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ABSTRACT The construction of perceptually uniform color space is an important task of color theory. Many
image processing applications requires the color difference to replicate human perception. The perceptual
difference is poorly approximated by Euclidean distance within linear color coordinate systems, in particular,
within CIEXYZ.Almost all uniform color spaces are constructed as some nonlinear transformation fromCIE
XYZ. Such transformations do not preserve the straightness of the color tone curves and other collinearity
properties which are important for high dynamic range and wide color gamut imagery and required for linear
color analysis, including separation of homogeneous backgrounds. In this work, we propose proLab, a new
color coordinate system derived as a 3D projective transformation of CIE XYZ that preserves the linearity of
manifolds by definition. We show that proLab is far superior to the widely used CIELAB coordinate system
(though inferior to the modern CAM16-UCS) in terms of perceptual uniformity, evaluated by the STRESS
metric in reference to the CIEDE2000 color difference formula. We also demonstrate that shot noise in
proLab is more homoscedastic than in CAM16-UCS or other standard color spaces. This makes proLab a
convenient coordinate system for linear color analysis.

INDEX TERMS Color, mathematical model, linearity, image representation, image color analysis, noise
measurement.

I. INTRODUCTION
The purpose of this work is to develop a new color coordinate
system for the analysis of color images of the visible light
spectrum. Most existing algorithms for color analysis operate
with distances in a color space, and some of them rely on
the linear properties of color distributions. On the other hand,
the color space metric, as a rule, is not derived strictly from
physical models but rather from the properties of human color
perception using psychophysiological experimental data. The
color coordinate system proposed in this work is based on
the color perception model as well as on physical models of
image formation; thus, for an accurate problem statement,
we have to provide a detailed introduction. Sections I-A
and I-B are dedicated to color models in psychophysics;
Sections I-C and I-D, to the aspects of color image forma-
tion and processing. Then, in Section I-E, we formulate the
problem to be solved and propose the general idea of the
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solution. Section I-F addresses the most relevant works in the
field. In Section I-G, the desired properties of the proposed
coordinate system are listed.

A. COLOR SPACES AND COLOR COORDINATE SYSTEMS
The human perception of color is defined by the spatial
distribution of retinal irradiance and the internal state of the
visual system. Under photopic conditions, there are three
types of active cones, the reactions of which can be con-
sidered continuously dependent on the irradiance. Under the
assumption that photoreceptors are negligibly small and uni-
formly distributed, the response to the irradiance at each point
on the retina can be represented as three scalar reactions.
All other elements of the visual system employ not arbitrary
parameters of the irradiance but rather these three scalar
reactions exclusively. In this model, given a fixed internal
state, the color perception caused by a uniformly illuminated
part of the retina depends on a 3D manifold, regardless of the
visual system’s complexity and its internal state. We call this
manifold a color space, and its elements we call colors.
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To perform color mapping, various color coordinate sys-
tems are used. In any of them, the coordinates of the color
vector c are related to the spectral irradiance F(λ) through
some vector functional 9, which can be additionally param-
eterized with context information and the internal state θ of
the visual system:

c = 9θ [F(λ)], (1)

where λ is the light wavelength. The color coordinate space
is called linear if 9 is linear for fixed θ .

In 1853, Grassmann showed [1] that under colorimetric
conditions, a linear 3D color coordinate system of the human
vision system can be constructed, while the internal state
of the latter can be neglected due to these conditions. This
discovery reduced the problem of determining the color space
for the human eye to a linear-color-coordinate-based con-
struction in the spectral irradiance space F(λ). In this system,
the relationship between the retinal spectral irradiance and the
color coordinates is constructed analytically:

cx
def
=

∫
∞

0
F(λ)X(λ)dλ, (2)

where X(λ) denotes the color matching functions of a stan-
dard observer and cx denotes the color coordinates in CIE
XYZ.

Thus far, various color coordinate systems have been pro-
posed for the standard observer. These systems vary in terms
of their suitability for specific applications [2]. Some of
them imply colorimetric conditions. Others are related to the
various color perception models, which parameterize θ in one
way or another. Assuming that the visual context and the
internal state do not affect the spectral sensitivity, the coor-
dinate vectors in any of these coordinate systems can be
expressed via CIE XYZ coordinates independently of F(λ):

c8 = 98,θ [F(λ)] = 8θ (cx), (3)

where 8θ is the transformation from CIE XYZ to the given
coordinate system under known internal state θ .

Usually, color perceptionmodels consider at least the adap-
tation of the visual system to the dominant illuminance [3].
In von Kries’ model [4], this is expressed within the trans-
formation (3) as a componentwise division of the input
coordinate vector cx by the light source color coordinate
vector c>x (θ ):

8θ (cx) = 80

(
diag

(
c>x (θ)

)−1 cx) , (4)

where 80 is a transformation that is independent of the
illumination.

In systems with the same adaptation model, the coordi-
nate transformation could be performed while bypassing CIE
XYZ, and obviously, this transformation does not require
information on the illumination: ca = Aθ (cx)

def
= A0

(
diag

(
c>x (θ)

)−1 cx)
cb = Bθ (cx)

def
= B0

(
diag

(
c>x (θ)

)−1 cx)
H⇒ cb = B0

(
A0
−1(ca)

)
, (5)

where ca and cb are the color coordinate vectors in the two
coordinate systems, defined by the transformations Aθ and
Bθ , respectively.

B. EVALUATION METRIC AND PERCEPTUAL UNIFORMITY
Psychophysical experiments not only reveal the spectral basis
of the color space perceived by people but also help to deter-
mine its metric parameters. This can be done, for instance,
by measuring changes in the thresholds in spectral stimuli for
a human eye at different points of the color space. The color
coordinate space is called perceptually uniform (hereinafter –
uniform) if the Euclidean distances between the colors in it
correspond to the differences perceived by the human eye.
Liminal difference vector lengths are uniform across all of
the points and in any direction in this space. The CIE XYZ
linear coordinate system provides a color space with a natural
Euclidean representation, but it is significantly nonuniform in
this regard.

There have been many attempts to create a uniform color
coordinate space. In 1948, Richard Hunter proposed the first
uniform space, Hunter Lab [5]. Later, David MacAdam pro-
posed a space based on a study by Dean Judd [6]. This space
was standardized by CIE in 1960 as a uniform chromaticity
space (CIE 1960 UCS). As its name implies, this coordinate
system does not include any brightness component. Soon
after that, Gunter Wyszecki proposed a space [7] based on
the latter one, which was adopted as the CIE 1964 (U*, V*,
W*) color space (or CIEUVW). It allowed for the calculation
of the color differences even with mismatched brightness. In
1976, the CIELAB space was developed based on Hunter
Lab [8]. It is still the most used uniform color coordinate
system when it comes to complex stimuli (images) analysis.

However, the CIELAB space is only approximately uni-
form, so from the moment of its inception, there have been
continuous attempts to create more uniform coordinate sys-
tems (e.g., [9]). At the same time, non-Euclidean color dif-
ference formulas were being developed to provide more
precise correlation with experiments regarding human per-
ception. The successful outcome of these efforts was the
CIEDE2000 formula [10], [11], which is still considered
the most accurate one available [12]. Nevertheless, for some
applications, it is preferable to operate in color coordinate
spaces with a uniform Euclidean distance (e.g., for the devel-
opment of effective search structures). Therefore, uniform
spaces are still being actively researched and developed.
Currently, the CAM16-UCS space [13], developed in 2016,
is considered to be the accuracy standard among these.

C. COLOR SPACES OF VISIBLE-SPECTRUM CAMERAS
With certain reservations, all of the aforesaid can also be
attributed to technical visual systems. Of course, we are not
considering the perception of technical systems. In technical
vision systems, the term ‘color’ usually means a 3D vector
that is passed on for further processing. In addition, the inter-
nal state θ of these systems, as a rule, could be neglected or
considered to be known. However, the most important thing
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is that the spectral basis of the camera space is significantly
different from those of the standard observer. Moreover,
the color spaces of cameras made by different manufacturers
are usually mismatched.

To use the color coordinates of one color space within
another one, a mapping between these color spaces must be
built. This concept is invalid in the general case: an element
of any color space corresponds to an infinite set of metameric
spectral irradiance; this set can be mapped into a set of
significant volume of the different color space.

The quality of color reproduction under different condi-
tions depends on the choice of a particular mapping. Various
mathematical models have been proposed for its construction.
The most commonly used is a linear one [14]. Nonlinear
color mappings – polynomial [15] and root-polynomial [16] –
are also well known. Both of these show better accuracy in
experiments. The latter model is also invariant to changes in
brightness, similar to the linear model. In [17], an interesting
approach is discussed: the linear mapping parameters are
considered to be dependent on the dominant illumination esti-
mation. The latter is obtained via analysis of the input image
using some algorithm (the dependency of θ is established).
Moreover, in [18], possible refinements of the experimental
pipeline are proposed, and in [19], the choice of loss function
to be minimized for model fitting is discussed.

When dealing with mass-market visible-light cameras,
the calibration transformation into the standard observer color
space is considered to be known, which allows for the assign-
ment of the human color space coordinates to the captured
colors. As a rule, the method for the evaluation of the trans-
formation parameters and, sometimes, the model of such a
transformation itself are hidden from the user.

D. IMPORTANCE OF LINEAR MANIFOLDS IN COLOR
IMAGE ANALYSIS
In technical systems, the algorithms for color image analysis
and processing are based on both human color perceptual
models and physical models of image formation. The most
famous among the latter is probably the dichromatic reflec-
tion model proposed by Shafer [20]. This model assumes
that the color distribution of the uniformly colored glossy
dielectric surface, illuminated by a single source, forms a
plane in the linear color coordinate space. The assertion of
the linear degeneration of the color distribution was already
formulated early on, at least by 1975 [21], but Shafer’s model
additionally specifies the shape of the color distribution on
the plane. This model was further developed and generalized,
resulting in the expansion of the list of conditions underwhich
the color distributions of uniformly colored objects form
linear manifolds of various dimensions [22], [23]. We call
all the models of this family linear models of color image
formation.

Linear models are used, for instance, in color-based image
segmentation [23]–[26], as well as in computational color
constancy. The main problem of the latter is to estimate the
color of the light source of a scene. One of the ways to solve

this is to find the intersection of two dichromatic planes in
the linear color coordinate space. According to the linear
model, the chromaticity of the direction vector of the planes’
intersection is the same as the chromaticity of the dominant
light source [27]. This technique is used in various color
constancy algorithms [28], [29].

Note that in earlier works on this topic, only color distri-
butions forming 2D linear subspaces were considered. How-
ever, the algorithms developed later consider a more realistic
model that includes diffused light, where the considered man-
ifolds do not pass through the origin of the coordinates [30].
The generalized versions of this approach are used in the
analysis of scenes with multiple light sources [23], [31] as
well as in multispectral image analysis [32].

The assumption that the interaction of light with matter is
linear leads to a more obvious and fundamental property –
changes in integral illuminance brightness do not affect the
chromaticity of image pixels regardless of the number of
reflections in the scene, the coloring of the objects, and
the chromaticity of the light source. This is what recovery
[33]–[35] and reproduction angular errors [36], widely used
in computational color constancy, are based on. The first
metric considers the angle between the true color vector of
the illuminance and its estimation. The second considers
the angle between two color vectors, one of which is the
color vector of a white surface under the given illumination,
normalized channelwise by the estimated light source chro-
maticity, while the other corresponds to a white surface under
an equal-energy illuminant (‘‘true white point’’).

These color constancy algorithms, based on linear mani-
fold incidence along with angular accuracy errors, are applied
to linear color coordinate spaces, since in nonlinear spaces,
the relevant geometric properties of the color distribution are
not preserved.

E. THE REASON BEHIND THE DEVELOPMENT OF NEW
COLOR COORDINATES
The structural analysis of linear color distributions mainly
includes two problems. The first one is to estimate the linear
cluster parameters in a color space using regression methods,
and the key factor here is the tolerance for color deviations
caused by image noise. The second problem is the analysis
of the mutual positioning of the detected manifolds in a color
space. The algorithms for solving these problems employ the
color differences directly. Thus, for applications where the
behavior of these algorithms is expected to be in correspon-
dence with human perception, the color difference metrics
should preferably be in correspondence with the human ones.

When applying basic statistical methods to the color dis-
tribution of an image, the color noise is considered to be
homoscedastic, i.e., the color deviations are additive, well
approximated by a random variable with zero mean, dis-
tributed independently from the observed coordinates, and
invariant to rotation. However, even affine transformations
of color coordinates can affect the additive noise anisotropy.
Nonlinear transformations can also make the parameters of
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the color distribution dependent on the observed color coor-
dinates. Thus, the correctness of the results obtained via basic
statistical methods significantly depends on the coordinate
system in which the color distributions are analyzed.

The problem is further complicated by the fact that image
noise is not homoscedastic in the space of linear sensor
responses [37]. This means that basic regression methods
provide nonoptimal estimation of the color manifolds’ posi-
tioning even in linear color spaces. As a result, both nonlinear
and linear color spaces are poorly applicable for structural
analysis: the physical models in perceptually uniform spaces
are overcomplicated, and the noise is heteroscedastic [38],
while in linear spaces, the errors do not correlate with human
perceptual differences, and noise homoscedasticity is not
guaranteed for linear spaces. The same goes for the problem
of angular errors: in linear color spaces, deviations by the
same angle in different directions are not guaranteed to be
equally perceived by the human eye, while in perceptually
uniform spaces, equal chromaticities form a curve; thus,
the concept of angle is not very applicable here.

Thus, our goal is to construct a perceptually uniform space
of color coordinates that preserves the linearity of subspaces
and manifolds. Moreover, it is preferable that the sensor noise
in this space be as homoscedastic as possible.

F. HOMOGRAPHY OF 3D COLOR COORDINATES
If the preservation of manifold linearity required linearity
of the transformation, our goal would hardly be achiev-
able. First, linear transformations cannot make noise more
homoscedastic since the Jacobian matrix of a linear transfor-
mation is constant across the space. (However, it is possible
to correct the noise anisotropy.) Moreover, linear transfor-
mations cannot significantly improve perceptual uniformity
of the space: colors that are equally spaced in CIE XYZ
coordinates are not perceptually uniform on the achromatic
axis, and affine transformations preserve the ratio of segment
lengths located along any line.

However, the class of transformations that preserve the
linearity of the manifolds is much wider: it includes any pro-
jective transformations. Unlike affine transformations, pro-
jective ones allow for changes in the elements across the space
in different ways. Figure 1 illustrates a projective transfor-
mation compressing the space in the vicinity of one point
and stretching the space in the vicinity of another while
keeping all of the lines straight. It suggests that a solution
with acceptable uniformity is possible, i.e., a color coordinate
system with the desired properties can be developed.

Projective transformations of color coordinates are already
widely used in various applications [39]. However, projective
transformations are usually applied only to the chromaticity
plane. Apparently, MacAdam [40] was the first researcher
who proposed projective transformations for the construction
of a uniform color space, but in his pioneering work, as well
as in later papers, only 2D transformations are considered.

In 2003, the first work introducing the transformation of
the entire color space was published [41]. It employed a 3D

FIGURE 1. XZ plane of the CIE XYZ color coordinate system in the
projective color coordinate space. Point W denotes the projection of the
white point.

projective transformation for color gamut matching for vari-
ous projector devices. Later, the same approach was applied
to photorealistic color transfer between images [42]. Both
methods employ mutual calibration of two images rather than
transformation into some reference space with a different
metric. The latter method was used in [43]. This research
demonstrated that a fixed 3D projective color coordinate
transformation improves the results of color-based image
segmentation [43]. In 2020, Kim et al. [44] employed a 3D
projective transformation for the color calibration of micro-
LED displays.

G. PROPOSED COLOR COORDINATE SYSTEM
In this work, we propose proLab, a uniform color coordinate
system for the standard observer that is based on a 3D projec-
tive transformation of CIE XYZ coordinates.We demonstrate
the following advantages of the new coordinate system:
• ProLab is far superior to the commonly used uni-
form system CIELAB in terms of perceptual uniformity
(although it is inferior to CAM16-UCS).

• The image shot noise is more homoscedastic in proLab
than in other uniform spaces.

• Among the uniform systems, proLab is the only one that
preserves the linearity of color manifolds; this property
allows for the employment of the angular accuracy of
a color reproduction and for linear color analysis in
accordance with a human color difference metric.

• The transformation from CIE XYZ to proLab has an ele-
gant analytical expression, and it is computationally effi-
cient compared with CAM16-UCS and the even more
primitive CIELAB.

We presented the idea of constructing the proLab coor-
dinate system for the first time at the 25th Symposium of
the International Society for Color Vision in 2019 [45], but
the construction methodology and a numerical study of the
properties of proLab are discussed in detail for the first time
in the current work. Moreover, the model parameters have
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been estimated more accurately compared to those presented
at the Symposium.

H. OUTLINE OF THE MAIN RESULTS: PAPER STRUCTURE
The main part of the article is organized as follows. Four sec-
tions are focused on the construction of the proLab coordinate
system. In Section II, we introduce the necessary notation,
construct the basic model of the transformation from CIE
XYZ to proLab, and discuss how to determine the transfor-
mation parameters that do not affect the metric. In Section III,
a priori restrictions on the proLab metric parameters are
given. In Section IV, we introduce a function quantifying
the perceptual uniformity of color coordinates. In Section V,
we provide the optimal proLab parameters along with the
step-by-step methodology to obtain them.

Then, we study the properties of the resulting color coor-
dinate system. In Section VI, we propose a function to quan-
tify the deviation of the color coordinate noise parameters
from homoscedasticity. In Section VII, the noise model for
the color sensor is constructed, and noise parameters esti-
mated on a raw image from an open dataset are provided.
In Section VIII, we provide a numerical comparison of the
properties of proLab with those of the existing coordinate
systems in terms of uniformity and noise homoscedasticity.
In Section IX, we discuss several specific possible applica-
tions of the constructed coordinate system. In the Discus-
sion, we review some qualitative properties of the proposed
coordinate space and suggest possible optimizations of the
parameters of proLab. In the Conclusions, the main results of
this work are summarized.

II. BASICS OF THE PROLAB COLOR MODEL
Let us now construct a color coordinate space of the standard
observer such that color manifolds that are linear in CIE
XYZ will remain linear in the constructed space. In addition,
we require the Euclidean distance in this space to approxi-
mate the color differences determined in a certain way.

Let us denote the CIE XYZ color coordinate space as Cx ,
the CIELAB coordinate space as Cl , and the constructed
space as Cp. By L, we denote the transformation from Cx to
Cl , and by P, from Cx to Cp. As follows from the require-
ment of linearity preservation of the manifolds, P is a 3D
projective transformation. Let us parameterize any projective
transformation in standard matrix notation, denoted by italics
(e.g., matrix P def

=(pij) ∈ R4×4 corresponds to the
transformation P).

Let Th and Tc be functions for the transformation between
Cartesian and homogeneous coordinates:

Th(c)
def
=

[
c
1

]
, c ∈ R3,

Tc(h)
def
=
[
I3 0

] h
h4
, h ∈ R4, h4 6= 0, (6)

where I3 is the 3× 3 identity matrix. Then,

P(cx)
def
= Tc

(
PTh(cx)

)
, cx ∈ Cx , P(cx) ∈ Cp. (7)

Any requirements on metrics over Cp define P only up to a
similarity inCp. Indeed, applying a rigid transformation toCp
does not change distances, while isotropic scaling is equiv-
alent to a change in the distance-measuring units. To make
the solution unique, we need to introduce some additional
restrictions on P.

Let us build the coordinate system that could replace
CIELAB in the simplest possible way. First, we require dis-
tances in Cp to model the dominant light source adaptation
in the same way as in CIELAB. For this purpose, let us
consider the simplified von Kries model [4], performing the
componentwise division of the input vector coordinates cx by
the light source color coordinates c>x ∈ Cx . Let us denote
the adaptation transformation as N. This transformation is
projective, and its corresponding transformation matrix can
be defined as:

N def
= diag

(
Th
(
c>x
))−1

. (8)

Now, P can be decomposed into the adaptation transforma-
tion N and the transformation Q independent of the dominant
light source:

P = Q ◦ N, P = QN , Q def
=(qij) ∈ R4×4, (9)

where ◦ is the function composition operator. In addition,
we require the black point 0 to be preserved by P:

P(0) = 0. (10)

Then, Q can be written as follows:

Q(ϕ, ρ,µ) = R1(ϕ1)R2(ϕ2)R3(ϕ3)Z (ρ)M (µ), (11)

where Ri(ϕ) is a matrix for rotation by an angle ϕ about an
axis i, Z (ρ) is the isotropic scalingmatrix with a scaling factor
ρ > 0, and M (µ) is a special matrix that defines the metric
properties of Cp:

M (µ) def=


µ1 µ2 µ3 0
0 µ4 µ5 0
0 0 1 0
µ6 µ7 µ8 1

 , |M | > 0, (12)

where µ ∈ R8 is a vector of the metric parameters.
Decomposition (11) allows us to determine the metric

parameters µ separately from the similarity parameters ϕ
and ρ. Here, we do not consider mirroring of the coordinate
system, as the simultaneous fulfillment of conditions |M | > 0
and ρ > 0 itself keeps the color hues’ traversal order around
the achromatic axis the same as in CIE XYZ and CIELAB.
Note also that the matrices Ri(ϕ) and Z (ρ) are defined up to
multiplication by a nonzero scalar. To define these matrices,
we require the bottom-right element to be equal to one.
Hence,

p44 = q44 = 1. (13)

Consider the metric parameters µ to be known. Now, let us
fix the rest of the parameters. First, let us set the direction and
overall scale of the lightness axis as in CIELAB:

P
(
c>x
)
=
[
100 0 0

]T
. (14)
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FIGURE 2. Projection of the four selected hue orientation points onto the
plane (a∗,b∗). The light gray region corresponds to the D65 gamut
projection, the dark gray corresponds to its section by the plane L∗ = 50
containing the selected points, and the same section of the sRGB [47]
gamut is shown as the colored region.

This condition defines the parameters ϕ2, ϕ3, and ρ unam-
biguously, while the rotation angle ϕ1 around the lightness
axis is still undefined. To fix this parameter as well, let
us require the hues of the saturated colors to be arranged
approximately similar to CIELAB. Specifically, let us choose
four equally saturated CIELAB points Ckey

l ⊂ Cl within the
D65 gamut such that for each of them, the lightness is equal to
half the maximum, and one color coordinate is equal to zero
(see Fig. 2):

Ckey
l

def
=


 50
−80
0

 ,
5080
0

 ,
 50

0
−80

 ,
500
80


 . (15)

Then, we choose ϕ1 such that the coordinates of the
selected points in Cp differ from those in Cl as little as
possible:

ϕ
opt
1 =argmin

ϕ1

∑
cl∈C

key
l

∥∥∥cl−Tc

(
P(ϕ, ρ,µ)Th

(
L−1(cl)

))∥∥∥2
2
.

(16)

ϕ
opt
1 can be found analytically by finding the optimal rota-

tion [46].
Summarizing the above, we fully determine proLab

as the transformation P constructed via the following
steps:

• The optimal metric parameters µ of the matrix M (12)
are calculated according to the metric requirements.

• The scale and the lightness axis orientations are set to be
the same as in CIELAB (14).

• The orientation of the color axes is determined according
to (16).

• Normalization (9) is taken into account.

III. ADDITIONAL RESTRICTIONS ON THE
PARAMETERS OF PROLAB
Now, let us define a subspace of the metric parameters, µ,
over which the proLab color model can be interpreted mean-
ingfully. First, we should note that not every projective trans-
formation maps the original gamut into a bounded region. Let
us require this natural property.

In the space Cx , let a plane given by the equation[
p41 p42 p43

]
cx + p44 = 0 (17)

be called a horizon of the space Cp. On the horizon,
the denominator of the rational transformation P vanishes.
The gamut image in Cp is a bounded region if and only if the
preimage of this gamut in Cx does not intersect with the
horizon.

Now, let us formulate a simple sufficient condition under
which the gamut is bounded in Cp. This condition does not
require knowledge of the gamut shape. Note that the gamut
of any light source in Cx always lies within an orthotropic
rectangular box, themain diagonal of which connects vertices
0 and c>x . All eight vertices of this box can be listed as
follows:

diag
(
c>x
)
b, b ∈ {0, 1}3. (18)

Taking into account the normalization (13), the condition
on the gamut to be bounded in Cp can be written as the
condition on all these vertices to be on the same side with
regard to the horizon (17):[

p41 p42 p43
]
diag

(
c>x
)
b+ 1 ≥ 0, b ∈ {0, 1}3. (19)

Now, let us determine µ under which this condition is
fulfilled. From (8), (9) and (11), it follows that[

µ6 µ7 µ8
]
=
[
q41 q42 q43

]
=
[
p41 p42 p43

]
diag

(
c>x
)
; (20)

thus, the condition (19) can be rewritten as[
µ6 µ7 µ8

]
b+ 1 ≥ 0, b ∈ {0, 1}3. (21)

Note that for b = 0, this condition is fulfilled for any µ.
Let us now introduce one more restriction. As with the

coordinate L∗ of the CIELAB space, we would like the first
coordinate of proLab to represent the lightness. Therefore,
we require the following:

0 ≤ c0, c1 ≤ c>x , c1 − c0 ∈ R3
≥0

H⇒ (P(c1)− P(c0))T êL ≥ 0, (22)

where êL
def
=
[
1 0 0

]T is the lightness unit vector (here and
hereafter, we denote inequality for a vector as a system of
inequalities restricting each of the coordinates). This restric-
tion means that within the bounding box of the gamut,
an increase in any coordinate in CIE XYZ should not lead
to a decrease in the lightness coordinate in proLab.
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Let us simplify the requirement (22). To do this, we con-
sider a set of planes with equal lightness (the first coordinate)
in proLab. In Cp, they can be expressed as

L+ = L+s , L+ def
= êLT cp. (23)

Since P is projective, the preimage of the set of these
planes forms a pencil of planes in Cx . At 0 ≤ L+s ≤ 100,
the preimages of planes in Cx cross the rectangular box (18).
Since we have already required the condition (19), we can
consider the angle of the preimage rotation around the pencil
axis to be a monotonic and continuous function of L+s within
the given range. Then, condition (22) is equivalent to the
requirement that the coordinates of the normals should be
of one sign. Since the sign of a normal’s coordinates can-
not be changed twice, we instead require all coordinates of
the normals relative to the extreme planes (with equations
L+ = 0 and L+ = 100) to be non-negative.
Let us define the restrictions onµ under which this require-

ment is satisfied. First, we introduce another coordinate space
Cb, which is constructed by the projective transformation B
of the space Cx with a matrix B def

= MN :

B(cx)
def
= Tc(MNTh(cx)), cx ∈ Cx , B(cx) ∈ Cb. (24)

From (9) and (11), it follows that

P = R1R2R3ZB, (25)

i.e., the space Cb is related to the space Cp through a
similarity.

Let us denote the parameters of the plane given by the equa-
tion l8Th(c8) = 0 in an arbitrary color coordinate space C8
(c8 ∈ C8) as the vector l8. According to the definition (24),
the following relationship holds between parameters lx of the
planes in the Cx space and parameters lb of the images of
these planes in the Cb space:

lx = lbMN . (26)

Thus, the restriction on the parameters of the line in the
space Cb leads to the requirement of non-negative normal
coordinates of this line image in the space Cx , which can be
written as follows:

lbMN ≥
[
0 0 0 −∞

]
. (27)

The matrix N is diagonal with positive elements; thus,
the inequality can be simplified as follows:

lbM ≥
[
0 0 0 − ∞

]
. (28)

Now, let us apply this restriction to the planes L+ = 0 and
L+ = 100 in Cp. For this, let us consider the white point
image in the space Cb. Let us denote it as c

>
b :

c>b
def
= B

(
c>x
)
. (29)

Since the planes of pencil L+ = L+s in the space Cp are
orthogonal to the white point vector c>p in this space, their
preimages are also orthogonal in the space Cb. This means

that the parameters of the planes of this pencil in Cb are
expressed as [

c>b
T
l4
(
L+s
)]
, (30)

where l4
(
L+s
)
denotes the dependency of the fourth coordi-

nate of the plane parameters’ vector on L+s .
The preimage of plane L+ = 0 passes through 0, while the

preimage of plane L+ = 100 passes through the white point
c>b in the space Cb. Hence, the parameters of the correspond-

ing preimages are equal to
[
c>b

T
0
]
and

[
c>b

T
−c>b

T
c>b

]
,

respectively.
Let us substitute these parameters into condition (28) and

expandM in terms of definition (12):

[
c>b

T
0

c>b
T
−c>b

T
c>b

]
µ1 µ2 µ3
0 µ4 µ5
0 0 1
µ6 µ7 µ8

 ≥ 02,3. (31)

From definition (8), it follows that NTh
(
c>x
)
= 1; thus,

c>b = Tc(MNTh
(
c>x
)
) = Tc(M1). (32)

Taking into account (12), we obtain

c>b = m/m, m =

µ1 + µ2 + µ3
µ4 + µ5

1

 ,
m = µ6 + µ7 + µ8 + 1. (33)

Due to condition (21) m ≥ 0, the inequality (31) is
equivalent to

[
mmT 0
mmT

−mTm

]
µ1 µ2 µ3
0 µ4 µ5
0 0 1
µ6 µ7 µ8

 ≥ 02,3. (34)

Finally, taking into account the 7 restrictions on µ given
in (19) and the 6 restrictions given in (34), we obtain 13
additional restrictions on the proLab parameters in the form

fi(µ) ≥ 0, (35)

where fi(µ) denotes polynomials of the third or smaller
degree.

IV. PERCEPTUAL UNIFORMITY CRITERIA
In the region bounded by the above inequalities, let us find
a vector µ that maximizes the perceptual uniformity. The
perceptual uniformity of a color coordinate space implies
the accuracy of the perceptual color differences approxima-
tion by the Euclidean distances in this space. To quantify
nonuniformity, the STRESS (STandardized REsidual Sum
of Squares) criterion is usually employed: the higher the
STRESS value is, the worse the uniformity [12], [48]–[50].

Let a denote the vector of color differences estimated in
one approximation, and let b denote the vector of the same
color differences estimated in some other approximation,
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such that ‖a‖ 6= 0 and ‖b‖ 6= 0. The STRESS criterion for
these two vectors is defined as follows:

STRESS (a,b) def=
‖ka− b‖2
‖b‖2

, k =
(a,b)

‖a‖22
, (36)

and it is easy to see that the STRESS criterion is equal to the
absolute value of the sine of the angle between a and b:

STRESS (a,b) =

√
1−

(a,b)2

‖a‖22 ‖b‖
2
2

=

∣∣∣∣sin∧ab ∣∣∣∣ . (37)

This criterion is symmetric and invariant to scaling by
either of the two compared estimations:

STRESS (ka,b) = STRESS (b, a) , k 6= 0. (38)

Hence, fixing the color coordinate scale as given by the
condition (14) does not affect the correspondence evaluation
via the STRESS criterion.

This criterion is also invariant to equal permutations of
color difference vector components:

STRESS (Mπa,Mπb) = STRESS (a,b) , (39)

whereMπ is an arbitrary permutation matrix. Thus, STRESS
can be defined on a multiset of ordered difference pairs. Let
us consider ω = {(ai, bi) | 1 ≤ i ≤ n}, a,b ∈ Rn as a
finite sample of ordered pairs of real numbers. The STRESS
criterion for this sample is defined in an obvious way:

STRESS (ω)
def
= STRESS (a,b) . (40)

The STRESS value can be significantly dependent on the
distribution of the measured samples. The values measured
in perceptual experiments (as in [12]) or obtained using color
difference formulas (as in [51], [52]) are used as a reference.
The disadvantage of the first approach is the fixed and limited
number of samples (3657 color pairs among all datasets as
of 2001 [11]); hence, a question arises regarding the space
coverage and the sample distribution balance. The disadvan-
tage of the second approach is the additional approximation
error. In this work, we use the second approach, employing
the CIEDE2000 formula [10], [11] as the reference.

The considered alternative has direct analogies to machine
learning. The experimental data represent the initial train-
ing sample. The target color space can be considered as a
representation space [53], [54] with a specific set of desired
properties. Themore complex CIEDE2000model fitted to the
original experimental data can be used as a training sample
generator instead of source data. This can be considered as
knowledge distillation [55].

Following [52], let us construct the pairs from the color
vectors uniformly distributed within the light source gamut
in the CIELAB space. However, unlike [52], we do not place
an upper bound on the color difference in each pair, as we
do not want to be limited to the analysis of small differences
only.

Let us denote the D65 gamut as G ⊂ Cl and the uni-
form sample from this gamut as Gn (Gn ⊂ G, |Gn| = n).

We similarly denote the uniform sample of the gamut’s color
pairs as G2

n (G
2
n ⊂ G2

⊂ C2
l , |G

2
n| = n). Finally, we denote

the reference CIEDE2000 color difference of the color pair
p ∈ C2

l as 1E∗00(p) as 8 – the transformation into the
considered space C8 from Cx , and as 8L – the same from
Cl (8L = 8 ◦ L−1), where ◦ is the composition of trans-
formations. Then, the criterion of nonuniformity of the color
coordinate space C8 over the sample G2

n can be written as
follows:

U[8,G2
n]

def
= STRESS(ω),

ω =
{(
‖8L(ca)−8L(cb)‖2 ,1E∗00(p)

)
| p=(ca, cb) ∈ G2

n

}
.

(41)

V. OPTIMAL PROLAB PARAMETERS
To obtain proLab parameters according to all the aforesaid,
we performed the following steps:

1) We computed the grid of points on the surface of the
D65 gamut G using the method described by V. Mak-
simov in [56]. 2D triangulation was constructed for
these points, which allowed G to be approximated by a
polyhedron with ∼ 20 000 faces. Since G is a convex
set, in further analysis, we used a system of linear
inequalities to check whether the points were inside the
gamut G. Each of the inequalities verifies the positions
of points relative to one of the faces.

2) The sample G2n1 consisting of 2n1 independent and
identically distributed CIELAB colors that belonged
to the gamut G was generated, where n1 = 10 000.
By division of the sample G2n1 into n1 pairs, a sample
of pairs G2

n1 was formed.
3) To determine the metric parametersµopt , we solved the

optimization problem with penalty functions [57]:

µopt = argmin
µ∈R8

U[Cm(µ),G2
n1 ]

+ σ

14∑
i=1

max(0,−fi(µ))2, (42)

where σ is a parameter of the penalty function method,
f is a vector of functions corresponding to the con-
ditions given above: f1 = |M | = µ1µ4 – to the
condition (12), {f2, . . . , f8} – to 7 nontrivial linear
conditions (21), and {f9, . . . , f14} – to 6 cubic condi-
tions (34). To calculate the criterion U, we obtained
values of 1E∗00 according to the procedures described
in [58]. Problem (42) was solved numerically via mul-
tistart sequential quadratic programming [59], [60].
As a result, we obtained the following matrix of metric
parameters (12):

M =


2.1591 −1.7823 −0.0713 0

0 2.0865 0.2103 0
0 0 1 0

0.7554 3.8666 1.6739 1

 . (43)
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4) To fully determine matrix Q (11), we found the param-
eters ϕ and ρ analytically (see Section II). As a result,
the following matrix Q was formed:

Q =


75.54 486.66 167.39 0
617.72 −595.45 −22.27 0
48.34 194.94 −243.28 0
0.7554 3.8666 1.6739 1

 . (44)

Thus, for a D65 light source with coordinates c>x =[
0.95047 1 1.08883

]T [61], we can obtain the following pro-
Lab parameters:

P =


79.477 486.66 153.73 0
649.91 −595.45 −20.453 0
50.859 194.94 −223.43 0
0.7948 3.8666 1.5373 1

 . (45)

VI. CRITERION OF NOISE HETEROSCEDASTICITY
As we mentioned in the introduction, the color values cap-
tured by a camera are always noisy. As a rule, statistical
methods for color distribution analysis consider the image
noise as homoscedastic. To validate this, let us construct a
criterion to estimate the heteroscedasticity of color vector
noise in the space of color coordinates.
Let us consider the color coordinate space C8 with the

known transformation 8 : Cx → C8. We assume that at
each point cx ∈ Cx , the noise is approximately additive,
with zero mean and a known covariance matrix6x(cx). Then,
the covariance of the noise in the C8 space could be roughly
expressed as follows:

68(c8) = J8(cx) 6x (cx) JT8(cx), cx = 8−1 (c8) , (46)

where J8 is the Jacobian matrix of the transformation 8.
We consider the noise to be homoscedastic if all three

eigenvalues of its covariance matrix are equal throughout the
gamut. Then, on the color sample Gn, we can estimate the
hardware noise heteroscedasticity in theC8 space as follows:

H[8,Gn]
def
= STRESS(ω),

ω =
{(
λ
1/2
i [68(8L(cl))] , 1

)
| cl ∈ Gn, 1 ≤ i ≤ 3

}
,

(47)

where λi[A] is the i-th eigenvalue of a matrix A.

VII. NOISE PARAMETERS IN THE SENSOR COLOR SPACE
AND OTHER SPACES
Let us construct a noise model for the original sensor color
space. A very simple model of the output values for a
single-channel image, which nevertheless agrees well with
the experiments, was proposed by Jähne in [37]:

s = g n+ ε, n ∼ Pois(s0), E(ε) = 0, (48)

where s is a random sensor response, g is a gain coefficient, n
is a random number of registered electrons, s0 is the expected

FIGURE 3. Colorchecker captured using Canon 5D Mark III camera. The
areas used for the estimation of the sensor response mean and variance
are marked with violet rectangles.

FIGURE 4. Sensor responses for each patch of the color chart.

sensor response value at g = 1, and ε is additive noise
independent of the sensor irradiance.

According to (48), the relationship between the mean and
variance of the output values is linear:

V(s) = gE(s)+ V(ε). (49)

To verify this model, let us take the MLSDCR (Multi-
ple Light Source Dataset for Colour Research) dataset [62],
which was captured using a Canon 5D Mark III camera.
Among various scenes, the MLSDCR contains raw images
of the colorchecker (see Fig. 3); parameters of the calibration
transformation from the camera color space into the standard
observer color space (in sRGB [47] coordinates) are also
provided.

Let us estimate the noise parameters for each patch (uni-
formly colored area) of the color chart. The measurement
accuracy of the color calibration experiments may be limited
by irradiance nonuniformity [18]. Thus, we need to track
the irradiance uniformity – but only inside each patch, not
between them. To reduce the impact of irradiance nonunifor-
mity, we take a small central area of 42 × 42 Bayer mosaic
pixels (see Fig. 3) for each patch of the color chart. We also
take into account that different mosaic elements can have
different noise parameters. In the Canon 5DMark III camera,
a standard (RGGB) Bayer mosaic is used, so for each of
the 18 patches, we form a sample Si (1 ≤ i ≤ 72) of
sensor responses for uniform irradiance. Joint histograms of
color coordinates through the sample elements demonstrate
significant noise heteroscedasticity (see Fig. 4).
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FIGURE 5. Linear dependency of the sensor response variance on its
average sample value. Colors of points correspond to the conventional
names of the sensor channels.

Let us estimate the mean and variance of the sensor
responses for each element of Si:

Êi = Si, V̂i = (Si − Si)2, 1 ≤ i ≤ 72. (50)

Using principal component analysis, we estimate parame-
ters of the model given in (49):

ĝ = 3.38, V̂(ε) = 744. (51)

The relationship between the sample estimations Ê(s) and
V̂(s) can be approximated with good reliability by linear
dependency (see Fig. 5). Thus, we estimate the variance in
the Bayer mosaic value captured using the Canon 5DMark III
camera as follows:

V̂(s) = 3.38 s+ 744. (52)

Let us consider the transformation into the Cx space.
We use the transformation described in [62], from which
the experimental data were obtained. In this work, the sen-
sor color coordinate space is obtained via the simplest de-
bayering algorithm, which employs an averaging of two
mosaic G-elements and aggregates the average with a single
R- and a single B-element. Let us call this space ‘deviceRGB’
and denote it as Cd . Taking into account the noise model
described above (52), the covariance matrix of the noise in
Cd could be written as

6d (cd) = diag
([
1 1/2 1

])
(3.38 diag(cd)+ 744 I3) ,

cd ∈ Cd . (53)

The transformationmatrix from deviceRGB to the standard
observer linRGB is described in [62]:

D1 =
0.03
216

 41.93 −2.08 −37.24
−14.32 39.13 10.79
−0.02 −35.39 185.52

 . (54)

Considering that the transformation from linRGB to CIE
XYZ is linear [47] and given by the matrix

D2
def
=

0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9503

 , (55)

we obtain the following transformation matrix fromCd toCx :

D−1 = D2

D1 = 10−6

 5.5711 3.0892 10.0585
−0.6066 11.4383 6.0363
−0.4189 −13.2786 80.9631

 . (56)

The sensor noise covariance matrix in the CIE XYZ space
is equal to

6x(cx) = D−1 6d (Dcx) D−T , cx ∈ Cx . (57)

By substituting the parameter values from (53) and (56)
into (57), we obtain the numerical color noise model for our
camera in the Cx space.

VIII. COMPARING THE PERFORMANCE OF PROLAB
WITH THAT OF OTHER PERCEPTUALLY UNIFORM
COLOR SPACES
We estimate the perceptual nonuniformity further accord-
ing to the criterion (41): UT[8]

def
= U[8,G2

n2 ], where 8 is
the transformation from CIE XYZ by which the system is
defined. To do this, we form an independent test sample G2

n2
of n2 = 100 000 pairs, according to the method described in
Section V.
Let us also construct a test Gn2 of individual colors to

estimate the noise heteroscedasticity. In doing so, we require
all of the color vectors not only to belong to the D65 source
gamut but also to be reproducible by the camera – i.e., we
require each component of the color vectors to be non-
negative in deviceRGB space:

cl ∈ Gn2 H⇒ DL−1(cl) ≥ 0. (58)

We perform uniform sampling Gn2 from a reproducible
subarea of the gamut and estimate the heteroscedasticity
according to the criterion (47): HT[8]

def
= H[8,Gn2 ]. To cal-

culate HT[8], we need to use the noise covariance matrix
68(c8), which we obtain using approximation (46) along
with the color noise model (57) in the Cx space.
The proposed color coordinate space was further compared

with the following ones:
• CIE XYZ [2] – basic color coordinate system of the
standard observer;

• CIE xyY [2] – system with distinct chromaticity coordi-
nates;

• LMS [3] – coordinate system that models linearized
human cone responses;

• sRGB [47] – color coordinates used to represent colors
on displays and printers (most photos and videos are
coded with these coordinates);
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FIGURE 6. The sRGB gamut in various color coordinate spaces.

• linRGB [47] – intermediate (without gamma correction)
representation of reproduced colors linearly related to
CIE XYZ;

• CIELAB [8] – widely spread perceptually uniform color
coordinates;

• CAM16-UCS [13] – the most perceptually uniform
coordinate system at the time of writing.

We compare these color spaces and linear color coordinates
of the camera sensor with proLab via the criteria UT and HT.
Table 1 demonstrates the results of a quantitative comparison
using UT and HT. We also specify whether each of the color
coordinate systems preserves linearity of the color manifolds.
ProLab preserves lines by its construction as well as linear
coordinate systems; only CIE xyY has a nontrivial classifi-
cation by collineation, since it keeps lines passing through
0 as lines. The rest of the color coordinate systems do not
keep even the central pencil linear. Regarding perceptual uni-
formity, proLab is inferior to CAM16-UCS – the modern and

TABLE 1. Performance of the color coordinate systems. Bold underlined
font indicates the best criteria results; bold only – second best.

currently most accurate space – but it is significantly superior
to the commonCIELABuniform space. Our experiments also
show that proLab is inferior in terms of noise homoscedastic-
ity only to the deviceRGB space, the properties of which vary
significantly from camera to camera.
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FIGURE 7. D65 light source gamut in various color coordinate spaces.

Let us employ various visualizations to analyze the dif-
ferences between the color coordinate spaces more clearly.
Figures 6 and 7 show the sRGB display gamut in various
color coordinate spaces. The saturation of colors used for the
visualization was decreased significantly in this illustration
due to color coverage restrictions. ProLab preserves the shape
of the sRGB gamut as a hexahedron. Another advantage
is that proLab, unlike CIELAB, keeps the convexity of the
gamut.

In Fig. 8, we show the color nonuniformity over the chro-
maticity diagram with MacAdam ellipses [63], which are just
noticeable color differences (JND) scaled up 10 times; they
were originally defined in CIE xyY. To plot them for each
given color space C8, we use a linear approximation of the
transformation 8 around the ellipse centers.

In Fig. 9, we visualize color nonuniformities with
joint distributions of the Euclidean distances 1E8 and

CIEDE2000 color differences 1E∗00 over test sample G2
n2 for

each color coordinate space. On these scatter plots, the thin-
ner the cluster along the line passing through 0, the more
perceptually uniform the color coordinate space is. The
CAM16-UCS and proLab joint distributions have signifi-
cantly better shapes than those of the other color coordinate
spaces, but proLab is inferior to CAM16-UCS in the middle-
range distances. Note that in a region of large Euclidean
distances, CAM16-UCS has two distinctly different loci,
which means there is significant nonuniformity in this range.
Strongly decorrelated regions similar in location and shape
are observed in proLab and CIELAB; however, for CIELAB,
the region is larger and deviates more and farther from the
main locus.

To provide a detailed visualization of the noise het-
eroscedasticity, we plot charts similar to the MacAdam
ellipses (Fig. 10). For a set of colors from the sRGB gamut,
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FIGURE 8. MacAdam ellipses for L∗ = 50. The sRGB display gamut cross-section is shown in rainbow colors; the D65 light source gamut
cross-section and projection are shown in dark gray and light gray, respectively.

we model the noise distributions of measurements according
to the parameters of model (52). Each distribution is projected
onto the given color coordinate space and visualized with its
averaged color. The 3D structure of the noise parameters is
visualized by plotting the lighter colors over the darker ones.

IX. POSSIBLE APPLICATIONS OF PROLAB
The useful properties of proLab are its collinearity, unifor-
mity, and computational efficiency. These properties are key
to its applications, which we consider further.

A. GAMUT COVERAGE ANALYSIS
The range of colors reproduced by a device is referred to as
a gamut of that device. Two nonblack colors have matching
chromaticity if and only if their linear coordinates are pro-
portional: c1 ∼ c2. A projection of the gamut (except the
black color) on a plane is called a chromaticity diagram of
this gamut if the matching colors are projected to the same

point on the plane and the nonmatching colors are mapped to
different points.

The chromaticity diagrams are usually plotted via central
projection on a plane in one of the linear color coordinate
systems. This plotting yields a polygon image of a gamut on
the corresponding chromaticity diagram in color-reproducing
devices, which are based on the principle of mixing radiation
of fixed chromaticities and variable brightness. This principle
is employed in most projectors and self-luminous displays.
The number of vertices of the polygon depends on the number
of color channels. The gamut is described by a triangle,
as there are usually three channels.

The left side of Fig. 11 shows a standard chromaticity dia-
gram in color coordinates (x, y) [2] for the sRGB gamut [47]
(multicolor triangle) and the Adobe RGB 1998 gamut [64]
(outlined by a black triangle). The gray area corresponds to
the color triangle, i.e., all chromaticities of colors, perceived
by a standard observer.
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FIGURE 9. Joint distributions of CIEDE2000 color differences 1E∗00 and Euclidean distances 1E8 for various color coordinate systems.

The following conclusions can be drawn from this well-
known illustration: (a) the color gamut of sRGB devices does
not allow displaying a significant area of saturated cyan and
especially green colors, and (b) the incremental color gamut
of Adobe RGB relative to sRGB is quite significant. Note
that these conclusions are groundless, since they are based on
the implicit assumption that the elements of length and area
are equivalent at different points of the chromaticity diagram.
This property is met (at least approximately) only in uniform
color coordinate systems.

To verify our conclusions, we consider CAM16-UCS,
a color coordinate system with high uniformity. Because of
the nonprojectivity of this space, sets of colors with the same
chromaticities are not represented by straight lines. The easi-
est and most natural way to introduce chromatic coordinates
is as follows: a′xy = a′(tcx), b′xy = b′(tcx), where J ′, a′, b′ are

color coordinates in CAM16-UCS, cx =
[
x y 1− x − y

]T
∈

Cx , and the scalar t > 0 is such that J ′ (tcx) = 50. The
chromaticity diagram in terms of these coordinates for each
considered gamut is shown in Fig. 11 in the center. It is
clear that the color gamut of Adobe RGB 1998 is not as
superior to sRGB as previously thought. More importantly,
the green color segment, where the two gamuts differ, is not
the most significant area not covered by sRGB. After switch-
ing to a uniform color coordinate system, it becomes obvious
that standard displays do not represent magenta colors in
a large saturation range, which previously was not possi-
ble to learn from the classical diagram. On the other hand,
the CAM16-UCS space chromaticity diagram differs from
the classical one in its complex shape. This makes both the
visual analysis and formal numerical comparison of areas
difficult.
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FIGURE 10. Visualization of sensor noise in different color coordinate spaces within the sRGB display gamut. Each individual cloud is a
projection of a certain measured color sample for which the noise is described by the Jähne model.

In the proLab space, thanks to the collinearity property,
the color coordinates can be introduced in the standard way:
(a+/L+, b+/L+). The chromaticity diagram in these coor-
dinates is shown in Fig. 11 on the right. The proLab space,
unlike CAM16-UCS, retains the convexity of the color tri-
angle, and the images of gamuts remain geometric triangles,
making proLab much more user friendly. The area ratios in
the proLab chromaticity chart are adequate, unlike those in
the standard chromaticity chart.

The gamut coverage can also be determined via its vol-
ume. For example, [65], [66] employ the gamut volume in
the CIE XYZ space as a quantitative measure of color cov-
erage, and [67] employs it in the CUELUV and CIELAB
spaces. At the same time, it makes little sense to use the
CIE XYZ space for these purposes because it is nonuniform,
and using CUELUV, CIELAB and other known uniform
color spaces is inconvenient because the gamuts there have

complex shapes for calculating the volume (Fig. 6), which
is especially important when attempting to maximize the
volume of a gamut [66]. Both of these disadvantages can be
overcome when using the proLab space.

B. COLOR UNMIXING FRAMEWORK
As we mentioned above, proLab is designed for use in image
processing algorithms based on the analysis of affine color
manifolds. These algorithms have been proposed in recent
years, in particular, to solve the following problems:
• chroma keying (allocation of a single-color background
when shooting with augmented reality technology) [68];

• soft color segmentation (segmentation into single-color
interpenetrating areas) [69], [70];

• image-based rendering in the presence of reflective sur-
faces (3D modeling of real glossy objects under new
observation conditions) [71], [72];
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FIGURE 11. Chromaticity diagrams of the D65 light source gamut in different color spaces. Colors represent the sRGB color gamut; black outline
represents the Adobe RGB 1998 gamut. The gray background corresponds to the remaining colors of the color cone.

• illumination decomposition for material recoloring
(recoloring of real objects, taking into account inter-
reflexes) [73].

In all the above papers, the proposed algorithms are based
on the color unmixing framework, where it is assumed that
each pixel of an image can be decomposed into a weighted
sum of several color vectors, the ‘‘base’’ (underlying) colors,
present in the image. This model is in perfect agreement
with the linear physical theory of image formation described
in I-D. In the color unmixing framework, the decomposition
coefficients are not subject to any analytical model but are
calculated empirically. Hence, the projective transformation
(as opposed to the arbitrary nonlinear one) of the color space
does not violate the color unmixing framework assumptions.
It is important that in all of the discussed applications, the goal
is to produce images that are realistic in terms of human
perception. However, the authors minimize decomposition
errors in linear RGB, which is perceptually nonuniform.Min-
imizing errors in proLab could improve the perceptual quality
while keeping the algorithm the same.

The situation with chroma keying is more complicated.
What matters here is how homoscedastic the color devia-
tions of the real scene background from the ideal model
of the green background are. With heteroscedastic outliers,
it is difficult to choose a threshold separating objects from
the background. Let us consider a ‘‘naive’’ chroma keying
algorithm. Suppose we know an area that fully belongs to the
background (the yellow rectangular outline in Fig. 12 on the
left). Let the background color distribution be of the rank of 2:
up to noise and distortion accuracy, it lies in some plane of
the color coordinate space. Let us define the parameters of
this plane as follows. The plane passes through the center
of mass of the considered region’s color distribution. The
plane is perpendicular to the eigenvector of the covariance
matrix of this distribution. This eigenvector corresponds to

the smallest eigenvalue Vmin. All colors that are within no
less than 5

√
Vmin from the selected plane are considered

background colors. The result of this algorithm is shown
in Fig. 12. It demonstrates that the Euclideanmetric of proLab
allows separating the object from the background much more
accurately while using the simple threshold method.

C. TELEVISION AND CINEMA
The work in [74] introduces 8 criteria that the color coor-
dinate system must meet to fulfill the requirements of ITU-
R Recommendation BT.2020 for modern television devices.
These criteria include (i) Local Uniformity, (ii) Global Uni-
formity, (iii) High Dynamic Range, (iv) Wide Color Gamut,
(v) Hue Linearity, (vi) Neutral Point Convergence, (vii) Neu-
tral Point (Locus) Error, and (viii) Computational Cost.

The first two criteria concern the isotropy and uni-
formity of the color coordinate space measured by the
STRESS criterion. These properties of proLab are discussed
in detail in the main section and are quite consistent with
other equal-contrast color coordinate systems. Criteria (v)-
(vii) for proLab are met with absolute accuracy (due to
its collinearity-preserving property), which is advantageous
compared with other equal-contrast systems applied to this
problem. Whether proLab meets the High Dynamic Range
and Wide Color Gamut criteria is a question for a separate
study. However, it should be noted that according to [74],
CIELABmeets these criteria sufficiently, and the color gamut
of proLab is not inferior to that of CIELAB.

We already mentioned that computational simplicity is
another important feature of proLab. In the examples dis-
cussed earlier, computational simplicity was a desirable but
not the main aspect. In this case, however, the Computa-
tional Cost criterion is explicitly stated along with Equal
Contrast. This is not surprising, since the video stream pro-
cessing of modern television devices is extremely complex,
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FIGURE 12. The performance of the ‘‘naive’’ chroma keying algorithm in the linRGB and proLab color spaces for the image from the dataset published
in [68].

computational resources are limited, and the processing takes
place in real time. Among the considered uniform spaces,
CIELAB is the leader in computational simplicity. ICaCb
and zICaCb result in slightly worse performance and have
a computational structure close to that of proLab. This allows
us to compare against them theoretically, avoiding the danger
of incorrect conclusions due to an inconsistent implementa-
tion quality. Transitioning to these systems requires applying
the linear 3D transformation twice, which gives 18 multipli-
cation operations versus 16 for proLab. In addition to the
multiplication operations, the transition to proLab requires
three division operations versus three applications of the
nonlinear transition function in ICaCb family systems. Thus,
the computational complexity of the considered systems is
almost consistent, while that of CAM16-UCS is approxi-
mately 4 times worse [74].

To sum up, proLab should be considered as one of the color
coordinate systems employed for television because most of
the required characteristics are comparable between proLab
and competitive systems. Moreover, the criteria related to
the straightness of constant tone lines are met analytically
accurately due to the intrinsic property of the model.

X. DISCUSSION
A key feature of the proLab design is its projectivity. Within
this color coordinate space, the central projection on any
plane bypassing 0 is a chromaticity diagram, since proLab
does not shift the coordinate origin. That is, colors that differ
only in brightness in the original space of spectral irradiance
are mapped onto a single point.

Another interesting property of proLab concerns image
shot noise. In a noisy image, color estimation by arithmetic
averaging is valid only in linear color spaces. However, chro-
maticity estimation by linear regression is invalid even in a
linear space, since the amplitude of shot noise depends on
the value of the color coordinates. Nevertheless, in proLab,
the linear regression procedure appears to be more correct,
due to the noise being more homoscedastic compared to that
in standard linear spaces.

In this work, proLab was constructed for the D65 light
source, so the question arises of how to adapt these color coor-
dinates to a different kind of illumination. To achieve the best
possible accuracy, we should form sample G2

n1 of color pairs

over the given light source gamut and then optimize matrixQ
on this sample. However, this procedure is inconvenient and
time consuming; thus, we suggest using an approach similar
to that of CIELAB: parameterization of the transformation
with the light source coordinates while keeping ‘the kernel’
of the transformation Q the same. We find this approach to
be optimal for proLab as well as for CIELAB, since for both
systems the inaccuracy in uniformity is too significant to be
fixed by a separate optimization. Thus, for light sources other
than D65, we suggest using the same elements of the matrix
Q as in (44).
For both techniques, the matrix P is finally defined in

accordance with the von Kries adaptation model (9). Here,
we use this simplification just for compatibility with existing
solutions, taking into account that the given model is crit-
icized for poor accuracy. Currently, several more accurate
adaptation models also named after von Kries are known,
which are expressed via linear transformation of the color
coordinates [75]. These models could also be used in proLab,
since the replacement of the adaptation model by another
linear (and even projective) one does not affect the matrix Q
and requires only redefinition of the matrix N .

Depending on the specific task, the metric parameters of
proLab could also be modified. Particularly, it is not obvious
that pairs with different color differences 1E∗00 should be
equally weighted while solving the optimization problem.
In some possible applications, large (or small) color differ-
ences could be negligible. In these cases, the parameters of
proLab must be optimized with the same method but on a
different G2

n1 sample.
In addition, the relationship between the L+ axis and

the brightness can be weakened to increase or toughen the
perceptual uniformity of the result. Alternatively, the strict-
ness of condition (22) could be increased for LMS color
coordinates. Note that the fulfillment of requirement (22)
directly implies the fulfillment of similar requirements on
the linRGB coordinates. All elements of the transition matrix
from linRGB to CIE XYZ are non-negative, and

x ∈ Rn
≥0, A ∈ Rn×n

≥0 H⇒ Ax ∈ Rn
≥0, (59)

i.e., a non-negative increment in linRGB implies a non-
negative increment in CIE XYZ. Since the transforma-
tion from sRGB to linRGB is componentwise monotonic,
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the aforesaid also implies that the lightness component is
nondecreasing when increasing the sRGB coordinates. How-
ever, in the LMS space, the same behavior is not guaranteed,
as the transformation matrix from LMS to CIE XYZ contains
negative elements.

It is important to further study the parameters of noise
in various spaces, including proLab. Our interest is in the
experimental data for various cameras as well as the ana-
lytical models for the estimation of heteroscedasticity under
various conditions. Alongwith shot noise, thesemodels could
consider sensor signal discreteness. Outside the context of
uniform color spaces, the effects of color digitization in tech-
nical systems were already studied in [76].

We also note that the secondary locus of the joint distance
chart shown in Fig. 9 raises a question regarding the local-
ization of the significantly nonprojective parts of the gamut.
On the other hand, the strict requirement of projectivity was
introduced formally. In practice, the regression errors caused
by the nonprojectivity of the model may turn out to be
insignificant compared to the noise. Therefore, further study
could also involve the construction of a low-parametric and
computationally simple color model close to the projective
one and with better perceptual uniformity, as well as reduced
noise heteroscedasticity.

XI. CONCLUSION
ProLab is a novel color coordinate system that is demon-
strated to be superior to CIELAB in perceptual uniformity
while still preserving color manifold linearity. This property
is not present in either CIELAB or CAM16-UCS. Reproduc-
tion angular errors can be used in proLab, as in linear color
spaces. ProLab, by design, aligns angular errors of differ-
ent hues to CIEDE2000 perceptual color differences, unlike
the previously mentioned systems. Furthermore, we demon-
strate that image noise in proLab is more homoscedastic
than in other standard spaces, including linear ones. These
advantages make proLab a preferred coordinate system in
which to perform the structural analysis of color distribu-
tions. Because the incidence of linear manifolds is preserved,
the light source direction can be estimated by the intersection
of planes formed by the color distribution of glossy surfaces
in proLab. Estimating manifold coordinates with no addi-
tional corrections of noise heteroscedasticity should deliver
the same or better accuracy than that of standard linear spaces.
Furthermore, the mutual positions of manifolds, including the
angles between lines, in proLab are in correspondence with
human perception.

The MATLAB/Octave implementation of proLab is avail-
able at GitHub repository github.com / konovalenko-iitp /
proLab. Transformations P and P−1 from the CIE XYZ space
to the proLab space and vice versa are implemented by
functions ‘‘XYZ2proLab.m’’ and ‘‘proLab2XYZ.m’’. Opti-
mal proLab parameters can be reproduced using the script
‘‘search_optimal_proLab_param.m’’. Results of a quantita-
tive comparison using UT and HT can be reproduced via the

function ‘‘criterion_report.m’’. See the ‘‘README.md’’ file
for more details.
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