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ABSTRACT Hand washing is the simplest and most effective gesture, when correctly performed, for
the prevention of many infections. For this reason, the World Health Organization (WHO) has defined a
washing procedure that guarantees effective and safe cleaning. This organization recommends that States
promote this activity and monitor it continuously. Based on this fact, this article presents a work oriented to
study the feasibility of identifying the moments in which a person carried out a hand washing, determining
its beginning and duration, as well as if these washings were compliant with the WHO guidelines. The
identification of washing moments is made through the analysis, by means of Machine Learning techniques,
of the data that can be collected from the inertial sensors of the smartwatch the person is wearing. This study
was carried out with the participation of 15 volunteers. Data was not only collected in controlled settings but,
also, more than 600 hours of sensor measurements come from free-live conditions. The results of the study
showed that it is feasible to build a solid solution based on the use of low cost wearables for the identification
of washing moments. The solution is very effective (with F1 over 95%) with user-dependent models. Also,
with user-independent models, the identification of WHO washings is also very effective (with F1 above
85%), but more limited in the detection of free washings (F1 around 55%).

INDEX TERMS Data analysis, handwashing recognition, machine learning, smartwatch, wearable sensors.

I. INTRODUCTION
Water, soap, and a minute of time is all we need to wash our
hands. Using our hands, we touch any kind of nearby objects
and, then, ourselves. In particular, our mouth, nose, and eyes
are gateways open to all types of germs. Many pathogenic
microorganisms can survive for days on some surfaces. Hand
washing is a very simple and inexpensive action that prevents
the spread of many infections and saves countless lives.

The prevention of infections is a key element in strengthen-
ing national health systems. Hand hygiene is a fundamental
pillar in order to prevent infections. For this reason, theWorld
Health Organisation (WHO) devotes a great effort to pro-
mote handwashing in healthcare environments and a large
amount of resources to articulate strategies aimed at raising
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awareness and educating citizens about this activity. Among
the recommendations of theWHO in the context of epidemics
such as COVID-19, even before using masks, the frequent
hand washing is paramount.

It should be noted that it is important to wash hands both
frequently and effectively. According to the guide published
by the WHO [1], defective hand cleansing (e.g. use of an
insufficient amount of soap and/or an insufficient duration
of hand hygiene action) leads to poor hand decontamination.
The above mentioned guide includes an action protocol con-
sisting of a number of steps, as shown in Fig. 1: i) wet hands,
ii) apply enough soap, iii) rub hands palm to palm, iv) rub
right palm over left dorsum with interlaced fingers and vice
versa, v) rub palm to palmwith fingers interlaced, vi) rubwith
backs of fingers to opposing palms with fingers interlocked,
vii) rub each thumb clasped in opposite hand using rotational
movement, viii) rub tips of fingers in opposite palm in circular
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FIGURE 1. World Health Organization (WHO) handwashing protocol.

motion, ix) rinse hands with water and x) dry thoroughly,
xi) use towel to turn off faucet, and xii) your hands are now
safe.

This guide from the WHO states that a strategy for pro-
moting handwashing should include (primarily in the health
context, but also in any other context, especially where there
is a clear risk of disease transmission) the training/education
on the importance of hand hygiene, the monitoring of hand
cleansing practices, and the provision of remainders. Aware
of this need, and in the framework of a research project
focused on the definition of self-regulated learning services
based on the use of wearable wrist devices, the authors
decided to address a telematics solution that supports the
automated monitoring of hand washing and the provision of
personal recommendations related to hand hygiene. Such a
solution could be a relevant contribution in various domains
where hand hygiene is essential, ranging from the domain of
logistics and industry to the public health sector. In particular,
the solution could significantly contribute to push forward the
United-Nations Sustainable Development Goal 3: ‘‘Ensuring
a healthy life and promoting well-being for all ages’’.

This telematics solution is based on the analysis of data
collectable from commonly used commercial wearable wrist
devices. These devices, such as smartwatches or smartbands
manufactured by companies such as Fitbit, Polar, Garmin,
Apple, Samsung, Mobvoi, Fossil or Xiaomi, are becom-
ing increasingly popular. Their popularity is mainly due to
their usefulness as fitness trackers and sports monitoring
tools [2], [3]. Nevertheless, their potential goes far beyond
that, as shown by various proposals in different fields, either
in the context of working environments [4], [5], in the domain
of education [6], [7] or, above all, in the field of health [8].
Wrist wearables are portable devices, easy to use, practically
transparent to the user, and are provided with an impor-
tant set (depending on the device) of sensors, such as [9]:
accelerometer, gyroscope, magnetometer, heart rate monitor,
pedometer, barometer, altimeter, thermometer, light meter,
oximeter, GSR, and even, sometimes, blood pressure or ECG
meter. A recent study [10] showed that the vast majority of

commercial wearable wrist devices have at least one inertial
sensor, which provides accelerometry and gyroscope data.
This data is, a priori, potentially enough to, through analysis,
detect when a person, carrying a smartwatch or smartband,
washes his/her hands.

This paper describes a work aimed to study the possibility
of identifying moments in which a person performs hand
washing (and if these washings comply with the protocol
defined by the WHO) by means of Machine Learning tech-
niques, using the continuous flow of inertial measurement
data collected from a common use commercial smartwatch.
It is convenient to underline the importance of discerning
whether a wash is WHO-compliant, as the latter, to a certain
extent, guarantees that the wash performed is effective and it
adequately sanitizes the entire surface of the hands.

The following section (Section II) includes a brief descrip-
tion of the state of the art of automatic hand washing identifi-
cation. Section III details the methodology used in the study
conducted. Later, section IV shows the results obtained after
the application of such methodology. Section V discusses
these results and, finally, Section VI presents the conclusions
and the new challenges that are currently being explored as a
continuation of the work done.

II. STATE OF THE ART
Aware of the importance of the hand cleaning habit among
the population, many companies and developers have made
available apps for smartwatches that, in some way, allow
to monitor and manage the daily hand washing. This is the
case in the two main ecosystems of wearable wrist devices,
i.e., Google and Apple, but also for other manufactures such
as Samsung, Huawei, or Garmin.

In this line, as a similar approach to the proposal made
in this work, it is worth highlighting the solution offered by
Apple. This company has incorporated in the latest version of
its OS for its smartwatch, WatchOS 7, functionalities related
to the detection of hand washing in a generic manner [11].
The most noticeable functionality is the detection of the start
of hand washing, which is spotted using the data from the
inertial measurement sensor and the audio fetched by the
microphone available in the Apple Watch. This microphone
detects the sound produced by the water when a tap is opened.
The user can configure the device so that, once a wash start is
detected, a timer starts, and, when 20 seconds have elapsed,
an alarm is triggered indicating that thewash process has been
carried out for the appropriate minimum time.

This type of functionality also can be spotted, in a more
rudimentary way, in apps from other ecosystems. In this
sense, we can refer to some types of applications that are
common in other environments such as Android. In this
ecosystem, some apps seek to offer timers to determine
the time of washing. Applications such as ‘‘Hands Washing
Timer’’ [12] would fall into this category. Also, we can
find applications oriented to a more childish target audience.
It should be borne in mind that this target, young children,
should be the main objective for training and education in
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these good habits.Within this segment, apps like ‘‘Ella’s hand
Washing Adventure’’ [13] should be mentioned. Within this
line, but considering a more mature public, we can find apps
like ‘‘SureWash Hand Hygiene’’ [14]. This one aims to train
users in the procedure recommended for hand washing by
theWHO. However, no applications that automatically detect
or monitor hand washing could be identified.

Other manufacturers, such as Samsung, have also dedica-
ted efforts to this line of work [15]. However, it can be noted
that, broadly speaking, the possibilities of using smartwatches
for the detection, cataloguing, and evaluation of hand wash-
ing are not fully explored and its quality and performance is
not yet sufficiently mature. At least, the authors understand
that in a context like the current one, more open and sensitive
solutions to the types and qualities of hand washing should
be available to all users of these devices.

In the academic literature, a number of studies aimed at
detecting handwashing activities based on the analysis of data
collected from different types of wearable devices can be
found. In that sense, a search was made for papers published
in conferences and high-impact journals using specialized
search engines (Scopus,Web of Science andGoogle Scholar).
It should be noted that most of the works found could be
included in the area of sensor-based human daily activity
recognition [16], aimed at obtaining classifiers that, given the
sensory data collected from an electronic device correspond-
ing to a given daily activity (e.g. walking, eating or running),
can discern the type of activity from a prefixed set of activity
types.

As an example of this type of work, in [17] the authors
study the potential use of wearable devices in one and both
wrists to detect, using different classification techniques from
the Machine Learning domain, hand washing from a set of
activity types, including ‘‘walking’’, ‘‘opening a jar con-
taining candy’’, ‘‘opening and eating the candy’’, ‘‘tying
shoes’’, and ‘‘applying bandages’’. The authors achieve accu-
racies of approximately 90% and even higher in some of the
experiments.

In [18], accelerometry, gyroscopy and audio data collected
from aLGGWatchW100 smartwatch is used to identify hand
washing and tooth brushing activities. This is done using a
Naïve Bayes classifier trained on a dataset with a predefined
set of activity types (not specified in the publication). Accu-
racy rate above 95%was obtained in detecting the considered
tasks. Similarly to this work, in [19], a mechanism aimed to
detect several early morning activities using audio data and
accelerometry data is proposed. The activities considered in
this case are ‘‘teeth rushing’’, ‘‘hand washing’’, ‘‘shaving’’,
‘‘electric brushing’’ and ‘‘electric shaving’’.

Among the concerns with the above-mentioned works,
it must be pointed out that the validation of proposals is done
using ‘‘laboratory’’ datasets, which are too synthetic and lim-
ited. This results in very good performance, but not necessar-
ily generalizable to real contexts. To partially solve this issue,
in [20] the authors propose the use of an Artificial Neural
Network (ANN) of 3 hidden layers to classify data records

captured from inertial sensors into HAND-WASHING activ-
ities or NULL activities (i.e., any other type of activity differ-
ent from handwashing). They train their neural network using
their own dataset, which includes accelerometry data (no data
from gyroscope is used) from both, hand washings and other
activities. Then, they test the effectiveness and robustness of
their proposal using the WISDM dataset [21]. This dataset
contains records of 18 types of activities (e.g. ‘‘walking’’,
‘‘jogging’’, ‘‘sitting’’, ‘‘typing’’, ‘‘folding clothes’’, ‘‘eating
pasta’’, ‘‘eating soup’’, ‘‘drinking from a cup’’, etc.), some
of which coincide with those considered in the dataset devel-
oped by the authors, but do not include hand washing activi-
ties. The own dataset was obtained from 16 participants who
performed normative and non-normative handwashing and
other activities such as ‘‘wiping water from hands’’, ‘‘walk-
ing’’, ‘‘opening/closing doors’’, ‘‘using computers/phones’’,
‘‘eating’’, and ‘‘drinking’’. It contains a total of 5 hours of
data, for both the right and left hands. The neural network
obtains an F1-score close to 80% in the activity classification.
It should be noted that there is no difference between norma-
tive and non-normative hand washing and that the proposal of
these authors does not allow to really estimate the moment or
the duration of a hand washing, since it is specifically focused
on the process of classification of series of data records that
correspond to a concrete activity. Besides, the dataset used for
training remains relatively artificial, since the hand washing
and other data used was collected separately, in particular,
the hand washing was not collected in free-living conditions.

Other works found in the literature present a different
approach. Instead of trying to identify washes, they are ori-
ented to detect the different steps of a WHO hand washing.
[22] describes a platform that integrates an ad-hoc developed
wearable with an inertial measurement unit that enables auto-
mated assessments of handwashing routines using a Hidden
Markov Model-based analysis method. This platform is able
to recognize the 12 steps of the WHO hand-washing pro-
cedure. The average accuracy is 92% with user-dependent
models, and 85% for user-independent modeling.

Along this research line, other proposals address the
problem of identifying the steps of washing using less
common wearable devices. For example, [23] or [24] test
the use of Thalmic Labs Myo gesture control armband
devices. This device includes an inertial measurement unit
and eight surface electromyography (EMG) sensors, which
allow it to capture the muscular activity of the forearm.
The first of the above-mentioned works uses only the data
from the inertial sensor of the Myo device placed on the
right forearm to detect, by means of a Support Vector
Machines (SVM) classifier, hand washes in which any of
the steps defined in the WHO protocol are not performed.
The second of the above-mentioned works has a similar
orientation, although in this case two Myo devices are used,
one in each arm. K-Nearest Neighbors (KNN), Support Vec-
tor Machines (SVM) and Artificial Neural Networks (ANN)
classifiers, as well as Hidden Markov Models (HMM) are
explored to identify the steps and their sequencing in an
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FIGURE 2. Data processing pipeline of the handwashing moments identification.

WHO hand washing. They achieve recognition rates of above
95% for individual gestures.

Another work exploring the use of alternative devices
is [25]. Here, the authors designed a smart ring integrating
an electrochemical fluid sensor that allows to detect hand
washing events. It also allows the detection of a variety of
hand washing agents, such as water, soaps, sanitizers, and
antimicrobial agents. The main drawback with this type of
proposal is linked to the problems of applicability in realistic
contexts, since this type of device is uncommon, especially
considering the type of sensor used.

Different approaches to detecting and monitoring hand
washing have been found in the review. However, none of
them meet the needs and premises set out in the previous
section. Thus, we did not find solutions that allow detecting
moments in which hand washing occurs, identifying when
and for how long it lasts, and distinguishing between free
washing and washing according to WHO indications. From
the point of view of the authors, these solutions should be
implementable using common, popular, and user-transparent
devices. Solutions that are invasive of users’ privacy should
also be avoided, i.e., it seems unreasonable, from an ethical
perspective, to use microphones to get the data required for
the proposed detection and classification task. It should be
possible to carry out this task using any existing commercial
smartwatch without using any more sensors than strictly ne-
cessary. And finally, from the point of view of the authors,
the validation of the proposals should be based on data col-
lected in free-living conditions.

III. METHODOLOGY
In the present proposal, the detection of hand washing is
based on the smart analysis of the data collected from the
wrist-worn wearable carried by the user. In particular, it was

decided to use only the data from the inertial sensor within the
wearable, i.e., measures provided by an accelerometer and a
gyroscope. The use of data from other types of sensors, such
as hygrometers or microphones was not considered because,
although they might facilitate the construction of a more
accurate detector, the existence of this type of sensors in
popular wearables is limited and its usage may pose a threat
to the privacy of the users. Therefore, the final technological
solution can be implemented in a wide variety of low-cost and
popular smartwatches.

To carry out the identification of moments in which a
person has performed a hand washing, and to check if this
has been according to the protocol defined by the WHO, the
3-axis accelerometer and 3-axis gyroscope data collected
from the smartwatch (6 signals in total) is processed accord-
ing to the 7 stages shown in Fig. 2. Basically, in the data
processing pipeline, a pre-filtering and framing of the signals
(stages 1 and 2 of the pipeline) is carried out to extract a
set of normalized features (stages 3 and 4) that can be used
by a classifier (stage 5) to determine whether small time
frames correspond to fragments of wash moments, either free
(i.e., not adhering to any standard) or WHO compliant.
Based on the output of the classifier, time periods
(stages 6 and 7 of the pipeline) of between 10 and
100 seconds are identified that actually can correspond
to a hand washing activity. The 7 specific stages are the
following:

1) Filtering. In order to remove noise from the 6 inertial
measurement signals collected from the smartwatch,
a pre-filtering stage is implemented. Since we cannot
determine a priori which is the most suitable type of
filtering for the problem at hand, we have decided to
try different 5-order digital Butterworth Low Pass (LP)
filters with different critical frequencies.
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2) Framing. To extract the features to be used in the cla-
ssification algorithm, the data corresponding to small
time frames of the 6 initial inertial measurement signals
are considered. A priori, it is not possible to determine
the ideal frame size, so it has been tested with frames
between 1 and 8 seconds (step 1 sec). The classification
algorithm must estimate if a certain frame corresponds
to a fragment of a hand washing process.

3) Features Extraction. From the data of the signals
that fall within a time frame, the feature extrac-
tion is carried out, both in the time and fre-
quency domains (c.f. Table 1). From the time domain
a total of 39 commonly-used features are calcu-
lated including mean, magnitude of mean, vari-
ance, correlation, covariance, interquartile range and
zero-crossings rate. From the frequency domain a total
of 21 commonly-used features are calculated includ-
ing spectral energy, magnitude of spectral energy,
FFT peak value and FFT peak frequency.

TABLE 1. Features extracted from frames in the time and the frequency
domains.

4) Scaling. This process allows homogenizing the range
of the feature values, which facilitates the process
of optimizing the subsequent classification algorithm
and reduces overfitting. The following scaling methods
have been tested:

• Min-Max Scaling: values are shifted and rescaled
so that they end up in a range between −1 and 1.

• Robust Scaling: subtracts the median and then
dividing by the interquartile range (75% value
−25% value). It is more resilient to the effect of
outliers than the previous approach.

• Standardization (or Standard Scaling): subtracts
the mean and then dividing by the standard devi-
ation, resulting in a zero-mean and unit-variance
dataset.

• L1-norm: each feature is regularized by applying
the l1 (Manhattan) normalization.

• L2-norm: each feature is regularized by applying
the l2 (Euclidean) normalization.

• No scaling. No data scaling is performed.

5) Classification. A classification algorithm based on
Machine Learning techniques estimates whether a time
frame, according to the features extracted from it, cor-
responds to a fragment from a normative hand washing,
from a free hand washing or it does not correspond
to a hand washing. It has been tested with several
configurations of different classification algorithms in
the field of Machine Learning, in particular, variants
of Support Vector Machine (SVM), Random Forest
(RF), Logistic Regression (LR) and Artificial Neural
Network (ANN).

6) Convolution. A discrete one-dimensional signal with
values 0-1 (not washed and washed, correspondingly)
is composed from the outcome of the previously des-
cribed classifier. The signal composed this way is con-
volved with a square signal. The result is a new signal
with high values in the time periods in which frames
corresponding to washing are concentrated.

7) Identification of washing moments. Using the output
signal from stage 6, areas where a certain threshold
is exceeded are labeled as potential periods of hand
washing. Areas lasting less than 10 seconds and areas
lasting more than 100 seconds are discarded. The dis-
card of these areas is based on the observation of the
data obtained (cf. section IV-B): the probability that
an actual washing lasts less than 10 seconds is very
small. The same applies to those that last more than
100 seconds. Also, it seems reasonable to consider that
a washing lasting less than 10 seconds is an incorrect
washing and, therefore, should not be considered as
such.

In order to determine the most effective types of
pre-filtering and scaling, identify the most suitable frame size
and, above all, train the classifiers, a strategy was designed to
capture properly labeled training data. This strategy involves
inviting volunteers who must wear a wrist wearable device
for a period of time that continuously collects inertial mea-
surement data. An application developed ad-hoc to mark
the beginning and end of a specific activity, mainly a hand
washing, was used.

The software developments and the first tests were carried
out with a Polar M600 device, a smartwatch with Wear
OS operating system, a version of Google’s Android ope-
rating system for wearables. However, for capturing data
from experiments on the volunteers, TicWatch S2 devices
were chosen. The TicWatch S2 is a smartwatch with similar
characteristics to the first one, but at a lower cost. As men-
tioned, an application was developed and installed on the
smartwatch to collect the mentioned data. This application
collects the data from the sensors on the device and sends it
to an analysis server either directly via Wifi or using a cell
phone as an intermediary agent. In this case, the smartwatch
sends the data via Bluetooth and the cell phone is responsible
for sending the data to the server. This app was developed
as the client of an environment created by the authors in a
previous project, oriented to capture data to estimate different
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parameters related to the user’s sleep [26] or stress [27], [28].
Through the functionalities offered by this infrastructure, it is
possible to configure the sensors that are activated and used
in the data collection (in our case 3 accelerometer signals
and 3 gyro signals, as indicated above) and the sampling
frequency of each one of them. In our case we chose to use the
SENSOR_DELAY_GAME range offered by the Wear OS API,
which corresponds to a sample rate of approximately 50 Hz
in the smartwatch used.

Fig. 3 shows an image of the app used by a volunteer
during a test. The volunteer keeps this app running and,
when he/she is going to perform a hand washing, he/she must
press the green button for 2 seconds, if it is a free wash,
or the red button in case of a hand washing according to
the WHO protocol. When the washing is finished, it must be
indicated by pressing the corresponding button. The inertial
measurement data is continuously stored in the device, as well
as the start, end and washing type marks. The app includes a
button to compress and send the gathered data to the analysis
server.

FIGURE 3. Data capture app running on TicWatch S2.

The strategy of training data capture, similar to the one
used in [29], is articulated around 3 different test scenarios:

1) Laboratory Experiments. This scenario corresponds
to a collection of data generated by carrying out a
series of predefined activities. Specifically, in this sce-
nario, the volunteer subject is required to perform the
following 9 activities: 1) handwriting for 2 minutes,
2) free hand washing for 1 minute, 3) WHO compliant
hand washing for 1 minute, 4) playing with a Rubik’s
cube for 2 minutes, 5) second free hand washing for
1 minute, 6) second WHO hand washing for 1 minute,
7) cleaning a glass and plate for 2 minutes, 8) walking
around for 1 minute, and 9) typing on a keyboard
for 1 minute. This set of activities, and these specific
durations, have been chosen to provide a balanced
set of data that includes handwashing, activities that

are gesture-analogous to washing, and activities that
should not be confused with washing at all.

2) 7-days Experiments. In this scenario, the volunteer
subject must carry the smartwatch for one week and
collect about 50 hours of data from the sensors. The
subject must keep his daily routine and use the app as
described above to indicate the beginning and the end
of the hand washes he/she performs, as well as their
type, i.e., whether it is a free wash or aWHOwash. The
subject is expected to record about 30 hand washes of
each type.

3) 30-days Experiments. This is a similar scenario to the
previous one, although in this case the subject uses the
wrist wearable for one month and is expected to collect
data for approximately 200 hours, as well as record at
least 100 washes of each type.

With this strategy, the data collected covers two main
contexts. On the one hand, controlled environments are
considered where very specific activities, several of which
involve performing movements similar to hand washing, are
included. And, also, real free-live condition environments
are involved as they are the best possible scenarios for
evaluating the actual performance of the washing detection
algorithm.

When establishing the parameters and hyperparameters
involved in the data processing pipeline that achieve the
best performance, the goal is to maximize the values of the
F-measure at the output of the classifier (stage 5) and/or
at the output of the moment identifier (stage 7). The best
value of F1 (harmonic mean of precision and recall) will
be sought, and, in particular, the best value of the macro
F1 [30], [31], so that the same importance is given to
each of the classes considered (NO-washing/FREE-washing/
WHO-washing). Macro F1 will be low for models that only
performwell on the common classes while performing poorly
on the rare classes.

In order to evaluate the performance of the hand washing
moment identification algorithm more thoroughly, beyond
the detection of the existence of a wash moment, a new
metric, called overlapping, is proposed. This metric allows
evaluating the success in predicting the start and duration
of a hand washing moment. For a correctly predicted hand
washing, the identification algorithm offers an approxima-
tion of its start and end moments, called in Fig. 4 as tis
and tie respectively, which constitutes the ti interval. The
correspondent real hand washing may have another different
pair of start and end time instants, denominated trs and tre,
conforming the tr interval.

Under these conditions, firstly, the absolute overlapping
(ao) is defined using the equation 1. Then, since the length
of a hand washing is variable, the relative overlapping is
calculated taking into account the length of the time intervals
ti and tr (equations 2 and 3). Finally, a conservative strategy
is applied and the lower of the relative overlaps is taken as
the overlapping value (equation 4). It can be noted that the
value of overlapping is 1.0 when the identification algorithm
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FIGURE 4. Overlapping of a real and predicted handwashing moment.

returns a perfect result (i.e., trs = tis and tre = tie).

ao = min(tre, tie)− max(trs, tis) (1)

roi =
ao
ti

(2)

ror =
ao
tr

(3)

overlapping = min(roi, ror ) (4)

IV. RESULTS
Fifteen volunteers (40% women) took part in the capture
of the training data. The subjects, all of them of legal age,
were informed about the tests to be performed and signed the
corresponding consent form.

The data collected in each experiment was used both,
to train the classifier (stage 5 in the data processing pipeline
represented in Fig. 2), and to obtain the hyperparameters
that give the best result either at the classifier output, or at
the output of the wash moment identifier, depending on the
experiment considered. The hyperparameters concern to: i)
the configuration parameters of each classification algorithm
considered, ii) the different alternatives considered in stages
for the signal conditioning and framing (stages 1 to 4 of the
data processing pipeline), and iii) the possible options for the
washing moment identification stage (stages 6 and 7). Table 2
presents the specific hyperparameters considered for each of
the stages.

The data processing consisting of the stages represented
in Fig. 2 was implemented through 4 parameterizable
pipelines, one for each type of classifier considered. For
training the classifier and obtaining optimal hyperparameters,
5-fold cross validation was used in all cases. In this way, over-
fitting problems are greatly reduced and the generalizability
of the results obtained is increased as much as possible.

The following sections describe the particularities and
analysis that were carried out in each of the 3 test scenarios
considered.

A. LAB EXPERIMENTS
All 15 volunteer subjects participated in the tests performed
in the laboratory. As described above, the subjects performed
9 activities, including 2 WHO hand washes and 2 free hand
washes. From the inertial measurement signals obtained from
each subject, time windows of between 40 and 120 seconds
were maintained, corresponding to the periods in which each
of the 9 activities was carried out. From these signal windows,

TABLE 2. Hyperparameters.

the initial 3 seconds and the final 3 seconds were cut to
avoid potential noise at the beginning and end of the activity
(Fig. 5 shows the signal windows for one volunteer). The
remaining portions of the signals were used to train the classi-
fier and to obtain the optimal hyperparameters. In particular,
2 groups of analysis were carried out, which are described in
the following subsections.

1) ALL VERSUS ALL
In this analysis, all the signal windows from each of the
participants are used to train the classifiers and to obtain the
hyperparameters that maximize the final performance.

Table 3 shows the performance scores achieved in the
frame classification process (stage 5 in the full data pipeline)
for each of the classifier types considered and the hyperpa-
rameters that allow that value to be reached. In this case, they
are considered binary classifiers, i.e., they label a frame as 1,
when it corresponds to a fragment of a hand washing activity
(regardless of whether it is a WHO or a FREE wash), or 0,
otherwise.

As the reader may note, using an RF classifier, an F1 of
92.1% is obtained (with an average precision and recall
also of 92%). This score is obtained by using a low-pass
filter with a cut-off frequency of 5 Hz, a Min-Max scaling,
and considering a frame size of 6 seconds. The internal
configuration hyperparameters that maximize this classifier
are ‘‘bootstrap’’ = false, ‘‘max_features’’ = ‘‘auto’’ and
‘‘n_estimators’’ = 100. With the SVM classifier, almost
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FIGURE 5. Example of signal windows of the activities performed in the laboratory experiments.

identical scores are obtained (in this case using a low-pass fil-
ter with a 10 Hz cutoff frequency). The performance obtained
with an ANN classifier (2 layers with 50 neurons per layer)
was also virtually the same as in the previous two ones (with

an F1 of 91.5%) and using an LR classifier, the F1 is slightly
reduced to 88.7%.

On Table 3 it can be seen that, except for the SVM
classifier, the filtering providing the best results is a 5 Hz
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TABLE 3. Best scores for the ‘‘all vs all’’ analysis, considering 2 frame classes (washing/no-washing), in the Lab Experiments scenario.

low-pass filter. However, a detailed analysis of this hyperpa-
rameter, both, in these laboratory experiments and in subse-
quent experiments in free-living conditions, showed that the
performance of the classifiers is practically independent of
the type of filtering applied. As an example, Fig. 6 represents
the best value obtained of F1 in each type of classifier for the
5 low pass filter types considered (fc = 5, fc = 10, fc = 15,
fc = 20 and none). This figure shows that, for a given classi-
fier, the best performances are practically identical regardless
of the filter used. Therefore, except where otherwise stated,
all the analysis below correspond to a null filtering. The
latter was chosen to be the default filtering, as it reduces
the computational cost of data processing. The sampling of
the signal at 50 Hz itself seems to be a sufficiently selective
filtering for the problem being addressed.

FIGURE 6. F1 vs LP filter.

Regarding the scaling of features before entering the classi-
fier (stage 4 in the full data pipeline), Min-Max provided the
best results in all cases. Therefore, it was decided that this
would be the default scaling in subsequent analysis since,
in addition to get the best performance, it is the easiest one
to implement in a final system, as it does not involve the
calculation of averages or other statistical values.

Regarding the frame size, the best performance is obtained
with a size of 6 seconds in all cases. Although this has
been the maximum size considered in this analysis, further
observations (as seen in subsection IV-B2) have shown that,
indeed, 6 seconds is, overall, the size that allows better per-
formance, although there is some variability depending on the
analysis considered.

When distinguishing between WHO and free washing,
the best F1 is achieved using the SVM algorithm, as shown
in Table 4. In this case, the F1 is 77.8% (with a precision
of 79.4% and a recall of 77.9%). That is very close to the
value obtained with the RF algorithm and also close to the
ANN result. The best performance is obtained with almost
the same hyperparameters as in the binary case (washing/non-
washing). It is worth mentioning, as a curiosity, that the best
scaling in LR is achieved with a standardization, although the
differences with a Min-Max scaling are negligible.

Regarding the identification of washing moments
(stage 7, final, in the full data pipeline), when just con-
sidering washing/non-washing, an F1 of 98% is obtained
(precision: 100% and recall: 96%) and an overlapping of 0.93
(SD: 0.10). This value is obtained for the RF algorithm and
with a convolution signal size of 18 seconds. When distin-
guishing between free and WHO washing, the F1 obtained
is reduced to 93% (precision: 100% and recall 86%) with an
overlapping of 0.70 (SD: 0.17) for the FREE wash. In the
case of a WHO wash, it is achieved an F1 value of 98% (pre-
cision: 100% and recall: 96%) with an overlapping of 0.87
(SD: 0.09), using a convolution signal of 18 seconds.

2) ALMOST ALL VERSUS ONE
On the second analysis carried out on the grounds of the
laboratory experiments, the data corresponding to 14 of the
15 volunteers is used to obtain the hyperparameters of a
complete pipeline. The performance of the pipeline obtained
is evaluated using the samples of the remaining subject. This
is repeated 15 times, so that in each iteration the evaluated
user is a different one. It should be noted that the obtained
pipeline is tested using samples that, on one hand, are ‘‘fresh’’
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TABLE 4. Best scores for the ‘‘all vs all’’ analysis, considering 3 frame classes (NO-washing/FREE-washing/WHO-washing), in the Lab Experiments
scenario.

TABLE 5. Best scores for the ‘‘Almost all vs one’’ analysis, considering 2 frame classes (washing/no-washing), in the Lab Experiments scenario.

(i.e., not used yet on the training process) and, on the other
hand, correspond to a new subject, possibly with a ‘‘dif-
ferent’’ handwashing behaviour. This analysis allows us to
assess the potential of a solution for identifying washing
moments with subjects who were not involved in the training
process. For the sake of simplicity (since the features would
be virtually the same, as seen in the previous analysis) and
to reduce analysis times, the initial filtering process was
dropped and scaling was set to Min-Max.

As shown in Table 5, when considering binary clas-
sification, the classification algorithm with the best per-
formance was SVM (F1: 91.7%, precision: 92.9%, and
recall: 91.8%), although with performance very similar to
RF (F1: 91.4%, precision: 92.1%, and recall: 91.5%) and
also ANN (F1: 90.6%, precision: 91.6%, and recall: 90.7%).
In the case of LR, performance falls by only 2.2% with
respect to SVM. As can be seen in the table, the per-
formance obtained using only the training data (corre-
sponding to 14 subjects) is practically the same as the
one obtained including the validation data (i.e., using the

remaining subject). So it can be stated that the obtained
solution is generalizable.

Using the pipeline corresponding to the SVM classi-
fier, the F1 score obtained was 94% (precision: 98.2% and
recall: 91.6%) for the identification of washing moments,
with an overlapping of 0.868 (SD: 0.117). These values are
obtained with a convolution signal of 18 seconds.

When differentiating between types of hand washing
(cf. Table 6), performance lowers considerably, although it
remains relatively high overall. The best pipeline is achieved
by using an SVM classifier, which, in this case, is signif-
icantly ahead of the other three classifiers. Using SVM,
the overall F1 score achieved by evaluating the samples of the
external subjects is 80.3% (precision: 81.7%, recall: 81%).
This is a remarkable output, but it should be noted that
in the classification of frames corresponding to fragments
of hands-free washing activities, the F1 is reduced to
53.9% (precision: 55.2%, recall: 56.8%). This compares with
the F1 of 77.2% (precision: 55.2%, recall: 56.8%) corre-
sponding to the classification of WHO washing activities
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TABLE 6. Best scores for the ‘‘Almost all vs one’’ analysis, considering 3 frame classes (NO-washing/FREE-washing/WHO-washing), in the Lab
Experiments scenario.

frames. This should not be considered strange at all, since
hands-free washing presents much more variability, espe-
cially if different people are considered.

With a pipeline based on a SVM classifier and an
18-second square convolution signal (three times the frame
size), an identification ofWHOwashingmoments is achieved
with an average value for F1 of 92% (precision: 87.8%,
recall: 96.6%) and an average overlapping of 0.837. In the
identification of free washing moments, an F1 of 69.8% (pre-
cision: 66.6%, recall: 73.3%) and an overlapping of 0.50 are
obtained. As expected, the performance of free washing iden-
tification is significantly lower than the performance ofWHO
compliant hand washing.

B. 7-DAYS EXPERIMENTS
The one-week test scenario involved 6 subjects (50%
women), who regularly wore the smartwatch on a day-
to-day basis (except for their nightly rest), while performing
their ordinary tasks. Participants were required to use the
app installed on the clock to indicate the beginning and the
end of each hand washing (as well as the type). As sometimes
volunteers forgot to press the button to signalize the end of
the hand washing, it was decided to eliminate data periods
labeled as hand washing that lasted longer than 2 minutes.

In total, 382 hours of data were collected in free-live con-
ditions, including 365 washes, of which 186 are free hand

washes (an average of 31 per user) and 179 are WHO com-
pliant washes (an average of 29.83 per user). The distribution
of handwashing duration for each of the participants is shown
in Fig. 7. The average duration of a free hand washing is
36.78 seconds (SD: 7.37) and the average duration of WHO
hand washes is 61.01 seconds (SD: 9.88). It can be noted,
however, that there are significant differences among the
subjects, both in free and normative handwashing.

As the amount of data corresponding to non-washing peri-
ods is larger than the corresponding to washing periods, it was
necessary to carry out a downsampling process, in order
to obtain a balanced training sample set and, thus, avoid
classification bias. After considering several possibilities of
downsampling, it was decided to generate a set of training
samples made up of the time frames containing washes of
both types and with an equal number of time frames without
washes. The latter were obtained randomly from the data
corresponding to periods without washes. Its duration is the
average duration of free and WHO compliant washes. Five
datasets were constructed in this way and the analysis was
carried out with each of them individually. The following
subsections describe the results for the 3 analysis processes
carried out.

1) ALL VERSUS ALL
In this analysis, data from all participants is used to train
the classifiers, to obtain the optimal hyperparameters and to
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FIGURE 7. Distribution of the duration of hand washing for each of the participants on the ‘‘7-days Experiments’’
scenario.

TABLE 7. Best scores for the ‘‘all vs all’’ analysis, considering 2 frame classes (washing/no-washing), in the 7-days Experiments scenario.

TABLE 8. Best scores for the ‘‘all vs all’’ analysis, considering 3 frame classes (NO-washing/FREE-washing/WHO-washing), in the 7-days Experiments
scenario.

evaluate the performance. Initially, the following hyperpa-
rameters were selected: no filtering, Min-Max scaling, and
6-second frame time.

On Table 7, the results obtained for each type of clas-
sifier, considering a binary classification (washing/non-
washing), are shown. As can be seen, the difference in
the scores obtained is minimal. The pipeline based on the
SVM classifier with ‘‘rbf kernel’’, as in most of the pre-
vious analysis carried out, offers a slight advantage over
the alternatives, reaching an F1 of 96.5% (precision: 96.6%
and recall: 96.4%). Using the pipeline with this classi-
fier, and taking an 18-second square convolution signal,

a wash identification solution is obtained with an F1 of 97%
(precision: 99% and recall: 95%) and an overlapping of 0.937
(SD: 0.135).

If we consider the two types of washes, the classifier
with the best behavior is the one based on the RF algorithm
(cf. Table 8), although with scores very close to SVM and
ANN, and even to LR. The F1 score achieved with RF using
an rbf kernel is 83.9% (precision: 84.9% and recall: 83.1%).
A data pipeline based on this classifier allows to build a
solution for identifying free washmoments with an F1 of 72%
(precision: 95% and recall: 58%) and an overlapping of 0.764
(SD: 0.216). In the identification of WHOwashing moments,
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TABLE 9. Best scores for the ‘‘almost all vs one’’ analysis, considering 2 frame classes (washing/no-washing), in the 7-days Experiments scenario.

it achieves an F1 of 95% (precision: 92% and recall: 98%),
and the overlapping is 0.824 (SD: 0.09).

2) ALMOST ALL VERSUS ONE
In order to study the potential of building a user-independent
system for identifying washing moments, an analysis sim-
ilar to the one described in section IV-A2 was carried out.
A pipeline was obtained using data from 5 subjects and their
performance was evaluated with the remaining subject. This
was repeated 6 times, varying in each iteration the validation
subject.

In Table 9 the reader can see the scores obtained when
no difference is made between wash types for the 6-second
frame classification process. The results are almost identical
for the RF-based classifier (with 200 estimators), SVM (with
rbf kernel), and also very close to the ANN-based classifier
(with 2 layers of 50 neurons per layer and relu activation
function). The full data pipeline with an RF classifier allows
to obtain a solution for the identification of washing moments
with an F1 of 91.4% and an overlapping of 0.889 (SD: 0.151).

When the separation is made between WHO washes and
free washes, the performance is reduced, especially in the
classification of fragments corresponding to free washing,
as could be expected. In Table 10 the classification scores
obtained for the different algorithms considered are pre-
sented. As the reader may note, a similar performance is
achieved in the three classification approaches. Nevertheless,
it can be noted that the use of the LR algorithm results in a
slightly worse performance. With RF an overall F1 of 76.3%
is obtained, although the classification of free washing frames
only obtains an F1 of 57.9% with a recall noticeable low that
does not reach more than 55.6% (and also with a noticeable
standard deviation).

In this analysis, special attention is paid to how the length
of the frame affects the performance at the output of the
classifier (stage 5 in the data processing pipeline repre-
sented in Fig. 2) for the different algorithms considered.
Figs. 8, 9, 10, and 11 show, respectively for LR, RF, SVM,
and ANN, the variations of F1, precision and recall as a

FIGURE 8. Performance vs frame size in the LR classification stage.

FIGURE 9. Performance vs frame size in the RF classification stage.

function of the frame size. Both, the global scores and the
scores for the classification of free washing and normative
washing frames are represented. As can be seen, the best
performance is obtained for a size of 6 seconds in the case
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TABLE 10. Best scores for the ‘‘almost all vs one’’ analysis, considering 3 frame classes (NO-washing/FREE-washing/WHO-washing), in the 7-days
Experiments scenario.

FIGURE 10. Performance vs frame size in the SVM classification stage.

of LR and RF classifiers. For an ANN classifier, the ideal
frame size is 5 seconds. In the case of SVM, the best scores
are obtained around 7 seconds, although with a very small
difference with respect to 6 seconds (and even 5 seconds).
Therefore, we consider that, globally, the ideal frame size for
the classification process is 5 or 6 seconds.

Considering the output of the full data pipeline,
a solution for WHO hand washing moment identifica-
tion with a global F1 of approximately 90% is achieved
using both, RF and SVM. However, in hand washing

FIGURE 11. Performance vs frame size in the ANN classification stage.

identification the F1 is reduced to 46%, obtaining a precision
of 90% but a recall of only 30.4% and an overlapping
of 0.663.

Figs. 12 and 13 show, for the SVM-based pipeline, how
the frame size impacts on the performance regarding moment
identification, both in F1 and overlapping, respectively.
As can be observed, a frame size of 6 seconds is the most
appropriate option for the implementation of an optimal
final solution. Although the decision of using 7 seconds
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FIGURE 12. Performance vs frame time in the moment identification
stage (SVM classification).

FIGURE 13. Overlapping vs frame time in the moment identification stage
(SVM classification).

improves the recall of free wash identification, this is at the
cost of a notable decrease in precision, as well as in the
WHO wash identification scores and in overlappings
(as shown in Fig. 12).

3) LAB VERSUS ALL
The last analysis made with the data collected in the 7-days
experiments uses the data from the laboratory experiments
to train the classifiers. In particular, a full data pipeline was
obtained from all the data collected in the laboratory and
its performance was evaluated in the 7-day free-live condi-
tions datasets. Tables 11 and 12 show the results obtained,
considering binary classification and classification differen-
tiating free washes and WHO washes.

As can be noted, high scores are obtained in all four types
of algorithms for binary classification. Being the highest F1,
of 90%, in the case of RF. In all four cases, the training and
testing scores are similar.

For NO-washing/FREE-washing/WHO-washing classifi-
cation, an overall F1 of 73.2% is obtained with RF, although
the F1 for free washing frames drops to 55.9%. In any case,
the similarities between training and testing performances are
maintained.

A solution for the identification of washing moments can
reach, for the case of binary classification, an F1 of 89.9%
(precision: 88.8% and recall: 91%) with an overlapping
of 0.771 (SD: 0.272). A solution for the identification of
washing moments that considers free washing and WHO
washing can reach, in the first case, an F1 of 55.3% (preci-
sion: 86.7% and recall: 40.6%) with an overlapping of 0.75
(SD: 0.195). And, in the second case, it is possible to obtain
an F1 of 87.7% (precision: 81.6% and recall: 94.8%) with an
overlapping of 0.817 (SD: 0.097).

C. 30-DAYS EXPERIMENT
In the 30-days tests scenario in free-life conditions partici-
pated 2 volunteer subjects, both men. One of the subjects
collected 192.5 hours of data, including 128 free washes
with a duration of between 18.83 and 80.44 seconds (mean:
33.35, SD: 7.97) and 117 WHO washes with a duration
of between 18.22 and 78.12 seconds (mean: 58.3 and SD:
10.20). The second subject collected 174.76 hours of data.
He performed 129 free washes, taking between 23.39 and
81.67 seconds (mean: 40.30 and SD: 9.67) and 123 WHO
washes, taking between 39.60 and 84.73 seconds (mean:
54.71 and SD: 8.65).

The data collected in these experiments was used to eval-
uate the performance of pipelines obtained in the previous
scenarios, both the laboratory and the 7-days in free-life con-
ditions experiments. It is worth mentioning that the subjects
also participated in the previous scenarios.

1) LAB VERSUS ALL
By training the classifiers and obtaining the ideal hyper-
parameters from the data collected in the laboratory sce-
nario, the performances shown in Table 13 are achieved
when the optimal pipelines obtained are applied to the
data captured by the 2 subjects participating in the 30-
days experiments. The pipeline with the best performance
in terms of frame classification was the RF-based algorithm
with F1, precision and recall higher than 96%. Using LR
and SVM, identical results are obtained, which are very
close to RF. ANN in this case has the worst performance,
although the differences among the four algorithms are
small.

The four pipelines obtain almost identical washing
moment identification performance, with F1, precision
and recall over 97% and an overlapping between 0.90
and 0.95.

Table 14 shows the results when the classification distin-
guishes between free washes and normative washes. In this
case, the pipeline with the best performance is the one based
on SVM (although with small deviations from RF and LR),
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TABLE 11. Best scores for the ‘‘lab vs one’’ analysis, considering 2 frame classes (washing/no-washing), in the 7-days Experiments scenario.

TABLE 12. Best scores for the ‘‘lab vs one’’ analysis, considering 3 frame classes (NO-washing/FREE-washing/WHO-washing), in the 7-days Experiments
scenario.

TABLE 13. Best scores for the ‘‘lab vs all’’ analysis, considering 2 frame
classes (washing/no-washing), in the 7-days Experiments scenario.

with an overall F1 of 83.6% and a remarkable F1 of 74.4%
(precision: 70.5% and recall: 78.6%) for the classification of
frames corresponding to free hand washes.

Using the pipeline with SVM, a solution for the identifi-
cation of washing moments is obtained with an F1 of 96.1%
and an overlapping of 0.819 (SD: 0.099) for WHO washing.
For free washes, an F1 of 83.6% (precision: 88.1% and
recall: 79.6%) and an overlapping of 0.824 (SD: 0.202) are
achieved.

2) 7-DAYS VERSUS ALL
In the last analysis conducted in this study, the performance
of the pipelines previously obtained from the 7-days expe-
riments was evaluated using the data of the two subjects
participating in the 30-days experiments. Table 15 shows the
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TABLE 14. Best scores for the ‘‘lab vs all’’ analysis, considering 3 frame
classes (NO-washing/FREE-washing/WHO-washing), in the 7-days
Experiments scenario.

TABLE 15. Best scores for the ‘‘7-days vs all’’ analysis, considering
2 frame classes (washing/NO-washing), in the 7-days Experiments
scenario.

results applied to binary classification. As the reader may
note, outstanding classification results are achieved. As a
matter of fact, F1 reached values higher than 98% in all
4 cases. With this successful classification rate, the obtained
solution for moment identification reaches an F1 score close
to 99% and an overlapping of 0.98.

Table 16 shows the results when distinguishing between
free washing and WHO washing. The scores are also very
high for RF, SVM and ANN. With the RF algorithm, a global
classification F1 of 96.2% is obtained (precision: 95.9% and
recall: 96.6%). In this case, even the classification of frames
corresponding to free washes obtains very high scores, with
an F1 of 93.6% (precision: 91.6% and recall: 95.8%).

Using an RF-based pipeline, a WHO hand washing iden-
tification solution with F1 of 98.8% (precision: 99.2% and
recall: 98.4%) and an overlapping of 0.808 (SD: 0.064) is
achieved. Besides that, in free hand washing identification,
a remarkable F1 of 97.6% (precision: 100% and recall:
95.3%) is obtained, with an overlapping of 0.965 (SD: 0.097).

V. DISCUSSION
The various analyses carried out with the data collected in
the different types of experiments have shown the feasibility
of developing a handwashing identification solution with
acceptable performance. This solution is aimed at detecting

TABLE 16. Best scores for the ‘‘7-days vs all’’ analysis, considering
3 frame classes (NO-washing/FREE-washing/WHO-washing), in the
7-days Experiments scenario.

handwashing moments from the continuous flow of iner-
tial measurement data collected from a popular commercial
smartwatch,mainlywhen the handwashing follows the guide-
lines recommended by theWHO. The reader should note that
the purpose of this work was not to explore the possibility
of identifying the actual execution of the 11 individual steps
that make up the WHO protocol (c.f. Fig. 1), but to identify
the proximity of a certain handwashing to such protocol in a
holistic manner.

In line with the existing literature in the domain, it has
been proven that using data collected in a controlled manner,
it is possible to obtain a user-dependent classifier capable
of detecting 6-second frames corresponding to hand wash-
ing with an F1 of over 90%. When free washes are classi-
fied separately from WHO washes, the effectiveness of the
classification is reduced to an F1 of 77.8%. In any case,
based on this classification, it is possible to build a solution
that allows identifying washing moments with an F1 higher
than 90% and an overlapping around 0.90. When building a
user-independent solution, that is, obtaining the data pipeline
with data not coming from the subject being evaluated,
the identification ofWHOwashingmomentsmaintains a very
high performance, with an F1 higher than 90%. However,
the identification of free washes diminishes significantly,
lowering the F1 to approximately 70% and an overlapping
of 0.50, which indicates that the prediction of the instant of
beginning of the wash and its duration is not very accurate.

Using data collected in free-live conditions, a user-dependent
solution, when distinguishing the types of washing, can
reach, for the identification of WHO washing moments,
an F1 of 95% (overlapping: 0.824), and for the identification
of free wash moments an F1 of 72% (overlapping: 0.764).
A user-independent approach achieves a solution for the iden-
tification ofWHOhandwashingmoments with an F1 of 90%,
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but in the identification of free hand washing moments the
F1 falls to 46%, suffering in particular the recall (i.e. although
the detected washings are correct in their great majority,
an important proportion of free washings is not detected).
This substantial decrease in performance when it comes to
identifying free washes may seem to be quite limiting in some
contexts for the obtained solution. However, this result is
logical and, to a certain extent, foreseeable, since each person
washes his hands in a very different waywhen he/she does not
follow pre-established guidelines. Thus, a predictive model
obtained with a group of outsiders is not going to provide
good results in this task, except, perhaps, if this group is large
enough, and, to some extent, can recreate a validmodel for the
variety of behaviors that exist among people. This is an issue
that can be analyzed in the future, with amuch greater number
of participants. The fact that a user-dependent model provides
good results in identifying free washing indicates that the
same person tends to wash his or her hands always in a similar
way, although quite differently from theWHO-recommended
washing protocol.

Applying a pipeline obtained with the data from the labo-
ratory experiments in the identification of washing moments
of the 6 participants in the 7-days scenario, an F1 higher than
85% is obtained for WHOwashes and an F1 higher than 55%
for free washes (overlapping higher than 0.75 in both cases).
This same pipeline applied to the 2 subjects who participated
in the 30-days scenario reaches high scores, with an F1 of
96.1% and 83.6%, respectively for WHO and free washes,
and an overlapping above 0.80. These results show that it
is feasible to build a high-performance handwashing identi-
fication solution based on data collected only in controlled
environments. It should be noted, however, that this analysis
results in a user-dependent predictive model.

A final analysis tested a pipeline obtained from the 7-days
experiments with the subjects who participated in the 30-days
scenario. In this case, the results are really good, obtaining
F1s and overlappings greater than 95% and 0.80, respectively,
for both free and WHO washes.

In short, the results obtained allow us to conclude that,
with sufficient data, it is possible to obtain a very effec-
tive user-dependent solution for the identification of both
types of washing, both free and according to the WHO
protocol. A user-independent model, on the other hand,
results in an effective solution for washes that follow the
recommendations provided by the WHO (and therefore
have an underlying pattern) but with poorer results in the
identification of free washes. It is worth mentioning that
the pipelines obtained have always tried to maximize the
global F1, and not independently for WHO and free washes.
An approach that seeks to maximize specific F1 for free
washes is likely to perform better in this task. This approach
would result in two pipelines, one for each type of wash,
thus increasing the computational complexity of the final
solution.

In the analysis processes carried out, the 4 classification
algorithms that usually provide better results in the field

of activity recognition were tested. It has been proven that
very similar performances are obtained with RF, SVN, and
ANN. When the LR algorithm is applied, the performance
is usually somewhat lower, although the differences remain,
in most cases, not very significant. Depending on the type
of analysis carried out, in some cases the best models are
obtained with SVN and in others with RF, always closely
followed by ANN. The algorithm that allows to obtain better
performances in more analysis has been SVM, although this
must be considered in a relative way, because the differences
with RF, and even with ANN, are small, so a finer tuning of
the hyperparameters can turn the table.

Regarding to the prediction algorithms used in our study,
the reader may note the lack of an approach closer to the
area of Deep Learning (DL), a hot topic in the domain.
Indeed, the present study has used algorithms based on
neural networks, the base model for DL, although the net-
works used were structurally simple. Tests have not been
carried out with deep neural networks since obtaining the
optimal parameters, i.e., training, in these complex networks
requires huge amounts of training data. This would require
the participation in the experiments of a larger number of
volunteer subjects for longer periods. Currently, there are
no, to the best knowledge of the authors, pre-trained deep
neural networks that could serve as a starting point to obtain,
in a reasonable way, appropriate DL predictors for our
purpose.

The main limitation of the study carried out has been,
in fact, the number of volunteer subjects in the experiments
to obtain training data. Certainly, a larger number of labelled
samples would allow us to obtain more general conclusions
(and, to a certain extent, more optimized prediction models).
However, the number of training data obtained (more than
600 hours of samples, which significantly exceeds those
used in similar studies found in the literature) has allowed
us to carry out multiple analytical processes, from different
perspectives, trying to highlight possible weaknesses and
limiting biases in the conclusions reached. From the point of
view of the authors, the main problem derived from not being
able to count on a larger number of volunteers has been the
impossibility of obtaining effective user-independent models
for the identification of freehand washing, as above men-
tioned.

VI. CONCLUSION
In this paper we have presented a study on the feasibility of
building a solution that, using data collected from a wear-
able wrist device, can identify the moments when a person
performs a hand washing and if this washing is compliant
with the WHO protocol. This study is an advance on existing
proposals in the academic literature in three fundamental
aspects: first, it explicitly distinguishes between free wash-
ing and washing in accordance with the protocol defined
by the WHO; second, it makes use of datasets obtained in
free-live conditions, specifically more than 600 hours of data
have been collected; and third, the study is not limited to
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classifying activities as corresponding to washing, but allows
identifying when and for how long this activity has taken
place.

The study has shown that it is possible to build a
user-dependent solution that is very effective in detecting
any type of wash, and a user-independent solution that is
very effective in detecting WHO washes, but more limited
in detecting free washes. This solution uses only data from
the accelerometer and the gyroscope data, which facilitates
its implementation, since the vast majority of commercial
devices of common use and low cost include these sensors,
andmaximizes user privacy, since it does not use sensors such
as the microphone.

As a future line, it is proposed to build a telematics plat-
form to provide recommendations adapted to the behavior
of the individual and, above all, to promote self-reflection
and awareness of the importance of hand washing. This will
involve obtaining predictive models complementary to those
already obtained to, once a WHO handwashing has been
detected, identify the individual steps that make up the WHO
protocol and, based on the correct/incorrect realization of
these steps, give the proper recommendations. To obtain these
prediction models, the use of DL techniques is considered,
as these techniques could be more feasible since the collec-
tion of training data corresponding to non-handwashing is
not required. Also, the use of optimization techniques such
as adaptive sliding framing [32] is contemplated.
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