task objects and worker objects will be divided into two
lists, which are called ‘‘task pool’’ and ‘‘worker pool’’ in the
‘‘worker management module’’. When the data in the task
pool or worker pool changes, a new round of task allocation
will be triggered. Since the task may need to be implemented
by multiple workers, the task will be split into positions,
forming a ‘‘position pool’’. To further fit the actual situation,
in this paper, the following two points are considered:

1) In actual operation, positions may have specific
requirements for workers. For example, expensive
CNC equipment requires the participation of high-level
workers.

2) Different workers have different matching degrees for
various positions. The matching degree of workers
to other positions represents the proficiency of the

workers for the task. The more times the same type
of task is assigned to a worker, the higher the ability
for the worker. The WoA corresponding to the worker
will record each task’s type and execution time for
the worker, which calculates the matching degree of
‘‘worker-match-position’’.

Considering the above situation, a dynamic worker task
assignment mechanism is described as follows.

C. DYNAMIC TASK ALLOCATION MECHANISM
FOR WORKERS
For the convenience of explanation, this article defines some
mathematical symbols, which are explained in Table 1.

The worker task allocation process can be transformed into
a bipartite graph matching problem [28], as shown in Fig. 6.
M = {mi|i = 0, . . . , I } indicates workers’ collection. N ={
nj|j = 0, . . . , J

}
indicates positions collection. Assigning

workers to appropriate positions can be seen as a match
between these two collections. Positions are split from the
tasks, and different tasks require different numbers of posi-
tions. Only one worker can be assigned to one position, and
a task can only be activated when all the positions in this
task are assigned. After one task is started, those workers
assigned to this task will go to the corresponding workstation
according to the instructions issued by their WoAs.

Suppose the worker is qualified for a specific position.
In that case, there is a connection between the two, which
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TABLE 1. Mathematical symbols defined in this article.

is represented by aij. Wij indicates the weight value of the
connection between worker i and position j. This suitability
means the ability of the worker to handle the corresponding
task. WoAs will record the worker’s performance for each
task (usually the time to complete the task), and these data
will be the basis for scoringWij. The value ofWij depends on
these historical data and is derived from experience. It can
be calculated by WoA or directly scored by the workshop
director.

When task assignment is triggered, two scenarios need to
be considered: scenario 1, the number of idle workers meets
the position requirements; scenario 2, the number of idle
workers is not enough to fill the position requirements.

1) SCENARIO 1: THE NUMBER OF IDLE WORKERS MEETS
THE POSITION REQUIREMENTS
In scenario 1, the ultimate goal of the allocation is to get the
right workers to the right place. That is, the final matching
sum is the largest. The optimization goals are as follows:

max
I∑
i=0

J∑
j=0

Wij · aij

s.t.
I∑
i=0

aij = 1, j = 1, . . . , J

J∑
j=0

aij = 1, i = 1, . . . , I (1)

where:

aij

{
1 if position j is assigned to worker i
0 if position j is not assigned to worker i

FIGURE 6. Workers-positions-tasks.

At this time, the problem is transformed into finding the
optimal matching in the bipartite graph. The Kuhn-Munkres
(KM) algorithm can be perfectly applied to the solution pro-
cess in this case [29]. Using the KM algorithm, we can easily
find the optimal solution for the allocation in this situation.
After that, the supervisor layer will push the tasks to the
workers. When the workers confirm, this round of allocation
is completed. If some workers choose not to accept it, a new
round of assignments will be performed.

2) SCENARIO 2, THE NUMBER OF IDLE WORKERS IS NOT
ENOUGH TO FILL THE POSITION REQUIREMENTS
Scenario 2 mainly occurs when the workload is high. If only
idle workers are considered at this time, matching according
to the ability value may result in a situation where no task can
be performed. If the first-come-first-served rule is adopted,
it may lead to optimal local problems. It is supposed that
three tasks need to be allocated urgently, and the existing
idle workers can only meet the requirements of one of the
tasks. After the tasks are allocated, a new batch of workers
completes the current tasks and enters the worker allocation
pool, but the newly arrivedworkers cannot match the next two
tasks. And if the previous allocation can wait for a period of
time, the three tasks can be allocated simultaneously. From
the resulting point of view, the latter scheme is better.

This article proposes a new distribution mechanism based
on wearable devices and worker autonomy to avoid the above
problem. When an assignment event occurs, the supervisor
layer will query the worker’s status in working state, and get
the average completion time and the time the task has been
in progress. When the task progress enters a specific time
window, the supervisor layer sends a confirmation invitation
to the workers to participate in the next step, and the workers
will reply to the invitation according to the actual situation.
After confirmation, the workers who are working on this task
will also enter the pool of workers to be assigned.
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In order to make the distribution more reasonable, this
article uses the following two indexes:

The first is the ‘‘matching index’’. Like scenario 1, the sys-
tem always hopes that workers can be fully utilized for each
task assignment. However, because workers cannot meet the
needs of all tasks, some tasks cannot make up the required
workers, which means that these assignments are invalid and
the tasks cannot be started. Thematching index of the kth task
(i.e. Tk ) is represented by Dk . If the task is not activated, Dk
is zero; if the task is activated, Dk is the sum of the weights
of the matching workers. Fig. 7 shows an example, the task
T1 is not assigned enough workers, D1 = 0. The task T2 is
allocated enough workers, D2 = a13 + a34.
The second is the ‘‘value index’’. When a round of alloca-

tion is completed, the system always hopes that enough tasks
can be allocated. At the same time, the allocated tasks enable
the system to reap the greatest value. The value index of the
kth task (i.e. Tk ) is represented by Vk , and the calculation
method is as follows:

Vk = λk · Uk (2)

In equation (2), λk represents the effectiveness of the kth
task, and its value range is 0∼1. If the task can be executed
immediately, the value is 1. If the task cannot collect the
required workers, the value is 0. In scenario 2, there are
idle workers involved in assigning tasks and workers who
can complete the task immediately, and the execution of the
task may not start immediately. The estimated time when the
task can start (i.e. stk ) determines this value. We can directly
design the value of λk when the stk is in different intervals
based on experience. For example: after an assignment, if the
assigned workers of a task need 100s to be in place, λk = 0.7;
if it takes 200s to be in place, λk = 0.5; if it is more than 200s
to be in place, λk = 0.3.
In equation (2),Uk represents the urgency of the task. Tasks

with higher urgency should have a higher value. In differ-
ent working environments, there will be different definitions
for Uk . Here, this article gives a more general equation to
describe its specific value. The delivery date of the part
involved in the kth task and the time waiting by the kth task
will be determined by the delivery date of the part involved
in the kth task (i.e. wtk ).
We first use a designed index, ‘‘near-delivery index

(NDI)’’, to illustrate the impact of delivery date on task
urgency. The NDI is used to determine whether there are
overdue risks and the specific value of the overdue risk in
production activities.

NDIk =


0 etk ≤ 0

etk
rtk

1+ etk
rtk

etk > 0
(3)

etk = dtk − (ctk + α · rtk) (4)

In equations (3) and (4), the actual meaning of each param-
eter is shown in Fig. 8. etk represents the estimated difference
between the finish date and the delivery date of the kth task.

FIGURE 7. The example for ‘‘matching index’’ calculation.

rtk represents the estimated remaining processing time of
the kth task. dtk represents the delivery date. ctk represents
the current date, and α is the amplification factor of the rtk .
Since theworkpiecemay be idle due to insufficient productiv-
ity, the predicted execution time needs to be enlarged. Usually
the value of α is 1.5 to 2. It can be seen from Fig. 12 that when
etk is less than 0, the task is overdue, and NDIk = 0. etkrtk can
represent the urgency of the delivery date. The larger the etk

rtk
,

the smaller the risk of overdue is. This article uses the method
in equation (3) to normalize it and finally obtains NDIk .

We normalize theNDIk andwtk of the tasks in the task pool
to obtain Uk .

Uk = µ ·
1

NDInk
+ ν ·

1
WTnk

(5)

where:

NDInk =
NDIk
NDImax

(6)

WTnk =
wtmax

wtk + wtmax
(7)

In equation (5), µ and ν are the weights of 1
NDInk

and
1

WTnk
respectively. They are usually valued according to the

actual situation of the factory. When a round of allocation
is completed, we can get the ‘‘matching index’’ and ‘‘task
value index’’ corresponding to each task. The optimization
goal can be obtained by multiplying these two items in each
task and then summarising everything. The optimization goal
for scenario 2 is described in equation (8). The larger the opti-
mization goal, the more tasks are assigned, and it also means
that the more urgent tasks are more likely to be assigned to
the skilled workers.

max
(
[Dk ] [Vk ]T

)
, k = 1, . . . ,K (8)

The control system always expects that worker resources
can be fully utilized, that is, the final matching result should
be the maximum matching of the bipartite graph. Max-
imum matching refers to the largest connection between
workers and positions. We can find the optimal solution
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of equation (8) in the maximum matching. The Hungarian
method can be used to find the largest match of the bipartite
graph. It is a combinatorial optimization algorithm that solves
the assignment problem in polynomial time. In the case where
the weight is not considered, this method can quickly help us
to find the maximum match, that is, the matching connection
is the most. The process of the Hungarian algorithm is care-
fully described in [30].

However, when the arrangement order is fixed, the
Hungarian algorithm of the same model can only get
one solution. This article considers disrupting the arrange-
ment order and uses genetic algorithms to better match
results [31]. A case shown in Fig. 9 is used to illustrate
the execution process of the algorithm. The related pro-
cedures and data used in this case can be obtained in
(https://github.com/zhjj370/MyNewPaper2). The CPU used
in the test computer is AMD Ryzen 3700U, and the memory
is 8Gb.

FIGURE 8. The actual meaning of each parameter when calculating the
‘‘near-delivery index. ’’

In the example, there are 6 tasks to be assigned, which
are split into 10 positions. At this time, idle workers do
not meet the job requirements. After the supervisor layer
interacts with WoAs, the two groups of workers who meet
the conditions are added to the worker pool to be assigned.
If no task assignment event is triggered afterwards, the tasks
that require the participation of workers in this part will be
performed directly after the personnel is in place. If there are
tasks that enter the task pool before this part of the workers
are in place, the event will be redistributed.

For the convenience of explanation, the NDI and wtk of
each task are directly given in the simulation test. Tasks
will be divided into positions according to requirements.
The numbers on the table in Fig. 6 indicate the degree of
fit between workers and positions. It can be automatically
calculated by each WoA based on the historical completion
of related tasks or by the workshop director based on the
performance score of the workers during a specific period.
The task in the factory may be set to a level, and only workers
who reach the corresponding level can operate. If the level
of the worker is not enough or the worker does not have the
skills for this task, the fit is ‘‘0’’. Our ultimate goal is to
find the optimal solution or better solution that satisfies the
equation (8) in the table. The solution in this article is to find
the maximum match between workers and positions as much
as possible and select the optimal solution in these maximum

matches. The combination of the Hungarian algorithm and
genetic algorithm can help us solve this problem. The key
steps are shown in Fig. 10.
–Step1. Population initialization. When the assignment

event starts, the system will orderly assign specific ID num-
bers to the tasks and workers participating in this round of
assignments. The chromosome in the population is composed
of two parts, including the position gene and worker gene,
which are the combination of the task ID and the worker ID.
–Step2. Fitness calculation. This article adopts equation (8)

as the fitness function. According to the arrangement order
of the positions and workers provided by the chromosome,
the Hungarian algorithm can be used to obtain the largest
match in this arrangement order. This process is equivalent
to the decoding process in the genetic algorithm. We can get
the fitness value of the chromosome though substituting the
matching result into equation (8).
–Step3. Selection. This article uses the roulette method to

select a new generation of chromosomes.
–Step4. Crossover. When the parent chromosomes are

crossed, position genes and worker genes will be crossed
separately and then combined into a new chromosome.
The ‘‘Order Crossover’’ algorithm, proposed by Davis [32],
is used in this step.
–Step6. Mutation. The chromosomes will have a certain

chance of mutation, and the values of the two positions in
the position gene and the worker gene will be randomly
exchanged.

In this case, the population size is set to 30, and the muta-
tion probability is 0.01, and the maximum genetic generation
is 100. The fitness convergence curve and the better allocation
result obtained by the algorithm are shown in Fig. 11. In this
case, the number of workers and tasks is small, so the results
quickly converge. When the end condition is set to 100 for
genetic generation, it takes 23ms.

To confirm the workshop scale for which the algorithm can
be used and further prove that the algorithm is suitable for the
dynamic allocation of worker tasks, this article expands the
number of workers and tasks to be allocated and conducts

FIGURE 9. An example is used to illustrate the algorithm process.
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a larger-scale algorithm experiment. Three different sizes of
workers and positions were tested. In each case, 20 tests were
carried out, and the final results are shown in Table 2. The
convergence curve in each case is shown in Fig. 12. The
results show that the allocation mechanism and its supporting
algorithms designed in this article can meet the needs of
processing workshops with hundreds of workers. When the
size of the workshop is further expanded, the task allocation
mechanism designed in this article can be used by dividing
the workshop area and specifying the work area for workers.

IV. IMPLEMENTATION IN THE ACTUAL ENVIRONMENT
A processing workshop laboratory located in Nanjing Uni-
versity of Aeronautics and Astronautics is used to verify
the worker integration method under the multi-agent system
proposed in this article and determine its effectiveness in
actual use. The laboratory is shown in Fig. 13.

For the case used in this article, the shop floor physical enti-
ties can be classified into multiple types of units, including
an AS/RS unit, two milling units, two turning units, an AGV
unit, two robot units, and a detection unit. Two types of parts
are used as processing objects. In the experiment, manual
tasks mainly refer to the preparatory work of these parts,
including replacing fixtures and tools. These tasks usually
require 2-3 people to work together.

Several students participated in this experiment. They
had experienced training and were able to implement the

part-processing preparatory work skillfully. Their ability val-
ues for various tasks in the experiment had approached a
stable state, reaching their ability bottleneck, so these ability
values could be calibrated directly before the experiment.

The workshop layer has been deployed in multi-agent con-
trol systems based on ACN technology. The WoA program
proposed in this article is embedded in the mobile phone
as an application and connected to the control system. The
workshop layer and the workers finally form the control
architecture shown in Fig. 5. In the actual experiment, ACNs
publish worker task information based on current processing
requirements. WoAs receive task information and notifies
workers (i.e. students) for processing. Although worker-task
time has strong randomness, the WoA program assists work-
ers to join the production process orderly through the inter-
action between agents. It means that the integrated approach
for workers designed in this article can realize the dynamic
processing of production tasks.

In the worker-task allocation method test, we used two
sets of schemes, including first-come-first-servedmethod and
the method designed in section III. In this test, we let the
factory maintain a full-load production state and gradually
reduce the number of workers.We counted the overdue rate of
processing-tasks and the vacancy rate of worker-tasks under
the number of different workers (as shown in Figure 14). The
overdue rate refers to the sum of the final outstanding tasks
exceeding the specified time to the total working time. The

FIGURE 10. Key steps in this genetic algorithm.
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FIGURE 11. Simulation results of the case.

TABLE 2. Simulation result.

worker-task vacancy rate refers to the average proportion of
the task that failed to be assigned in each round of assign-
ments.

In this test, when the number of workers is 10, the full load
production can be satisfied. At this time, the part delivery
period can be guaranteed under these two allocation meth-
ods. As the workers are reduced, the part overdue rate and
the worker-task vacancy rate will increase. It represents that
workers become busy, and the worker-resource has become a
production bottleneck.

As shown in Fig. 14, the allocation method designed in
section III will slow down the growth trend of the overdue
rate. This is because when the worker-resource becomes a

FIGURE 12. Fitness convergence curve under different sizes of workers
and positions.

bottleneck, equation (8) will make urgent tasks more eas-
ily access to workers with high capability. Simultaneously,
from the change of worker-task vacancy rate, we can clearly
find that the allocation method designed in this paper has a
higher allocated efficiency in each round of task-allocation,
because we adopt a communication appointment during the
allocation.

In order to further verify the effectiveness, we have a long-
term performance observation. This article carried out the
following experiments. We keep the number of workers at 7.

–Case 1: The system published the tasks that workers need
to perform on the electronic screen, and a teacher played as a
workshop director to assign these tasks.
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FIGURE 13. A processing workshop laboratory.

FIGURE 14. The performance of two allocation methods with the
reduction of workers. The two allocation methods are the
first-come-first-served method and the method proposed in section III.
The overdue rate refers to the sum of the final outstanding tasks
exceeding the specified time to the total working time. The worker-task
vacancy rate refers to the average proportion of the task that failed to be
assigned in each round of assignments.

–Case 2: Workers obtained the tasks through theWoA app,
and the allocation of the supervisor layer follows the principle
of first-come-first-served.

FIGURE 15. Experimental result.

–Case 3: Workers obtained the tasks through theWoA app,
and the allocation method followed the mechanism designed
in this article.

The experiment compares the ‘‘Task idle rate’’, ‘‘Worker
idle rate’’, and ‘‘Overdue rate’’ under the three cases. Task
idle rate refers to the ratio of the total idle time of the parts
due to worker-tasks cannot be processed in time during pro-
cessing to the total working time. The idle rate of workers
refers to the ratio of the total idle time of workers due to the
lack of partners to the total working time. Several experiments
have been implemented. The results after each experiment are
recorded, and the average values are shown in Fig 15.

From the results of ‘‘Task idle rate’’, after using WoA
and wearable devices to integrate workers, the waiting time
of the workpiece due to the lack of personnel is sig-
nificantly reduced. This means that the overall efficiency
of the system is improved. Simultaneously, judging from
the results, following the worker task dynamic allocation
mechanism designed in section III is better than the first-
come-first-served principle.
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Comparing the ‘‘Worker idle rate’’ results, following the
first-come-first-served principle, workers spend less time
idle, while manual allocation makes workers idle more time.
After following the dynamic mechanism designed in this
article, workers’ idle time is middle. Combining the two
indicators of ‘‘Task idle rate’’ and ‘‘Overdue rate’’, the result
of case 3 is better than the result of case 2. This shows that
the use of workers by the system in Case 3 is at a reasonable
level - workers are less busy, but the system is more efficient.

Therefore, it can be seen that the WoA integration scheme
proposed in this article can significantly improve the work
efficiency of workers and reduce the risk of task overdue due
to personnel factors.

V. CONCLUSION
This article discusses how to integrate workers into the overall
control system under MAMS and how to improve worker
efficiency after integration. Wearable mobile devices provide
hardware support for WoA programs.

The multi-skilled feature of workers and the collabora-
tion between workers are fully considered in the integration
process. In the current manufacturing environment, workers
are not fixed in a position, and they can temporarily form a
team to complete a task according to system requirements.
The entire control system follows the structure of HyMCA.
We have designed a special information interface to assist
WoA integration. As a black box agent, the WoA participates
in the operation of the control system and assists the corre-
sponding worker in undertaking their tasks.

The interaction mechanism of WoA with other types of
agents and modules is also studied in this article. A dynamic
task allocation mechanism is investigated. Considering that
a task may require multiple workers to complete, this article
splits the task into multiple positions that require workers to
match. We abstract the allocation problem into a bipartite
graph matching problem and consider the algorithms and
strategies used in different scenarios. A new task allocation
algorithm is designed for complicated situations. In this algo-
rithm, the guarantee of delivery time and the optimization of
workers’ ability are fully considered. The effectiveness and
timeliness of this algorithm under different scale problems are
verified. It should be noted that we use the genetic algorithm
in the allocation method, but the genetic algorithm is not
the focus of this article, so it is not optimized. In actual
use, there will be premature convergence. The method has a
further optimized space. In future works, we will continue to
optimize it. At the same time, how to make workers cooperate
efficiently is the next problem we need to solve.
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